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We consider a ð1þ 1Þ-dimensional model of general relativity that is based on a geometric theory of

gravity due to Nordström. We show that the model can be reinterpreted as a scalar field theory in flat

spacetime in which the scalar field couples to the trace of the total energy-momentum tensor, and we use

the flat-spacetime interpretation to formulate the initial value problem for the model. We illustrate our

results by using computer simulations of the model to obtain several example solutions.
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I. INTRODUCTION

The Einstein field equations do not yield a viable theory
of gravity in ð1þ 1Þ dimensions because in ð1þ 1Þ dimen-
sions the Riemann and Ricci tensors are given by

R�
��� ¼ ðR=2Þg��ðg��g�� � g��g��Þ;
R�� ¼ R�

��� ¼ ðR=2Þg��;
(1)

where g�� is the metric tensor and R ¼ g��R�� is the

curvature scalar [1]. These expressions imply that the
Einstein tensor vanishes identically (G�� ¼ R�� �
ðR=2Þg�� ¼ 0), so the Einstein field equations reduce to

G�� ¼ 8�GT�� ¼ 0, where G is the gravitational con-

stant and T�� is the energy-momentum tensor for matter.

Thus, in ð1þ 1Þ dimensions the Einstein field equations
simply state that the energy-momentum tensor vanishes.

As an alternative to the Einstein field equations, we
consider a ð1þ 1Þ-dimensional model of gravity that is
based on the field equation

R ¼ 4Gg��T
��; (2)

where the energy-momentum tensor T�� is required to
satisfy the conservation law

r�T
�� ¼ @�T

�� þ ��
��T

�� þ ��
��T

�� ¼ 0: (3)

This model is a useful theoretical laboratory for investigat-
ing conceptual problems in general relativity because it is
generally covariant, has a sensible Newtonian limit, and
accounts for gravitation in terms of spacetime curvature.
The model has been discussed by a number of authors
[2–5]. Topics that have been studied using the model
include black hole solutions [6], point particle dynamics
[7–9], and quantum gravity [10]. The model is the direct
ð1þ 1Þ-dimensional analog of a ð3þ 1Þ-dimensional the-
ory of gravity proposed by Nordström in which the field
equations are taken to be

R ¼ 24�Gg��T
��; C���� ¼ 0; (4)

where C���� is the Weyl tensor [11,12]. In ð1þ 1Þ dimen-

sions the Weyl tensor vanishes identically, and the
Nordström field equations reduce to Eq. (2) after a trivial
rescaling of the gravitational constant.
In this paper, we show that Nordström gravity in ð1þ 1Þ

dimensions can be reinterpreted as a scalar field theory in
flat spacetime in which the scalar field couples to the
trace of the total energy-momentum tensor. Because of
the general covariance of Nordström gravity, the flat-
spacetime interpretation has a nontrivial spacetime sym-
metry in addition to Lorentz invariance. We demonstrate
the invariance of the flat-spacetime interpretation under
this new symmetry and explain its physical meaning.
The flat-spacetime interpretation allows us to formulate
the initial value problem for the model, leading to a simple
scheme for simulating the model on a computer. We illus-
trate our scheme by performing computer simulations of
the model for the case of a perfect fluid that obeys a simple
equation of state.
The paper is organized as follows. In Sec. II, we show

that Nordström gravity in ð1þ 1Þ dimensions can be re-
interpreted as a scalar field theory in flat spacetime in
which the scalar field couples to the trace of the total
energy-momentum tensor. In Sec. III, we discuss the sym-
metry properties of the flat-spacetime interpretation. In
Sec. IV, we discuss the energy-momentum tensor for mat-
ter and consider in detail the special case of a perfect fluid
that obeys a simple equation of state. In Sec. V, we use the
flat-spacetime interpretation to formulate the initial value
problem for Nordström gravity. In Sec. VI, we present
several example solutions.
The following notation is used in this paper. The

Minkowski metric tensor ��� is defined such that �00 ¼
��11 ¼ 1, �01 ¼ �10 ¼ 0. The Levi-Civita tensor ��� is

defined such that �01 ¼ ��10 ¼ 1, �00 ¼ �11 ¼ 0.

II. FLAT-SPACETIME INTERPRETATION

We will begin by showing that Nordström gravity in
ð1þ 1Þ dimensions can be reinterpreted as a scalar field
theory in flat spacetime in which the scalar field couples to
the trace of the total energy-momentum tensor. Consider a*boozer@unm.edu
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scalar field 	 in a flat spacetime with metric tensor ���,

together with some matter whose energy-momentum ten-

sor is ���
m . We will assume that the total energy-

momentum tensor for the system has the form ��� ¼
���

m þ���
f þ���

i , where

���
f ¼ ð1=2GÞð������ � ð1=2Þ������Þð@�	Þð@�	Þ

(5)

is the energy-momentum tensor for a free massless scalar

field and ���
i is an energy-momentum tensor associated

with a coupling between the scalar field and the matter. We
will require that the scalar field couple to the trace of the
total energy-momentum tensor:

h	 ¼ �2G����
��: (6)

Since ���
f is traceless, it follows that

h	 ¼ �2G����
��
mi ; (7)

where ���
mi � ���

m þ���
i . From Eqs. (5) and (7), it fol-

lows that

@��
��
f ¼ �����

��
mi �

��@�	: (8)

We will assume that the total energy momentum is con-

served (@��
�� ¼ @��

��
f þ @��

��
mi ¼ 0), so Eq. (8) im-

plies that

@��
��
mi ¼ ����

��
mi �

��@�	: (9)

We have obtained a theory describing a scalar field 	

coupled to an energy-momentum tensor ���
mi in flat space-

time. The field equation for	 is given by Eq. (7), and���
mi

satisfies the conservation law given by Eq. (9).
We will now relate this theory to Nordström gravity. In

ð1þ 1Þ dimensions, spacetime is conformally flat for all
metrics; that is, one can always choose a coordinate system
x� ¼ ðt; xÞ in which the metric tensor takes the form
g�� ¼ e2	��� for some scalar field 	 [13]. We will call

such a coordinate system a conformal coordinate system.
In a conformal coordinate system, the Christoffel symbols
are given by

��
�� ¼ 
�

�@�	þ 
�
�@�	� ����

��@�	; (10)

and the curvature scalar is given by

R ¼ �2e�2	h	: (11)

From Eqs. (10) and (11), it follows that in a conformal
coordinate system the field equation (2) for Nordström
gravity takes the form

h	 ¼ �2Ge4	���T
��; (12)

and the conservation law (3) for the energy-momentum
tensor takes the form

@�T
�� þ ð4T�� � ���T

�����Þ@�	 ¼ 0: (13)

If we define ���
mi � e4	T��, we find that Eqs. (12) and

(13) can be identified with the field equation (7) and
conservation law (9) for our scalar field theory in flat
spacetime. The scalar field theory can thus be viewed as
a flat-spacetime interpretation of Nordström gravity.

III. SYMMETRY PROPERTIES OF THE
FLAT-SPACETIME INTERPRETATION

Let us now investigate the symmetry properties of the
flat-spacetime interpretation. The field equation (7)
and conservation law (9) are clearly invariant under the
transformation

x� ! �x� ¼ A�
�x

� þ a�;

���
mi ! ����

mi ¼ A�
�A

�
��

��
mi ;

	 ! �	 ¼ 	;

(14)

where A�
� is an arbitrary Lorentz boost and a� is an

arbitrary spacetime translation. The theory also has a less
obvious spacetime symmetry that follows from the general
covariance of Nordström gravity. Let � be an arbitrary
solution to the homogeneous wave equation h� ¼ 0. We
can express � as �ðt; xÞ ¼ fþðtþ xÞ þ f�ðt� xÞ, where
fþ and f� describe left-moving and right-moving waves.
Define a coordinate transformation x� ! �x� by

�tðt; xÞ ¼ ð1=2ÞðIþðt; xÞ þ I�ðt; xÞÞ;
�xðt; xÞ ¼ ð1=2ÞðIþðt; xÞ � I�ðt; xÞÞ;

(15)

where

I�ðt; xÞ ¼
Z t�x

0
e2f�ðuÞdu: (16)

This coordinate transformation is illustrated in Fig. 1 for
the case of a right-moving Gaussian wave packet. The
theory is then invariant under the transformation

FIG. 1 (color online). Coordinate transformation x� ! �x� de-
scribed by Eq. (15). Shown are lines of constant x and lines of
constant t in the �x� �t plane for the case of a right-moving
Gaussian wave packet �.
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x� ! �x�;

���
mi ! ����

mi ¼ e�4���
��

�
��

��
mi ;

	 ! �	 ¼ 	� �;

(17)

where

��
� ¼ @� �x

�

¼ ð1=2Þðe2fþðtþxÞ þ e2f�ðt�xÞÞ
�
�

þ ð1=2Þðe2fþðtþxÞ � e2f�ðt�xÞÞ���: (18)

We can demonstrate this invariance by applying the coor-
dinate transformation described by Eq. (15) to Nordström
gravity in a conformal coordinate system. We first note that
from Eq. (15) it follows that

���ð@� �x�Þð@� �x�Þ ¼ e2����;

���ð �@�x�Þð �@�x�Þ ¼ e�2����:
(19)

Since the metric tensor in the original coordinate system is
g�� ¼ e2	���, the metric tensor in the transformed coor-

dinate system is

�g �� ¼ g��ð �@�x�Þð �@�x�Þ ¼ e2	���ð �@�x�Þð �@�x�Þ
¼ e2ð	��Þ��� ¼ e2

�	���; (20)

where �	 ¼ 	� �. So the transformed coordinate system
is also a conformal coordinate system, and Nordström
gravity in the transformed coordinate system can also be
identified with a scalar field theory in flat spacetime. The
scalar field is given by �	, and the energy-momentum
tensor is given by

��
��
mi � e4

�	 �T�� ¼ e4ð	��Þð@� �x�Þð@� �x�ÞT��

¼ e�4���
��

�
��

��
mi : (21)

We have thus shown that the flat-spacetime interpretation
is invariant under the transformation described by Eq. (17).
One can also demonstrate this invariance by a direct cal-
culation, using the fact that

@��
�
�¼��

�@��þ��
�@���e2�����

�� �@��: (22)

We can understand the physical meaning of this symme-
try from the following considerations. We first observe that
for Nordström gravity in ð1þ 1Þ dimensions the gravita-
tional field is not dynamical; that is, there are no physical
gravitational waves. This property follows directly from the
field equation (2): note that if the energy-momentum tensor
vanishes then the curvature scalar vanishes, and hence, by
Eq. (1), the Riemann tensor vanishes. So in vacuum there is
no curvature and thus no physical gravitational waves. In
the flat-spacetime interpretation, however, the scalar field is
dynamical and supports freely propagating waves. These
waves cannot correspond to physical gravitational waves;
rather, they correspond to gauge waves � that can be elim-
inated via the transformation described by Eq. (17). Note

that the scalar field 	 is pure gauge only in vacuum; in the
presence of matter, there is a component to	 that cannot be
eliminated by this transformation, and it is this component
that gives rise to the attractive gravitational force.

IV. ENERGY-MOMENTUMTENSOR FORMATTER

In ð1þ 1Þ dimensions, any energy-momentum tensor for
which 2T��T

�� > ðg��T��Þ2 can be expressed in the form
of an energy-momentum tensor for a perfect fluid:

T�� ¼ ð�þ pÞu�u� � pg��; (23)

where p is the pressure, � is the proper energy density, and
u� is the fluid velocity. The pressure and proper energy
density are given by

p ¼ ð1=2Þðð2T��T
�� � T2Þ1=2 � TÞ;

� ¼ ð1=2Þðð2T��T
�� � T2Þ1=2 þ TÞ;

(24)

where T ¼ g��T
��, and the fluid velocity is given by

u0 ¼ ð�þ pÞ�1=2ðT00 þ pg00Þ1=2;
u1 ¼ ð�þ pÞ�1=2ðT11 þ pg11Þ1=2:

(25)

As a specific example, we will consider a perfect fluid with
the simple equation of state p ¼ r�, where r is a constant
in the range 0 � r � 1. If we substitute the expressions for
p and � given by Eq. (24) into this equation of state, we
find that

T2 ¼ ð1� rÞ2ð1þ r2Þ�1T��T
��: (26)

In what follows, it will be useful to solve Eq. (26) for T11 in
terms of T00 and T01:

T11 ¼ ð1=2rÞð1þ r2ÞT00 � ð1=2rÞð1� rÞðð1þ rÞ2ðT00Þ2
� 4rðT01Þ2Þ1=2: (27)

V. INITIAL VALUE PROBLEM

We can use the flat-spacetime interpretation described in
Sec. II to formulate the initial value problem for Nordström
gravity. We will take the dynamical variables for the sys-
tem to be 	, B � @t	,�00

mi � e4	T00, and�01
mi � e4	T01.

From the field equation (7) and the conservation equation
(9), it follows that the equations of motion for these dy-
namical variables are

@t	 ¼ B; (28)

@tB ¼ @2x	� 2Gð�00
mi ��11

miÞ; (29)

@t�
00
mi ¼ �@x�

01
mi þ ð�00

mi ��11
miÞB; (30)

@t�
01
mi ¼ �@x�

11
mi � ð�00

mi ��11
miÞE; (31)
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where E � @x	 and

�11
mi � ð1=2rÞð1þ r2Þ�00

mi � ð1=2rÞð1� rÞðð1þ rÞ2
� ð�00

miÞ2 � 4rð�01
miÞ2Þ1=2: (32)

To obtain Eq. (32), we have used the definition �11
mi �

e4	T11 and substituted for T11 using Eq. (27). We can
evolve the system in time by numerically integrating
Eqs. (28)–(31) subject to a set of initial conditions. To
improve the numerical stability, we use a standard tech-
nique from computational fluid dynamics: we add artificial
diffusion terms �@2x�

00 and �@2x�
01 to Eqs. (30) and (31),

respectively, where the diffusion constant � is chosen to be
sufficiently small as to have negligible influence on the
evolution of the system [14].

The dynamical variables we have chosen describe the
system in the flat-spacetime interpretation and are thus
dependent on the choice of coordinate system. We can
obtain coordinate-independent quantities by translating
back into the curved-spacetime interpretation. For ex-
ample, the pressure and proper energy density are given by

p ¼ ð1=2Þðð2�mi ��mi ��2
miÞ1=2 ��miÞe�2	;

� ¼ ð1=2Þðð2�mi ��mi ��2
miÞ1=2 þ�miÞe�2	;

(33)

and the curvature scalar is given by

R¼4�mie
�2	; (34)

where �mi � ����
��
mi and�mi ��mi��������

��
mi �

��
mi .

VI. EXAMPLE SOLUTIONS

We will now present several example solutions. For our
first example, we simulate the collision of two spatially
separated mass distributions. We take the initial conditions
for �00

mi and �01
mi to be

�00
mið0; xÞ ¼ ae�ðxþ�Þ2=22 þ ae�ðx��Þ2=22

;

�01
mið0; xÞ ¼ 0;

(35)

and we take the initial conditions for 	 and B to be the
static fields generated by the matter:

	ð0; xÞ ¼ G
Z

jx� x0jð�00
mið0; x0Þ ��11

mið0; x0ÞÞdx0;
Bð0; xÞ ¼ 0:

(36)

We integrate the equations of motion (28)–(31) subject to
these initial conditions and plot the resulting evolution in
Fig. 2, where the parameters are taken to be G ¼ 1,
r ¼ 0:13, a ¼ 1, � ¼ 1,  ¼ 0:2, and � ¼ 10�4. The
two mass distributions approach each other due to their
mutual gravitational attraction, collide at t ’ 1, and reach
an equilibrium state at t ’ 8. During the collision process,
gauge waves are emitted that propagate outwards to the left
and right.
For our second example, we demonstrate the invariance

of the flat-spacetime interpretation under the transforma-
tion described in Sec. III by simulating the propagation of a
gauge wave packet through a static mass distribution. From
the equations of motion (28)–(31), it follows that for a
static solution B ¼ �01

mi ¼ 0, and 	 and �00
mi satisfy the

equations

@x	 ¼ E;

@xE ¼ 2Gð1� rÞ�00
mi;

@x�
00
mi ¼ ð1=rÞð1� rÞ�00

miE:

(37)

Here we have used the fact that �11
mi ¼ r�00

mi when
�01

mi ¼ 0. We obtain a static solution that is symmetric
about x ¼ 0 by integrating these equations subject to the
boundary conditions

	ð0;0Þ¼0; Eð0;0Þ¼0; �00
mið0;0Þ¼�0; (38)

where �0 is the proper energy density of the fluid at x ¼ 0.
We obtain initial conditions by starting with a static solu-
tion and adding a right-moving Gaussian wave packet; that
is, we make the replacements

	ð0; xÞ ! 	ð0; xÞ þ �ð0; xÞ;
Bð0; xÞ ! Bð0; xÞ � @x�ð0; xÞ;

(39)
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FIG. 2 (color online). Collision of two spatially separated mass distributions. Shown are the scalar field 	, the field derivatives
B ¼ @t	 and E ¼ @x	, and the energy-momentum tensor component �00

mi versus x at times t ¼ 0, 1.5, 3.2, 10.0.
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where �ð0; xÞ ¼ ae�ðx��Þ2=22
. We integrate the equations

of motion (28)–(31) subject to these initial conditions and
plot the resulting evolution in Fig. 3, where the parameters
are taken to be G ¼ 1, r ¼ 0:1, �0 ¼ 1, a ¼ 0:25,
� ¼ �2:5,  ¼ 0:2, and � ¼ 10�4. As described in
Sec. III, the gauge wave packet can be eliminated by a
suitable transformation, and thus its presence should not
alter the behavior of the system in the curved-spacetime
interpretation. It follows that, although coordinate-

dependent quantities like ���
mi are allowed to vary in time,

coordinate-independent quantities like the proper energy
density� and the curvature scalarR should remain constant.
We verify this claim by using Eqs. (33) and (34) to calculate
� and R as a function of time. In Fig. 4, we plot these
quantities against the proper distance s, which is given by

sðxÞ ¼
Z x

x0

e	ðx0Þdx0; (40)

where x0 is defined to be the point of maximum curvature.
As expected, the curves �ðsÞ and RðsÞ do not change as the

gauge wave packet propagates through the mass
distribution.

VII. CONCLUSION

We have considered a model of general relativity in
ð1þ 1Þ dimensions that is the direct ð1þ 1Þ-dimensional
analog of a theory of gravity proposed by Nordström. We
have shown that the model can be reinterpreted as a scalar
field theory in flat spacetime in which the scalar field
couples to the trace of the total energy-momentum tensor.
In the model system, the gravitational field does not sup-
port physical gravitational waves, and as a consequence
freely propagating waves in the flat-spacetime interpreta-
tion correspond to gauge waves that can be eliminated via a
symmetry transformation. We have used the flat-spacetime
interpretation to formulate the initial value problem for the
model and have presented several example solutions. The
model of gravity that we have considered is a useful
theoretical laboratory for studying general relativity, and
the results presented here provide new tools for under-
standing this system.
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FIG. 3 (color online). Propagation of a gauge wave packet through a static mass distribution. Shown are the scalar field 	, the field
derivatives B ¼ @t	 and E ¼ @x	, and the energy-momentum tensor component �00

mi versus x at times t ¼ 0, 2.5, 3.0, 4.9.
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FIG. 4 (color online). Propagation of a gauge wave packet through a static mass distribution. Shown are the proper energy density �
and the curvature scalar R versus proper distance s at times t ¼ 0, 2.5, 3.0, 4.9.
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