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We study the effect of black hole spin on the accuracy of the post-Newtonian approximation. We focus

on the gravitational energy flux for the quasicircular, equatorial, extreme mass-ratio inspiral of a compact

object into a Kerr black hole of mass M and spin J. For a given dimensionless spin a � J=M2 (in

geometrical units G ¼ c ¼ 1), the energy flux depends only on the orbital velocity v or (equivalently) on

the Boyer-Lindquist orbital radius r. We investigate the formal region of validity of the Taylor post-

Newtonian expansion of the energy flux (which is known up to order v8 beyond the quadrupole formula),

generalizing previous work by two of us. The error function used to determine the region of validity of the

post-Newtonian expansion can have two qualitatively different kinds of behavior, and we deal with these

two cases separately. We find that, at any fixed post-Newtonian order, the edge of the region of validity (as

measured by v=vISCO, where vISCO is the orbital velocity at the innermost stable circular orbit) is only

weakly dependent on a. Unlike in the nonspinning case, the lack of sufficiently high-order terms does

not allow us to determine if there is a convergent to divergent transition at order v6. Independent of a,

the inclusion of angular multipoles up to and including ‘ ¼ 5 in the numerical flux is necessary to achieve

the level of accuracy of the best-known (N ¼ 8) post-Newtonian expansion of the energy flux.
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I. INTRODUCTION

Binaries of compact objects, such as black holes (BHs)
and/or neutron stars, are one of the main targets for
gravitational-wave (GW) observations. When the binary
members are widely separated, their slow inspiral can be
well-described by the post-Newtonian (PN) approxima-
tion, a perturbative asymptotic expansion of the ‘‘true’’
solution of the Einstein equations. The small expansion
parameter in the PN approximation is v=c, where v is the
orbital velocity of the binary and c is the speed of light.
Asymptotic expansions, however, must be used with care,
as the inclusion of higher-order terms does not necessarily
lead to an increase in accuracy. Therefore, one would like
to determine the optimal order of expansion and the formal
region of validity of the PN asymptotic series [1,2], i.e., the
order and region inside which the addition of higher-order
terms increases the accuracy of the approximation in a
convergent fashion.

In a previous paper [2], two of us investigated the
accuracy of the PN approximation for quasicircular,
nonspinning (Schwarzschild), extreme mass-ratio inspirals
(EMRIs). By comparing the PN expansion of the energy
flux to numerical calculations in the perturbative
Teukolsky formalism, we concluded that (i) the region of
validity of the PN expansion is largest at relative 3PN
order—i.e., order ðv=cÞ6 [throughout this paper, a term
ofOðv2NÞ is said to be ofNPN order]; and (ii) the inclusion
of higher multipoles in numerical calculations is necessary
to improve the agreement with PN expansions at large

orbital velocities. The fact that the region of validity is
largest at 3PN could be a hint that the series actually
diverges beyond 3PN order, at least in the extreme mass-
ratio limit.
This paper extends our study to EMRIs for which

the more massive component is a rotating (Kerr) BH.
The present analysis focuses on the effect of the BH spin
on the accuracy of the PN expansion. We generalize the
methods presented in [2] to take into account certain
pathological behaviors of the error function used to deter-
mine the region of validity. This generalization may also be
applicable to comparable-mass systems.
A surprising result we find is that the edge of the

region of validity (the maximum velocity beyond which
higher-order terms in the series cannot be neglected),
normalized to the velocity at the innermost stable cir-
cular orbit, is weakly dependent on the Kerr spin parameter
a. In fact, this edge is roughly in the range v=vISCO 2
½0:3; 0:6� for almost all PN orders, irrespective of a.
This suggests, perhaps, that the ratio v=vISCO is a better
PN expansion parameter than v=c, when considering spin-
ning BHs.
Another surprising result is related to the behavior of

the edge of the region of validity as a function of PN order.
In the nonspinning case, two of us found that beyond 3PN
order,Oðv6=c6Þ, this edge seemed to consistently decrease
with PN order [2]. This was studied up to Oðv11=c11Þ, the
largest PN order known for the nonspinning case. In the
spinning case, however, the series is known only up to
Oðv8=c8Þ, and we are thus unable to conclusively
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determine if the trend found in the nonspinning case per-
sists. Higher-order calculations will be necessary to draw
more definite conclusions.

Numerical (or in this case, perturbative) calculations of
the energy flux rely on multipolar decompositions of the
angular dependence of the radiation. By comparing the
convergence of the multipolar decomposition to the con-
vergence of the PN expansion of the energy flux, we find
that for v=c� 0:1 the inclusion of multipoles up to and
including ‘ ¼ 5 seems necessary to achieve the level of
accuracy of the best-known (N ¼ 8) PN expansion of the
flux. These conclusions are also largely independent of the
spin parameter a.

The rest of this paper is organized as follows. In Sec. II
we present the energy flux radiated by quasicircular,
equatorial Kerr EMRIs in the adiabatic approximation, as
computed in PN theory [3–5] and with accurate frequency-
domain codes in BH perturbation theory [6–8]. In Sec. III
we discuss the region of validity of the PN approximation
in terms of the normalized orbital velocity v=vISCO and of
the normalized orbital radius r=rISCO, where ISCO stands
for the innermost stable circular orbit. We consider both
corotating and counterrotating orbits. In Sec. IV we study
the number of multipolar components that must be in-
cluded in the numerical flux in order to achieve sufficient
accuracy. Finally, in Sec. V we present our conclusions.
We follow the same notation as in [2]. In particular, from
now on we will use geometrical units (G ¼ c ¼ 1).

II. ENERGY FLUX FOR QUASICIRCULAR,
EQUATORIAL EMRIS IN KERR:
NUMERICAL AND PN RESULTS

In the PN approximation, the GWenergy flux radiated to
infinity by a test particle in a circular orbit and on the
equatorial plane of a Kerr BH is given by [3–5]

FðNÞ ¼ FNewt

�XN
k¼0

ðak þ bk lnvÞvk

�
: (1)

This flux is known up to N ¼ 8 when including spins, and
up to N ¼ 11 in the nonspinning case. The leading
(Newtonian) contribution1 is

FNewt ¼ 32

5

�2

M2
v10; (2)

where � and M are the test particle mass and Kerr BH
mass, respectively. As we are here interested in the accu-
racy of the PN approximation, we will ignore the flux of
energy going into the horizon, which cannot always be
neglected when building waveform templates.

The expansion coefficients ak and bk contain both spin-
independent and spin-dependent terms, where the dimen-
sionless spin parameter a is related to the Kerr BH spin
angular momentum via J ¼ aM2. These coefficients can

be found in Eq. (G19) of [4], so we do not list them
explicitly.2 Note that logarithmic terms only appear at
3PN and 4PN (i.e., b6 � 0 and b8 � 0), and that the
ðak; bkÞ for 8< k � 11 are known only in the spin-
independent limit.
Throughout this paper v is the orbital velocity, defined

as v � ðM�Þ1=3 (where � is the small body’s orbital
frequency), and related to the Boyer-Lindquist radius r by

r

M
¼ ð1� av3Þ2=3

v2
; (3)

whose inverse is

v ¼ ½ðr=MÞ3=2 þ a��1=3: (4)

At the ISCO we have [9]

rISCO
M

¼ 3þ Z2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� Z1Þð3þ Z1 þ 2Z2Þ

q
; (5)

Z1 � 1þ ð1� a2Þ1=3½ð1þ aÞ1=3 þ ð1� aÞ1=3�;
Z2 � ð3a2 þ Z2

1Þ1=2;
(6)

where a > 0 (a < 0) corresponds to corotating (counter-
rotating) orbits.
Using Eqs. (3) and (5), we also have

r

rISCO
¼ ð1� av3Þ2=3

v2½3þ Z2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3� Z1Þð3þ Z1 þ 2Z2Þ

p � :

The ISCO velocity can be found by replacing rISCO in
Eq. (5) into the velocity-radius relation (4). The velocity
vISCO and the radius rISCO=M are displayed graphically in
Fig. 1. Observe that, although rISCO ! M as a ! 1, vISCO

is bounded by 2�1=3 ’ 0:79.
The rigorous definition of velocity is a tricky business in

general relativity. We have here chosen to define velocity in
a quasi-Newtonian fashion in terms of the angular velocity
and Kepler’s law. One can think of this velocity as that
which would be measured by an observer at spatial infinity.
On the other hand, one can also study the velocity mea-
sured by an observer in the neighborhood of the BH and
that is rotating with the geometry; this quantity would
differ from v in Eq. (4), and, in fact, its associated vISCO

would tend to 1=2 in the limit a ! 1 [see, e.g., Eq. (3.11b)
in [9] ]. This shows that the a ! 1 limit is very delicate,
and the precise value of the velocity field is an observer-
dependent (and a noninvariant) quantity. However, once a
definition is chosen, the velocity is a perfectly good quan-
tity to parametrize the structure of the PN series.
A first guess at the asymptotic behavior of this series can

be obtained by simply plotting different PN approximants

FðNÞ and comparing them with high-accuracy, numerical

1Notice that there is a typo in Eq. (18) of [2].

2See also their Eq. (3.40), which provides a similar expansion
in terms of the PN orbital velocity parameter v0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

M=r0
p

.
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results for the energy flux, obtained from a frequency-
domain Teukolsky code (see [3,10] for early work in the
Schwarzschild case, and Fig. 9 in [11] for a related dis-
cussion in the Kerr context). The numerical results used in
this comparison are the same as those used in Refs. [6–8] to
study the accuracy of a resummed effective-one-body ver-
sion of the PN approximation to model EMRIs. They
consist of numerical fluxes, evaluated for spin parameters
ranging from a ¼ 0 to a ¼ 0:9 in steps of �a ¼ 0:1 (in
fact, we also have access to the counterrotating flux for
a ¼ �0:99). The typical accuracy of these fluxes is better
than one part in 1010 for all velocities and spins. We refer
the reader to Section IIB of [8] for a more detailed descrip-
tion of the code.

Figure 2 compares the different PN approximations to
the numerical flux. The left panel refers to corotating
orbits, and the right panel to counterrotating orbits.
Different insets correspond to different values of the BH
spin, and different linestyles represent different orders in
the PN expansion. As stated earlier, in this figure and in the
rest of this paper, we neglect energy absorption by the BH.
Observe that, as first noted by Poisson in the Schwarzschild
case [3], the behavior of the PN expansion is quite erratic.
For any given a, rather than converging monotonically,
higher-order approximations keep undershooting and over-
shooting with respect to the ‘‘exact’’ numerical result. This
oscillatory behavior is quite typical of asymptotic expan-
sions, and it has been studied in depth, especially for
extreme mass-ratio inspirals into nonrotating BHs [3,10].
Various authors proposed different schemes to accelerate
the convergence of the PN expansion, including Padé
resummations [12–14] and the use of Chebyshev polyno-
mials [15]. The asymptotic properties of these resumma-
tion techniques are an interesting topic for future study.
This figure provides some clues about the edge of

the region of validity of the PN approximation. For coro-
tating orbits (left panel of Fig. 2), as the spin increases from
zero to a ¼ 0:9, the higher-order PN approximants start to
deviate from numerical results at lower values of v=vISCO:
this happens roughly when v=vISCO ’ 0:6 for a ¼ 0, and
when v=vISCO ’ 0:4 for a ¼ 0:9. This leads us to naively
expect a shrinking of the region of validity of the PN
approximation as a function of positive a. This expectation
will be validated (at least qualitatively) in Sec. III: cf. the
bottom-right panel of Fig. 4 below.
At first sight, the results for counterrotating orbits (right

panel of Fig. 2) seem surprisingly good. In particular,
the 3PN approximation (dash-dot-dotted, orange line) is
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FIG. 2 (color online). Gravitational energy flux (normalized to FNewt) as a function of the normalized orbital velocity, v=vISCO. The
left panel is for corotating orbits, and the right panel is for counterrotating orbits. Different insets refer to different spin parameters a,
as indicated. The thick black line is the numerical flux. Other linestyles refer to different PN approximations: Fð2Þ (thin black), Fð3Þ
(long-dashed red), Fð4Þ (dash-dotted green), Fð5Þ (dash-dash-dotted blue), Fð6Þ (dash-dot-dotted orange), Fð7Þ (dotted dark green), Fð8Þ
(short-dashed violet).
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almost indistinguishable from the numerical result all the
way up to v ¼ vISCO when the spin is large. Such a good
performance is simply because of the well-known, mono-
tonically increasing behavior of vISCO with spin, with a
minimum as a ! �1 (cf. Fig. 1). Since counterrotating
orbits probe a smaller range in v=c (up to v=c� 0:35 for
fast-spinning BHs) the PN approximation is more accurate.
Unfortunately, prograde accretion is likely to be more
common than retrograde accretion in astrophysical settings
(see, e.g., [16]). Moreover, the 3.5PN and 4PN approxi-
mants are significantly worse than the 3PN one at
a ¼ �0:99. This is consistent with the PN series being
an asymptotic expansion, as one of the characteristic fea-
tures of the latter is that beyond a certain optimal order,
higher-order approximants become less accurate [1].

III. REGION OF VALIDITY

Let us now turn to determining the region of validity of
the PN approximation for different values of the BH spin.
For a complete review of asymptotic approximation tech-
niques we refer the reader to [1]; Ref. [2] presents a short
introduction to the topic in the present context. As ex-
plained in those references, the edge of the region of
validity is determined by the approximate condition

O ðF� FðNÞÞ ¼ OðFðNþ1Þ � FðNÞÞ; (7)

where F denotes the true (numerical) result for the

GW energy flux and FðNÞ denotes the N-th order PN
approximation.

An inherent and intrinsic ambiguity is contained in
Eq. (7), encoded in the order symbol. This makes any
definition of the region of validity of an asymptotic series

somewhat imprecise. As shown in Fig. 3 (or in Fig. 8 of
[2]), there are two qualitatively different scenarios:
(i) Left panel of Fig. 3: The next-order term

jFðNþ1Þ � FðNÞj starts off smaller than the remainder

jF� FðNÞj, but eventually they cross and separate.
We can then estimate the edge of the region of

validity �v by solving �ðNÞð �vÞ ¼ 0, where

�ðNÞðvÞ � jjF� FðNÞj � jFðNþ1Þ � FðNÞjj (8)

is the error function. If we also define a more con-
servative lower edge of the region of validity, vl, as
the point where

d�ðNÞðvÞ
dv

��������vl

¼ 0; (9)

we can then introduce an uncertainty width of the
region of validity: � �v � �v� vl; see the inset of the
left panel of Fig. 3.

(ii) Right panel of Fig. 3: The remainder and the next-
order term are of the same order for sufficiently low
velocities, until eventually the curves separate for
larger velocities. This situation is the rule, rather
than the exception, for the problem we consider in
this paper. When this happens, method (i) cannot

be applied, because �ðNÞðvÞ ¼ 0 has no solutions.
Given the approximate nature of the order relation-
ship in Eq. (7), we can define the region of validity

as the point �v such that �ðNÞð �vÞ ¼ �0, where �0 is
some given tolerance defined below.

Higher-order approximations should be sensitive to a
smaller tolerance, which implies that �0 cannot be set
arbitrarily. Instead, �0 should be given by the error in the
difference between the N-th remainder and the ðN þ 1Þ-th
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FIG. 3 (color online). Left: absolute value of the remainder of the N ¼ 3 PN flux, jF� Fð3Þj=FNewt (solid line), and the N ¼ 4 term
jFð4Þ � Fð3Þj=FNewt (dashed red line). The inset shows the modulus of their difference, Eq. (8), in a semilogarithmic scale. Right: same
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conventionally) delimited by the vertical lines, as explained in the main text.
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order term. This error is presumably of the order of the
error in the ðN þ 1Þ-th order term, and it can be estimated
by the ðN þ 2Þ-th order term. The imprecision of the order
symbol is now encoded in the fact that �0 depends on v.
We can try to estimate its value by evaluating the
ðN þ 2Þ-th order term in the middle of the allowed range,
that is, at vISCO=2:

�0 ¼ jFðNþ2ÞðvISCO=2Þ � FðNþ1ÞðvISCO=2Þj: (10)

This estimate of �0 is not exact, so we can try to provide
a more conservative lower edge of the region of validity,

vl, by imposing the condition3 �ðNÞðvlÞ ¼ �0=2. We can
then define an uncertainty on the region of validity � �v ¼
j �v� vlj. This is illustrated pictorially by the vertical lines
in the right panel of Fig. 3.

Let us now discuss the behavior of the edge of the
region of validity as a function of the PN order N and of
the BH spin a. The corotating and counterrotating regions
of validity and the associated errors are shown in Fig. 4
with solid black (dashed red) error bars for corotating
(counterrotating) orbits, respectively.

Let us first consider the corotating case (solid black error
bars). All results were obtained using method (ii) above.
At any fixed PN order, the normalized region of validity
v=vISCO remains roughly constant as a function of a.
With a few exceptions, the most conservative estimate vl

(lower edge of the error bars in the plots) is typically in the
range v=vISCO 2 ½0:3; 0:6�. This is consistent with the left
panel of Fig. 2, where we see that all PN approximations
(including high-order ones) peel off from the numerical
flux in this range.
These figures allow us to arrive at an interesting

conclusion. When we recall that vISCO increases with a
(cf. Fig. 1), the figures suggest that spin-dependent correc-
tions in the PN expansion of Eq. (1) are effective at pushing
the validity of the PN expansion to higher values of v=c.
However, there is an intrinsic limit to what is achievable,
which is determined instead by v=vISCO and roughly inde-
pendent of a. In the range a 2 ½0:3; 0:9�, vISCO increases
from ’ 0:444 to ’ 0:609. Therefore the region of validity
for the orbital velocity is approximately in the range
v=c 2 ½0:44� 0:3; 0:61� 0:6� � ½0:13; 0:37�.
Let us now focus on the counterrotating case, i.e., on the

dashed red error bars in Fig. 4, which, again, were deter-
mined using method (ii) above. The only exception is the
caseN ¼ 3 (corresponding to the right panel of Fig. 3) that
we will discuss separately below. As in the corotating case,
the region of validity shrinks mildly or remains roughly
constant as jaj increases. For N ¼ 6 the region of validity
shrinks faster with increasing spin.
The edge of the region of validity can also be presented

in terms of the Boyer-Lindquist radius of the particle’s
circular orbit. The corresponding plots for the corotating
and counterrotating cases are presented, for complete-
ness, in Fig. 5. The ISCO radius rISCO is a monotonically
decreasing function of the spin (or of vISCO), so, quite
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3Note that in the Erratum of [2] we impose a slightly different
condition: �ðvlÞ ¼ �0=2, �ð �vÞ ¼ 2�0.
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naturally, the trend as a function of a is the opposite of
what we observed for velocities in Fig. 4. Our results
consistently suggest that the region of validity of the PN
approximation cannot be extended all the way down to the
ISCO, contrary to a rather common assumption in GW data
analysis. Instead, one should use care when using, for
example, the 2PN approximation for r=rISCO < 4, as in
that regime higher-order PN terms cannot be neglected
(this is particularly true for rapidly rotating BHs in pro-
grade orbits). Our results suggest that a safer choice would
be to truncate all analyses at r=rISCO ¼ 6, which ranges
between r=M 2 ½6; 54� depending on the BH spin, unless
one is dealing with approximants more accurate than
Taylor expansions.

Finally, one can also investigate how the edge of the
region of validity behaves with PN order. This is depicted
in Fig. 6 for a set of fixed values of a (shown with different
colors, as described in the caption). The vertical dashed
lines separate the different-N orders. If we concentrate on
the nonspinning case (black), ignore the pathological case
N ¼ 3 (discussed below), and consider the conservative,
lower end of the error bar, we see that there is a maximum
at N ¼ 6. For larger values of N, v=vISCO would consis-
tently decrease, as found in [2]. In the spinning case,
however, this trend is not as clear, as at N ¼ 6 the edge
of the region of validity is rather sensitive to the spin value.
Without higher-order terms in the PN expansion, which
would provide larger-N points in this figure, one cannot
conclude whether N ¼ 6 is the optimal order of expansion
in the spinning case.

Before moving on to the next section, let us discuss
the N ¼ 3 case for counterrotating orbits in more detail.
This is a special case, as noted by the discontinuity in
counterrotating orbits shown in Figs. 4 and 5. The pathol-
ogies explained below are the reason why, in Fig. 6, we
only plotted the counterrotating edge of the region of
validity when the Kerr spin parameter jaj � 0:1. Notice
also that, when N ¼ 3, the error regions in Fig. 6 are
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FIG. 5 (color online). Edge of the region of validity expressed in terms of the Boyer-Lindquist radius for different PN orders, in the
corotating (black, straight line) and counterrotating (red, dashed line) cases. The blue, dashed lines for N ¼ 3 refer to the
counterrotating case, and they were obtained by an alternative method (see the discussion around Fig. 7 below).
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significantly larger than for any other N value. We will
discuss the reason for this below, but the impatient reader
can skip to the next section without loss of continuity.

Figure 7 clarifies the origin of the problem.When we use
method (ii), the top margin of the edge of the region of
validity is estimated as the (smallest) value of �v=vISCO for

which �ð3Þð �vÞ ¼ �0. This condition corresponds to the
leftmost intersection of the horizontal dashed red line
with the solid black line in the plot. Similarly, we deter-
mine the most conservative estimate of the edge of the
region of validity by considering the smallest vl such that

�ð3ÞðvlÞ ¼ �0=2. This corresponds to the leftmost intersec-
tion of the horizontal, dot-dashed green line with the solid
black line. For corotating orbits, as it happens, these inter-

sections always exist. In fact, the local maximum in �ð3ÞðvÞ
(which is located at v=vISCO � 0:8 for a ¼ 0) moves to the
right and becomes significantly larger as a ! 1. For coun-
terrotating orbits the trend is the opposite: the local maxi-
mum moves to the left and decreases in magnitude. For a
critical value of the spin a ’ �0:1, the red-dashed line and
the solid black line do not intersect anymore. This is why in
Figs. 4 and 5 we only plot the red-dashed (counterrotating)
edge of the region of validity when jaj � 0:1. Of course,
we can insist to identify �v and vl as the smallest values of v

such that �ð3Þð �vÞ ¼ �0, �
ð3ÞðvlÞ ¼ �0=2. This procedure

leads to the red, dashed error bars in the N ¼ 3 panel of
Figs. 4 and 5. Note that these error bars are unnaturally
small for jaj> 0:4.

Another possible solution would be to switch to method
(i) when method (ii) fails. Now, the upper margin of the
edge of the region validity would be given by the first zero

of �ð3ÞðvÞ, and the lower margin would be estimated by the
condition given in Eq. (10). This results in the blue, dotted
error bars shown in the central top panel of Figs. 4 and 5.
These error bars are significantly more optimistic than the

ones we presented in the rest of the paper, but (in our
opinion) their significance is not as clear and well-justified
as the rest of our results.
The problem discussed in this section concerns counter-

rotating orbits and N ¼ 3. This is an exceptional case, and
it does not affect the conclusions drawn earlier in the paper.
However, we should remark, for completeness, that similar
pathologies occur for corotating orbits with N ¼ 6 when
0 � a � 0:2, and they may also occur at higher PN orders.

IV. RELEVANCE OF MULTIPOLAR
COMPONENTS AS A FUNCTION OF SPIN

Until now, we compared the PN approximation to nu-
merical results that were considered to be virtually exact.
This was justified because the Teukolsky code computes
as many multipoles in the angular decomposition of the
radiation as needed to achieve an accuracy of Oð10�10Þ at
any given orbital velocity. While this is manageable in
frequency-domain calculations, sometimes accurate calcu-
lations of a large number of multipoles are not possible
in extreme mass-ratio time-domain codes, or in numerical
relativity simulations of comparable-mass binaries:
cf. [17,18] for an analysis of multipolar decompositions
of the radiation from comparable-mass binaries and
[19,20] for more recent numerical work to overcome
these difficulties. As advocated in several papers
[2,6–8,11,21,22], EMRIs provide a simple playground to
study the number of multipolar components required to
reach a given accuracy in the PN approximation (or in one
of its resummed variants).
Figure 8 shows a comparison of the convergence of the

multipolar decomposition versus the convergence of the
PN expansion of the energy flux. This plot generalizes
Fig. 7 of [2] in two ways: (i) it uses more accurate numeri-
cal data, and (ii) it considers the effect of the central BH
spin on the number of multipolar components required to
achieve a given accuracy.
We fix three values of the orbital velocity (v ¼ 0:01,

v ¼ 0:1, and v ¼ 0:2) and we plot Fð‘Þ � FðNÞ, where FðNÞ

is the N-th approximant of the PN energy flux and Fð‘Þ is
the numerical energy flux truncated at the ‘-th angular
multipole. Some features are immediately visible from
this plot:
(i) Even at low orbital velocities (v ¼ 0:01), it is nec-

essary to include multipolar components up to and
including ‘ ¼ 4 to achieve an accuracy better than
10�7 in the flux; on the other hand, including up to
‘ ¼ 5 we obtain results that are as accurate as those
that would be obtained including more multipoles.

(ii) For an orbital velocity v ¼ 0:1 (v ¼ 0:2) the best-
known PN flux and numerical calculations always
disagree at levels of �10�6 (�10�4) or larger. This
is obviously due to the slower, nonmonotonic con-
vergence of the PN approximation in this regime.
Some nontrivial features of the PN approximation
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FIG. 7 (color online). The solid black line shows �ðNÞðvÞ for
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represent �0, computed from Eq. (10), and �0=2. See text for
discussion.
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are again well-visible here: for example, as pointed
out repeatedly in this paper, when a ¼ �0:99 and
v ¼ 0:1 the 3PN (N ¼ 6) expansion performs
much better than higher-order expansions. This
may well be accidental, and in fact it does not
hold when v ¼ 0:2, as then N ¼ 4 is (most likely
accidentally) better.

(iii) As a rule of thumb, the inclusion of multipoles up
to and including ‘ ¼ 5 seems necessary to achieve
the level of accuracy of the best-known (N ¼ 8) PN
expansion of the flux in the Kerr case. This con-
clusion is independent of the spin parameter a. In
fact, a has hardly any effect on the number of
multipolar components that must be included in
the flux to achieve a desired accuracy.

V. CONCLUSIONS

We extended themethod proposed in [2] to determine the
formal region of validity of the PN approximation for

quasicircular EMRIs of compact objects in the equatorial
plane of a Kerr BH. The boundary of the formal region of
validity is defined as the orbital velocitywhere the true error
in the approximation (relative to high-accuracy numerical
calculations) becomes comparable to the series truncation
error (due to neglecting higher-order terms in the series).
For quasicircular, equatorial Kerr EMRIs, the PN ex-

pansion is known up to 4PN, and our estimate of the
region of validity can only be pushed up to 3PN. Our
main results are shown in Fig. 4 (in terms of orbital
velocity) and in Fig. 5 (in terms of orbital radius). At fixed
but arbitrary spin parameter a, the 3PN approximation
has no obvious advantage when compared with other PN
orders. At fixed PN order N, Fig. 4 shows an interesting
trend: when normalized by the ISCO velocity vISCO, to a
very good approximation the region of validity does not
depend on a.
We should emphasize that our results say nothing about

the absolute accuracy of the PN approximation: they only
suggest relational statements between the N-th and the
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ðN þ 1Þ-th order approximations. For velocities within
the region of validity of the asymptotic series, all we can
say is that the N-th order approximation has errors that
are of expected relative size. For larger velocities, the
ðN þ 1Þ-th and higher-order terms become important, and
should not be formally neglected. If we can tolerate errors
larger than those estimated by the ðN þ 1Þ-th order term (at
the risk that higher-order approximations may be less ac-
curate than lower-order ones) we can surely use the PN
expansion beyond the realm of its formal region of validity.
This, however, would force us to lose analytic control of the
magnitude of the error, as given by the next-order term. The
meaning of this caveat is well illustrated by the counter-
rotating casewith a ¼ �0:99: it is clear from Fig. 2 that the
3.5PN and 4PN approximations do not represent an im-
provement over the 3PN approximation (and in fact perform
quite badly) beyond the realm of the region of validity.

Future work could concentrate on studying whether
resummation techniques, such as Padé [12–14] or
Chebyshev [15], enlarge the formal region of validity,
using the methods developed here. This would allow us
to identify optimal resummation methods, which, in turn,
affects resummed waveform models for EMRIs, like the

effective-one-body approach [6–8]. Moreover, one could
attempt to establish whether there is a correlation between
the accuracy of the energy flux, as measured by the asymp-
totic methods developed here, and the accuracy of the
waveform model, as required by GW detectors.
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