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Simultaneous gravitational and electromagnetic wave observations of merging black hole binaries

(BHBHs) can provide unique opportunities to study gravitation physics, accretion, and cosmology. Here

we perform fully general-relativistic, hydrodynamic simulations of equal-mass, nonspinning BHBHs

coalescing in a circumbinary disk. We evolve the metric using the Baumgarte-Shapiro-Shibata-Nakamura

(BSSN) formulation of Einstein’s field equations with standard moving puncture gauge conditions. We

handle the hydrodynamics via a high-resolution shock-capturing scheme. These initial simulations are

exploratory in nature and simplified accordingly. We track the inspiral starting from a binary separation of

10M, whereM is the total binary mass. We take the disks to have an inner radius at Rin � 15M to account

for the hollow created by the binary torques. Our disks extend to R � 65M and have an initial scale height

of H=R � 0:03–0:11. The gas is governed by a �-law equation of state, with � equal to 5=3, 4=3, and 1.1.

Disks are allowed to relax in the ‘‘early inspiral’’ epoch to provide quasistationary realistic initial data. We

then evolve the spacetime metric and matter during the ‘‘late inspiral and merger’’ epochs. The later

simulations are designed to track BHBH inspiral following disk-binary decoupling, through merger and

ringdown, terminating before viscosity has time to fill the hollow about the black hole remnant. We

compute the gas flow and accretion rate and estimate the electromagnetic luminosity due to bremsstrah-

lung and synchrotron emission as a perturbation for optically thin disks. The synchrotron component of

the luminosity peaks in the infrared band and should be detectable by WFIRST and possibly the LSST for

a 108M� binary embedded in a disk with a density n� 1012 cm�3 at z ¼ 1, beginning with a maximum

value of L� 1046n212M
3
8 erg s�1 at decoupling, and decreasing steadily over a time scale of �100M8

hours to a value of L� 1045n212M
3
8 erg s�1 at merger.
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I. INTRODUCTION

All bulge galaxies (including the Milky Way) are be-
lieved to contain a central supermassive black hole with a
mass M between 104M� and 109M� [1–3]. It is also
believed that galaxy mergers commonly lead to the for-
mation of a massive black hole binary (BHBH) system in
the merged remnants [4,5]. In the standard picture, the
BHBH binary separation decreases, first through dynami-
cal friction due to distant stellar encounters, then through
gravitational slingshot interactions in which nearby stars
are ejected at velocities comparable to the binary’s orbital
velocity, and finally through the emission of gravitational
radiation, leading to coalescence of the binary [6]. These
low-frequency gravitational waves will be detectable by
LISA (Laser Interferometer Space Antenna) and will con-
tain a wealth of information about the inspiral. The gaseous
accretion flow that forms around the binary can be a source
of electromagnetic radiation as well. Following the detec-
tion of gravitational waves from a BHBH merger, electro-
magnetic ‘‘afterglow’’ radiation can provide confirmation
of the coalescence [7–13]. The time scale during which
detectable afterglow radiation rises to its maximum is
governed by viscous diffusion of gas close to the remnant

and ranges from several years to hundreds of decades in the
case of supermassive BHBH systems.
There also exists the possibility of detecting electromag-

netic ‘‘precursor’’ radiation prior to the merger and before
the maximum gravitational wave emission [14,15]. If the
merger takes place in a hot gas cloud in which the distant
gas is nearly homogeneous and either at rest with respect to
the binary (‘‘binary Bondi’’ accretion) or moving (‘‘binary
Bondi-Hoyle-Lyttleton’’ accretion), then Farris et al. [16]
(hereafter Paper I) have shown that the luminosity will peak
at the end of the binary inspiral phase immediately prior to
the final plunge. At this stage shock heating of the gas and
turbulent magnetic field amplification are strongest. The
peak luminosity lasts for �t�M6 hours prior to merger and
then plummets sharply following the coalescence. HereM6

is the binary mass in units of 106M�. If, instead, the
accretion takes place via a geometrically thin, optically
thick Keplerian disk around the binary (‘‘binary Shakura-
Sunyaev’’ accretion), there may be a late-time precursor
brightening from tidal and viscous (or turbulent magnetic)
dissipation in the inner disk. This radiation peaks on a time
scale of �t� 0:1M6 days prior to merger and remains high
afterwards [15]. Each of these scenarios raises the exciting
possibility of a simultaneous detection of electromagnetic
and gravitational waves from a BHBH merger.
This picture is loosely supported by a number of ob-

served active galactic nuclei (AGNs) that may be harboring
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BHBH binaries. Very-long base line interferometry
(VLBI) observations of the elliptical galaxy 0402+379
have discovered two radio sources at a projected separation
of only 7 pc. The existence of jets, as well as variability
associated with BH activity, indicate that the system may
be a BHBH binary [17–19]. Another candidate is OJ 287, a
BL Lac object whose light curve shows variability with a
period of �12 yr. It is believed that this may be a massive
BHBH binary around which the smaller BH orbits with a
period of 12 yr, penetrating the disk of the primary and
giving rise to the observed variability [20–22]. It has been
proposed that the quasar SDSS 092712.65+294344 may be
either a binary system [23,24], or a recoiling BH which is
the product of a binary merger [25]. Such suggestions
are supported by a systematic shift of 2650 kms�1 in the
emission lines. Another candidate is quasar SDSS
J153636.22+044127.0, in which two broad line emission
systems are observed, separated in velocity by
3500 kms�1. This observation has been interpreted as a
BHBH binary system in which each object has its own
emission system [26]. Recently, the first triple AGN
system, SDSS J1027+1749, has been discovered [27].
This galaxy contains three emission line nuclei corre-
sponding to a supermassive black hole triple with kpc-scale
separations.

Information from a simultaneous detection of electro-
magnetic and gravitational waves may be useful for
studying fundamental aspects of gravitational physics.
For example, in some modified gravity scenarios, the
propagation velocity for gravitons may differ from that of
photons [28,29]. Additionally, the measurement of the
luminosity distance from the gravitational wave signal at
an accuracy of 1%–10%, coupled with the redshift infor-
mation from the electromagnetic detection, could serve as
a cosmological ‘‘standard siren’’ of unprecedented accu-
racy (better than �1%) [30]. Such detections may also
combine accurate measurements of BH spins and masses
obtained from gravitational wave signals with electromag-
netic observations to probe BH accretion physics in great
detail [31]. It has even been proposed that simultaneous
detections of electromagnetic and gravitational waves may
provide a means of witnessing the birth of a quasar [32].

Several mechanisms for electromagnetic emission from
accretion disks around merging BHBH binaries have been
proposed. In one scenario, the inner edge of the accretion
disk is identified as the radius at which the viscous torque
on the gas balances the gravitational torque from binary.
This radius is between 1.5 and 2 times the orbital separa-
tion [33–36] and encompasses a hollow region in the disk.
Late in the inspiral the BHBH binary decouples from the
disk and coalesces. For a binary of mass M � 106M�
accreting at 10% of the Eddington rate, the subsequent
evolution of this disk, which is optically thick, gives rise to
a source that initially peaks in the UV band and then
hardens to extreme ultraviolet and soft x-ray emission at

late times [7,12,13]. Additionally, there is a sudden change
in the mass of the binary during the final stage of the
merger, as gravitational waves carry away a few percent
of the mass. The abrupt change in the potential creates
waves in the disk which may grow into shocks and increase
the luminosity of the disk in a unique way [10,11,37],
giving rise to a detectable prompt x-ray signal. An-
other possibility is that the merged BH remnant may
experience a recoil velocity which can, in principle,
be as high as several thousand km s�1 [38], although it is
likely to be much lower (<200 km=s) in most galaxy
mergers [39]. This recoiling BH may ‘‘shake’’ or penetrate
the disk, creating shocks which could give rise to a tran-
sient signal.
Various methods have been used to model plausible

sources of electromagnetic emission from BH mergers.
In one approach, the dynamics of the inspiral is ignored,
focusing on the effect of BH kicks and/or BH mass loss on
the hydrodynamical flow [8–11,37,40–43]. In another ap-
proach, the behavior of the gas is modeled by following the
motion of collisionless ‘‘particle tracers’’ on geodesics
[44]. Other approaches involve vacuum and/or force-free
calculations to investigate the role that magnetic fields may
play in producing detectable electromagnetic emission
when the density near the binary at merger is very low
[45,46]. Only recently have fully relativistic, hydrodynam-
ical simulations of BHBH binary inspiral and merger in a
gaseous environment been performed [16,47–49].
In this paper we study BHBH binary mergers in the

presence of a circumbinary gaseous disk. Modeling such
systems requires fully general-relativistic dynamical simu-
lations. The development of stable algorithms to integrate
Einstein’s field equations of general relativity numerically
in 3þ 1 dimensions, such as the Baumgarte-Shapiro-
Shibata-Nakamura (BSSN) formalism [50,51] and the gen-
eralized harmonic approach [52–54], together with the
identification of suitable gauge conditions, has enabled
several pioneering simulations that demonstrate how to
track the late inspiral, plunge, and merger of a BHBH
binary in vacuum [55–57]. More refined follow-up simu-
lations of these strong-field, late phases, joined onto ana-
lytic, post-Newtonian calculations of the early inspiral
epoch [58], are now capable of producing accurate gravi-
tational waveforms for merging BHBH binaries with com-
panions spanning a range of mass ratios and spins (see e.g.
[59] and references therein).
With the problem of gravitational wave emission from a

vacuum BHBH binary inspiral well in hand, it is now
important to turn to the problem of electromagnetic emis-
sion from BHBH binary coalescence in an astrophysically
realistic gaseous environment.
In Paper I, we considered hot accretion flows in which

the gas is near the galaxy virial temperature and the spe-
cific angular momentum of the gas ~L is less than that of a
circular orbit near the horizon, ~L & Mc. Such flows can be
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well described by the spherical Bondi, or Bondi-Hoyle-
Lyttleton accretion model. In this paper, we consider flows
in which the angular momentum of the gas cannot be
neglected, and the accretion flow is disklike.

Disk accretion onto a BHBH binary has been studied
previously in the Newtonian, geometrically thin-disk limit,
both analytically [12,14,15,60–62] and numerically
[8,10,11,36]. We extend this work by performing fully
relativistic hydrodynamcal simulations in 3þ 1 dimen-
sions. Our treatment here is quite preliminary and meant
to introduce the computational framework for more de-
tailed and realistic simulations that we are preparing. In
this paper we restrict our attention to a circumbinary disk
residing in the orbital plane of two nonspinning, equal-
mass, binary black holes. The black holes are initially in a
quasistationary, nearly circular orbit and represent a solu-
tion to the conformal thin-sandwich (CTS) initial-value
equations (see, e.g. [63–65] and references therein). The
mass of the disk is assumed to be small in comparison to
the total black hole mass. We explore the response of the
disk to the binary on a dynamical time scale and thus
ignore the secular motion of gas in the disk due to viscosity
or turbulent magnetic fields. We treat the gas as a perfect
fluid described by a �-law equation of state (EOS) and
handle shocks by high-resolution, shock-capturing
(HRSC) techniques. We study the response of the disk to
tidal torques during the early and late inspiral phases, as
well as during the merger and post-merger epochs. The
inspiral and merger are followed by solving the BSSN field
equations [50,51] with moving puncture gauge conditions
[56,57]. We are particularly interested in the evolution of
the hollow region in the disk about the binary [33–36] and
the extent to which gas penetrates the hollow and accretes
onto the black holes. We also estimate, as a perturbation,
the electromagnetic emission from the disk that character-
izes the inspiral and merger epochs. Our treatment is
appropriate for describing the epoch following disk-binary
‘‘decoupling,’’ when the BHBH inspiral time scale is much
shorter than the viscous time scale in the disk, whereby
viscosity-induced inflow can be neglected. Our analysis
remains valid throughout the binary merger and ringdown
phases, but is no longer adequate to describe the late-time
evolution when viscosity serves to drive gas into the hollow
and accrete onto the merged remnant [7,12]. We briefly
compare our results with another, recently published, gen-
eral relativistic study [49] that treats a similar scenario, but
employs different methods (e.g. different initial data and
luminosity estimates) and addresses different issues.

The structure of the paper is as follows. In Sec. II we
summarize the computational challenge posed by the large
dynamic range associated with this problem, and we de-
scribe our approach for overcoming this challenge. In
Secs. III and IV we briefly outline the basic gravitational
field and matter evolution equations and their specific
implementations in our numerical scheme. Here we also

provide an overview of our initial data, gauge conditions,
and diagnostics. In Sec. IVD, we review code tests that
were performed to validate our numerical scheme. In
Sec. V we describe the results of our binary BHBH merger
simulations. In Sec. VI we summarize our findings, and
briefly compare with previous simulations. Henceforth we
adopt geometrized units and set G ¼ c ¼ 1.

II. COMPUTATIONAL CHALLENGE

Simulating realistic accretion flows is extremely chal-
lenging due to the enormous dynamic range characterizing
the time and length scales in the problem. One length scale
is set by the initial, total Arnowitt-Deser-Misner (ADM)
mass of the binary system, M. We neglect the mass of the
disk and assume that Mdisk � M. The ADM mass sets the
length scale at which relativistic effects become signifi-
cant. Another important length scale is the binary orbital
separation a. Associated with the orbital separation is the

orbital period, torb � 2�=�bin � 2�ða=MÞ3=2, where�bin

is the binary orbital angular velocity.
Torques from the binary have the effect of driving matter

in the vicinity of the BHBH orbit outward, creating a
hollow cavity inside the inner edge of the accretion disk
at Rin � 1:5� 2a [33–36]. This radius is determined by
the balance between viscous stresses in the disk and tidal
torques from the binary [33–36], provided that the viscous
time scale tvis � ð2=3ÞR2

in=� is shorter than the gravita-

tional inspiral time scale tmerge � ð5=16Þa4=M3. Here � is

the shear viscosity, and we assume an equal-mass binary.
As the orbital separation decreases, the binary eventually
enters an epoch at which tmerge < tvis. At this point, the

binary decouples from the disk [7,14,62,66]. If one
assumes an �-disk with a viscosity law �ðRÞ ¼
ð2=3Þ�Pgas=ð��KÞ, where � is the gas density and Pgas

is the gas pressure, then the decoupling radius ad is given
by [7,13,62]

ad
M

� 126��17=50
�1 S�49=200�7=10M2=25

6 ð��1�Þ17=40��17=200
0:2 ;

(1)

where � ¼ 0:1��1, � ¼ 0:1��1, S � 3��ðadÞ�ðadÞ=
_MEdd, and � ¼ 0:2�0:2. Here _MEdd ¼ 4�Mmp=ð	
TÞ is

the Eddington accretion rate, 
T is the Thomson cross
section for electron scattering, 	 is the radiative efficiency,
� < 1 is a porosity correction factor applied to the
scattering-dominated optical depth [67], and � roughly
accounts for the shortening of the viscous time scale at
the disk edge where the surface density� is very steep [68].
Another important length scale is the characteristic size

of the disk, Rdisk, which we define here as the radius at
which the gas pressure is maximum, Rdisk � RðPmaxÞ. In
general, Rdisk depends on the details of the temperature and
angular momentum profile in the disk, and is highly de-
pendent on the particular choice of disk model. Associated
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with Rdisk is the orbital time scale tdisk, which we define as

the Keplerian orbital period tdisk ¼ 2�ðRdisk=MÞ3=2.
If we assume the size of the entire disk is several

Rdisk � Rin and use the estimate of ad given in Eq. (1),
we find that a simulation of the full inspiral from decou-
pling to merger would require us to resolve length scales
from �M to * 103M. More challenging, we must
resolve time scales from M to several tmerge � 108M.

Unfortunately, the latter is beyond the capability of current
numerical codes. In order to circumvent this issue, we
consider a disk with relatively small values of ad ¼
10M, Rin � 15M, and Rdisk � 35M. With these choices,
the important time scales become torb ¼ 225M, tdisk ¼
1300M, and tmerge ¼ 1250M. Given the wide range of

gaseous environments in galactic cores, such parameters
are not implausible, and we expect that qualitative features
of our results can be extended to disks with larger values of
ad, Rin, and Rdisk. Our choice allows us to study the full
evolution of the system from decoupling to binary merger.
We focus on the post-decoupling phase through merger,
ringdown, and disk equilibration, but prior to disk inflow
on viscous time scales. Accordingly, our perfect-fluid ap-
proximation will closely mimic a realistic flow during
these epochs, as the viscous time scale (which may origi-
nate fromMHD turbulence) is long compared to the length
of our simulations.

III. BASIC EQUATIONS

Throughout this paper, we use Latin indices to denote
spatial components (1–3) and Greek indices to denote
spacetime components (0–3).

A. Early inspiral epoch

We define the ‘‘early inspiral epoch’’ as the phase of the
binary inspiral prior to decoupling. Throughout this phase,
the inspiral time scale is much longer than the orbital time
scale. This fact can be exploited by neglecting the change
in binary separation and employing a metric that is quasi-
stationary in the rotating frame of the binary. This simpli-
fication provides an accurate solution for the spacetime
without the computational expense of a full evolution of
Einstein’s field equations. We evolve the full relativistic
hydrodynamics equations in this background metric over
�5tdisk to enable the disk to relax to a quasistationary state.
This technique thus provides astrophysically realistic ini-
tial data with which to begin evolution of the late inspiral
and merger epochs (Sec. III B).

In order to use this method, we must choose a coordinate
system in which the metric explicitly reflects the symmetry
of the spacetime. This symmetry, describing a spacetime
that is quasistationary in a frame that rotates with the
orbital frequency of the binary �, can be constructed by
employing a helical Killing vector,

� � @t þ�@�: (2)

For a spacetime admitting such a Killing vector, we have

L �g� ¼ 0; (3)

where L is the Lie derviative, and g� is the spacetime

metric.
Provided we are working in an appropriate coordinate

system (i.e. one employing Killing coordinates t and �),
we may express the metric at any point in spacetime in
terms of the metric on an initial t ¼ 0 slice according to

g�ðt; r; �;�Þ ¼: g�ð0; r; �;���tÞ; (4)

where the symbol¼: denotes that the equality holds only in
a particular coordinate system. One can easily verify that
the above equation satisfies Killing’s equation (3).
We note that Eq. (4) is written in spherical polar coor-

dinates, i.e. fx�g ¼ ft; r; �; �g. However, Cartesian coordi-
nates are more suitable for work in 3D, as coordinate
singularities at r ¼ 0 and on the polar axis are avoided.
We therefore transform the spherical components of g�

back to the Cartesian components using the usual tensor
transformation formula.
BHBH evolution employing standard puncture initial

data and moving puncture gauge conditions does not result
in a metric that satisfies Eq. (3) (Puncture initial data does
not implement a helical Killing vector). By contrast,
BHBH CTS initial data (see, e.g. [64]) are specifically
constructed to satisfy this equation: CTS initial data im-
pose the condition that the spacetime in the rotating frame
is stationary (see [65] for discussion and references). This
condition is valid, approximately, whenever the binary
companions are sufficiently well separated that the inspiral
time scale is much longer than the orbital time scale. In this
quasistationary early inspiral regime we can employ CTS
initial data and CTS lapse and shift functions to evolve the
metric via a simple coordinate rotation in lieu of integrat-
ing the Einstein field equations. We can then evolve the
disk by integrating the hydrodynamic equations for the
fluid in this background spacetime.
CTS initial data contains excised interiors. We follow

the technique outlined in [69] and fill the excised region
inside the BH interiors with smoothly extrapolated ‘‘junk’’
(i.e., constraint-violating) data. This treatment is valid
because the interior regions are causally disconnected
from the exterior spacetime.

B. Late inspiral and merger epochs

We evolve both the metric and hydrodynamic equations
during the late inspiral and merger epochs. Our basic
gravitational field and relativistic hydrodynamics equa-
tions are discussed in [51,70], where their numerical im-
plementation is described and detailed code tests are
summarized. Here, we briefly review these equations and
their implementation.
We write the spacetime metric in the standard 3þ 1

form,
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ds2 ¼ ��2dt2 þ �ijðdxi þ �idtÞðdxj þ �jdtÞ; (5)

where �, �i, and �ij are the lapse, shift, and spatial metric,

respectively. The extrinsic curvature Kij is given by

ð@t �L�Þ�ij ¼ �2�Kij; (6)

where L� is the Lie derivative with respect to �i. We

evolve �ij and Kij using the BSSN formulation [50,51].

The fundamental variables for BSSN evolution are

� � 1

12
ln½detð�ijÞ�; (7)

~� ij � e�4��ij; (8)

K � �ijKij; (9)

~A ij � e�4�

�
Kij � 1

3
�ijK

�
; (10)

~� i � �~�ij
;j: (11)

The evolution and constraint equations for these fields are
summarized in [50,51]. We assume in this paper that the
mass of the gas is negligible compared to the mass of the
BHs, thus we do not include matter source terms in our
metric evolution equations.

Adding Kreiss-Oliger dissipation to the BSSN evolution
equations outside the BH can reduce high-frequency nu-
merical noise associated with adaptive mesh refinement
(AMR) refinement interfaces [57]. We use this technique
here and have found it useful in reducing Hamiltonian and
momentum constraint violations.

We adopt the standard moving puncture gauge condi-
tions: an advective ‘‘1þ log’’ slicing condition for the
lapse and a ‘‘Gamma-freezing’’ condition for the shift
[71]. Thus we have

@0� ¼ �2�K; (12)

@0�
i ¼ ð3=4ÞBi; (13)

@0B
i ¼ @0~�

i � 	Bi; (14)

where @0 ¼ @t � �j@j. The 	 parameter is set to 0:5=M in

all simulations.

C. Evolution of hydrodynamic fields

The fundamental matter variables are the rest-mass den-
sity �0, specific internal energy �, pressure P, and four-
velocity u. The stress-energy tensor for an ideal gas is
given by

T� ¼ �0huu� þ Pg�;

where h ¼ 1þ �þ P=�0 is the specific enthalpy. We

evolve the ‘‘conservative’’ variables �	, ~Si, and ~�. They
are defined as

�	 ¼ � ffiffiffiffi
�

p
�0nu

; (15)

~S i ¼ ffiffiffiffi
�

p
T�n

��
i ; (16)

~� ¼ ffiffiffiffi
�

p
T�n

n� � �	: (17)

Here n� ¼ ð��1;���1�iÞ is the timelike unit vector nor-
mal to the t ¼ constant time slices. Evolution equations are
given by Eqs. (34), (36), and (38) of [70]:

@t�	 þ @jð�	vjÞ ¼ 0; (18)

@t ~Si þ @jð� ffiffiffiffi
�

p
Tj
i Þ ¼ 1

2�
ffiffiffiffi
�

p
T��@ig��; (19)

@t~�þ @ið�2 ffiffiffiffi
�

p
T0i � �	viÞ ¼ s; (20)

where � � detð�ijÞ ¼ e12� and vi � ui=u0 is the fluid’s

3-velocity. The energy source term s is given by

s¼��
ffiffiffiffi
�

p
T�r�n

¼�
ffiffiffiffi
�

p ½ðT00�i�jþ2T0i�jþTijÞKij�ðT00�iþT0iÞ@i��:
(21)

D. Equation of state

To complete the system of equations, we must specify
an EOS. While our code can handle any EOS of the form
P ¼ Pð�0; �Þ, we adopt a �-law EOS,

P ¼ ð�� 1Þ�0�: (22)

We perform simulations with � ¼ 4=3, 5=3, and 1.1. By
varying � we effectively examine gas flow under a full
range of conditions. We choose � ¼ 5=3 as our canonical
case. The choice of � ¼ 1:1 approximates an isothermal
gas (we have chosen � ¼ 1:1 rather than � ¼ 1 in order to
retain the �-law form of the EOS while still approximating
isothermality). At t ¼ 0, we take the EOS to be isentropic,
with P ¼ K��

0 , where K ¼ constant. Throughout this

paper, we define temperature by

P ¼ 2nkT; (23)

appropriate for pure ionized hydrogen.

IV. NUMERICAL METHODS

A. Disk initial data

For our disk initial data, we use the equilibrium solution
for a stationary disk around a single Kerr BH derived by
Chakrabarti et al. [72] and summarized in [73]. We take
this disk as initial data for a binary BHBH, placing the
inner boundary of the disk well outside the BHBH orbital
radius. Though no longer stationary, the initial disk settles
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down to quasistationary equilibrium as the binary rotates,
apart from low amplitude spiral density waves induced
by the time-varying tidal torque. For completeness,
we provide a brief summary of the construction of disk
initial data in Appendix A.

For our fiducial equation of state, � ¼ 5=3, the resulting
outer disk radius is Rout � 65M and the disk scale height at
Rdisk is H=R ¼ 0:11 (see Table I for more details). Here H
is defined as the height above the equatorial plane where
the pressure falls to 1=e its value on the equatorial plane at
the radius of maximum pressure. For binary BHs, the disk
is approximately stationary if Rin � a. Initially, we take
Rin=a ¼ 1:5. We find that the disk relaxes to a near quasi-
stationary state after a time �4tdisk.

B. Evolution of metric and matter

We evolve the BSSN field equations with fourth-order
accurate, centered, finite-difference stencils, except on shift
advection terms, where we use fourth-order accurate up-
wind stencils. We apply Sommerfeld outgoing wave bound-
ary conditions to all BSSN fields. Our code is embedded in
the Cactus parallelization framework [74], and our fourth-
order Runge-Kutta time-stepping is managed by the MoL
(method of lines) thorn, with a Courant-Friedrichs-Lewy
factor set to 0.5 in all BHBH simulations. We use the Carpet
[75] infrastructure to implement the moving-box AMR. In
all AMR simulations presented here, we use second-order
temporal prolongation, coupled with fifth-order spatial pro-
longation. The apparent horizon of the BH is computed with
the AHFINDERDIRECT Cactus thorn [76].

We write the general-relativistic hydrodynamics equa-
tions in conservative form. They are evolved by an HRSC
technique [70] that employs the piecewise parabolic re-
construction (PPM) scheme [77] coupled to the Harten,
Lax, and van Leer (HLL) approximate Riemann solver
[78]. The adopted hydrodynamic scheme is second-order
accurate for smooth flows, and first-order accurate when
discontinuities (e.g. shocks) arise. Throughout the evolu-
tion, we impose limits on the pressure to prevent spurious

heating and negative values of the internal energy �.
Specifically, we require Pmin 
 P 
 Pmax inside the hori-
zon, where Pmax ¼ 10K��

0 and Pmin ¼ K��
0=2. Whenever

P exceeds Pmax or drops below Pmin, we reset P to Pmax or
Pmin, respectively. We check that this fix is applied only
inside the apparent horizon, which is causally disconnected
from the rest of the grid.
At each time step, we need to recover the ‘‘primitive

variables’’ �0, P, and v
i from the ‘‘conservative variables’’

�	, ~�, and ~Si. We perform the inversion as specified in
Eqs. (57)–(62) of [70], but with a slightly modified analytic
quartic solver from the GNU Scientific Library that outputs
only the real roots. We use the same technique as in [79] to

ensure that the values of ~Si and ~� yield physically valid
primitive variables, except we reset ~� to 10�10~�0;max (where

~�0;max is the maximum value of ~� initially) when either ~Si
or ~� is unphysical (i.e., violate one of the inequalities (34)
or (35) in [79]). The restrictions usually apply only to the
region near the puncture inside the horizon.
For each of our calculations, we set our outer boundary

at 128M and use 8 AMR refinement levels. The maximum
resolution near each BH is �x=M ¼ 0:03125. For our
single BH test calculations, we place our outer boundary
at 128M and use 6 AMR refinement levels. For these cases,
the highest resolution near the BH is �x=M ¼ 0:0625.
We model the emission of electromagnetic radiation by

treating this radiation loss as a perturbation, and neglect its
influence on the hydrodynamic flow, as well as any devia-
tion from adiabaticity that it induces.

C. Diagnostics

1. Surface density

In order to track the global evolution of disk structure
and compare with other disk calculations, it is useful to
define the surface density �. Following [80], we define

�ðR;�Þ ¼
Z
z�0

�0u
t ffiffiffiffiffiffiffi�g
p

dz; (24)

where R � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
(R will always be the cylindrical

radius in this paper, while r will always be the spherical
polar radius). We also report the angle-averaged surface
density h�ðRÞi where

h�i � 1

2�

Z 2�

0
�d�: (25)

2. Flux diagnostics

To derive meaningful flux diagnostics we must identify
the conserved currents. Details of this derivation are
given in Appendix A of [16]. To summarize, consider a
3D region �t which lies between two world tubes F
and L on a time slice t ¼ const. Let F be defined by
hðt; x; y; zÞ ¼ 0, and L be defined by lðt; x; y; zÞ ¼ 0. In
[16], this region is depicted as the lower shaded region in

TABLE I. Parameters for BHBH simulations.

Case Epocha Orientation � H=R b

A1 early inspiral prograde 5=3 0.11

A2 4=3 0.08

A3 c1.1 0.03

A4 retrograde 4=3 0.08

B1 late inspiral prograde 5=3 0.14

B2 and merger 4=3 0.11

B3 c1.1 0.06

B4 retrograde 4=3 0.11

aInitial binary separation a=M ¼ 10.
bH is the scale height of the disk at R ¼ Rdisk (pressure
max), measured at t ¼ 0 for case A runs and at t ¼ tmerge for
case B runs.
cApproximately isothermal.
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Fig. 24. For the purposes of this paper, we let F be the
world tube defined by the apparent horizon(s), and L be the
world tube defined by a sphere of constant coordinate
radius centered at the origin. Of course the surfaces could
be chosen to take on other shapes as well.

3. Conserved quantities

Now consider a conserved current, j which satisfies

rj
 ¼ 0: (26)

Then it can be shown that (see e.g. Appendix A of [16])

_q � dq

dt
¼ �F F þF L; (27)

where

qðtÞ ¼
Z
�t

jd3� (28)

¼
Z
�t

jt
ffiffiffiffiffiffiffi�g

p
d3x; (29)

F F ¼ �
Z
F

ffiffiffiffiffiffiffiffiffi
�g0

q
jhdadb; (30)

F L ¼ �
Z
L

ffiffiffiffiffiffiffiffiffi
�g0

q
jldadb: (31)

Here g0 is the determinant of the metric in the ðt; h; a; bÞ or
ðt; l; a; bÞ coordinate systems. In the above example, F F is
the flux of q across the horizon(s), whileF L is the flux of q
across the outer sphere.

4. Freedom in coordinate choice

These fluxes are independent of any changes in coordi-
nates that leave the slicing intact. Equivalently, we may
alter the shift without affecting the flux, but the lapse must
be kept the same. We can rewrite these fluxes in any other
coordinate system ðt; x; y; zÞ which preserves the same
slicing. While a and b can be any two coordinates on the
surface, we label them here as � and � for convenience, as
this is done in our actual numerical calculations,

F F ¼ �
Z
F

ffiffiffiffiffiffiffi�g
p

det

��������
@ðx; y; zÞ
@ðh; �;�Þ

��������j@hd�d�; (32)

F L ¼ �
Z
L

ffiffiffiffiffiffiffi�g
p

det

��������
@ðx; y; zÞ
@ðl; �; �Þ

��������j@ld�d�: (33)

5. Rest-mass conservation

Rest-mass conservation, rð�0u
Þ ¼ 0, corresponds to

j ¼ �0u
. If we now define

M0 �
Z
�t

ffiffiffiffiffiffiffi�g
p

�0u
0d3x ¼

Z
�t

�	d3x; (34)

F ðMÞ
F ��

Z
F

ffiffiffiffiffiffiffi�g
p

det

��������
@ðx;y; zÞ
@ðh;�;�Þ

���������0u
h;d�d�; (35)

F ðMÞ
L ��

Z
L

ffiffiffiffiffiffiffi�g
p

det

��������
@ðx;y; zÞ
@ðl;�;�Þ

���������0u
l;d�d�; (36)

then we may integrate Eq. (27) in time to derive the
following rest-mass conservation law�

M0ðtÞ þ
Z t

ti

dtðF ðMÞ
F �F ðMÞ

L Þ
��

M0;i ¼ 1; (37)

where M0;i is the rest mass between the horizons and the

surface L at t ¼ 0. Equivalently, we can define the rest-
mass accretion rate

_M 0 � �F ðMÞ
F þF ðMÞ

L : (38)

6. E��J conservation

We employ the helical Killing vector defined in Eq. (2)
to construct another conserved current,

j � ��T
� ¼ T

t þ�T
�: (39)

We now define the following quantities

EðtÞ � �
Z
�t

ffiffiffiffiffiffiffi�g
p

Tt
td

3x; (40)

JðtÞ �
Z
�t

ffiffiffiffiffiffiffi�g
p

Tt
�d

3x; (41)

F ðEÞ
F �

Z
F

ffiffiffiffiffiffiffi�g
p

det

��������
@ðx; y; zÞ
@ðh; �;�Þ

��������T
th;d�d�; (42)

F ðEÞ
L �

Z
L

ffiffiffiffiffiffiffi�g
p

det

��������
@ðx; y; zÞ
@ðl; �; �Þ

��������T
tl;d�d�; (43)

F ðJÞ
F � �

Z
F

ffiffiffiffiffiffiffi�g
p

det

��������
@ðx; y; zÞ
@ðh; �;�Þ

��������T
�h;d�d�; (44)

F ðJÞ
L � �

Z
L

ffiffiffiffiffiffiffi�g
p

det

��������
@ðx; y; zÞ
@ðl; �;�Þ

��������T
�l;d�d�; (45)

and we see that Eqs. (27) and (39) give

_E�� _J ¼ �ðF ðEÞ
F ��F ðJÞ

F Þ þ ðF ðEÞ
L ��F ðJÞ

L Þ; (46)

for spacetimes possessing a helical Killing vector. Again,
we may integrate in time to derive another conservation
law

EðtÞ ��JðtÞ þ
Z t

ti

dtðF ðEÞ
F ��F ðJÞ

F Þ

�
Z t

ti

dtðF ðEÞ
L ��F ðJÞ

L Þ ¼ EðtiÞ ��JðtiÞ: (47)
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7. Spiral density wave diagnostics

In our simulations, we use our CTS metric and Eq. (4)
to ensure that our disk models exhibit quasistationary
behavior before we begin the binary inspiral. Such quasi-
stationary configurations are interesting in their own right,
as they lend insight into any accretion flow onto a binary
before merger. A key feature of this flow is the presence of
spiral density waves in the inner disk cavity. Following
[36], we highlight the existence of these density waves by
calculating the surface density fluctuation ��, defined by

�� � �� h�i
h�i : (48)

We also define the torque density, dT=dR, for comparison
with analytic models and other simulations,

dT

dR
¼

Z ffiffiffiffiffiffiffi�g
p

T
�r�

�Rdzd�; (49)

where � � ð@�Þ, which gives � ¼ ð0;�y; x; 0Þ in

Cartesian coordinates. Details of the derivation of Eq. (49)
are given in Appendix B.

8. Luminosity diagnostics

In order to study the electromagnetic emission from our
disk evolutions, we estimate the luminosity due to thermal
bremmstrahlung and nonthermal synchrotron emission us-
ing the approximations described in [16]. For synchrotron
emission, we assume the presence of a small-scale, turbu-
lent B field whose magnitude is approximated by setting
P ¼ �PM � �B2=ð8�Þ. We thus assume that the magnetic
pressure is some fraction 1=� of its equipartition value.
Simulations of magnetized accretion flows have demon-
strated that the magnetic fields do not typically reach their
full equipartition value [81]. We have chosen � ¼ 10 to
account for this. We also assume that the radiation prop-
agates through an optically thin gas, and we neglect the
roles of radiation pressure and radiative cooling on the
hydrodynamic evolution. While an accurate estimation of
the electromagnetic emission requires a full solution to the
radiative transfer problem, this crude method can provide a
reasonable estimate of the magnitude of the emission under
suitable conditions.

D. Code tests

Our HRSC general-relativistic hydrodynamic code
has been thoroughly tested by passing a robust suite of
tests. These tests include maintaining stable rotating
stars in stationary equilibrium, reproducing the exact
Oppenheimer-Snyder solution for collapse to a BH, and
reproducing analytic solutions for relativistic shocks and
spherical Bondi accretion onto isolated BHs [70]. Our code
has also been used to simulate the collapse of very
massive, rotating stars to black holes [82]; merging
BHBH binaries [69], BHNS binaries [79,83], and

relativistic hydrodynamic matter in the presence of punc-
ture black holes [84]. Recently, our code has been gener-
alized to incorporate (optically thick) radiation transport
and its feedback on fluids in dynamical spacetimes [85].
Most of the above tests and simulations were performed

on grids with uniform spacing. In some of the simulations,
we utilized the multiple-transition fisheye transformation
[86] so that a uniform computational grid spacing corre-
sponds to physical coordinates with spatially varying reso-
lution. Recently, we have modified our code so that we can
use the moving-box AMR infrastructure provided by
Carpet [75]. To test our new code, we have performed
shock-tube tests and 3þ 1 simulations of linear gravita-
tional waves, single stationary and boosted puncture BHs,
puncture BHBH binaries, and rapidly and differentially
rotating relativistic stars. Our AMR code has also been
used to perform simulations of BHNS mergers [83], binary
Bondi, and binary Bondi-Hoyle-Lyttleton accretion [16].
All of our 3þ 1 AMR code tests were performed as-

suming equatorial symmetry (i.e., symmetry about the
z ¼ 0 orbital plane), which we assume in all evolutions
presented in this paper. We have checked that our AMR
code is able to accurately maintain a stable equilibrium
disk around a single BH, as demonstrated in Fig. 1. For this
test, we use the same disk initial data as run A1 in Table I,
except that we set the background metric to be that of a
single Schwarzchild BH at the origin. As we describe in
Sec. IVA, such a disk is an equilibrium solution and is
expected to maintain its initial profile.
We have also checked that the conservations laws in

Eqs. (37) and (47) are satisfied in a quasistationary, binary
spacetime, as described in Sec. IVC. In Fig. 2, the dashed
red curve shows the left-hand side of Eq. (37), with the
world tube L chosen to correspond to a sphere centered at
the origin with a radius rL ¼ 25M. For comparison, we
also plot M0ðtÞ=M0;i with the solid red curve. The data are

from run A2, in which we impose a helical Killing vector to
solve for the metric as described in Sec. III A, while

FIG. 1. Surface density profiles at t ¼ 0 (solid line) and
t � tdisk (dotted line), where tdisk is the Keplerian period at the
radius of maximum pressure. Overlap indicates that disk accu-
rately maintains equilibrium configuration over this time scale.
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evolving the hydrodynamics using Eqs. (18)–(20). We find
that Eq. (37) is well satisfied, indicating that our code is
conserving rest mass correctly. Similarly, the dashed black
line shows the left-hand side of Eq. (47), normalized by
M0;i, while the solid black line shows ðEðtÞ ��JðtÞÞ=M0;i

for comparison. Again, we see that our code is conserving
E��J correctly.

V. RESULTS

As discussed in Sec. III, we separate each of our simu-
lations into two phases. We first perform early inspiral
epoch simulations in which we employ the quasistationary
CTS metric while keeping the BH separation constant.
This allows the disk to relax to a reliable quasistationary
state. Upon achieving this state, we begin our late inspiral
and merger epochs simulations in which we evolve the
metric in full GR, allowing the BHs to inspiral and merge.
Parameters for each of these disk runs are given in Table I.

Equatorial snapshots from our simulations with � ¼ 5=3
can be seen in Fig. 3, while meridional snapshots are
shown in Fig. 4. The first two snapshots are from the early
inspiral epoch calculations, while the second two snapshots
are from the late inspiral and merger epochs calculations.
We do not show snapshots for other equations of state here,
as the accretion flow is qualitatively similar. Important
results from simulations with other equations of state are
reported in Table II.

A. Early inspiral epoch

While the formulation outlined in Sec. IVA provides
stable equilibrium disk initial data for a single BH, torques
from the binary disrupt this equilibrium. Thus, it is impor-
tant to allow the gas to relax to a quasistationary state

before beginning the BH inspiral. We allow this relaxation
to occur over �5tdisk, where tdisk � 1300M. At this time,
we find that _M0, Lsyn, and Lbrem oscillate around roughly

constant values, and there is little evolution in surface
density profiles. Here Lsyn and Lbrem refer to synchrotron

and bremsstrahlung luminosity, respectively.
During the relaxation process, the changes in the matter

profiles are due to the presence of binary torques. These
torques cause a disruption of the inner edge of the disk,
allowing some gas to fall onto the BHs. Infalling gas forms
spiral waves and shocks which heat the gas near the BHs.
In the absence of shock heating, the disk would behave
adiabatically, and the internal energy density would be
given by its polytropic value,

�0�ad ¼ K��
0=ð�� 1Þ: (50)

Thus, shock heating may be measured by computing the
enhancement in the internal energy density above its adia-
batic value and integrating over the disk. We therefore
compute

Eint ¼
Z
Vd

ffiffiffiffiffiffiffi�g
p

�0u
t�d3x; (51)

and

Eint;ad ¼
Z
Vd

ffiffiffiffiffiffiffi�g
p

�0u
t�add

3x: (52)

Here the integral is over Vd, which is the volume between
r ¼ 10M and the outer boundary of the computational
domain at 128M. This allows us to compute �Eint in the
bulk of the disk, ignoring the gas near the BHs. In Fig. 5,
we plot �Eint=Eint;ad vs time during the relaxation of

the gas, where �Eint � ðEint � Eint;adÞ. We find that

�Eint=Eint;ad increases monotonically over the course of

the relaxation process, leveling off to a constant value of
� 5� 10�4 as the disk reaches a quasistationary state.
Because �Eint=Eint;ad � 1, we conclude that shock heat-

ing does not play a significant role in altering the bulk disk
profile during this process.
In order to get a sense of the change in the disk profile

from the initial data, we plot angle-averaged surface den-
sity profiles (see Fig. 6). In each case, the torque from the
binary has the overall effect of pushing matter outward.
However, the effect of the torques diminishes once the disk
matter has moved outward and a quasistationary state is
achieved after t� 5tdisk.
In Fig. 3, we plot snapshots of density contours for case

A1. We see that the disk cavity, which initially extends to
R ¼ 15M, becomes partially filled, with a clear spiral
structure, at small radii R & 2a ¼ 20M for each of the
prograde cases. A similar spiral arm structure extending
inside the disk cavity has been seen in Newtonian simula-
tions (cf. [36,87,88]). In the retrograde case (A4), this
structure is largely absent. This point is further emphasized

FIG. 2 (color online). Plots demonstrating the accurate main-

tenance of conserved quantities. Rest mass M0ðtÞ=M0;i þR
dtðF ðMÞ

F �F ðMÞ
L Þ=M0;i (dashed red line) maintains its initial

value accurately when compared to M0=M0;i (solid red).

Similarly, the conserved quantity ðEðtÞ ��JðtÞ þ R
dtðF ðEÞ

F �
�F ðJÞ

F Þ � R
dtðF ðEÞ

L ��F ðJÞ
L ÞÞ=M0;i (dashed black line) main-

tains its initial value accurately when compared to ðEðtÞ �
�JðtÞÞ=M0;i (solid black line).
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by comparing the surface density fluctuation �� �
ð�� h�iÞ=h�i between the prograde case A2 and the
retrograde case A4 (see Figs. 7 and 8). Following [36],
we compute this quantity in a rotating frame in which the
binary is stationary, and average over several torb. In Fig. 7,
we clearly see two strong spiral arms emanating from each
BH and extending throughout the cavity region. However,
unlike the results of the 2D, thin-disk simulations

presented in [36], we do not see spiral density waves
extending into the bulk of the disk. We attribute this to
the fact that our 3d disks are thicker, which allows waves
that are initially propagating in the radial direction to be
deflected in the vertical direction, disrupting the spiral
density wave structure. Such effects have been demon-
strated even for geometrically thin disks in which density
and temperature are stratified in the z direction [89,90].

FIG. 3 (color online). Snapshots of rest-mass density �0 contours in the orbital plane for cases with � ¼ 5=3. Density contours are
plotted at �0=�0;max ¼ 10�2:75þ0:5j (j ¼ 1; 2; . . . :; 6). Contours of highest density are shown with darker shading and are near the BHs.
Blue arrows denote velocity vectors. The apparent horizon interior is marked by a filled black circle. The top left frame is the initial
data from the early inspiral epoch, the top right frame is the relaxed, quasistationary disk, which serves as initial data for the late
inspiral and merger epochs at t � tmerge � 1250M. The bottom left frame is the data from the late inspiral and merger epochs run at

t� tmerge � 50M, while the bottom left frame is the data from the late inspiral and merger epochs at t � tmerge þ tdisk.
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The structure of the spiral density waves observed near
Rin is roughly consistent with the theoretical Newtonian
picture of a wave that is excited by the binary torques at the

outermost Lindblad resonance at R2 ¼ ð3=2Þ2=3a with

orbital resonance �bin:� ¼ 3:2 (initially, R2 ¼ 0:87Rin).
We demonstrate this by computing the angle-averaged
torque density as described in Sec. IVC 7 and comparing
with the (Newtonian) analytic prediction given in Eq. (31)
of [36],

dT

dR
� 49

288
�2�ðR2Þ�2

bin

a4

�2

Ai

�
R2 � R

�2

�
; (53)

where �2 ¼ 2�2=3ðH=RÞ2=3a. Based on numerical data
from run A1 at t * 5tdisk, we choose �ðR2Þ ¼
4� 10�4�0 and H=R ¼ 0:3, where �0 is the initial maxi-
mum surface density and H=R is measured at R2. As we
show in Fig. 9, we find very good agreement with the
analytic prediction out to R=a � 2:2, but break down at
larger radii. This breakdown is not unexpected, as we have
argued above that spiral density waves do not extend into
the bulk of the disk as a result of the thickness of our
3d disks.
For the retrograde case (A4), we find that the spiral

density waves are largely absent, as shown in Figs. 8 and
10. This is expected, as the Lindblad resonance does not
exist when the angular momentum of the disk and the
binary are antialigned.

B. Late inspiral and merger epochs

Having allowed the disk to relax to a quasistationary
state, we turn to the fully relativistic evolution of metric
and matter fields in order to investigate variations in elec-
tromagnetic luminosity over the course of the inspiral and
merger. Our calculations in this epoch apply to the decou-
pling phase of binary inspiral, through merger, but before
appreciable gas fills the hollow due to viscosity. We again
consider the prograde cases with � ¼ 4=3 (B1), � ¼ 5=3
(B2), and � ¼ 1:1 (B3), as well as the retrograde case with
� ¼ 4=3 (B4). In each case, we use the relaxed data from
the end of the corresponding quasistationary metric run as
initial data.
As the binary inspiral proceeds and the separation

shrinks, the torques due to the binary are diminished. As

FIG. 4 (color online). Snapshots of rest-mass density �0

contours in the meridional plane for cases with � ¼ 5=3.
Density contours are plotted at �0=�0;max ¼ 10�2:75þ0:5j

(j ¼ 1; 2; . . . :; 6). Contours of highest density are near the
BHs. The top frame is the initial data for the early inspiral
epoch; the second frame is the relaxed, quasistationary disk that
serves as initial data for the late inspiral and merger epochs; the
third frame is the data from the late inspiral and merger epochs at
t� tmerge � 50M; the bottom frame is the data from the late

inpiral and merger epochs at t � tmerge þ tdisk.

TABLE II. Electromagnetic emission at beginning of late inspiral and merger epoch and shortly before merger.

Case Time _M0=ð�maxM
2Þ a Lff=L46

b Lsyn=L46 h�ff [ð1þ zÞ�1 MeV] c h�syn [ð1þ zÞ�1n1=212 ��1=2
1 eV] d

B1 tmerge � 1250M 0.02 0.65 1:2��1
1 0.3 2.5

B2 0.003 0.16 0:05��1
1 0.2 0.6

B3 0.0005 0.003 2� 10�5��1
1 0.08 0.01

B4 0.01 0.15 0:5��1
1 0.2 1.6

B1 tmerge � 50M 0.0003 0.60 0:3��1
1 0.3 1.7

B2 0.0005 0.14 0:008��1
1 0.2 1.5

B3 0.0001 0.002 2:0� 10�6��1
1 0.08 1.7

B4 0.0005 0.13 0:0002��1
1 0.2 1.4

a�maxM
2 ¼ 0:2n12M

2
8M� yr�1, n12 � n=1012 cm�3, M8 � M=108M�.

bL46 ¼ 1046n212M
3
8 erg s�1.

ch�ff ¼ kTdisk.
d�1 � �=10, � � 8�P=B2.
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a result, we find that the spiral density waves visible when
a=M ¼ 10 have largely disappeared by the time of merger
and remain absent after the merger. This is evident in the
bottom left and right frames of Fig. 3, which show snap-
shots of the density in the equatorial plane �50M before
merger, and �1tdisk after merger. This effect is also illus-
trated by the evolution of _M0, Lbrem, and Lsyn in Fig. 11.

Here, we have computed the luminosity assuming a fiducial
value of ndisk ¼ 1012 cm�3, where ndisk is the baryon num-
ber density at Rdisk. This value is consistent with density
estimates for a typical AGN derived from the Shakura-
Sunyaev disk model [91–93], albeit in a radiation-
dominated, geometrically thin regime. However, because
there are large variations in the gas densities in galactic
cores, we provide density scalings for our results. Because
the position of the m ¼ 2 outermost Lindblad resonance is

approximately given by R2 � ð3=2Þ2=3a, we see that as the

binary separation is reduced, the location of the resonance
retreats farther inside Rin, enabling less matter to be
stripped from the inner edge of the disk, and reducing
_M0. The reduction in accretion similarly suppresses the
electromagnetic luminosity generated near the BHs. This
effect is exacerbated by the reduction in shock heating due
to binary torques, as this lowers the temperature of the gas
and reduces emissivities. Each of these effects is reflected
in Fig. 11. We also show the hþ polarization amplitude of
the accompanying gravitational wave for comparison.
Evidently, the decrease in electromagnetic luminosity be-
ginning at the onset of decoupling is a precursor to the late
inpiral and merger gravitational radiation. We find that the
choice of EOS can play a significant role in setting the
magnitude of the accretion rate and the luminosity. Larger
values of � lead to both larger _M0 as well as higher

FIG. 7 (color online). Time-averaged surface density fluctua-
tion ð�� h�iÞ=h�i in the rotating frame in which the binary is
at rest. The binary point masses are located at R=a ¼ 0:5 and
� ¼ ð0; �Þ. Red regions are density maxima and blue regions
are density minima. Data is from run A2 with � ¼ 4=3.

FIG. 5. Time evolution of �Eint=Eint;ad for run A2.

FIG. 8 (color online). Same as Fig. 7 but for a retrograde disk.

FIG. 6 (color online). Surface density profiles of the � ¼ 5=3
disk as a function of radius. The dashed black curve is the initial
disk density prole; the solid red one is the surface density prole
when the disk has reached a quasistationary configuration after
t * 5tdisk, averaged over �2torb. The solid black curve is the
density profile following the merger, averaged over�2torb. �0 is
the initial maximum surface density.
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luminosities. We tabulate the values of luminosities, accre-
tion rates, and characteristic frequencies of emission at the
onset of the late inspiral and merger epochs’’ and just prior
to merger in Table II. In addition to the increase in the
amount of gas near the BHs, larger values of � also allow
the gas to be shock heated more effectively. Because the
bremsstrahlung and synchrotron emissivities are sensitive
to temperature, this also leads to an increase in luminosity.
Comparing Eqs. (54) and (55) below, we see that the
temperature dependence is much stronger for synchrotron

emission. This can explain the particularly large differences
in synchrotron luminosity for the different cases reported
in Table II. This effect also leads the synchrotron luminos-
ity to be dominated by emission from the heated region near
the binary, whereas the bremsstrahlung emission is pre-
dominantly from the bulk of the disk. This dependence
accounts for the high variability of the synchrotron
luminosity in comparison to that of the bremsstrahlung
emission.
Because our simulations assume a perfect fluid with no

dynamical magnetic fields (turbulent fields are assumed
only to estimate synchrotron emission), there is no viscos-
ity present to counteract the effect of the binary torques in
driving matter outward. As a result, we find that even after
relaxing to a quasistationary disk state in our early inspiral
epoch calculations, in which the accretion rate and lumi-
nosity oscillate around fixed values, there remains an over-
all slow outward drift in the bulk of the disk. This is evident
in Fig. 6, in which the solid red curve shows the surface
density profile at the beginning of the binary inspiral, while
the solid black curve shows the surface density profile at
t� tdisk after the merger. We see clear evidence that the
bulk of the disk moves outward, although we suspect that
this effect may be altered by the inclusion of viscosity.
In Paper I, we demonstrated that shocks near the BH

horizons increased in strength throughout the merger as the

FIG. 11. Time evolution of total BH accretion rate across the
BH horizons _M0, luminosity L̂ and waveform Dhþ for a circum-
binary prograde disk with � ¼ 5=3. The initial binary separation
is a ¼ 10M and the BHs evolve to merger. _M0=ð�maxM

2Þ
is the dimensionless accretion rate. Here, �maxM

2 ¼
0:2n12M

2
8M� yr�1. L̂ � L=½1046M3

8n
2
12 erg s�1� is the total lu-

minosity due to bremsstrahlung (dashed line) and synchrotron
(solid line) emission. For synchrotron emission, we assume
� ¼ 10. hþ is the þ polarization of the gravitational wave
signal as measured by an observer looking down the polar axis
at a distance D from the binary. BHBH merger occurs at t ¼ 0.

FIG. 9 (color online). Time-averaged torque density dT=dR
exerted by the binary on the disk after t * 5tdisk. Time averaging
was carried out over �2torb after the disk has reached a quasi-
stationary state. Data from run A2 with � ¼ 4=3. The torque is
plotted in units of 10�3Ma�0.

FIG. 10 (color online). Same as Fig. 9, but for retrograde disk
(run A4).
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FIG. 12 (color online). Contours of temperature kT
(¼ mBP=�0) at select times for prograde disk with � ¼ 5=3.
Contours correspond to kT ¼ 940� 10�5þ0:66j MeV (j ¼
1; 2; . . . :; 6). Frames correspond to the beginning of the late
inspiral and merger epochs phase at t � tmerge � 1250M (top),

t� tmerge � 50M (middle), and t� tmerge þ tdisk (bottom).

Regions with density less than �0=�0;max < 10�4:5 are left white.

Lighter shading denotes higher kT.

FIG. 13 (color online). Contours of entropy parameter K
(¼ P=��

0 ) at select times for prograde disk with � ¼ 5=3.
Contours correspond to K=K0 ¼ 102þ0:66j (j ¼ 1; 2; . . . :; 6).
Frames correspond to the beginning of the late inspiral and
merger epochs phase at t � tmerge � 1250M (top), t� tmerge �
50M (middle), and t� tmerge þ tdisk (bottom). Regions with

density less than �0=�0;max < 10�4:5 are left white. Darker

shading denotes higher K.
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BHs move more supersonically through the surrounding
gas. This shock strengthening leads to a temperature in-
crease in the inner region, which in turn gives rise to an
increasing luminosity peaking at the moment of merger.
Such a temperature increase is largely absent in the
disklike accretion case treated here, as can be seen by
comparing temperature contours at the beginning of the
late inspiral and merger epochs simulation and at
t� tmerge � 50M, as displayed in Fig. 12. As such, we do

not expect to see significant increase in luminosity during
the post-decoupling inspiral phase, even at high-frequency
components of the spectrum.We note that this contrasts the
conclusions of the Newtonian calculation in [15], where a
brightening of the precursor light curve before merger is
found. However, these results do not necessarily contradict
one another, as the authors of [15] consider geometrically
thin, optically thick disks around non-equal-mass BHBH
binaries. This is a very different scenario from the geomet-
rically thick, optically thin disks surrounding equal-mass
binaries that we consider in this paper.

To highlight the role that shock heating plays in our
simulations, we also plot contours of K=K0. Here K �
P=��

0 and K0 is the initial value of K everywhere. The

quantity K ¼ KðsÞ, where s is the specific gas entropy,
remains constant in the absence of shocks; shock heating
yields K=K0 > 1 (see Appendix B of [83]). As expected,
we see that K=K0 increases steeply near the BHs, where
the binary torque-induced spiral arms are strongest (see
Fig. 13). Following the merger, binary torques are no
longer present and we find that K=K0 is dramatically
reduced in the cavity region. While we do find that a small
region near the remnant continues to have K=K0 long after
the merger (see Fig. 13), we note that the gas in this region
is of very low density and carries a relatively insignificant
amount of thermal energy.

We also note that the shocks are confined to the inner
region and do not propagate into the bulk of the disk. While
it has been proposed that changes in the potential due to
mass loss and/or BH kicks following merger can give rise
to shocks throughout the disk [11,94], we do not observe
such behavior in our simulations. However, this is ex-
pected, as it has been noted that a condition for shocks
to form due to mass loss is that � > H=R, where � �
ðMi �MfÞ=Mi is the fractional mass loss due to gravita-

tional wave emission [11]. Comparing the fractional mass
loss for an equal-mass merger, for which � � 0:05, to the
estimates of H=R measured at the moment of binary
merger (see Table I), we find that the above condition is
never satisfied. The criteria above for shocks to form is
derived from the condition that the radial velocity must

exceed the sound speed cs � ð�P=�0hÞ1=2 near the inner
edge of the disk. We have also checked this directly and
have found that the condition is never met in our simula-
tions; our disks are too hot, hence too geometrically thick,
to trigger this effect.

C. Scaling and detectability

In quoting values for the accretion rate _M0, we normal-
ize by the quantity �maxM

2 ¼ 0:2n12M
2
8M� yr�1, which

allows for easy scaling to arbitrary disk density and binary
mass. It is also possible to derive simple scaling relations
for the luminosities. The dominant region of emission
differs for bremsstrahlung and synchrotron radiation.
Because of the stronger dependence of synchrotron emis-
sivity on temperature (see Appendix B of [16]), we find
that the synchrotron emission originates chiefly from the
hot gas near the BHs, while the majority of bremsstrahlung
emission originates from the cooler, denser gas in the
bulk of the disk. In each simulation, we find that the
temperature is maximum near the BHs, typically reaching
kTh � 100 MeV at the horizon. In the high-temperature
limit (kT > mec

2) the synchrotron emissivity given in
Appendix B of [16] scales with temperature and density
according to

qsyn / n2hT
3
h�

�1: (54)

By contrast, the temperature in the bulk of the disk where
the majority of the bremsstrahlung emission originates is
nonrelativistic (kTdisk <mec

2) so that the bremsstrahlung
emissivity scales according to

qff / n2diskT
1=2
disk: (55)

Here nh and Th refer to the density and temperature at
the horizon, and ndisk and Tdisk refer to the density and
temperature at Rdisk, and � � 8�P=B2 sets the strength of
the assumed turbulent magnetic field responsible for syn-
chrotron emission. As in Paper I, we choose� ¼ 10 so that
the magnetic field is assumed to reach a fraction of its
equipartition value consistent with MHD simulations [81].
Integrating Eqs. (54) and (55), we find

Lsyn �
Z

dVqsyn / n2hT
3
h�

�1M3; (56)

Lff �
Z

dVqff / n2diskT
1=2
diskR

3
diskðH=RÞ; (57)

where the factor of M3 comes from the volume element.
Because we ignore self-gravity in the disk, our scaling

results apply for arbitrary density. Accordingly, as the den-
sity at the horizon is varied, its value is simply proportional
to the maximum density in the disk, nh / ndisk / �max.
Consider the onset of the binary decoupling (late inspi-

ral) phase. The spiral arms through which the gas enters the
disk cavity are shock heated. The gas in any shocked region
will be heated to kT �mBv

2. Since v & c near the hori-
zon, shock heating guarantees that kTh & mBc

2 �
103 MeV, independent of the temperature in the bulk of
the disk (in fact KTh is closer to 100 MeV). Scaling for
synchrotron luminosity then simplifies to

Lsyn / �2
max�

�1M3: (58)
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While the bremsstrahlung luminosity does depend on
Tdisk, we note that for the fixed values of q, lðRinÞ, and
Rin=M specified in Eqs. (A17)–(A19), the enthalpy profile
h, and therefore kTdisk ¼ mBðhdisk � 1Þð�� 1Þ=�, is
uniquely specified. We therefore regard Tdisk as a fixed
parameter, so that

Lff / �2
maxM

3: (59)

Using these scaling relations, along with the results of
our simulations, we estimate the average luminosity when
the binary separation is a ¼ 10M, the adopted onset of
the late inspiral and merger epochs. Results are given in
Table II.

In calculating the luminosity, we have assumed that the
gas is optically thin. We can verify that this is a good
assumption by estimating the optical depth. Taking the
dominant opacity source to be electron scattering, we find

�es � nh
TR� 0:2n12M8; (60)

where R is the characteristic size of the emission region
that we have set to R � 2M. Thus, we see that our assump-
tion of an optically thin gas is valid for our canonical
parameters, although it begins to break down when we
consider denser disks and/or more massive binaries.

For bremsstrahlung emission originating at Rdisk,
the characteristic observed frequency of the emission is
given by

h�ff � kTdisk=ð1þ zÞ (61)

for a source at redshift z. We measure the temperature at
Rdisk for each of our cases, and report the estimated
characteristic frequencies in Table II. For canonical pa-
rameters, bremsstrahlung emission will be predominantly
in � rays. Based on our measured luminosities, we esti-
mate that the observed flux from this emission will be in
the range of �10�15–10�14n212M

3
8 erg cm�2 s�1 for a

source at z ¼ 1. Unfortunately, it is unlikely that this
emission is strong enough to be detectable. We note that
the bremsstrahlung emission we measure is actually domi-
nated by emission from the bulk of the disk rather than the
heated gas near the BHs. This makes the emission even
less likely to be detectable, as it exhibits only a small
amount of variability.

In contrast, the synchrotron emission is predominantly
produced near the BHs. We can estimate the characteristic
frequency of the synchrotron emission by noting that
Eq. (B10) of [16] is maximized when xM � 2�=3�0�

2 �
1:09. Here, �0 � eB=2�mec is the cyclotron frequency and
� � kT=mec

2. The corresponding observed frequency is

h�syn ¼ 1:09

1þ z

3ehB

4�mec

�
kT

mec
2

�
2
: (62)

We can use this expression, along with measured values of
density and temperature in the vicinity of the horizon, to
estimate characteristic values of h�syn. Values for each case

at the moment of decoupling and shortly before merger are
given in Table II, and typically fall in the infrared range.We
estimate that in each case, the synchrotron emission should
be observable by the proposed Wide Field Infrared Survey
Telescope (WFIRST) [95], and possibly by the Large
Synoptic Survey Telescope instrument (LSST) [96]. Our
simulations follow the late stage of the inspiral in which
the binary separation decreases from d ¼ 10M to merger.
This corresponds to a time scale of �t� 100M8 h during
which the gradual decline in emission should be observed.

VI. DISCUSSION

In this paper we have performed a set of fully general-
relativistic simulations of BHBH binary mergers in a
circumbinary disk. Our focus has been identifying an ob-
servable electromagnetic signal that may accompany the
gravitational waves from a black hole merger. Our simu-
lations are exploratory only. We have restricted our atten-
tion to disklike accretion onto equal-mass, nonspinning BH
binaries, although our methods may be extended to other
binary configurations. We exploit the approximate helical
Killing symmetry to determine the binary spacetime for
widely separated BHBHs. The disk we evolve in this early
inspiral spacetime relaxes to near quasiequilibrium. Our
late inspiral and merger simulations begin with such a
quasistationary disk. We then evolve the field as well as
the matter. This epoch corresponds to the post disk-binary
decoupling phase, terminating after merger, but before
viscosity fills in the hollow.
For each simulation, we have calculated the time-

varying rest-mass accretion rate, as well as the electromag-
netic luminosity due to bremsstrahlung and synchrotron
emission. We also derive scaling relations for the luminos-
ity, enabling our results to be applied to a range of gas
parameters and BH masses.
In each case, we find evidence for a time-varying elec-

tromagnetic signature accompanying the BHBH binary
merger. The synchrotron emission is the most easily de-
tectable component, and we observe a steady decline in
synchrotron luminosity throughout the post-decoupling
binary inspiral. This change serves as a characteristic
precursor of a binary merger and should be detectable
by the proposed WFIRST and possibly by the LSST
instrument.
In Paper I, we restricted our attention to Bondi-like

accetion onto merging binaries. It is instructive to compare
the electromagnetic signatures associated with binary
Bondi accretion with the signatures from disklike accretion
discussed in this paper. In the binary Bondi case, there is a
steady supply of gas accreting onto the binary at all stages
of the merger. In this case, the evolution of the luminosity
is determined by the strength of shock heating near the
BHs. As the separation decreases, the BHs orbit more
rapidly, and the shock-heated temperature of the gas in-
creases. This increase leads to a luminosity that increases
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throughout the inspiral, then drops precipitously following
the merger as the shocks dissipate. This scenario is quite
different from the case of disklike accretion, in which
binary torques create a hollow region around the binary
as well as a small amount of matter that leaks into the
hollow in the form of spiral arms. Because the torques
decrease throughout the inspiral as the BH separation
decreases, we find that the accretion rate and luminosity
decrease steadily over the course of our inspiral
simulations.

We suspect, however, that this picture will change with
the addition of magnetic fields, as the magneto-rotational
instability will lead to turbulence. We intend to investigate
this behavior in future calculations, although we expect
that our results for the late inspiral and merger epochs
treated here will not be significantly altered. The reason
is that the time scale for turbulent viscosity to fill the
hollow with gas for accretion exceeds the inspiral time
scale following decoupling.

It is not possible to make a quantitative comparison of
our results with those of Bode et al [49] due to significant
differences in our methods. We employ disk solutions with
power-law rotation dependence [72] and BHBH CTS met-
ric data that we allow to relax over a time scale of
�5tdisk � 6000M before we begin our inspiral calcula-
tions. By contrast, Bode et al employ the constant mid-
plane density initial data of [11] and relax this profile for a
period of�250M. Our calculations also differ significantly
in that we consider bremmstrahlung radiation from the
entire disk, whereas they consider only the cavity region
near the BHs. We calculate the synchrotron emission as
well. Nevertheless, we are able to see a qualitative agree-
ment in the evolution of the rest-mass accretion rate _M0, as
a decline in _M0 is observed throughout the inspiral phase in
both calculations.
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APPENDIX A: DISK INITIAL DATA

Our formulation for an equilibrium stationary disk
around a single Kerr BH follows closely that of [72,73].

From the conservation of the stress-energy equation,
we find

0 ¼ T�
�;� ¼ 1

�
ffiffiffiffi
�

p ð� ffiffiffiffi
�

p
T�

�Þ;� � ��
�T


� (A1)

¼ 1

�
ffiffiffiffi
�

p ð� ffiffiffiffi
�

p
�0hu�u

�Þ;� (A2)

þ P;� þ 1

2
ðg�

;��0huu�Þ: (A3)

Since we are seeking a solution for a stationary torus in
Kerr spacetime for a single BH, we can now impose time
independence, axisymmetry, and no poloidal or radial
motion:

@tð. . .Þ ¼ @�ð. . .Þ ¼ 0; (A4)

ur ¼ u� ¼ 0: (A5)

In Boyer-Lindquist and Kerr-Schild coordinates, these
constraints imply that ur ¼ u� ¼ 0.
We may now simplify Eq. (A3) according to

0 ¼ h;j
h

� 1

2
u2t ðu�2

t Þ;j � �

1� l�
l;j: (A6)

Here we have also assumed constant entropy, and we have
introduced the specific angular momentum l � �u�=ut.

We have also used the fact that uu ¼ �1 to show that

u�2
t ¼ �ðgtt � 2lgt� þ l2g��Þ; (A7)

and have defined

� � u�=ut ¼ ðgt� � lg��Þ=ðgtt � lgt�Þ: (A8)

We now follow [72,73] and assume the disk has a power-
law rotation dependence, whereby � takes the form

� ¼ 	��q; (A9)

where

�2 � l

�
¼ l

gtt � lgt�

gt� � lg��
: (A10)

Combining Eq. (A9) and (A10), we find that

� ¼ kl�; (A11)

where � � q=ðq� 2Þ and k ¼ 	�2=ðq�2Þ.
It is now straightforward to show that Eq. (A6) is

satisfied by

hðr; �Þ ¼ ut;infðlinÞ
utðr; �Þfðlðr; �ÞÞ ; (A12)

where fðlÞ ¼ j1� kl�þ1j1=ð�þ1Þ. A disk solution is
uniquely determined for fixed Rin, lðRinÞ, and q.
While the solution described above applies to equili-

brium disks in general Kerr spacetimes, we assume a
Schwarzschild geometry for the purposes of this study.
In the Newtonian limit, we know that l ¼ �r2, so

�2 ¼ l=� ¼ r2, whereby

� / ��q / r�q: (A13)
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Thus we can see that asymptotically,

q ¼ 0 ) � ¼ const; (A14)

q ¼ 2 ) l ¼ const; (A15)

q ¼ 1:5 ) Keplerian: (A16)

In this paper, the following parameters are chosen to
determine the initial disk configuration (set close to
Keplerian),

q ¼ 1:6; (A17)

lðRinÞ ¼ 4:53; (A18)

Rin ¼ 15M: (A19)

APPENDIX B: DERIVATION OF THE
TORQUE DENSITY dT=dR

If we consider a four vector ~j that is not necessarily
conserved, then we must generalize Eq. (27) to

dq

dt
¼ �F H þF L þ

Z ffiffiffiffiffiffiffi�g
p rj

d3x: (B1)

If we choose to set H and L to be two concentric cylinders
of infinite extent, centered around the z axis and of radius R
and Rþ �R, respectively, we can rewrite Eq. (B1) as

d

dt
ðqðRþ �RÞ � qðRÞÞ

¼ �F ðRÞ þF ðRþ �RÞ þ
Z ffiffiffiffiffiffiffi�g

p rj
RdRdzd�

(B2)

taking the limit �R ! 0, we therefore find that

d

dR

�
dq

dt

�
¼ dF

dR
þ

Z ffiffiffiffiffiffiffi�g
p rj

Rdzd�: (B3)

We can consider the specific case where j ¼ T
��

�, and
�� � ð@�Þ ¼ ð0;�y; x; 0Þ, so that Eq. (B3) becomes

d

dR

�
dJ

dt

�
� dTtot

dR
¼ dF ðJÞ

dR
þ

Z ffiffiffiffiffiffiffi�g
p

T�r��Rdzd�:

(B4)

We interpret the first term on the right-hand side of
Eq. (B4) as arising from the net outflow of angular mo-
mentum carried by matter across the surfaces at R and
Rþ �R, while the second term is the torque due to the

gravitational field. Because we are most interested in the
torque from the gravitational field of the binary, we define

dT

dR
� dTtot

dR
� dF ðJÞ

dR
¼

Z ffiffiffiffiffiffiffi�g
p

T�r��Rdzd�: (B5)

Note that in an axisymmetric spacetime in which �� is a
Killing vector field, T�r�� ¼ T�rð��Þ ¼ 0, hence

dT=dR ¼ 0 as expected.
In order to compute Eq. (B5) numerically, it is conve-

nient to transform the expression into Cartesian coordi-
nates. Note that

T�r��¼T
�r�

�

¼T
�ð��

;þ��

�


Þ
¼T

��
�
;þ 1

2T
�g�;
�




¼�T
xy;þT

yx;þ 1
2T

�ð�g�;xyþg�;yxÞ
¼�Ty

xþTx
y� 1

2yT
�g�;xþ 1

2xT
�g�;y:

(B6)

Inserting Eq. (B6) into Eq. (B5), we find

dT

dR
¼

Z
Rd�dz

ffiffiffiffiffiffiffi�g
p ð�Ty

x þ Tx
yÞ

þ 1

2

Z
Rd�dz

ffiffiffiffiffiffiffi�g
p ð�yT�g�;x þ xT�g�;yÞ:

(B7)

Equation (B7) is integrated numerically at a number of
different radii, so that we can compute profiles of dT=dR.

Newtonian limit

We can check that Eq. (B7) reduces to the correct
expression in the Newtonian limit. If we let T00 � �0,
jT0i=T00j � 1, and jTij=T00j � 1, we find

dT

dR
� 1

2

Z
Rd�dzT00ð�yg00;x þ xg00;yÞ

¼ 1

2

Z
Rd�dzT00g00;�

¼ �
Z

Rd�dz�0�;�

¼ �2�Rh��;�i; (B8)

where angled brackets indicate angle averaging, and � is
the Newtonian gravitational potential. Equation (B8)
matches the expression given in Eq. (14) of [36].
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Shoemaker, Astrophys. J. 715, 1117 (2010).

[48] T. Bogdanovic, T. Bode, R. Haas, P. Laguna, and D.
Shoemaker, Classical Quantum Gravity 28, 094020
(2011).

[49] T. Bode, T. Bogdanovic, R. Haas, J. Healy, P. Laguna, and
D. Shoemaker, arXiv:1101.4684.

[50] M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428
(1995).

[51] T.W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59,
024007 (1998).

[52] H. Friedrich, Commun. Math. Phys. 100, 525 (1985).
[53] D. Garfinkle, Phys. Rev. D 65, 044029 (2002).
[54] F. Pretorius, Classical Quantum Gravity 22, 425 (2005).
[55] F. Pretorius, Phys. Rev. Lett. 95, 121101 (2005).
[56] M. Campanelli, C. O. Lousto, P. Marronetti, and Y.

Zlochower, Phys. Rev. Lett. 96, 111101 (2006).
[57] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van

Meter, Phys. Rev. Lett. 96, 111102 (2006).
[58] L. Blanchet, G. Faye, B. R. Iyer, and S. Sinha, Classical

Quantum Gravity 25, 165003 (2008).
[59] B. Aylott et al., Classical Quantum Gravity 26, 165008

(2009).
[60] J. D. Larwood and J. C. B. Papaloizou, Mon. Not. R.

Astron. Soc. 285, 288 (1997).
[61] P. B. Ivanov, J. C. B. Papaloizou, and A.G. Polnarev, Mon.

Not. R. Astron. Soc. 307, 79 (1999).

BINARY BLACK HOLE MERGERS IN GASEOUS DISKS: . . . PHYSICAL REVIEW D 84, 024024 (2011)

024024-19

http://dx.doi.org/10.1086/312862
http://dx.doi.org/10.1086/312862
http://dx.doi.org/10.1007/s11214-005-3947-6
http://dx.doi.org/10.1038/287307a0
http://dx.doi.org/10.1038/287307a0
http://dx.doi.org/10.1086/429618
http://dx.doi.org/10.1086/429618
http://dx.doi.org/10.1111/j.1365-2966.2009.15585.x
http://dx.doi.org/10.1086/590363
http://dx.doi.org/10.1086/590363
http://dx.doi.org/10.1111/j.1365-2966.2010.16324.x
http://dx.doi.org/10.1111/j.1365-2966.2010.16324.x
http://dx.doi.org/10.1088/0004-637X/700/1/859
http://dx.doi.org/10.1088/0004-637X/700/1/859
http://dx.doi.org/10.1103/PhysRevD.81.024019
http://dx.doi.org/10.1088/0004-637X/714/1/404
http://dx.doi.org/10.1086/339770
http://dx.doi.org/10.1086/339770
http://dx.doi.org/10.1111/j.1365-2966.2010.17056.x
http://dx.doi.org/10.1111/j.1365-2966.2010.17056.x
http://dx.doi.org/10.1103/PhysRevD.81.084008
http://dx.doi.org/10.1103/PhysRevD.81.084008
http://dx.doi.org/10.1086/380919
http://dx.doi.org/10.1086/504825
http://dx.doi.org/10.1086/504825
http://dx.doi.org/10.1088/0004-637X/697/1/37
http://dx.doi.org/10.1086/176962
http://dx.doi.org/10.1086/176962
http://dx.doi.org/10.1086/504884
http://dx.doi.org/10.1038/nature06896
http://dx.doi.org/10.1088/0004-637X/697/1/288
http://dx.doi.org/10.1111/j.1745-3933.2009.00714.x
http://dx.doi.org/10.1086/588656
http://dx.doi.org/10.1086/588656
http://dx.doi.org/10.1038/nature07779
http://dx.doi.org/10.1038/nature07779
http://arXiv.org/abs/1104.3391
http://dx.doi.org/10.1086/590230
http://dx.doi.org/10.1086/590230
http://dx.doi.org/10.1086/522931
http://dx.doi.org/10.1086/522931
http://dx.doi.org/10.1086/431341
http://dx.doi.org/10.1086/498236
http://dx.doi.org/10.1086/498236
http://dx.doi.org/10.1088/0004-6256/140/2/642
http://dx.doi.org/10.1088/0004-6256/140/2/642
http://dx.doi.org/10.1086/173679
http://dx.doi.org/10.1086/173679
http://dx.doi.org/10.1051/0004-6361:20020407
http://dx.doi.org/10.1051/0004-6361:20020407
http://dx.doi.org/10.1086/431747
http://dx.doi.org/10.1086/523869
http://dx.doi.org/10.1086/523869
http://dx.doi.org/10.1103/PhysRevD.80.024012
http://dx.doi.org/10.1103/PhysRevLett.98.231102
http://dx.doi.org/10.1086/518769
http://dx.doi.org/10.1103/PhysRevD.81.044004
http://dx.doi.org/10.1086/589427
http://dx.doi.org/10.1086/589427
http://dx.doi.org/10.1086/587034
http://dx.doi.org/10.1086/587034
http://dx.doi.org/10.1051/0004-6361/201014969
http://dx.doi.org/10.1088/2041-8205/711/2/L89
http://dx.doi.org/10.1103/PhysRevD.81.064017
http://dx.doi.org/10.1103/PhysRevD.81.064017
http://dx.doi.org/10.1126/science.1191766
http://dx.doi.org/10.1126/science.1191766
http://dx.doi.org/10.1088/0004-637X/715/2/1117
http://dx.doi.org/10.1088/0264-9381/28/9/094020
http://dx.doi.org/10.1088/0264-9381/28/9/094020
http://arXiv.org/abs/1101.4684
http://dx.doi.org/10.1103/PhysRevD.52.5428
http://dx.doi.org/10.1103/PhysRevD.52.5428
http://dx.doi.org/10.1103/PhysRevD.59.024007
http://dx.doi.org/10.1103/PhysRevD.59.024007
http://dx.doi.org/10.1007/BF01217728
http://dx.doi.org/10.1103/PhysRevD.65.044029
http://dx.doi.org/10.1088/0264-9381/22/2/014
http://dx.doi.org/10.1103/PhysRevLett.95.121101
http://dx.doi.org/10.1103/PhysRevLett.96.111101
http://dx.doi.org/10.1103/PhysRevLett.96.111102
http://dx.doi.org/10.1088/0264-9381/25/16/165003
http://dx.doi.org/10.1088/0264-9381/25/16/165003
http://dx.doi.org/10.1088/0264-9381/26/16/165008
http://dx.doi.org/10.1088/0264-9381/26/16/165008
http://dx.doi.org/10.1046/j.1365-8711.1999.02623.x
http://dx.doi.org/10.1046/j.1365-8711.1999.02623.x


[62] Y. T. Liu and S. L. Shapiro, Phys. Rev. D 82, 123011
(2010).

[63] H. P. Pfeiffer and J.W. York, Phys. Rev. D 67, 044022
(2003).

[64] G. B. Cook and H. P. Pfeiffer, Phys. Rev. D 70, 104016
(2004).

[65] T.W. Baumgarte and S. L. Shapiro, Numerical Relativity:
Solving Einstein’s Equations on the Computer (Cambridge
University Press, Cambridge, England, 2010).

[66] F. K. Liu, X. Wu, and S. L. Cao, Mon. Not. R. Astron. Soc.
340, 411 (2003).

[67] N. J. Turner, Astrophys. J. Lett. 605, L45 (2004).
[68] D. Lynden-Bell and J. E. Pringle, Mon. Not. R. Astron.

Soc. 168, 603 (1974).
[69] Z. B. Etienne, J. A. Faber, Y. T. Liu, S. L. Shapiro,

and T.W. Baumgarte, Phys. Rev. D 76, 101503 (2007).
[70] M.D. Duez, Y. T. Liu, S. L. Shapiro, and B. C. Stephens,

Phys. Rev. D 72, 024028 (2005).
[71] J. R. van Meter, J. G. Baker, M. Koppitz, and D.-I. Choi,

Phys. Rev. D 73, 124011 (2006).
[72] S. K. Chakrabarti, Astrophys. J. 288, 1 (1985).
[73] J. De Villiers, J. F. Hawley, and J. H. Krolik, Astrophys. J.

599, 1238 (2003).
[74] Cactus code official Web site http://www.cactuscode.org/.
[75] E. Schnetter, S. H. Hawley, and I. Hawke, Classical

Quantum Gravity 21, 1465 (2004).
[76] J. Thornburg, Classical Quantum Gravity 21, 743

(2004).
[77] P. Colella and P. R. Woodward, J. Comput. Phys. 54, 174

(1984).
[78] A. Harten, P. D. Lax, and B van Leer, SIAM Rev. 25, 35

(1983).
[79] Z. B. Etienne, J. A. Faber, Y. T. Liu, S. L. Shapiro, K.

Taniguchi, and T.W. Baumgarte, Phys. Rev. D 77,
084002 (2008).

[80] M. Shibata, M.D. Duez, Y. T. Liu, S. L. Shapiro, and B. C.
Stephens, Phys. Rev. Lett. 96, 031102 (2006).

[81] J. C. McKinney and C. F. Gammie, Astrophys. J. 611, 977
(2004).

[82] Y. T. Liu, S. L. Shapiro, and B. C. Stephens, Phys. Rev. D
76, 084017 (2007).

[83] Z. B. Etienne, Y. T. Liu, S. L. Shapiro, and T.W.
Baumgarte, Phys. Rev. D 79, 044024 (2009).

[84] J. A. Faber, T.W. Baumgarte, Z. B. Etienne, S. L.
Shapiro, and K. Taniguchi, Phys. Rev. D 76, 104021
(2007).

[85] B. D. Farris, T. K. Li, Y. T. Liu, and S. L. Shapiro, Phys.
Rev. D 78, 024023 (2008).

[86] M. Campanelli, C. O. Lousto, and Y. Zlochower, Phys.
Rev. D 73, 061501 (2006).

[87] K. Hayasaki, S. Mineshige, and H. Sudou, Publ. Astron.
Soc. Jpn. 59, 427 (2007).

[88] C. Roedig, M. Dotti, A. Sesana, J. Cuadra, and M. Colpi,
arXiv:1104.3868.

[89] D. N. C. Lin, J. C. B. Papaloizou, and G. J. Savonije,
Astrophys. J. 364, 326 (1990).

[90] D. N. C. Lin, J. C. B. Papaloizou, and G. J. Savonije,
Astrophys. J. 365, 748 (1990).

[91] N. I. Shakura and R.A. Sunyaev, Astron. Astrophys. 24,
337 (1973).

[92] I. D. Novikov and K. S. Thorne, in Black Holes (Les Astres
Occlus) (Gordon and Breach, New York, 1973),
pp. 343–450.

[93] S. L. Shapiro and S. A. Teukolsky, Black Holes, White
Dwarfs, and Neutron Stars: The Physics of Compact
Objects (Wiley, New York, 1983).

[94] N. Bode and S. Phinney, APS Meeting Abstracts, 10, 10
(2007).

[95] WFIRST official Web site http://wfirst.gsfc.nasa.gov/.
[96] LSST official Web site http://www.lsst.org.

BRIAN D. FARRIS, YUK TUNG LIU, AND STUART L. SHAPIRO PHYSICAL REVIEW D 84, 024024 (2011)

024024-20

http://dx.doi.org/10.1103/PhysRevD.82.123011
http://dx.doi.org/10.1103/PhysRevD.82.123011
http://dx.doi.org/10.1103/PhysRevD.67.044022
http://dx.doi.org/10.1103/PhysRevD.67.044022
http://dx.doi.org/10.1103/PhysRevD.70.104016
http://dx.doi.org/10.1103/PhysRevD.70.104016
http://dx.doi.org/10.1046/j.1365-8711.2003.06235.x
http://dx.doi.org/10.1046/j.1365-8711.2003.06235.x
http://dx.doi.org/10.1086/386545
http://dx.doi.org/10.1103/PhysRevD.76.101503
http://dx.doi.org/10.1103/PhysRevD.72.024028
http://dx.doi.org/10.1103/PhysRevD.73.124011
http://dx.doi.org/10.1086/162755
http://dx.doi.org/10.1086/379509
http://dx.doi.org/10.1086/379509
http://www.cactuscode.org/
http://dx.doi.org/10.1088/0264-9381/21/6/014
http://dx.doi.org/10.1088/0264-9381/21/6/014
http://dx.doi.org/10.1088/0264-9381/21/2/026
http://dx.doi.org/10.1088/0264-9381/21/2/026
http://dx.doi.org/10.1016/0021-9991(84)90143-8
http://dx.doi.org/10.1016/0021-9991(84)90143-8
http://dx.doi.org/10.1137/1025002
http://dx.doi.org/10.1137/1025002
http://dx.doi.org/10.1103/PhysRevD.77.084002
http://dx.doi.org/10.1103/PhysRevD.77.084002
http://dx.doi.org/10.1103/PhysRevLett.96.031102
http://dx.doi.org/10.1086/422244
http://dx.doi.org/10.1086/422244
http://dx.doi.org/10.1103/PhysRevD.76.084017
http://dx.doi.org/10.1103/PhysRevD.76.084017
http://dx.doi.org/10.1103/PhysRevD.79.044024
http://dx.doi.org/10.1103/PhysRevD.76.104021
http://dx.doi.org/10.1103/PhysRevD.76.104021
http://dx.doi.org/10.1103/PhysRevD.78.024023
http://dx.doi.org/10.1103/PhysRevD.78.024023
http://dx.doi.org/10.1103/PhysRevD.73.061501
http://dx.doi.org/10.1103/PhysRevD.73.061501
http://arXiv.org/abs/1104.3868
http://dx.doi.org/10.1086/169415
http://dx.doi.org/10.1086/169528
http://wfirst.gsfc.nasa.gov/
http://www.lsst.org

