
fðR;TÞ gravity
Tiberiu Harko*

Department of Physics and Center for Theoretical and Computational Physics,
The University of Hong Kong, Pok Fu Lam Road, Hong Kong, People’s Republic of China

Francisco S.N. Lobo†

Centro de Astronomia e Astrofı́sica da Universidade de Lisboa, Campo Grande, Ed. C8 1749-016 Lisboa, Portugal

Shin’ichi Nojiri‡

Department of Physics, Nagoya University, Nagoya 464-8602, Japan
Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602, Japan

Sergei D. Odintsovx

Institucio Catalana de Recerca i Estudis Avancats (ICREA) and Institut de Ciencies de lEspai (IEEC-CSIC), Campus UAB,
Facultat de Ciencies, Torre C5-Par-2a pl, E-08193 Bellaterra (Barcelona), Spain

(Received 14 April 2011; published 13 July 2011)

We consider fðR; TÞ modified theories of gravity, where the gravitational Lagrangian is given by an

arbitrary function of the Ricci scalar R and of the trace of the stress-energy tensor T. We obtain the

gravitational field equations in the metric formalism, as well as the equations of motion for test particles,

which follow from the covariant divergence of the stress-energy tensor. Generally, the gravitational field

equations depend on the nature of the matter source. The field equations of several particular models,

corresponding to some explicit forms of the function fðR; TÞ, are also presented. An important case, which

is analyzed in detail, is represented by scalar field models. We write down the action and briefly consider

the cosmological implications of the fðR; T�Þ models, where T� is the trace of the stress-energy tensor of

a self-interacting scalar field. The equations of motion of the test particles are also obtained from a

variational principle. The motion of massive test particles is nongeodesic, and takes place in the presence

of an extra-force orthogonal to the four velocity. The Newtonian limit of the equation of motion is further

analyzed. Finally, we provide a constraint on the magnitude of the extra acceleration by analyzing the

perihelion precession of the planet Mercury in the framework of the present model.
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I. INTRODUCTION

The recent observational data [1,2] on the late-time
acceleration of the Universe and the existence of dark
matter have posed a fundamental theoretical challenge to
gravitational theories. One possibility in explaining the
observations is by assuming that at large scales the
Einstein gravity model of general relativity breaks down,
and a more general action describes the gravitational field.
Theoretical models, in which the standard Einstein-Hilbert
action is replaced by an arbitrary function of the Ricci
scalar R [3], have been extensively investigated lately. The
presence of a late-time cosmic acceleration of the Universe
can indeed be explained by fðRÞ gravity [4]. The condi-
tions of the existence of viable cosmological models have
been found in [5], and severe weak field constraints ob-
tained from the classical tests of general relativity for the

Solar System regime seem to rule out most of the models
proposed so far [6,7]. However, viable models, passing
Solar System tests, can be constructed [8–11]. fðRÞmodels
that satisfy local tests and unify inflation with dark energy
were considered in [12]. In the framework of fðRÞ gravity
models, the possibility that the galactic dynamic of mas-
sive test particles can be understood without the need for
dark matter was considered in [13–17]. For reviews of fðRÞ
generalized gravity models see [3,18].
A generalization of fðRÞ modified theories of gravity

was proposed in [19], by including in the theory an explicit
coupling of an arbitrary function of the Ricci scalar R with
the matter Lagrangian density Lm. As a result of the
coupling the motion of the massive particles is nongeode-
sic, and an extra-force orthogonal to the four velocity,
arises. The connections with modified Newtonian dynam-
ics and the Pioneer anomaly were also explored. This
model was extended to the case of the arbitrary couplings
in both geometry and matter in [20]. The astrophysical and
cosmological implications of the nonminimal coupling
matter-geometry coupling were extensively investigated
in [21,22], and the Palatini formulation of the nonminimal
geometry-coupling models was considered in [23]. In this
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context, a maximal extension of the Hilbert-Einstein action
was proposed in [24], by assuming that the gravitational
Lagrangian is given by an arbitrary function of the Ricci
scalar R and of the matter Lagrangian Lm. The gravita-
tional field equations have been obtained in the metric
formalism, as well as the equations of motion for test
particles, which follow from the covariant divergence of
the stress-energy tensor.

A specific application of the latter fðR;LmÞ gravity was
proposed in [25], which may be considered a relativisti-
cally covariant model of interacting dark energy, based on
the principle of least action. The cosmological constant in
the gravitational Lagrangian is a function of the trace of the
stress-energy tensor, and consequently the model was de-
noted ‘‘�ðTÞ gravity’’. It was argued that recent cosmo-
logical data favor a variable cosmological constant, which
is consistent with�ðTÞ gravity, without the need to specify
an exact form of the function �ðTÞ [25]. �ðTÞ gravity is
more general than the Palatini fðRÞ gravity, and reduces to
the latter when we neglect the pressure of the matter.

It is the purpose of the present paper to consider another
extension of standard general relativity, the fðR; TÞ modi-
fied theories of gravity, where the gravitational Lagrangian
is given by an arbitrary function of the Ricci scalarR and of
the trace of the stress-energy tensor T. Note that the
dependence from T may be induced by exotic imperfect
fluids or quantum effects (conformal anomaly). As a first
step in our study we derive the field equations of the model
from a variational, Hilbert-Einstein type, principle. The
covariant divergence of the stress-energy tensor is also
obtained. The fðR; TÞ gravity model depends on a source
term, representing the variation of the matter stress-energy
tensor with respect to the metric. A general expression for
this source term is obtained as a function of the matter
Lagrangian Lm. Therefore each choice of Lm would gen-
erate a specific set of field equations. Some particular
models, corresponding to specific choices of the function
fðR; TÞ are also presented, and their properties are briefly
discussed. In fact, we also demonstrate the possibility of
reconstruction of arbitrary Friedmann-Robertson-Walker
cosmologies by an appropriate choice of a function fðTÞ.
Scalar fields play a fundamental role in cosmology, i.e., as
possible explanations for inflation, late-time acceleration,
or dark matter, respectively. Therefore, we introduce and
briefly discuss the fðR; T�Þ gravitational models, where
T� is the trace of the stress energy of the scalar field. Some
cosmological applications of this model are also presented.

Since in the present model, the covariant divergence of
the stress-energy tensor is nonzero, the motion of massive
test particles is nongeodesic, and an extra acceleration, due
to the coupling between matter and geometry, is always
present. The equations of motion of test particles are
obtained from a variational principle. The same variational
principle can be used to investigate the Newtonian limit of
the model, and the expression of the extra acceleration is

also obtained. We use the precession of the perihelion of
the planet Mercury to obtain a general constraint on the
magnitude of the extra acceleration.
The present paper is organized as follows. The field

equations of fðR; TÞ gravity are derived in Sec. II. Some
particular cases of the model are considered in Sec. III. The
case of the scalar fields is discussed in Sec. IV, and a Brans-
Dicke type formulation of the model is obtained. The
equations of motion of massive test particles are derived
in Sec. V, where the Newtonian limit of the model is also
obtained and analyzed. We discuss and conclude our re-
sults in Sec. VI. In the present paper we use the natural
system of units with G ¼ c ¼ 1, so that the Einstein
gravitational constant is defined as �2 ¼ 8�.

II. GRAVITATIONAL FIELD
EQUATIONS OF fðR;TÞ GRAVITY

We assume that the action for the modified theories of
gravity takes the following form

S ¼ 1

16�

Z
fðR; TÞ ffiffiffiffiffiffiffi�g

p
d4xþ

Z
Lm

ffiffiffiffiffiffiffi�g
p

d4x; (1)

where fðR; TÞ is an arbitrary function of the Ricci scalar, R,
and of the trace T of the stress-energy tensor of the matter,
T��. Lm is the matter Lagrangian density, and we define the

stress-energy tensor of matter as [26]

T�� ¼ � 2ffiffiffiffiffiffiffi�g
p �ð ffiffiffiffiffiffiffi�g

p
LmÞ

�g�� ; (2)

and its trace by T ¼ g��T��, respectively. By assuming

that the Lagrangian density Lm of matter depends only on
the metric tensor components g��, and not on its deriva-

tives, we obtain

T�� ¼ g��Lm � 2
@Lm

@g�� : (3)

By varying the action S of the gravitational field with
respect to the metric tensor components g�� provides the
following relationship

�S¼ 1

16�

Z �
fRðR;TÞ�RþfTðR;TÞ �T

�g���g
��

�1

2
g��fðR;TÞ�g��þ16�

1ffiffiffiffiffiffiffi�g
p �ð ffiffiffiffiffiffiffi�g

p
LmÞ

�g��

� ffiffiffiffiffiffiffi�g
p

d4x;

(4)

where we have denoted fRðR; TÞ ¼ @fðR; TÞ=@R and
fTðR; TÞ ¼ @fðR; TÞ=@T, respectively. For the variation
of the Ricci scalar, we obtain

�R ¼ �ðg��R��Þ
¼ R���g

�� þ g��ðr���
�
�� �r���

�
��Þ; (5)

where r� is the covariant derivative with respect to
the symmetric connection � associated to the metric g.
The variation of the Christoffel symbols yields
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���
�� ¼ 1

2
g��ðr��g�� þr��g�� �r��g��Þ; (6)

and the variation of the Ricci scalar provides the expression

�R ¼ R���g
�� þ g��h�g�� �r�r��g

��: (7)

Therefore, for the variation of the action of the gravita-
tional field we obtain

�S¼ 1

16�

Z �
fRðR;TÞR���g

��þfRðR;TÞg��h�g��

�fRðR;TÞr�r��g
��þfTðR;TÞ

�ðg�	T�	Þ
�g�� �g��

�1

2
g��fðR;TÞ�g��þ16�

1ffiffiffiffiffiffiffi�g
p �ð ffiffiffiffiffiffiffi�g

p
LmÞ

�g��

� ffiffiffiffiffiffiffi�g
p

d4x:

(8)

We define the variation of T with respect to the metric
tensor as

�ðg�	T�	Þ
�g��

¼ T�� þ���; (9)

where

��� � g�	
�T�	

�g�� : (10)

After partially integrating the second and third terms in
Eq. (8), we obtain the field equations of the fðR; TÞ gravity
model as

fRðR; TÞR�� � 1

2
fðR; TÞg�� þ ðg��h�r�r�ÞfRðR; TÞ

¼ 8�T�� � fTðR; TÞT�� � fTðR; TÞ���: (11)

Note that when fðR; TÞ � fðRÞ, from Eqs. (11) we obtain
the field equations of fðRÞ gravity.

Contracting Eq. (11) gives the following relation be-
tween the Ricci scalar R and the trace T of the stress-
energy tensor,

fRðR; TÞRþ 3hfRðR; TÞ � 2fðR; TÞ
¼ 8�T � fTðR; TÞT � fTðR; TÞ�; (12)

where we have denoted � ¼ ��
�.

By eliminating the term hfRðR; TÞ between Eqs. (11)
and (12), the gravitational field equations can be written in
the form

fRðR; TÞ
�
R�� � 1

3
Rg��

�
þ 1

6
fðR; TÞg��

¼ 8�

�
T�� � 1

3
Tg��

�
� fTðR; TÞ

�
T�� � 1

3
Tg��

�

� fTðR; TÞ
�
��� � 1

3
�g��

�
þr�r�fRðR; TÞ: (13)

Taking into account the covariant divergence of Eq. (11),
with the use of the following mathematical identity [27]

r�

�
fRðR; TÞR�� � 1

2
fðR; TÞg��

þ ðg��h�r�r�ÞfRðR; TÞ
�
� 0; (14)

where fðR; TÞ is an arbitrary function of the Ricci scalar R
and of the trace of the stress-energy tensor T, we obtain for
the divergence of the stress-energy tensor T�� the equation

r�T��¼ fTðR;TÞ
8��fTðR;TÞ
�½ðT��þ���Þr� lnfTðR;TÞþr�����: (15)

Next we consider the calculation of the tensor���, once

the matter Lagrangian is known. From Eq. (3) we obtain
first

�T�	

�g�� ¼
�g�	
�g��Lmþg�	

@Lm

@g���2
@2Lm

@g��@g�	

¼�g�	
�g��Lmþ1

2
g�	g��Lm�1

2
g�	T���2

@2Lm

@g��@g�	
:

(16)

From the condition g�
g

	 ¼ �	

�, we have

�g�	
�g��

¼ �g�
g	��

�
��; (17)

where �
�
�� ¼ �g
�=�g�� is the generalized Kronecker

symbol. Therefore, for ��� we find

��� ¼ �2T�� þ g��Lm � 2g�	
@2Lm

@g��@g�	
: (18)

In the case of the electromagnetic field the matter
Lagrangian is given by

Lm ¼ � 1

16�
F�	F�
g

��g	
; (19)

where F�	 is the electromagnetic field tensor. In this case

we obtain ��� ¼ �T��. In the case of a massless scalar

field � with Lagrangian Lm ¼ g�	r��r	�, we obtain

��� ¼ �T�� þ ð1=2ÞTg��. The problem of the perfect

fluids, described by an energy density �, pressure p and
four velocity u� is more complicated, since there is no
unique definition of the matter Lagrangian. However, in the
present study we assume that the stress-energy tensor of the
matter is given by

T�� ¼ ð�þ pÞu�u� � pg��; (20)

and the matter Lagrangian can be taken as Lm ¼ �p. The
four velocity u� satisfies the conditions u�u

� ¼ 1 and

u�r�u� ¼ 0, respectively. Then, with the use of

Eq. (18), we obtain for the variation of the stress-energy
of a perfect fluid the expression

��� ¼ �2T�� � pg��: (21)
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III. PARTICULAR CASES OF GRAVITATIONAL
FIELD EQUATIONS IN THE fðR;TÞ MODEL

In the present section we consider some particular
classes of fðR; TÞ modified gravity models, obtained by
explicitly specifying the functional form of f. Generally,
the field equations also depend, through the tensor���, on

the physical nature of the matter field. Hence in the case of
fðR; TÞ gravity, depending on the nature of the matter
source, for each choice of f we can obtain several theo-
retical models, corresponding to different matter models.

A. fðR;TÞ ¼ Rþ 2fðTÞ
As a first case of a fðR; TÞ modified gravity model we

assume that the function fðR; TÞ is given by fðR; TÞ ¼ Rþ
2fðTÞ, where fðTÞ is an arbitrary function of the trace of
the stress-energy tensor of matter. The gravitational field
equations immediately follow from Eq. (11), and are
given by

R�� � 1

2
Rg�� ¼ 8�T�� � 2f0ðTÞT��

� 2f0ðTÞ��� þ fðTÞg��; (22)

where the prime denotes a derivative with respect to the
argument.

If the matter source is a perfect fluid, ��� ¼ �2T�� �
pg��, then the field equations become

R�� � 1

2
Rg�� ¼ 8�T�� þ 2f0ðTÞT��

þ ½2pf0ðTÞ þ fðTÞ�g��: (23)

In the case of dust with p ¼ 0 the gravitational field
equations are given by

R�� � 1

2
Rg�� ¼ 8�T�� þ 2f0ðTÞT�� þ fðTÞg��: (24)

These field equations were proposed in [25] to solve the
cosmological constant problem. The simplest cosmologi-
cal model can be obtained by assuming a dust universe
(p ¼ 0, T ¼ �), and by choosing the function fðTÞ so that
fðTÞ ¼ �T, where � is a constant. By assuming that the
metric of the universe is given by the flat Robertson-
Walker metric,

ds2 ¼ dt2 � a2ðtÞðdx2 þ dy2 þ dz2Þ; (25)

the gravitational field equations are given by

3
_a2

a2
¼ ð8�þ 3�Þ�; (26)

and

2
€a

a
þ _a2

a2
¼ ��; (27)

respectively. Thus, this fðR; TÞ gravity model is equivalent
to a cosmological model with an effective cosmological

constant�eff / H2, whereH ¼ _a=a is the Hubble function
[25]. It is also interesting to note that generally for this
choice of fðR; TÞ the gravitational coupling becomes an
effective and time dependent coupling, of the form Geff ¼
G� 2f0ðTÞ. Thus the term 2fðTÞ in the gravitational action
modifies the gravitational interaction between matter and
curvature, replacing G by a running gravitational coupling
parameter.
The field equations reduce to a single equation for H,

2 _Hþ 3
8�þ 2�

8�þ 3�
H2 ¼ 0; (28)

with the general solution given by

HðtÞ ¼ 2ð8�þ 3�Þ
3ð8�þ 2�Þ

1

t
: (29)

The scale factor evolves according to aðtÞ ¼ t�, with
� ¼ 2ð8�þ 3�Þ=3ð8�þ 2�Þ.

B. fðR;TÞ ¼ f1ðRÞ þ f2ðTÞ
As a second example we consider the case in which the

function f is given by fðR; TÞ ¼ f1ðRÞ þ f2ðTÞ, where
f1ðRÞ and f2ðTÞ are arbitrary functions of R and T, respec-
tively. In this case for an arbitrary matter source the
gravitational field equations are given by

f01ðRÞR���1

2
f1ðRÞg��þðg��h�r�r�Þf1ðRÞ

¼8�T���f02ðTÞT���f02ðTÞ���þ1

2
f2ðTÞg��: (30)

Assuming that the matter content consists of a perfect fluid,
the gravitational field equations become

f01ðRÞR���1

2
f1ðRÞg��þðg��h�r�r�Þf01ðRÞ

¼8�T��þf02ðTÞT��þ
�
f02ðTÞpþ

1

2
f2ðTÞ

�
g��: (31)

In the case of dust with p ¼ 0, the gravitational field
equations reduce to

f01ðRÞR�� � 1

2
f1ðRÞg�� þ ðg��h�r�r�Þf01ðRÞ

¼ 8�T�� þ f02ðTÞT�� þ 1

2
f2ðTÞg��: (32)

In the case f2ðTÞ � 0, we reobtain the field equations of
standard fðRÞ gravity. Equation (31) can be reformulated
as an effective Einstein field equation of the form

G�� ¼ R�� � 1

2
Rg�� ¼ 8�GeffT�� þ Teff

��; (33)

where we have denoted

Geff ¼ 1

f01ðRÞ
�
1þ f02ðTÞ

8�

�
; (34)
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and

Teff
�� ¼ 1

f01ðRÞ
�
1

2
½f1ðRÞ � Rf01ðRÞ þ 2f02ðTÞp

þ f2ðTÞ�g�� � ðg��h�r�r�Þf01ðRÞ
�
: (35)

The gravitational coupling is again given by an effective,
matter (and time) dependent coupling, which is propor-
tional to the derivative of the function f2 with respect to T.
The gravitational field equations can be recast in such a
form that the higher order corrections, coming both from
the geometry, and from the matter-geometry coupling,
provide a stress-energy tensor of geometrical and matter
origin, describing an ‘‘effective’’ source term on the right
hand side of the standard Einstein field equations. In the
fðR; TÞ scenario, the cosmic acceleration may result not
only from a geometrical contribution to the total cosmic
energy density, but it is also dependent on the matter
content of the universe, which provides new corrections
to the Hilbert-Einstein Lagrangian via the matter-geometry
coupling.

The ðt; tÞ component of Eq. (32) has the following form:

3H2 ¼ 8�

f01ðRÞ
�
1þ f02ðTÞ

8�

�
�þ 1

f01ðRÞ
�
� 1

2
ðf1ðRÞ

� 6ð _H þ 2H2Þf01ðRÞÞ þ 2f02ðTÞ
� 9ð €H þ 4H _HÞf001 ðRÞ

�
: (36)

Here R ¼ 6ð _H þ 2H2Þ. For simplicity, T�� corresponds to

the matter with a constant equation of state parameter w. If
we now define the e-folding N by a ¼ a0e

N , � and T are
given by

� ¼ �0e
�3ð1þwÞN; T ¼ �ð1� 3wÞ�0e

�3ð1þwÞN: (37)

We now consider an arbitrary development of the ex-
pansion in the Universe given by

H ¼ hðNÞ; (38)

where hðNÞ is an arbitrary function ofN. Then Eq. (36) can
be written as

f02ðTÞ¼F2ðNÞ
� 3

1þ�0e
�3ð1þwÞN

�
�8�

3
�0e

�3ð1þwÞN

þ1

6
f1½6ðhðNÞh0ðNÞþ2hðNÞ2Þ�

�½hðNÞh0ðNÞþhðNÞ2�f01½6ðhðNÞh0ðNÞþ2hðNÞ2Þ�
þ3½hðNÞ2h00ðNÞþhðNÞh0ðNÞ2þ4hðNÞ2h0ðNÞ�
�f001 ½6ðhðNÞh0ðNÞþ2hðNÞ2Þ�

�
: (39)

Equation (39) dictates that for an arbitrary f1ðRÞ, and for
the following specific choice

f02ðTÞ ¼ F2

�
� lnð� T

ð1�3wÞ�0
Þ

3ð1þ wÞ
�
; (40)

an arbitrary development of the expansion in the Universe
given by (38) can be realized. Hence, for viable fðRÞ
gravitational models, using the above reconstruction
method, the possibility arises to modify the universe evo-
lution by adding the corresponding function depending on
the trace of the stress-energy tensor.

C. fðR;TÞ ¼ f1ðRÞ þ f2ðRÞf3ðTÞ
As a third case of generalized fðR; TÞ gravity models,

we consider that the action is given by fðR; TÞ ¼ f1ðRÞ þ
f2ðRÞf3ðTÞ, where fi, i ¼ 1, 2, 3 are arbitrary functions of
the argument. For an arbitrary matter source the gravita-
tional field equations are given by

½f01ðRÞ þ f02ðRÞf3ðTÞ�R�� � 1

2
f1ðRÞg��

þ ðg��h�r�r�Þ½f01ðRÞ þ f02ðRÞf3ðTÞ�
¼ 8�T�� � f2ðRÞf03ðTÞT�� � f2ðRÞf03ðTÞ���

þ 1

2
f2ðRÞf3ðTÞg��: (41)

In the case of a perfect fluid we find the field equations

½f01ðRÞþf02ðRÞf3ðTÞ�R���1

2
f1ðRÞg��

þðg��h�r�r�Þ½f01ðRÞþf02ðRÞf3ðTÞ�
¼8�T��þf2ðRÞf03ðTÞT��þf2ðRÞ

�
f03ðTÞpþ

1

2
f3ðTÞ

�
g��:

(42)

For the case of dust matter we obtain

½f01ðRÞ þ f02ðRÞf3ðTÞ�R�� � 1

2
f1ðRÞg��

þ ðg��h�r�r�Þ½f01ðRÞ þ f02ðRÞf3ðTÞ�
¼ 8�T�� þ f2ðRÞf03ðTÞT�� þ 1

2
f2ðRÞf3ðTÞg��: (43)

In this class of models both, the effective cosmological
constant �eff and the running gravitational coupling Geff

are functions of both matter and geometry.

IV. fðR; T�Þ GRAVITY

Scalar fields are supposed to play a fundamental role in
physics and cosmology [28]. In particular, cosmological
inflation, the late-time acceleration of the universe, or dark
matter and its properties can be explained in the framework
of specific scalar field models. However, obtaining more
general gravitational models with scalar fields as a source
may give a better insight in the general properties of the
gravitational field, and could also provide some possibil-
ities for observationally testing the generalizations of
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gravity models. In the present section, we consider the
fðR; TÞ gravity model in the case of self-interacting scalar
fields.

A. The action of the fðR;T�Þ gravity
We start with the following action for matter,

Smatterðg��; c iÞ ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
Lðg�
; c iÞ: (44)

In Eq. (44) the c i’s, i ¼ 1; 2; . . . represent the matter fields.
By using the matter action (44), we now introduce the
action for the gravitational field with matter sources as

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p

FðR;�Þ þ Smatterðe�g��; c iÞ; (45)

where FðR;�Þ is an algebraic function of R and of the
scalar field �. Then by the variation of the action with
respect to �, we obtain first

1

2�2
F�ðR;�Þ þ 1

2
T� ¼ 0; (46)

where we denoted F�ðR;�Þ � @Fð; �Þ=@� and

T� � e��g��T���; T��� � T��jg��!e�g��
; (47)

respectively. The stress-energy tensor of matter is defined,
as usual, by

T�� � � 2ffiffiffiffiffiffiffi�g
p �Smatterðg�
; c iÞ

�g��

: (48)

By the assumption that FðR;�Þ is an algebraic function of
R and �, Eq. (46) can be algebraically solved with respect
to �. Thus we can obtain � as a function of R and T�, i.e.,

� ¼ �ðR; T�Þ. Then by substituting the expression of �

into the action (45), we obtain an example of FðR; T�Þ
gravity, with the following action

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ~FðR; T�Þ þ Smatterðe�g��; c iÞ; (49)

where we have denoted

~FðR; T�Þ � F½R;�ðR; T�Þ�: (50)

With the use of the conformal Weyl transformation g�� !
e��g��, the action (45) or (49) is transformed as

S¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p

e�2�F

��
Rþ3h��3

2
@
�@
�

�
e�;�

�

þSmatterðg��;c iÞ
¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p ~F

��
Rþ3h��3

2
@
�@
�

�
e�;T

�

þSmatterðg��;c iÞ; (51)

with T � g��T��. In the action Smatterðg��; c iÞ in Eq. (51),
the matter fields have only a minimal coupling with

gravity, and they do not couple with �. Then the frame
in the action (51) might be regarded as a physical frame.

B. Example of fðR;T�Þ scalar field gravity,
and reconstruction

As an example of fðR; T�Þ gravity of the form Rþ
fðT�Þ, we consider the case of a scalar field with a self-
interaction potential Vð�Þ. The action is given by

S� ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
� 1

2
!ð�Þ@��@��� Vð�Þ

�
; (52)

where we have included !ð�Þ for later convenience. For
the scalar field model described by Eq. (52), the trace of the
stress-energy tensor is given by

T� ¼ �!ð�Þ@��@��� 4Vð�Þ: (53)

Consequently we may define the fðR; T�Þ ¼ Rþ fðT�Þ
gravity model in the following form:

S¼
Z
d4x

ffiffiffiffiffiffiffi�g
p �

1

2�2
RþfðT�Þ�1

2
!ð�Þ@��@���Vð�Þ

�
:

(54)

For the model (54), in a flat Friedmann-Robertson-Walker
geometry, the Friedmann equations have the following
form:

3

�2
H2 ¼ 1

2
!ð�Þ _�2 þ Vð�Þ � f½!ð�Þ _�2 � 4Vð�Þ�

þ 2f0½!ð�Þ _�2 � 4Vð�Þ�!ð�Þ _�2; (55)

� 1

�2
ð3H2 þ 2 _HÞ ¼ 1

2
!ð�Þ _�2 � Vð�Þ

þ f½!ð�Þ _�2 � 4Vð�Þ�; (56)

where H ¼ _a=a.
In the following, we consider, for simplicity, the case

Vð�Þ ¼ 0. Then the action (54) has the following form:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�2
Rþ F½�!ð�Þ@��@���

�
; (57)

and the Friedmann equations (55) and (56) take the form,

3

�2
H2 ¼ �F½!ð�Þ _�2� þ 2F0½!ð�Þ _�2�!ð�Þ _�2; (58)

� 1

�2
ð3H2 þ 2 _HÞ ¼ F½!ð�Þ _�2�: (59)

In the action (57), F½�!ð�Þ@��@��� is defined by

F½�!ð�Þ@��@��� � f½�!ð�Þ@��@���
� 1

2
!ð�Þ@��@��: (60)

The action (57) gives a model of k-essence [29–31]. In
[32], it has been shown that the Friedmann equations (58)
and (59) do not admit the de Sitter solution, except in the
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trivial case where � is a constant, and Fð0Þ> 0. In [32],
the formalism of the general reconstruction has also been
explicitly given. An explicit model of modified gravity in
which a crossing of the phantom divide can be realized was
reconstructed in [33].

As a simple example, we consider the model

F½�!ð�Þ@��@��� ¼ �F0e
�2 lnðð�Þ=ð�0ÞÞ@��@��; (61)

where F0 and �0 are constants. The Friedmann equations
have a solution where the universe expands by a power law,

H ¼ h0
t
; � ¼ t: (62)

The constant h0 can be obtained by solving the following
algebraic equation

3h20 � 2h0 ¼ �2�2
0F0: (63)

V. THE EQUATION OF MOTION OF TEST
PARTICLES AND THE NEWTONIAN

LIMIT IN fðR;TÞ GRAVITY

Since in the general fðR; TÞ type gravity models the
stress-energy tensor of matter is not covariantly conserved,
it follows that the test particles, moving in a gravitational
field, do not follow geodesic lines. This situation is similar
to the case of the fðR; LmÞmodels [24], where the coupling
between matter and geometry induces a supplementary
acceleration acting on the particle. In the present section,
we derive the equations of motion of test particles in
fðR; TÞ gravity models, and obtain the Newtonian limit
of the theory. We also investigate the constraints on the
magnitude of the extra acceleration that can be obtained
from the available observational data on the perihelion
precession of the planet Mercury.

A. The equations of motion of test particles

In the case of a perfect fluid, with the stress-energy
tensor given by Eq. (20), the divergence of the stress-
energy tensor is given by

r�T�� ¼ � 1

8�þ fTðR; TÞ fT��r�fTðR; TÞ

þ g��r�½fTðR; TÞp�g: (64)

We also introduce the projection operator h�� ¼ g�� �
u�u� for which we have h��u

� ¼ 0 and h��T
�� ¼

�h��p, respectively.
Explicitly, Eq. (64) can be written in the form

r�ð�þpÞu�u�þð�þpÞ½u�r�u
�þu�r�u

���g��r�p

¼� 1

8�þfTðR;TÞfT
��r�fTðR;TÞþg��r�½fTðR;TÞp�g:

(65)

By contracting Eq. (65) with h�� we obtain

g��u
�r�u

� ¼ 8�
r�p

ð�þ pÞ½8�þ fTðR; TÞ� h
�
�: (66)

After multiplying with g�� and by taking into account the
identity

u�r�u
� ¼ d2x�

ds2
þ ��

��u
�u�; (67)

we obtain the equation of motion of a test fluid in fðR; TÞ
gravity as

d2x�

ds2
þ ��

��u
�u� ¼ f�; (68)

where

f� ¼ 8�
r�p

ð�þ pÞ½8�þ fTðR; TÞ� ðg
�� � u�u�Þ: (69)

The extra force f� is perpendicular to the four velocity,
f�u� ¼ 0. When fTðR; TÞ ¼ 0, we reobtain the equation

of motion of perfect fluids with pressure in standard gen-
eral relativity, which follows from the conservation of the
energy-momentum tensor, r�T

�
� ¼ 0 [34]. In the limit

p ! 0, corresponding to a pressureless fluid (dust), in
standard general relativity the motion of the test particles
becomes geodesic. The same result holds true in the
fðR; TÞ gravity model. Even if fTðR; TÞ � 0, the motion
of the dust particles always follows the geodesic lines of
the geometry. By assuming that the term 8�r�p=ð�þpÞ�
½8�þfTðR;TÞ� can be formally represented as r� ln

ffiffiffiffi
Q

p
,

8�
r�p

ð�þ pÞ½8�þ fTðR; TÞ� ¼ r� ln
ffiffiffiffi
Q

p
; (70)

the equation of motion Eq. (68) can be obtained from the
variational principle

�Sp ¼ �
Z

Lpds ¼ �
Z ffiffiffiffi

Q
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g��u
�u�

q
ds ¼ 0; (71)

where Sp and Lp ¼ ffiffiffiffi
Q

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g��u

�u�
p

are the action and the

Lagrangian density for the test particles, respectively.
To prove this result we start with the Lagrange equations

corresponding to the action (71),

d

ds

�
@Lp

@u�

�
� @Lp

@x�
¼ 0: (72)

Since

@Lp

@u�
¼ ffiffiffiffi

Q
p

u� (73)

and

@Lp

@x�
¼ 1

2

ffiffiffiffi
Q

p
g��;�u

�u� þ 1

2

Q;�

Q
; (74)
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a straightforward calculation gives the equations of motion
of the particle as

d2x�

ds2
þ �

�
��u

�u� þ ðu�u� � g��Þr� ln
ffiffiffiffi
Q

p ¼ 0: (75)

When
ffiffiffiffi
Q

p ! 1 we reobtain the standard general relativis-
tic equation for geodesic motion.

As an example of the application of the previous formal-
ism we consider the case in which the pressure can be
expressed as a function of the density by a linear barotropic
equation of state of the form p ¼ w�, where the constantw
satisfies the condition w � 1. Therefore �þ p � � and
T ¼ �� 3p � �, respectively. Moreover, for simplicity,
we also assume that the function fT is a function of T � �
only. We can expand fT near a fixed value �0 of the density,
so that fTð�Þ ¼ fTð�0Þ þ ð�� �0Þ½dfT=d�Þ=d��j�¼�0

¼
8�½a0 þ b0ð�� �0Þ�, where a0 ¼ fTð�0Þ=8� and b0 ¼
½dfT=d�Þ=d��j�¼�0

=8�, respectively. Equation (70) of

the definition of
ffiffiffiffi
Q

p
becomes

w

1þ a0 � b0�0
r� ln

�

1þ a0 þ b0ð�� �0Þ ¼ r� ln
ffiffiffiffi
Q

p
;

(76)

giving

ffiffiffiffi
Q

p ð�Þ �
�

C�

1þ a0 þ b0ð�� �0Þ
�
w=ð1þa0�b0�0Þ

; (77)

where C is an arbitrary constant of integration. Equation
(70) is also valid for a fluid satisfying a linear barotropic
equation of state of the form p ¼ ð�� 1Þ�, � ¼ constant,
and for a model with fTðR; TÞ ¼ constant ¼ fT . In this

case
ffiffiffiffi
Q

p ¼ CT�
8�ð��1Þ=�ð8�þfT Þ, where CT is an arbitrary

integration constant. Therefore, Eq. (70) is valid in both
the nonrelativistic and the extreme relativistic limits of the
model. On the other hand, we have to mention that the
function

ffiffiffiffi
Q

p
can always be obtained by formally integrat-

ing the left-hand side of Eq. (70). However, generally this
function cannot be expressed in an exact analytical form,
and to find its functional form approximate methods have
to be used.

B. The Newtonian limit

The variational principle (71) and the pressureless dust
model, described by Eqs. (76) and (77), can be used to
study the Newtonian limit of the model. In the limit of the
weak gravitational fields,

ds �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�� ~v2

q
dt � ð1þ�� ~v2=2Þdt; (78)

where � is the Newtonian potential and ~v is the usual
tridimensional velocity of the fluid. By using the relation
x� ¼ expð� lnxÞ � 1þ � lnx, we can approximate

ffiffiffiffi
Q

p ð�Þ
given by Eq. (77) as

ffiffiffiffi
Q

p ð�Þ � 1þ w

ð1þ a0 � b0�0Þ ln
�

C�

1þ a0 þ b0ð�� �0Þ
�

¼ 1þUð�Þ; (79)

where we have denoted

Uð�Þ ¼ w

ð1þ a0 � b0�0Þ ln
�

C�

1þ a0 þ b0ð�� �0Þ
�
: (80)

In the first order of approximation the equations of
motion of the fluid can be derived from the variational
principle

�
Z �

1þUð�Þ þ�� ~v2

2

�
dt ¼ 0; (81)

and are given by

~a ¼ �r��rUð�Þ ¼ ~aN þ ~ap þ ~aE; (82)

where ~a is the total acceleration of the system, ~aN ¼ �r�
is the Newtonian gravitational acceleration and

~a p ¼ � C

1þ a0 � b0�0

1

�
rp ¼ � 1

�
rp; (83)

is the hydrodynamical acceleration. Equation (83) also
allows us to fix the value of the arbitrary integration
constant C as C ¼ 1þ a0 � b0�0. Finally,

~a Eð�; pÞ ¼ b0
1þ a0 � b0�0

rp
1þ a0 þ b0ð�� �0Þ ; (84)

is a supplementary acceleration induced due to the
modification of the action of the gravitational field.

C. The precession of the perihelion of Mercury

An estimation of the effect of the extra force, generated
by the coupling between matter and geometry, on the
orbital parameters of the motion of the planets around
the Sun can be obtained in a simple way by using the

properties of the Runge-Lenz vector, defined as ~A ¼ ~v�
~L� �~er, where ~v is the velocity relative to the Sun, with
mass M�, of a planet of mass m, ~r ¼ r ~er is the two-body
position vector, ~p ¼ � ~v is the relative momentum, � ¼
mM�=ðmþM�Þ is the reduced mass, ~L ¼ ~r� ~p ¼
�r2 _
 ~k is the angular momentum, and � ¼ GmM� [35].
For an elliptical orbit of eccentricity e, major semiaxis a,
and period T, the equation of the orbit is given by
ðL2=��Þr�1 ¼ 1þ e cos
. The Runge-Lenz vector can
be expressed as

~A ¼
� ~L2

�r
� �

�
~er � _rL~e
; (85)

and its derivative with respect to the polar angle 
 is
given by
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d ~A

d

¼ r2

�
dVðrÞ
dr

� �

r2

�
~e
; (86)

where VðrÞ is the potential of the central force [35]. The
potential term consists of the post-Newtonian potential,
VPNðrÞ ¼ ��=r� 3�2=mr2, plus the contribution from
the general coupling between matter and geometry. Thus
we have

d ~A

d

¼ r2

�
6
�2

mr3
þm~aEðrÞ

�
~e
; (87)

where we have also assumed that � � m. The change in
direction �� of the perihelion with a change of 
 of 2� is

obtained as �� ¼ ð1=�eÞR2�
0 j _~L� d ~A=d
jd
, and it is

given by

�� ¼ 24�3

�
a

T

�
2 1

1� e2
þ L

8�3me

ð1� e2Þ3=2
ða=TÞ3

�
Z 2�

0

aE½L2ð1þ e cos
Þ�1=m��
ð1þ e cos
Þ2 cos
d
; (88)

where we have used the relation �=L ¼
2�ða=TÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p
. The first term of this equation corre-

sponds to the standard general relativistic precession of the
perihelion of the planets, while the second term gives the
contribution to the perihelion precession due to the pres-
ence of the coupling between matter and geometry.

As an example of the application of Eq. (88) we consider
the case for which the extra force may be considered as a
constant, aE � constant, an approximation that could be
valid for small regions of spacetime. In the Newtonian
limit the extra acceleration generated by the coupling
between matter and geometry can be expressed in a similar
form [19]. With the use of Eq. (88) one finds for the
perihelion precession the expression

�� ¼ 6�GM�
að1� e2Þ þ

2�a2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p

GM�
aE; (89)

where we have also used Kepler’s third law, T2 ¼
4�2a3=GM�. For the planet Mercury a ¼ 57:91�
1011 cm, and e ¼ 0:205 615, respectively, while M� ¼
1:989� 1033 g. With these numerical values the first
term in Eq. (89) gives the standard general relativistic
value for the precession angle, ð��ÞGR ¼ 42:962 arcsec
per century, while the observed value of the precession is
ð��Þobs ¼ 43:11� 0:21 arcsec per century [36].
Therefore the difference ð��ÞE ¼ ð��Þobs � ð��ÞGR ¼
0:17 arcsec per century can be attributed to other physical
effects. Hence the observational constraints requires that
the value of the constant aE must satisfy the condition
aE 	 1:28� 10�9 cm=s2.

VI. DISCUSSIONS AND FINAL REMARKS

In the present paper, we have considered a generalized
gravity model with an arbitrary coupling between matter
(described by the trace of the stress-energy tensor) and
geometry, with the Lagrangian given by an arbitrary func-
tion of T and of the Ricci scalar. We have derived the
gravitational field equations corresponding to this model,
and considered several particular cases that may be relevant
in explaining some of the open problems of cosmology and
astrophysics. The new matter and time dependent terms in
the gravitational field equations play the role of an effective
cosmological constant. We have also demonstrated the
possibility of reconstruction of arbitrary Friedmann-
Robertson-Walker cosmologies by an appropriate choice
of a function fðTÞ. The equations of motion corresponding
to this model show the presence of an extra force acting on
test particles, and the motion is generally nongeodesic. We
have obtained, by using the perihelion precession of
Mercury, an upper limit on the magnitude of the extra
acceleration in the Solar System. This value of aE, obtained
from the solar system observations, is somewhat smaller
than the value of the extra acceleration aE � 10�8 cm=s2,
necessary to explain the ‘‘darkmatter’’ properties, aswell as
the Pioneer anomaly [19,37,38]. However, it does not rule
out the possibility of the presence of some extra gravita-
tional effects acting at both the solar system and galactic
levels, since the assumption of a constant extra force may
not be correct on larger astronomical scales.
Therefore, the predictions of the fðR; TÞ gravity model

could lead to some major differences, as compared to the
predictions of standard general relativity, or other generalized
gravitymodels, in several problems of current interest, such as
cosmology, gravitational collapse or the generation of gravi-
tational waves. The study of these phenomena may also
provide some specific signatures and effects, which could
distinguish and discriminate between the various gravitational
models. In order to explore in more detail the connections
between the fðR; TÞ gravity model and the cosmological
evolution, some explicit physical models are necessary to be
built. This will be done in forthcoming work.
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