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Recently proposed ‘‘critical’’ higher-derivative gravities in AdSD D > 3 are expected to carry

logarithmic representation of the anti-de Sitter isometry group. In this article, we quantize linear

fluctuations of these critical gravities, which are known to be either identical with linear fluctuations

of Einstein’s gravity or satisfy logarithmic boundary conditions at spacial infinity. We identify the scalar

product uniquely defined by the symplectic structure implied by the classical action, and show that it does

not posses null vectors. Instead, we show that the scalar product between any two Einstein modes

vanishes, while the scalar product of an Einstein mode with a logarithmic mode is generically nonzero.

This is the basic property of logarithmic representation that makes them neither unitary nor unitarizable.

DOI: 10.1103/PhysRevD.84.024013 PACS numbers: 04.50.Kd

I. INTRODUCTION

It has been known for many years that power-counting
renormalizable theories of gravity can be obtained by add-
ing to the Einstein-Hilbert action appropriate terms, qua-
dratic in the Ricci and Weyl tensors. In the absence of a
cosmological constant, these theories admit Minkowski
space as background, but they are also perturbatively non-
unitary [1]. Since the entire point of having a power-
counting renormalizable theory of gravity is to make
perturbative calculations possible, these theories have
been justly abandoned long since. Recently, quadratic-
curvature actions with cosmological constant were re-
examined in four [2] and D [3] dimensions. In either
case, it was found that there exist a choice of parameters
for which these theories possess one anti-de Sitter (AdS)
background on which neither massive fields, nor massless
scalars or vectors propagate. Moreover, on the AdS back-
ground, the standard graviton, i.e. the massless tensor
mode of Einstein-Hilbert gravity, also propagates and has
vanishing energy (the energy of course depends on the
action, not just on the form of the mode) [2,3].

Besides those that satisfy the homogenous Einstein
equations on AdSD, other tensor modes propagate in the
‘‘critical’’ theory [4–6]. Their asymptotic behavior at
spacelike infinity differs from standard Einstein-Hilbert
modes by terms logarithmic in the AdS radial coordinate.
A complete set of propagating modes for critical
D-dimensional gravity was presented in [6].

In this paper, we show that there exists an unambiguous
manner to define the energy and the norm of all modes of log
gravity.With that definition, the scalar product of twomodes
that solve the homogenous Einstein equation vanishes.

Next we address the main result: the scalar product of a
homogenous mode with some of the logarithmic modes is
nonzero. In other words, homogenous modes are not null
vectors and cannot be factored out to yield a (positive-
norm) Hilbert space, except if we restrict the physical

space to homogenous modes only, and then factor them
out. This procedure leaves a profoundly uninteresting the-
ory made only by the vacuum state. This picture should be
compared to the case of D ¼ 3, where CFTs possess two
copies of the Virasoro algebra. There, in topologically
massive gravity (TMG) at the critical point [7], restriction
to homogenous modes—which can be promoted to a bona
fide nonperturbative constraint on the Hilbert space—
selects the vacuum of one such algebra, but allows for
nontrivial states of the other [7,8].
This result shows that the critical (a.k.a. log) theory is

neither unitary nor does it contain a unitary subspace other
than the vacuum.1 Though the lack of unitarity proven here
is bad news for log gravity to give a viable quantum theory
of gravity in AdSD, it is consistent with (and indeed
required by) it being dual to a logarithmic conformal field
theory in D� 1 dimensions. Such a theory could be of
interest in statistical mechanics; its basic properties are
summarized in the next section.

II. KINEMATICS OF LOGARITHMIC CFTS

The isometry group of AdSD is SOð2; D� 1Þ, which is
also the conformal group in D� 1 space-time dimensions.
So, the Hilbert space2 of a consistent quantum gravity in
AdSD decomposes into a direct sum of representations of
SOð2; D� 1Þ.
If we do not demand that the representation be unitary,

then the Hilbert space, H, can contain a reducible but
indecomposable representation. Let us consider in detail
the case of AdS4. Its isometry group, SOð2; 3Þ, admits a
Cartan decomposition into four positive roots E�a , a ¼ 1,

1The ghost pole in one-particle exchange amplitudes between
physical sources may cancel [9]; this is not enough to rescue
unitarity as we shall discuss in the last section.

2By Hilbert space we mean here a vector space H, endowed
with a nondegenerate but not necessarily positive bilinear form
hu; vi such that u 2 H, v 2 H � hu; vi 2 C.
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2, 3, 4, four negative roots E��a , and two Cartan generators
H1, H2.

3 In the Cartan basis the SOð2; 3Þ algebra is

½Hi;Hj�¼0; ½Hi;E
�a�¼�i

aE
�a;

½E��a;E�a�¼ 2

j�aj2
�a �H;

(1)

with j�aj2 ¼
P

2
i¼1ð�i

aÞ2.
SOð2; 3Þ representations with energy H1 bounded below

posses a ground state c , annihilated by all E�ac ¼ 0.
Lowest-weight vectors can also define logarithmic repre-
sentations if they are not eigenstates of H1, but obey
instead4

H1c ¼ E0c þ�; H1� ¼ E0�: (2)

When the generators Hi, E
�, are self-adjoint with respect

to a scalar product, h; i, not necessarily positive definite,
then the vector � has zero norm:

0 ¼ hc ; ðH1 � E0Þ2c i ¼ hðH1 � E0Þc ; ðH1 � E0Þc i
¼ h�;�i: (3)

The standard procedure to obtain a nondegenerate scalar
product is to identify vectors modulo null vectors. So, if the
vector � is null, i.e. if h�;�i ¼ 0 for all � in the repre-
sentation V, Eqs. (2) actually define a standard lowest-
weight representation on the quotient space. So, to obtain
a truly new representation, the scalar product of � with
some vector � 2 V (such that h�;�i � 0) must be
nonvanishing.

Of course, the latter property is incompatible with uni-
tarity, i.e. with the scalar product being positive definite.
For if h�;�i ¼ A � 0, the norm of z�þ � is h�;�i þ
2ReAz, which can have either sign when z ranges over the
complex plane.

Two dimensional logarithmic conformal field theories
too are characterized by having zero norm non-null vectors
[10] (for a review see [11]). Topologically massive gravity
at the critical point, which is conjectured to be dual to a
logarithmic CFT, indeed contains such vectors [12–14].

Four-dimensional critical gravity is in many ways the
higher-dimensional analog of TMG at the critical point; so,
the next question to ask is does critical gravity also contain
logarithmic representations of SOð2; 3Þ?

III. THE EXAMPLEOFD ¼ 4CRITICALGRAVITY

Reference [6] gives a complete set of modes for critical
gravity. With some obvious changes of notations and sim-
plifications, the four-dimensional action of [6] is

S ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p �

R� 2�� 1

2
f��G��

þm2

8
ðf��f�� � f2Þ

�
; (4)

with G�� the Einstein tensor and f�� an auxiliary sym-

metric tensor field. Elimination of f�� through its alge-

braic equations of motion gives an action quadratic in
curvatures. Critical gravity is obtained when the cosmo-
logical constant is

� ¼ �3m2: (5)

In four-dimensions, � is the usual cosmological constant
and action (4) admits an anti-de Sitter background �g��

with R��
�� ¼ ð�=3Þð	�

�	�
� �� $ �Þ.

Expanding g�� and f�� around the AdS background as

g�� ¼ �g�� þ h��;

f�� ¼ �2ð �g�� þ h��Þ þ 2

3m2
k��;

(6)

Action (4) reduces to a constant term plus the quadratic
action [6]

6m2S2 ¼
Z

d4x
ffiffiffiffiffiffiffi� �g

p �
2h��G��ðkÞ � 1

3
ðk��k�� � k2Þ

�
:

(7)

The linearized Einstein operator G�� reduces to�ð1=2Þ�
ðhþ 2m2Þ on transverse-traceless modes. The equations
of motion following from action (7) are

G ��ðhÞ ¼ 1
3ðk�� � �g��kÞ; G��ðkÞ ¼ 0: (8)

Thanks to the Bianchi identity, k�� is transverse and trace-

less. In the gauge D�h�� �D�h ¼ 0 Eqs. (8) become

� 1
2ðhþ 2m2Þh�� ¼ 1

3k��; �1
2ðhþ 2m2Þk�� ¼ 0:

(9)

In global coordinates (colatitude 
, longitude �, radius
�, and time t) the AdS4 metric is

m2ds2 ¼ �cosh2ð�Þdt2 þ d�2 þ sinh2ð�Þ
� ½d
2 þ sin2ð
Þd�2�: (10)

The Cartan generators of SOð2; 3Þ are H1 ¼ i@t, H2 ¼
�i@� [6]. The explicit expressions for the E� generators

are also given in [6]. Imposing E�ac ¼ 0 one finds two
particularly interesting classes of solutions to (9).
One, c E

��, solves the homogeneous linearized Einstein

equation G��ðc EÞ ¼ 0. In global coordinates it has the

form c E
�� ¼ e�iE0tþ2i�Fð�; 
Þ��. For large � one finds

Fð�; 
Þ�� � e�ðE0þ2Þ�;

Fð�; 
Þ�� � e�E0�;

Fð�; 
Þ�� � e�ðE0�2Þ�:

(11)
3The basis used in Ref. [6] is �1 ¼ ð�1; 1Þ, �2 ¼ ð0; 1Þ, �3 ¼ð�1;�1Þ, �4 ¼ ð�1; 0Þ.
4One could consider in principle also polylogarithmic repre-

sentations defined by ðH1 � E0Þc k ¼ c kþ1, k ¼ 0; . . . ; n.
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Here � denotes coordinates other than �, and we did not
spell out the 
 dependence in F. Normalizability of c E for
� ! 1 gives E0 ¼ 3 [6].

The other one is

fðt; �Þc E
��; fðt; �Þ ¼ itþ log sinh�: (12)

It obeys Eq. (8) with k�� ¼ �ð9m2=2Þc E
��.

5

After this brief review of the result of [6] we come to the
definition of the scalar product and energy for linearized
critical gravity.

IV. THE INNER PRODUCT OF QUADRATIC
THEORIES

Consider a general quadratic action

S ¼
Z

dt
1

2
ð� _qTL _qþþ _qTQqþ qTKqÞ; (13)

where L and K are symmetric matrices while Q is anti-
symmetric and commuting with L: ½L;Q� ¼ 0. They are
defined in terms of a matrix � obeying

L���TL ¼ 2iQ; �TL� ¼ K: (14)

Reality of K follows from ½L;Q� ¼ 0; together with the
first of the equations above, it implies that L� ¼ Sþ iQ,
with S a real symmetric matrix. If � satisfies Eqs. (14) so
does���. When some of the eigenvalues of the matrix�
coincide,�may be nondiagonalizable but it can always be
put in the Jordan form. We choose � to have ‘‘positive
frequency’’ by demanding that its eigenvalues are positive
definite.

Next we split the vector q into q ¼ 2�1=2ðAþ A�Þ with
i _A ¼ �A (i _A� ¼ ���A�). Equations (14) guarantee that
A solves the equations of motion L €A� 2Q _Aþ KA. The
canonical momentum p conjugate to q is p ¼ L _q�Qq.
The canonical momenta conjugate to A, A� are

P ¼ L _A� �QA� ¼ iL��A� �QA�;

P� ¼ L _A�QA ¼ �iL�A�QA:
(15)

By using Eqs. (14) and (15) it is straightforward to find that
the conserved energy is

H ¼ 1
2ð _qTL _qþ qTKqÞ ¼ 1

2ðPT _Aþ P�T _A�Þ (16)

In canonical quantization, A� is replaced by the
Hermitian conjugate Ay and the nonzero canonical com-

mutation relations are ½AI; PJ� ¼ i	I
J, ½AyI; Py

J � ¼ i	I
J.

The standard Fock vacuum obeys Aj0i ¼ 0, so a classical
positive-frequency solution of the equations of motion,

i _�ðtÞ ¼ ��ðtÞ, defines a one-particle state j�i ¼
�i�IPIj0i, which obeys AðtÞj�i ¼ �ðtÞj0i. The scalar
product of two states j�i, j�i is then

h�j�i ¼ ið��TL _����TQ�Þ: (17)

An example directly related to action (7) is

L ¼ 0 1

1 0

 !
; � ¼ ! 0

1=2! !

 !
;

AðtÞ ¼ 2!i�e�i!t

ð�tþ �Þe�i!t

 ! (18)

Notice that, though AðtÞ contains terms linear in t, the
scalar product is time-independent. Explicitly, on two
solutions defined by constants �, �, �0, �0, the scalar
product formula (17) reduces to h�j�i ¼ 2!�0��þ
2!2ið�0��� �0��Þ. States with � ¼ �0 ¼ 0 have vanish-
ing norm, but these states are not null: the norm of state
� ¼ 0, � � 0 with an �0 � 0 state does not vanish.
Action (7) has the form (13). To see that, we can use the

fact that k�� is transverse-traceless and integrate by part in

time6

6m2S2¼
Z
d4x

ffiffiffiffiffiffiffi� �g
p �

�g00D0h
��D0k��

�h��

�X3
i¼1

DiD
iþ2m2

�
k���1

3
ðk��k���k2Þ

�
:

(19)

Now, a straightforward application of formula (17) gives
the scalar product of any two positive-frequency modes of
log gravity as

hc j�i ¼ 3i

4

Z
d3x

ffiffiffiffiffiffiffi� �g
p

�g00½ðhþ 2m2Þc �
��D0�

��

þ c �
��D0ðhþ 2m2Þ����: (20)

Evidently, the scalar product between two solutions of
the homogeneous Einstein equations, � ¼ �E, c ¼ c E

vanishes. Also, the potentially dangerous term / t in the
scalar product of two ‘‘log’’ modes �s ¼ fðt; �Þ�E, c ¼
fðt; �Þc E (see definition in Eq. (12)) vanishes.
Crucially, the homogeneous modes c E are not null

vectors, since their scalar product with the log mode con-
structed from c E, �s ¼ fðt; �Þc E is nonzero:

hc Ej�si ¼ � 9im2

4

Z
d3x

ffiffiffiffiffiffiffi� �g
p

�g00c E�
��D0c

E�� � 0:

(21)

Nonvanishing of Eq. (21) can be proven by a simple direct
calculation or by noticing that (21) is proportional to the

5Our inhomogeneous mode equals that in [6] plus a homoge-
nous mode.

6Initial time and final time configurations are held fixed when
varying the action, so we can always add a total time derivative
to the action without changing the equations of motion. Adding a
total divergence of space coordinate, instead, changes the bound-
ary conditions at the AdS boundary, so in general it changes the
equations of motion by modifying the boundary behavior of the
fields.
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norm of the transverse-traceless mode c E
�� in standard

Einstein gravity.7

The Einstein modes do have zero scalar product with
special logarithmic modes: the spin-1 ‘‘Proca’’ modes [6],
which have the form c s

�� ¼ fc E, c E ¼ Dð�A�Þ.
Transversality and tracelessness of c E

�� hold when A�

obeys the massive spin-1 Proca equation

D�F�� ¼ 6m2A�: (22)

Vanishing of hc EjfDð�A�Þi follows immediately from the

fact that this quantity is proportional to the Einstein gravity
scalar product

R
d3x

ffiffiffiffiffiffiffi� �g
p

�g00c E�
��D0D

�A�, which vanishes

because in Einstein gravity transverse modes are orthogo-
nal to pure gauge modes.

In three-dimensions, the Proca modes are the only in-
homogeneous solutions of Eq. (8), hence the Einstein
modes are true null vectors that can be modded out to yield
a positive-metric Hilbert space. Actually, the normalizable
Proca modes decay so rapidly at infinity that they too are
null in the norm induced by the NMG action. So, the
modding out by these null vectors yields a trivial theory
in three-dimensions too. Of course, one can also define the
norm of the Proca fields using the Proca action; this is what
makes new massive gravity [15] at the critical point poten-
tially nontrivial and consistent, at least at linear order. In
D> 3, the Proca modes [6] and the truly transverse-
traceless spin-2 logarithmic modes mix under the action
of SOðD� 1Þ � SOð2; D� 1Þ; therefore, one cannot con-
sistently keep the Proca modes, which are transverse to the
Einstein modes, without also keeping the spin-2 modes,
which are not.

V. LINEARIZED ENERGY

A reasonable way to define the energy of a solution
which is asymptotically AdS is to construct the linearized
stress tensor of a metric perturbation, and integrate the tt
component over a spacial slice, which by the Gauss’ law
constraint reduces to a boundary term. Including the non-
linear terms schematically in the right-hand side of the
equations of motion, we find the equations

G ðk��Þ ¼ �ðNLÞ
�� ; Gðh��Þ � 1

3ðk�� � �g��kÞ ¼ �ðNLÞ
�� :

(23)

Note that thanks to the Bianchi identity �ðNLÞ
�� is automati-

cally covariantly conserved, while �ðNLÞ
�� is not. We there-

fore can use � ¼ GðkÞ to construct conserved charges
following the method of [16] and replacing the metric
perturbation h�� with k�� ¼ 3G��ðhÞ � �g��G�

�ðhÞ, which
gives that the conserved charge for a killing vector � is

Eð ��Þ ¼ 1

8�G

I
dSi

ffiffiffiffiffiffiffi� �g
p ½D�K

0i�� � K0j�iDj� ���; (24)

where

K���� ¼ 1
2½ �g��H�� þ �g��H�� � �g��H�� � �g��H���;

H�� ¼ k�� � 1
2
�g��k: (25)

It is clear from this formulation that any solution that is
purely an Einstein mode will have k�� ¼ 0 and therefore

will have all conserved charges vanish, in agreement with
other calculations of the energy in critical gravity. To find a
nonzero energy we must turn on a nonzero k�� mode. At

large radius the only static, spherically symmetric solution

to (8) is simple in terms of k�� ¼ ~k�� þDð���Þ, the

Coulomb tail of a mass in AdS (~k��), along with a vector

mode8 (Dð���Þ). The Coulomb tail of a mass in AdS4
behaves as ~ktt ¼ � �gtt~k�� ¼ ~M= sinh�. We must include

a vector mode to ensure the consistency of the equation for
h, because D�G�� ¼ 0 and we must therefore require that

D�ðk�� � �g��kÞ ¼ 0 so that the equation of motion is

covariantly conserved. This is ensured with �r ¼
~M=6sinh2� cosh�, which gives

ktt ¼ �k��sinh
2�cosh2� ¼ 2k

 ¼ 2k��=sin

2


¼ M= sinh�; (26)

where M ¼ 2 ~M=3. It is easy to check that the mass as
defined in (24) is simply M=2G. We also note that this
nonzero k�� sources a logarithmic falloff in h,

htt ¼ M logcosh�

3 sinh�
þMcosh2�

3

�
�
�� 4 arctan½tanhð�=2Þ� � 1þ tanh2�

sinh�

�
;

h�� ¼ M logcosh�

3cosh2� sinh�
: (27)

We can also turn on a homogeneous mode in h, that is one
satisfying GðhÞ ¼ 0, but this will clearly not contribute to
the energy.

VI. MISCELLANEOUS REMARKS

The one-particle Hilbert space obtained by quantizing
critical gravity on its AdS background splits into a sum of
Einstein modes and log modes: H ¼ Hs �HE. The norm
N on such space vanishes on HE but it is off diagonal.
Schematically, for jc i ¼ jc si � jc Ei, j�i ¼ j�si �
j�Ei, one has

hc jNj�i¼ ðhc sj;hc EjÞ 1 �
� 0

� � j�si
j�Ei
� �

; ��0: (28)

A computation of the energy using formula (16)
shows that, on a mode of frequency !, its unnormalized

7See e.g. Ref. [13] for the analogous calculation in three-
dimensional chiral gravity.

8This is of course not an honest linear diffeomorphism, as by
Eq. (8) and the diff invariance of G we see that k does not
transform.
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expectation value is proportional to the norm N:
hc jHj�i ¼ !hc jNj�i. The Fock space contain only
states with positive frequency, so that whenever the norm
is nonzero, the normalized energy, hc jHj�i=hc jNj�i, is
positive and equal to the frequency !, as expected. When
the norm vanishes, by consistency one must define the
energy so that it also vanishes. Restricting the multiparticle
Hilbert space to the Einstein modes is thus equivalent to
selecting the zero-energy subsector of critical gravity, in
perfect analogy with three-dimensional chiral gravity [8].
To obtain a properly defined Hilbert space, the restriction
to Einstein modes must be followed by modding out by
null states.

Unlike three-dimensional chiral gravity, here the end
result of this procedure leaves only one state in the theory,
the Fock vacuum.

The results described so far were obtained by studying
linearized critical gravity. Yet, the general structure we
found can be promoted to a full nonlinear analysis. In
particular, the vanishing of energy in solutions which
asymptotically become Einstein modes has been shown
to hold for black holes too in [2,3]. A general proof that
all asymptotically-Einstein solutions have zero energy
should be possible using the general definition of energy
in quadratic-curvature gravities given in [17]. Conversely,
in the previous section we just proved that nonvanishing
energy requires the asymptotic behavior of log modes.

It was conjectured in [18] and proven in [19] that TMG
in three-dimensions is perturbatively stable around certain
warped AdS3 vacua, even for noncritical values of the
Chern-Simons coupling constant. Stability is achieved by
restricting the asymptotic boundary conditions in such a
way that only boundary gravitons of one chirality propa-
gate. This is in perfect analogy with the behavior of TMG
at the critical point on nonwarped AdS3. In this paper, we
argued that in D> 3, restriction to the Einstein asymp-
totics can give us only a trivial Hilbert space made only of
the vacuum. So, if an analog to the results of [18,19] could
be found for D> 3 higher-derivative gravity, it would
probably require asymptotics on fields that leave no physi-
cal state beyond the vacuum.

It may happen that negative-norm ghost poles cancel
against some positive-norm poles in one-particle exchange

diagrams between physical sources [9]. This is not enough
to ensure unitarity, since in the full nonlinear theory de-
fined by Eq. (4) ghosts can obviously also be pair pro-
duced. Moreover, even at the level of one-particle
diagrams, one must still mod out by null states, arriving
again at an empty theory.
Finally, we must point out explicitly that the Hilbert

space of Einstein modes is the only physically meaningful
subspace without negative-norm states (unfortunately, it
also has no positive-norm states). Obviously, by diagonal-
izing the metric N in Eq. (28) one can obtain a positive-
norm subspace. Unfortunately, that subspace is not closed
under SOð2; 3Þ transformations, since logarithmic repre-
sentations are indecomposable. It is amusing to check
explicitly this property by verifying that a positive-norm
subspace is not even closed under time evolution. In fact,
its vectors must be linear combinations of log modes
and gravity modes. Consider, in particular, a mode of
frequency !: jc i ¼ jc si þ j�Ei, c s ¼ fðt; �Þc E.
Under a time translation t ! tþ 
, it transforms into
c ðtÞ ! c ðtþ 
Þ ¼ expð�i!
Þðc þ i
c EÞ. Equation
(21) says that hc sjc Ei ¼ chc Ejc EiE, where hjiE is the
scalar product in Einstein gravity and c is a positive
constant; so the scalar product hc ðtþ 
ÞjNjc ðtþ 
Þi is
independent of 
. Now consider the linear combination
c ðtÞ þ Cc ðtþ 
Þ. Its norm is

hc ðtÞ þ Cc ðtþ 
ÞjNjc ðtÞ þ Cc ðtþ 
Þi
¼ ðCC� þ 1Þhc jc i þ 2hc jc iReðCe�i!
Þ

þ �2chc Ejc EiE Imð
Ce�i!
Þ: (29)

The right-hand side in this equation becomes negative for
C � 0 and 
 large.
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