
Quasitopological Lifshitz black holes

W.G. Brenna,1,2,* M.H. Dehghani,3,4,† and R. B. Mann1,‡

1Department of Physics & Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
2Department of Physics and Engineering Physics, University of Saskatchewan, 116 Science Place, Saskatoon, Saskatchewan S7N 5E2

3Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454, Iran
4Research Institute for Astrophysics and Astronomy of Maragha (RIAAM), Maragha, Iran

(Received 1 February 2011; published 7 July 2011)

We investigate the effects of including a quasitopological cubic curvature term to the Gauss-Bonnet

action to five-dimensional Einstein gravity coupled to a Proca field and search for solutions with

asymptotically Lifshitz scaling symmetry. We find that a new set of Lifshitz black hole solutions exist

that are analogous to those obtained in third-order Lovelock gravity in higher dimensions. No additional

matter fields are required to obtain solutions with asymptotic Lifshitz behavior, though we also investigate

solutions with matter. Furthermore, we examine black hole solutions and their thermodynamics in this

situation and find that a negative quasitopological term, just like a positive Gauss-Bonnet term, prevents

instabilities in what are ordinarily unstable Einsteinian black holes.
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I. INTRODUCTION

The concept of holography has proven to be enormously
fruitful for demonstrating interesting new connections
between disparate areas of physics. The basic idea is that
gravitational dynamics in a given dimensionality can be
mapped onto some other (nongravitational) field theory of
a lower dimensionality. Holography has been most thor-
oughly explored in the context of the AdS/CFT correspon-
dence conjecture, in which a large volume of calculational
evidence indicates that a (relativistic) conformal field the-
ory (CFT) can be mapped to gravitational dynamics in an
asymptotically anti-de Sitter (AdS) spacetime of one larger
dimension [1].

Over the past few years it has become clear that holo-
graphic concepts cover a much broader conceptual terri-
tory. For example, holographic renormalization has been
shown to be a useful tool for understanding conserved
quantities and gravitational thermodynamics in both asym-
ptotically de Sitter [2] and asymptotically flat spacetimes
[3]. Much more recently holography has been extended
to describe a duality between a broad range of strongly
coupled field theories and gravity in the context of QCD
quark-gluon plasmas [4], atomic physics, and condensed
matter physics [5–7].

Gravity-gauge duality is evidently a robust concept, and
its full implications for physics (for example, in elucidating
the strong coupling behavior of the nongravitational theo-
ries noted above) remain to be understood. One line of
investigation has been concerned with Lifshitz field theo-
ries, which have an anisotropic scaling of the form

t ! �zt; r ! ��1r; x ! �x (1)

exhibited by fixed points governing the behavior of
various condensed matter systems. Such scaling offers
some promise for further extending holographic duality
between condensed matter physics and gravity. While for
z ¼ 1 this scaling symmetry is the familiar conformal
symmetry, for z ¼ 3, theories with this type of scaling
are power-counting renormalizable, possibly providing a
UV completion to the effective gravitational field theory
[8]. For solutions with asymptotically Lifshitz scaling
symmetry, the natural spacetime metric is

ds2 ¼ � r2z

L2z
dt2 þ L�2

�
dr2

r2
þ r2d�2

�
(2)

noted earlier in a braneworld context [9].
AD-dimensional anisotropic scale invariant background

using an action that couples gravity to a massive gauge
field [or alternatively to 2-form and dualized (D� 1)-form
field strengths with a Chern-Simons coupling] can be con-
structed that has solutions with the asymptotic behavior (2)
[10]. An early example [11] for an extended class of
vacuum solutions for a sort of higher-dimensional dilaton
gravity with general z was soon followed by the discovery
of black hole solutions, both exact (for z ¼ 2) [12] and
numerical (for more general values of z) [12–15].
Since in general one expects quantum-gravitational ef-

fects to induce corrections to the Einstein action, it is
natural to consider modifying the gravitational part of the
action with higher-derivative terms due to additional
powers of the curvature. Such terms must be considered
on the gravity side of the duality conjecture in order to
study CFTs with different values for their central charges.
Here, Lovelock gravity theories play a special role in that
the number of metric derivatives in any field equation is
never larger than 2. Furthermore, third-order Lovelock
gravity is supersymmetric, and therefore one can define
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superconformal field theories via the AdS/CFT correspon-
dence [16,17].

The addition to the action of a term cubic in curvature
is not new, but asymptotic Lifshitz solutions in Lovelock
gravity coupled to a massive Abelian gauge field were
only recently discovered [18]. For a suitable choice of
coupling constant, one can dispense with this massive
gauge field, since the additional Lovelock terms can
play the role of the desired matter. Some new exact
black hole solutions were obtained as well as a broad
class of numerical solutions, and asymptotic Lifshitz
solutions with curvature-squared terms in the action
have also been investigated [19–22]. Somewhat remark-
ably, the relationship between the energy density, tem-
perature, and entropy density is unchanged from
Einsteinian gravity [23] even though the subleading
large-r behavior of Lovelock-Lifshitz black branes dif-
fers substantively from their Einsteinian Lifshitz coun-
terparts [12,15]. The relationship between entropy and
temperature is also the same as the Einsteinian case,
apart from a constant of integration that depends on the
Lovelock coefficients.

The hallmark feature of Lovelock theories is that no field
equation has more than two derivatives of any metric
coefficient. However, a new cubic curvature term was
recently introduced that can perhaps be regarded as a
generalization of Lovelock gravity in five dimensions
[24,25]. The generality arises from a spherical symmetry
requirement: the field equations will generally reduce to a
second-order system of differential equations when the
metric is spherically symmetric.

This particular class of correction terms has been coined
quasitopological gravity, since in some ways they behave
like topological invariants in six dimensions, yet for non-
spherical geometries, they contribute nontrivially to the
action. Furthermore, there are no Lagrangians that are
cubic in curvature in four dimensions for spherical sym-
metry that lead to second-order differential equations.

Quasitopological gravity has been previously studied in
the case of planar AdS black holes. In this paper we
investigate the implications of this new term for asymptoti-
cally Lifshitz spacetimes. We shall refer to this class of
solutions as quasitopological Lifshitz solutions.
Specifically, we examine the effects of higher-curvature

modifications to Einsteinian gravity to asymptotically
Lifshitz metrics, both with and without massive back-
ground Abelian gauge fields. We find that the quasitopo-
logical field equations replicate those from third-order
Lovelock gravity [18], provided the quasitopological pa-
rameter � is appropriately renormalized. We find that in-
deed, asymptotic Lifshitz black holes exist in both cases.
We obtain both exact solutions and numerical ones, the
latter obtained via the shooting method. We close with a
short discussion of the relevant thermodynamics and con-
served quantities of our black hole solutions.

II. QUASITOPOLOGICAL GRAVITY

The quasitopological additions consist of third-order
curvature corrections to Gauss-Bonnet gravity that main-
tain second-order field equations with respect to the metric
under conditions of spherical symmetry. We use the action

I ¼
Z

dDx
ffiffiffiffiffiffiffi�g

p �
�2�þL1 þ �L2

ðD� 3ÞðD� 4ÞL2

� 8�L4

ðD� 3ÞðD� 6ÞL3 � 1

4
F��F

�� � 1

2
m2A�A

�

�
;

(3)

where D is the number of dimensions (larger than four and
different from six), F�� ¼ @½�A��, � and � are the correc-

tion terms’ coefficients, L1 ¼ R is the Ricci scalar, L2 ¼
R����R

���� � 4R��R
�� þ R2 is the Gauss-Bonnet

Lagrangian, and L3 is the quasitopological gravity correc-
tion. This quasitopological gravity correction has the form

L3 ¼ 2D� 3

3D2 � 15Dþ 16
R�

�
�
�R�

�
�
�R�

�
�
� þ 3

ðD� 4Þð3D2 � 15Dþ 16Þ
�
3D� 8

8
R����R

����R

� ðD� 2ÞR����R
���

�R
�� þDR����R

��R�� þ 2ðD� 2ÞR�
�R�

�R�
� � 3D� 4

2
R�

�R�
�RþD

8
R3

�
: (4)

This term is only effective in dimensions greater than four,
and it becomes trivial in six dimensions [25].

Rather than write down the full tensorial expression for
the field equations, as we are interested only in spherically
symmetric solutions we will insert the asymptotically
Lifshitz metric,

ds2 ¼ � r2z

L2z
fðrÞdt2 þ L2dr2

r2gðrÞ þ r2d�2; (5)

into the action and then functionally vary it, obtaining
(after eliminating redundancies) three equations of motion

for the two metric functions and the gauge field. Boundary
conditions require that fðrÞ and gðrÞ asymptotically reach
unity. The term d�2 is the metric for a constant curvature
hypersurface,

d�2¼d	1
2þk�1sin2ð ffiffiffi

k
p

	1Þ
�
d	2

2þ XD�2

i¼3

Yi�1

j¼2

sin2	jd	i
2

�
;

(6)

where parameter k is either �1, 0, or 1, providing
hyperbolic, flat, and spherical geometries, respectively.
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For k ¼ 0 a coordinate transformation will reduce this to
the form

P
D�2
k d	k

2. Symmetry requirements imply that

the gauge field ansatz is

At ¼ q
rz

Lz hðrÞ; (7)

with all other components vanishing.

Now that the formalism has been specified, we restrict
our considerations to five dimensions and so (unless other-
wise stated) the following results are only valid D ¼ 5.
Rather than carry out a full variational principle, we insert
the ansatz (5) and (7) into the action, obtaining the effec-
tive action

I ¼
Z

d4x
Z

dr
rz�1

kLzþ1

ffiffiffi
f

g

s ��
3r4

���

6
L2 � 
þ �
2 þ�
3

��0 þ q2r3

2f
ðgðrh0 þ zhÞ2 þm2L2h2Þ

�
(8)

for the spherically symmetric case, where 
 ¼ ðg� L2

r2
kÞ.

Functionally varying (8) with respect to gðrÞ, fðrÞ, and hðrÞ, respectively, yields upon simplification

�L2r6 þ ð3zþ 3Þr6g� 6z�r6g2 þ 6z�r4L2kg� 3r4L2k� ð9z� 3Þ�r6g3 þ ð18z� 9Þ�r4L2kg2

� ð9z� 9Þ�L4k2r2g� 3�L6k3 þ gðlnfÞ0
�
3

2
r7 � 3�r7gþ 3�r5L2k� 9

2
�r7g2 þ 9�r5gL2k� 9

2
�r3L4k2

�

¼ q2r6

4f
½gðrh0 þ zhÞ2 �m2L2h2� (9)

�
3r4

�
��

6
L2 � 
þ �
2 þ�
3

��0 ¼ q2r3

2f
½gðrh0 þ zhÞ2 þm2L2h2� (10)

2r2h00 � r½ðlnfÞ0 � ðlngÞ0�ðrh0 þ zhÞ þ 2ðzþ 4Þrh0 þ 6zh ¼ 2m2L2 h

g
; (11)

where a prime (0) represents differentiation with respect to
the radial coordinate r.

Before trying to find solutions to the above equations,
we present a first integral for the above equations of
motion. It is a matter of calculation to show that this
conserved quantity can be written as

C0¼½ð1�2�g�3�g2Þðrf0 þ2ðz�1ÞfÞ�q2ðzhþrh0Þh�

�rzþD�2

Lzþ1

�
f

g

�
1=2

; (12)

with details of this result given in Appendix A. For z ¼ 1,
fðrÞ ¼ gðrÞ and the constant reduces (in the matter-free
case) to

C 0 ¼ rD

L2
ðf� �f2 ��f3Þ0;

which is proportional to the mass of black hole.

III. BLACK HOLES

A. Matter-free solutions

Setting hðrÞ ¼ 0, we first consider the existence of
solutions of the form

ds2 ¼ � r2z

L2z
dt2 þ L2dr2

r2
þ r2

X3
i¼1

d	2i ; (13)

where k ¼ 0. This is a Lifshitz analogue of flat space for
asymptotically flat solutions, whose properties have been
discussed elsewhere [26]. We shall refer to such solutions
as ‘‘Lifshitz solutions.’’
For the metric (13) the field equations (9) and (10) imply

� ¼ � 2

L2
ð2� �Þ; � ¼ 1

3
ð1� 2�Þ; (14)

independent of our choice of z. These constraints reduce to
those of five-dimensional Gauss-Bonnet gravity [18],

� ¼ � 3

L2
and � ¼ 1

2
; (15)

when � ¼ 0. Note that the same constraints are necessary
to ensure the existence of asymptotic Lifshitz solutions if
k � 0.
With the above constraints, the exact Lifshitz solution

[that is, fðrÞ ¼ gðrÞ ¼ 1] is a solution to the field equations
for any value of z. Equation (10) with the condition (14)
reduces to

2� �� 3
þ 3�
2 þ ð1� 2�Þ
3 ¼ C

r4
; (16)
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where C is a constant of integration. For C ¼ 0, 
 ¼ 1 or

gðrÞ ¼ 1þ kL2

r2
(17)

yielding the only solution of Eq. (16) that has the desired
asymptotic behavior. The function fðrÞ is not restricted by
Eq. (9). This degeneracy of the field equations has been
noted previously in five-dimensional Einstein-Gauss-
Bonnet gravity with a cosmological constant [27] and
third-order Lovelock gravity [18]. In the Gauss-Bonnet
case, it was shown that there exists a degenerate set of
solutions where fðrÞ is left unspecified, while for certain
values of the Gauss-Bonnet parameter, fðrÞ ¼ gðrÞ. In our
case, this degeneracy is lifted when matter is present, and
we obtain a family of solutions that become unique for a
specific field strength, as we shall see.

Choosing fðrÞ ¼ gðrÞ (as in Lovelock gravity [18])
yields for k ¼ �1 an event horizon, and consequently
the metric

ds2 ¼ � r2z

L2z

�
1� L2

r2

�
dt2 þ L2dr2

r2ð1� L2

r2
Þ þ r2d�2

�1 (18)

which is an exact black hole solution.
For C � 0, one can find 
 and therefore gðrÞ, but upon

inserting this solution in Eq. (9), we find that the solution
for fðrÞ does not exhibit the desired asymptotic behavior.
We find, with one exception, no other exact solutions to
the field equations for these symmetries and asymptotic
behavior.

The exception is z ¼ 1 (AdS), for which an exact
solution can be found. The requirements that fðrÞ ¼ gðrÞ
and hðrÞ ¼ 0 produce exact solutions dependent on � if
� ¼ 0 [28]. Setting � � 0, we first seek solutions for
z ¼ 1 without any background gauge field. Restricting
fðrÞ ¼ gðrÞ and setting hðrÞ ¼ 0, the field equation (11)
disappears, while Eqs. (9) and (10) are not independent and
can be analytically solved. The result is

fðrÞ ¼ gðrÞ

¼ kL2

r2
� �

3�
þ 1

12�r2

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ J2ðrÞ

q
þ JðrÞ

�
1=3

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�þ J2ðrÞ
q

� JðrÞ
�
1=3

�
; (19)

where we define

� ¼ �ð16r4ð3�þ �2ÞÞ3

JðrÞ ¼ 16r6
�
4�3 þ 18��� 9�2�L2 � 18

M�2

r4

� (20)

and M is a constant of integration. This solution matches
the form of one obtained in third-order Lovelock gravity
forD> 6 [28], as our field equations are of the same form.
With this exact solution, we are able to compare results
with the numerical algorithm.

B. Matter solutions

In the presence of a massive gauge field [hðrÞ � 0] the
Lifshitz solution (13) is also supported by quasitopological
gravity provided

q2 ¼ 2ðz� 1Þð1� 2�� 3�Þ
z

m2 ¼ 3z

L2

� ¼ � 1

2L2
½ð1� 2�� 3�Þð2zþ z2Þ þ 9� 6�� 3��

� <
1

2
ð1� 3�Þ; (21)

where the last constraint arises because we require q2 > 0.
This in turn implies

3�ðzþ 1Þ2 � ðz2 þ 2zþ 9Þ
2L2

� � � � 3

2L2
ð1þ�Þ

provided � > 0, as is normative for Gauss-Bonnet gravity
in the context of heterotic string theory [29].
We look for black hole solutions using both near-horizon

and asymptotic series expansions of the metric and gauge
functions. The near-horizon series solutions are then used
to obtain initial conditions for the numerical solution of
the field equations. The restrictions on fðrÞ and gðrÞ now
become more rigid: these functions must not only approach
unity as r ! 1 (to satisfy the asymptotically Lifshitz
boundary conditions) but they must also tend towards
zero as r ! r0 in order to ensure an event horizon exists.
First, we will show that series representations exist near
and far from the horizon, and then we present a set of
solutions obtained by numerically solving the differential
equations (9)–(11).

1. Series solutions

We begin by searching for well-behaved black hole
solutions in a near-horizon regime. Our ansatz requires
that the metric functions go to zero linearly near the
horizon r ¼ r0:

fðrÞ ¼ f1fðr� r0Þ þ f2ðr� r0Þ2 þ f3ðr� r0Þ3 þ � � �g;
gðrÞ ¼ g1ðr� r0Þ þ g2ðr� r0Þ2 þ g3ðr� r0Þ3 þ � � � ;
hðrÞ ¼ f1=21 fh0 þ h1ðr� r0Þ þ h2ðr� r0Þ2

þ h3ðr� r0Þ3 þ � � �g; (22)

andwe find that the substitution of this ansatz into our equa-
tions of motion results in h0 ¼ 0 and a restriction on g1:

g1¼ z

r0
3
f3�ðr06ðz�1Þ2þ4zr0

6�2L6k3Þ

þ2�r0
6ððzþ1Þ2þ2Þ�r0

4ðr02ðzþ1Þ2þ8r0
2þ6L2kÞg

�½3�ðð1�zÞh12r05�3L4k2zÞþ2�ðð1�zÞr05h12
þ3zL2kr0

2Þþððz�1Þh12r05þ3zr0
4Þ��1: (23)
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We are left with two free parameters, h1 and f1, and
values for these are selected to ensure proper asymptotic
behavior for large r. All of the other terms in the expansion
are solvable in terms of these two parameters.

Solutions at large r can be obtained by linearizing the
system, using the ansatz

fðrÞ ¼ 1þ "feðrÞ;
gðrÞ ¼ 1þ "geðrÞ;
hðrÞ ¼ 1þ "heðrÞ;

(24)

yielding rather lengthy expressions for the leading terms.
We have relegated these to Appendix C.

2. Numerical solutions

We will find it easier to obtain numerical solutions by
writing

dh

dr
� jðrÞ; (25)

in which case the set of differential equations (9)–(11) can
be written as

dj

dr
¼ zhð3� 2gÞ � z2hg� rjgð2zþ 3Þ

gr2
� L0

r2h2ðzhþ rjÞðz� 1Þ
fgH

df

dr
¼ 1

3zr3gH
f3½4þ 6ðz� 1Þ�z�r6fg3 þ 3zr4½�3k�L2ð4z� 2Þ þ ð4zÞ�r2�fg2

� 3zr2½3ð2z� 2Þk2�þ 4zk�L2r2 þ ð2zþ 2Þr4�fg� z�f½3ðz� 1Þ2 þ 12z�r6 � 6k3L6gf
� z�r2f½2ðz� 1Þ2 þ 8zþ 4�r4gfþ zr4f½ðz� 1Þ2 þ 4zþ 8�r2 þ 6kL2gfþ ðz� 1ÞL0r

6½ðzhþ rjÞ2g� 3zh2�g
dg

dr
¼ 1

3zr3fH
f12z�r6fg3 þ 3zr4½�6L2k�þ 4�r2�fg2 � 3zr2½4k�L2r2 þ 4r4�fg

� z�f½3ðz� 1Þ2 þ 12z�r6 � 6k3L6gf� z�r2f½2ðz� 1Þ2 þ 8zþ 4�r4gf
þ zr4f½ðz� 1Þ2 þ 4zþ 8�r2 þ 6kL2gfþ ðz� 1ÞL0r

6½ðzhþ rjÞ2gþ 3zh2�g; (26)

where for simplicity we define L0 ¼ �1þ 2�þ 3� and
H ¼ r4 þ 2�r2ðkL2 � r2gÞ � 3�ðkL2 � r2gÞ2.

Equations (25) and (26) form a system of four coupled
first order ordinary differential equations. With these ordi-
nary differential equations, initial conditions are chosen
from the series solution (evaluated just beyond the hori-
zon), and then the shooting method (explained in [12,15])
is used to obtain solutions.

We consider values of � and � that guarantee positivity
of the energy flux in the dual conformal field theory [30]
when z ¼ 1. For z � 1 the dual theory is not well under-
stood and the analogous allowed ranges of � and � are not
known. Furthermore, microscopic constraints such as pos-
itivity of energy and causality are not necessarily respon-
sible for setting the lower bound on the ratio of shear
viscosity to entropy density in the plasma, since hydro-
dynamic transport is determined by the infrared properties
of the system, which do not necessarily enter into the
microcausality analysis of the theory [31]. However, for
the most part we shall employ the same values of � and �
as for the z ¼ 1 case, noting departures from these values
for illustrative purposes as appropriate.

The specific case z ¼ 1 eliminates the charge q, and the
solution is given by Eq. (19) with fðrÞ ¼ gðrÞ. Solving the
system (9)–(11) yields numerical solutions.

We can check the validity of our numerical approach
by comparing this to the exact solution in Eq. (19).

For example, for r0 ¼ 0:9, and k ¼ 0 we see from
Fig. 1 that the two curves (numerical and analytic) are
coincident. To be certain, we tested equality of the two
approaches for�¼�0:001, � ¼ 0:04, k¼0, and r0¼1:5.
Evaluating between r ¼ 1:51 and r ¼ 15 at intervals
of 0.01, we find that the two solutions differ by no more
than 10�7.

FIG. 1 (color online). Comparison of analytic versus numeri-
cal solution for fðrÞ, where r0 ¼ 0:9, � ¼ 0:04, � ¼ �0:001,
and k ¼ 0. The two curves are identical to one part in 10�7.
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For z � 1, we numerically obtain solutions for large,
medium, and small values of r0 over a broad range of
initial values of the field strength (h1). The quantity f1 is
then fixed by asymptotic conditions. For a given value of
h1, we find that large black holes are asymptotic to func-
tions that monotonically tend to unity, whereas the metric
functions for small black holes exhibit a spike in magni-
tude before settling down. However, due to the extra degree
of freedom in the gauge field strength, we can obtain a
family of solutions (and control the spike) by varying h1,
subsequently adjusting f1 to satisfy the asymptotic con-
ditions. In Fig. 2, we see the result of varying the initial
value of h1 from 2.6 (dashed solution) to 2.8 (solid solu-
tion). For these the initial values of f1 remained constant at
2.0. Note that the initial spike present for h1 ¼ 2:6 vanishes
for h1 ¼ 2:8.

In Fig. 3, we plot the metric and gauge functions for
a large black hole. All three functions monotonically
increase from zero at the horizon to unity for large r.
Within numerical precision the convergence to unity can
be arbitrarily controlled; our plots were produced with
convergence of at least one part in 10�7. This convergence
to unity takes place for all metric functions we have
calculated; we shall omit the large-r behavior of the metric
and gauge functions in all subsequent diagrams and illus-
trate their behavior only for small and medium values of r.

Figure 4 shows a medium black hole (r0 ¼ 2:4), where
the dashed line is Einsteinian gravity and the dotted line is
quasitopological gravity. Here, due to the more favorable
scale, we see that the solution for hðrÞ is noticeably differ-
ent. The scale is still too large to see any effect on the gðrÞ
solution, however.

We can see from Fig. 5 that for small black holes,
fðrÞ spikes sharply. The plot shows a comparison be-
tween Einsteinian gravity (dashed), Gauss-Bonnet gravity
(solid), and quasitopological gravity (dotted) for k ¼ �1.
Small black holes for k ¼ 0 and k ¼ 1 exhibit similar
behavior.
The plot in Fig. 6 better shows the effect of larger values

of � and �, elucidating how the quasitopological term
really affects solutions.

FIG. 3 (color online). Large black hole (k ¼ 1) of r0 ¼ 5:0, where � ¼ 0:04 and � ¼ �0:001, with fðrÞ, gðrÞ, hðrÞ versus r
respectively in magenta, green, and blue for z ¼ 2. The left/right figures show the behavior for small/large values of r to demonstrate
the convergence to unity; note that all three functions are barely distinguishable at the large distance scale.

FIG. 2 (color online). Comparison of two sets of z ¼ 2 solu-
tions for h1 ¼ 2:6 (dashed) and h1 ¼ 2:8 (solid) for � ¼ 0:1 and
� ¼ 0:001, where fðrÞ, gðrÞ, hðrÞ are plotted versus r respec-
tively in magenta, green, and blue.
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IV. THERMODYNAMICS

In this section we generalize from five to D dimensions
to study the thermodynamic behavior of the solutions we
obtain. The Iyer/Wald prescription for black hole entropy
is [32,33]

S¼�2�
I
dD�2x

ffiffiffi
~g

p
Yabcd�̂ab�̂cd; whereYabcd¼ @L

@Rabcd

;

(27)

where �̂ab is the binormal to the horizon and L is the
Lagrangian, with Latin indices denoting quantities pro-
jected onto the horizon surface. For the static black holes
considered here, Y ¼ Yabcd�̂ab�̂cd is constant on the hori-
zon and so the entropy is given simply as

S ¼ �2�Y
Z

dD�2x
ffiffiffi
~g

p
; (28)

where the integration is done on the (D� 2)-dimensional
spacelike hypersurface of the Killing horizon with induced
metric ~gab (whose determinant is ~g). Although the asymp-
totic behavior of our solution is different from Ref. [25]
and fðrÞ � gðrÞ, we obtain the same result:

Sk ¼ A

4GD

�
1þ 2ðD� 2Þ

D� 4
�k

L2

r20
� 3ðD� 2Þ

D� 6
�k2

L4

r40

�
;

(29)

where D is the number of dimensions and A is the surface
area of the black hole (since our metric is spherically
symmetric, the surface area will be proportional to rD�2

0 ).

The temperature of the black holes is found by ensuring
regularity at the horizon after Wick rotation; we obtain

T ¼
�
rzþ1

ffiffiffiffiffiffiffiffiffi
f0g0

p
4�Lzþ1

�
r¼r0

: (30)

This quantity can be numerically calculated, and plotted
against entropy on a logarithmic scale, to study stability of
the black holes. A negative slope indicates that the black
hole will not be in thermal equilibrium and so must decay.

FIG. 4 (color online). Medium black hole of radius r0 ¼ 2:4
(k ¼ 0); here � ¼ 0:04 and � ¼ �0:001, and fðrÞ, gðrÞ, hðrÞ
versus r for z ¼ 2 respectively in magenta, green, and blue. The
dotted line is Einsteinian gravity and the solid line is quasitopo-
logical gravity.

FIG. 5 (color online). Small black hole r0 ¼ 0:9 (k ¼ �1),
where � ¼ 0:04 and � ¼ �0:001, with fðrÞ, gðrÞ, hðrÞ versus r
for z ¼ 2 respectively in magenta, green, and blue for
Einsteinian gravity (dashed), Gauss-Bonnet gravity (solid), and
quasitopological gravity (dotted).

FIG. 6 (color online). Medium z ¼ 2 black hole (r0 ¼ 2) with
� ¼ 2:5 and � ¼ �10 for k ¼ �1 where Einsteinian gravity is
solid, Gauss-Bonnet gravity is dashed, and quasitopological
gravity is dotted. Similar to above, fðrÞ, gðrÞ, hðrÞ are magenta,
green, and blue.
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A. Stability of AdS black holes

Plotting the solution for z ¼ 1 in five dimensions, which
can be checked with the analytic case, we obtain Fig. 7,
where we use � ¼ 0:4 and � ¼ �0:001. The solid line is
quasitopological gravity, while dots correspond to Gauss-
Bonnet and crosses are Einsteinian. The parameter k varies
between �1, 0, 1, colored green, blue, and magenta, re-
spectively. Up to the black hole sizes for which we are able
to find valid numerical solutions, we see no evidence of
unstable black holes for any value of k. In the Einsteinian
case we see that small black holes will become unstable for
k ¼ 1, so it is expected that for sufficiently small values of
� and �, the solution will be one of small, unstable black
holes.

To see what effect the sign of the quasitopological
parameter has on black hole stability, we plotted a similar
set of curves for a positive value of� ¼ 0:001. This plot is
shown in Fig. 8. We see that for k ¼ þ1 sufficiently small
black holes are thermodynamically unstable.

B. Stability of quasitopological Lifshitz
black holes

For z ¼ 2, we also plot logðTÞ versus logðSÞ in Figs. 9
and 10. Note that these plots are also specific to the five-
dimensional case. For large black holes, it appears that by
varying z we do not change the temperature-entropy rela-
tionship, but instead merely introduce a scaling factor to
both entropy and temperature terms. It is also apparent
that in both cases, positive Gauss-Bonnet and quasito-
pological terms will both introduce an instability in
k ¼ þ1 black hole solutions. We find that a sufficiently
negative quasitopological term partly counteracts the posi-
tive Gauss-Bonnet term in Fig. 9. Exploring larger positive
and negative values of � we find that sufficiently large
values of j�j can produce stable black holes, whereas we
obtain unstable k ¼ 1 black holes for sufficiently small
values of j�j.

FIG. 7 (color online). logðTÞ versus logðSÞ for z ¼ 1,
� ¼ 0:04, and � ¼ �0:001. The solid line is quasitopological
gravity, the dotted Gauss-Bonnet, and the dashed Einsteinian.
The parameter k varies between �1, 0, 1, colored turquoise, red,
and brown, respectively.

FIG. 8 (color online). logðTÞ versus logðSÞ for z ¼ 1, �¼0:04,
and�¼0:001. The parameter k varies between�1, 0, 1, colored
green, blue, and magenta, respectively.

FIG. 9 (color online). logðTÞ versus logðSÞ for z ¼ 2, � ¼
0:04, and � ¼ �0:001. The parameter k varies between �1,
0, 1, colored magenta, blue, and brown, respectively.

FIG. 10 (color online). logðTÞ versus logðSÞ for z ¼ 2,
� ¼ 0:04, and � ¼ �0:0003. The parameter k varies between
�1, 0, 1, colored magenta, black, and brown, respectively.
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V. CONCLUSIONS

It is well known that the third-order Lovelock term
(cubic in the Riemann tensor) does not appear in the
field equations in five dimensions as it is a topological
invariant. Terms cubic in curvature in general yield
higher-order differential equations for metric compo-
nents. Quasitopological gravity [25] is an exception to
this general rule—the cubic terms conspire to yield
second-order differential equations for spherically sym-
metric metrics.

The main result of our paper is to demonstrate that a
broad class of solutions—those that are asymptotically
Lifshitz—exist in quasitopological gravity in five dimen-
sions. We obtain a family of solutions dependent on two
parameters, one giving a measure of the gauge field
strength and the other the black hole radius. For a given
value of the gauge field strength, we found that there exists
a unique solution with asymptotic Lifshitz behavior.
Varying the gauge field strength, we found that there exists
a family of solutions for a given black hole radius. The r
dependence of these solutions varies considerably: the
metric functions can develop a ‘‘spike’’ by increasing
the gauge field strength. We also find that in general, the
quasitopological term acts similarly to the Gauss-Bonnet
term, but with opposite sign. When a negative Gauss-
Bonnet term decreases the magnitude of the spike, a posi-
tive quasitopological term will have the same effect. We
see this when a positive quasitopological parameter is
added to a Gauss-Bonnet solution that has decreased the
magnitude of an Einsteinian spike in gðrÞ: our quasitopo-
logical parameter further decreases the magnitude of the
spike.

We also investigated the thermal stability of these qua-
sitopological Lifshitz black holes. We found that a negative
quasitopological term, just like a positive Gauss-Bonnet
term, will prevent instabilities in what are ordinarily un-
stable Einsteinian black holes. For the asymptotically AdS
case (z ¼ 1), we found that for sufficiently negative values
of � the instabilities that arise in Einsteinian gravity
may be removed, in the same way that a sufficiently
positive Gauss-Bonnet term removes the small-r black
hole instability. The AdS solutions were seen to be un-
stable for positive values of �. With regard to the stabi-
lity of asymptotically Lifshitz solutions with z ¼ 2 in
Einstein gravity [12], we found that the quasitopological
term can remove instabilities provided the coefficient � is
of sufficient magnitude. Of course, a full stability study
would involve a thorough examination of the parameter
range for � and �.

It is clear that there is much to explore in quasitopolog-
ical gravity with its addition of new higher-order curvature
corrections. The implications of these corrections for the
dual theory remain an interesting subject for future
investigation.
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APPENDIX A: THE CONSERVED QUANTITY
ALONG THE RADIAL COORDINATE r

In this Appendix, we demonstrate the existence of a
constant C0, which conserved along the radial coordinate
r, and compute its form. Since there is no exact
quasitopological-Lifshitz solution (except under special
circumstances), we calculate it at the horizon and at
infinity.
Reparametrizing the metric with the relations

FðrÞ ¼ 1

2
lnfðrÞ þ z ln

r

L
;

GðrÞ ¼ � 1

2
lngðrÞ � ln

r

L
;

RðrÞ ¼ ln
r

L
;

HðrÞ ¼ lnhðrÞ þ z ln
r

L
;

(A1)

the metric becomes

ds2 ¼ �e2FðrÞdt2 þ e2GðrÞdr2 þ e2RðrÞ
1

L2
d�2 (A2)

whose form we insert into the action. Following a similar
method to Ref. [23], we integrate by parts and obtain a one-
dimensional Lagrangian L1D ¼ L1g þL1m as

L1g ¼ ðD� 2Þ
�
�2

�

D� 2
e2G þ ½2F0R0 þ ðD� 2ÞR02�

� �L2

3
½4F0R03 þ ðD� 5ÞR04�e�2G

��

5
L4½6F0R05 þ ðD� 7ÞR06�e�4G

�
eF�GþðD�2ÞR

L1m ¼ 1

2
q2ðm2 þH02e�2GÞe�FþGþðD�2ÞRþ2H: (A3)

We are then able to write the equations of motion in the
same manner as [23], obtaining the conserved quantity

C0 ¼ 2ðF0 � R0Þð1� 2�L2R02e�2G

� 3�L4R04e�4GÞeF�GþðD�2ÞR

� q2H0e�F�GþðD�2ÞRþ2H

¼ ½ð1� 2�g� 3�g2Þðrf0 þ 2ðz� 1ÞfÞ

� q2ðzhþ rh0Þh� r
zþD�2

Lzþ1

�
f

g

�
1=2

: (A4)

This derivation was performed using the form of the qua-
sitopological Lagrangian for D dimensions, given by (4),
and the form of the conserved quantity was checked
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explicitly for D from 7 through 11 to determine the
dimensionally independent form given. For any value of
z, this conserved quantity arises from the symmetry

FðrÞ
RðrÞ
GðrÞ
HðrÞ

0
BBB@

1
CCCA !

FðrÞ þ �
RðrÞ � �

D�2

GðrÞ
HðrÞ þ �

0
BBB@

1
CCCA: (A5)

For z ¼ 1, fðrÞ ¼ gðrÞ and the constant reduces to

C 0 ¼ rD

L2
ðf� �f2 ��f3Þ0:

APPENDIX B: NEAR-HORIZON SERIES
SOLUTION COEFFICIENTS

Here we write down the remaining coefficients of the
near-horizon series solution (22) up to second order.
Defining for simplicity L0 ¼ �1þ 2�þ 3�, we obtain

f2 ¼
�
�6g1r0

8

�
z

�
�g1 � 2

3
h1

2L0

�
þ 2

3
h1

2L0

�
þ 12zr0

7

�
z

�
g1 þ 1

2
L0h1

2

�
þ 3

4
g1 � 1

4
L0h1

2

�

þ 18zr0
6

�
1

9
L0z

2 þ 2

9
L0zþ 1

3
L0 þ�L2kg1

2

�
þ 24kL2g1�zr0

5

�
z� 1

4

�

� 36k2L4g1z�r0
3

�
z� 5

4

�
þ 24z�L6k3

�
ðr0ðL0h1

2g1r0
8 � 9zr0

7g1 � zr0
6ðL0z

2 þ 2L0zþ 3�þ 6�� 9Þ
� 18z�L2kg1r0

5 þ 6zL2kr0
4 þ 27L4k2�zr0

3g1 þ 6z�L6k3ÞÞ�1

g2 ¼ ð2g1r012ðL0ðg1 þ h1
2ðz2 þ 1ÞL0Þ þ zð�3g1

2�� 2h1
2g1L0 � 2h1

4L0
2ÞÞ � 3zg1r0

11ðzð2g1 þ 5L0h1
2Þ

� 13g1 þ 5h1
2L0Þ þ r0

10ð�2z4L0ðg1 þ h1
2L0Þ þ 2z3L0ð2g1 � h1

2L0Þ þ z2ð4L0L
2k�h1

2g1
2 þ g1ð42�þ 20�þ 2Þ

þ 2h1
2L0ð3�� 2�þ 7ÞÞ þ zð6g13L2kð3�� 2�2Þ � 8L2k�h1

2g1
2L0 þ g1ð24�þ 48�� 72Þ

þ 6h1
2L0ð�þ 2�� 3ÞÞ þ 4L2k�h1

2g1
2L0Þ � 6L2kzg1�r0

9ðzð4g1 þ 5h1
2L0Þ � 22g1 þ 5h1

2Þ
� 4L2kr0

8

�
z4�g1L0 � 2z3�g1L0 þ z2

�
3

2
�L2kh1

2g1
2L0 þ g1ð�3� �� 10�2 � 21��Þ � 3h1

2L0

�

þ z

�
� 27

2
kL2g1

3��� 3L0�L2kh1
2g1

2 þ 3g1ð�8�2 � 4��þ 12�þ 3Þ þ 3h1
2L0

�
þ 3

2
L0�L2kh1

2g1
2

�

þ 9L4zk2g1r0
7

�
z

�
g1

�
4�� 8

3
�2

�
þ 5�h1

2L0

�
þ g1ð�18�þ 12�2Þ � 5�h1

2L0

�
þ 6L4zk2g1r0

6ðz3�L0 � 2z2�L0 þ zð�21�2 ��� 10��þ 4�Þ � 9kL2�2g1
2 � 12�2 þ�ð36� 24�Þ � 12�Þ

þ 36�L6zk3g1
2�r0

5ð2z� 7Þ � 12�L6zk3r0
4ðzð2g1 � L0h1

2Þ � 8g1 þ h1
2L0Þ þ 27�2L8zk4g1

2r0
3ð2z� 5Þ

þ 24zg1�L8k4�r0
2ðz� 1Þ � 36zg1�

2L10k5ðz� 1ÞÞðr0ð�r0
4 � 2�L2kr0

2 þ 3L4k2�Þð�L0g1ðz� 1Þh12r08
þ 9zg1r0

7 þ zr0
6ðz2L0 þ 2zL0 þ 3�� 9þ 6�Þ þ 18z�L2kg1r0

5 � 6zL2kr0
4 � 27L4k2�zr0

3g1 � 6z�L6k3ÞÞ�1

h2 ¼ �h1ðr05ðzð�2g1 � h1
2L0Þ � 3g1 þ h1

2L0Þ þ 3zr0
4 � 4L2kg1�r0

3ð2zþ 3Þ þ 6z�L2kr0
2 þ 3�L4k2g1r0ð2zþ 3Þ

� 9L4k2�zÞðr02g1ð�2r0
4 � 4�L2kr0

2 þ 6L4k2�ÞÞ�1;

where g1 is given by (23). Each coefficient depends on the independent parameters r0 (the horizon radius) and h1
(proportional to the field strength at the horizon).

APPENDIX C: LARGE r SERIES SOLUTIONS

For large distances away from the black hole, r � L, we present here series solutions for five dimensions.
Considering first the ansatz in (24) for k ¼ 0, the field equations to first order in " imply

0 ¼ 2r2he
00 þ 2rhe

0ðzþ 4Þ þ zrðge0 � fe
0Þ þ 6zge

0 ¼ 2rðz� 1Þhe0 þ 3rge
0 þ ðz2 � zþ 12Þge þ ðzþ 3Þðz� 1Þð2he � feÞ

0 ¼ 2rðz� 1Þhe0 þ 3rfe
0 þ

�
z2 þ 51�þ 22�� 5

3�þ 2�� 1
z� 18�� 6

�
ge þ ðz� 3Þðz� 1Þð2he � feÞ:
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The solutions for feðrÞ, geðrÞ, and heðrÞ yield integer powers of r in a number of special cases. For heðrÞ, we find
heðrÞ ¼ C1r

�3�z þ rð�3�zÞ=2ðC2r
��=2 þ C3r

�=2Þ (C1)

feðrÞ ¼ D1r
�3�z þKrð�3�zÞ=2ðD2r

��=2 þD3r
�=2Þ (C2)

geðrÞ ¼ F 1r
�3�z þKrð�3�zÞ=2ðF 2r

��=2 þF 3r
��=2Þ; (C3)

where C1, C2, and C3 are integration constants, L0 is defined as in Appendix B, and

�2 ¼ fð�21�þ 2�� 9Þz2 þ ð18�� 20�þ 26Þzþ 51�þ 50�� 33gð�1þ 3�þ 2�Þ�1

D1 ¼ C1

2L0ðz� 3Þðz� 1Þ
2L0z

2 � ð1þ 6�þ 21�Þz� ð9þ 6�þ 45�Þ
D2 ¼ C2ðL1 þL2Þ
D3 ¼ C3ðL1 �L2Þ

F 1 ¼ C1

2L0ðzþ 3Þðz� 1Þ
2L0z

2 � ð1þ 6�þ 21�Þz� ð9þ 6�þ 45�Þ
F 2 ¼ C2ðL3 þL4Þ
F 3 ¼ C3ðL3 �L4Þ
L1 ¼ ðð1� 8�� 21�Þzþ 2þ 2�þ 12�Þðð36�2 þ ð132�� 28Þ�þ 9� 30�þ 153�2Þz2

þ ð�40�2 þ ð�72�þ 56Þ�þ 12�� 90�2 � 26Þzþ 68�2 þ ð�92þ 132�Þ�� 78�þ 33þ 81�2Þ1=2
L2 ¼ ð�8�2 þ ð�10� 78�Þ�� 153�2 � 24�þ 1Þz2 þ ð20�2 þ ð132�þ 4Þ�þ 5þ 261�2 þ 42�Þz

þ 6ð6�þ 15�� 1Þð�� 1Þ
L3 ¼ ðz� 1ÞL0ðð36�2 þ ð132�� 28Þ�þ 9� 30�þ 153�2Þz2 þ ð�40�2 þ ð�72�þ 56Þ�þ 12�� 90�2 � 26Þz

þ 68�2 þ ð�92þ 132�Þ�� 78�þ 33þ 81�2Þ1=2
L4 ¼ ðz� 1ÞL0ðð�1� 6�� 21�Þz� 3�� 10�þ 9Þ
K ¼ 1

2zð12z�� zþ 5z�þ �� 2� 3�ÞL0

:

For k ¼ �1, we can represent the asymptote functions as series

fðrÞ ¼ 1þ X2ðnþzÞ�3

i¼1

ai
ri

gðrÞ ¼ 1þ X2ðnþzÞ�3

i¼1

bi
ri

hðrÞ ¼ 1þ X2ðnþzÞ�3

i¼1

ci
ri
:

The coefficients can be determined from direct calculation. Because of the equivalence of our field equations, they match
the values obtained in third-order Lovelock gravity [18], once the substitutions �L4 ¼ �
̂3 and �L2 ¼ 
̂2 are made.

For z ¼ 2, we obtain nonzero coefficients only for the powers r�2, r�5, r�7, r�9. Just as in Lovelock gravity, at z ¼ 2, all
of the even powers of r until r�5 are present in the large r expansion of the asymptote functions.
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