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We intrinsically characterize separability of the Dirac equation in Kerr-NUT-(A)dS spacetimes in all

dimensions. Namely, we explicitly demonstrate that, in such spacetimes, there exists a complete set of

first-order mutually commuting operators, one of which is the Dirac operator, that allows for common

eigenfunctions which can be found in a separated form and correspond precisely to the general solution of

the Dirac equation found by Oota and Yasui [Phys. Lett. B 659, 688 (2008)]. Since all the operators in the

set can be generated from the principal conformal Killing-Yano tensor, this establishes the (up-to-now)

missing link among the existence of hidden symmetry, presence of a complete set of commuting

operators, and separability of the Dirac equation in these spacetimes.
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I. INTRODUCTION

The most general known stationary higher-dimensional
vacuum (including a cosmological constant) black hole
spacetimes with spherical horizon topology [1] possess
many remarkable properties, some of which are directly
inherited from the four-dimensional Kerr-NUT-(A)dS ge-
ometry [2]. The similarity stems from the existence of a
hidden symmetry associated with the principal conformal
Killing-Yano (PCKY) tensor [3]. Such a symmetry gener-
ates the whole tower of explicit and hidden symmetries [4],
which, in their turn, are responsible for many of the prop-
erties, including complete integrability of the geodesic
motion [5–7], a special algebraic type of the Weyl tensor
[8,9], the existence of a Kerr-Schild form [10], and sepa-
rability of various field perturbations. For reviews on the
subject, we refer to [11,12].

Especially interesting is a relationship between the ex-
istence of the PCKY tensor and separability of test field
equations in the background of general Kerr-NUT-(A)dS
spacetimes [1]. Namely, explicit separation of the
Hamilton-Jacobi and Klein-Gordon equations was demon-
strated by Frolov et al. [13], and the achieved separability
was intrinsically characterized by Sergyeyev and Krtouš
[14]. In their paper, the latter authors demonstrated that, in
Kerr-NUT-(A)dS spacetimes, in all dimensions, there ex-
ists a complete set of first-order and second-order operators

(one of which is the Klein-Gordon operator) that mutually
commute. These operators are constructed from second-
rank Killing tensors and Killing vectors that can all be
generated from the PCKY tensor. The common eigenfunc-
tion of these operators is characterized by operators’ ei-
genvalues and can be found in a separated form—it is
precisely the separated solution obtained by Frolov et al.
In fact, the demonstrated results provide a textbook ex-
ample of general theory discussed in [15–17].
Higher-spin perturbations of Kerr-NUT-(A)dS space-

times were also studied. Namely, general separation of
the Dirac equation in all dimensions was demonstrated
by Oota and Yasui [18], electromagnetic perturbations in
n ¼ 5 spacetime dimensions were studied in [19], and
separability of the linearized gravitational perturbations
was with increasing generality studied in [19–24]. (The
study of gravitational perturbations is very important, for
example, for establishing the (in)stability of higher-
dimensional black holes; see, e.g., recent papers [24,25]
and references therein; or, for the study of quasinormal
modes, e.g., [26] and references therein.) We also mention
a recent paper [27] on general perturbation theory in
higher-dimensional algebraically special spacetimes which
employs the higher-dimensional Geroch-Held-Penrose for-
malism [28] and attempts to generalize Teukolsky’s results
[29,30].
The aim of the present paper is to intrinsically character-

ize the result of Oota and Yasui [18]. Namely, we want to
demonstrate that, similar to the Klein-Gordon case [14],
separability of the Dirac equation in Kerr-NUT-(A)dS
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spacetimes in all dimensions is underlaid by the existence
of a complete set of mutually commuting operators, one of
which is the Dirac operator. The corresponding set of
operators was already studied and the mutual commutation
proved in [31]; the operators are of the first order and
correspond to Killing vectors and closed conformal
Killing-Yano tensors—all generated from the PCKY ten-
sor. In this paper, we pick up the threads of these results
and demonstrate that, in a properly chosen representation,
the common eigenfunction of the symmetry operators in
the set can be chosen in the tensorial R-separated form and
corresponds precisely to the separated solution of the Dirac
equation found by Oota and Yasui [18]. Our paper general-
izes the n ¼ 4 results of Chandrasekhar [32] and Carter
and McLenaghan [33] and the n ¼ 5 results of Wu [34,35].

A plan of the paper is as follows. In Sec. II, we review
the theory of the Dirac equation in curved spacetime while
concentrating on the commuting symmetry operators of the
Dirac operator. In Sec. III, we introduce the Kerr-NUT-(A)
dS spacetimes in all dimensions and summarize their basic
properties. Section IV is devoted to the discussion of a
complete set of the Dirac symmetry operators; an explicit
representation of these operators is found. Section V is the
principal section of the paper where the tensorial R sepa-
rability of the Dirac equation is discussed and the main
assertion of the paper is proved. In Sec. VI, we comment on
the possibility of introducing a different representation of
� matrices in which the standard tensorial separability
occurs. Section VII is devoted to conclusions. In the
Appendix, we gather necessary technical results.

II. DIRAC EQUATION IN CURVED SPACE

A. Dirac bundle

In what follows, we write the dimension of spacetime as

n ¼ 2N þ "; (2.1)

with " ¼ 0; 1 parametrizing the even, odd dimension, re-
spectively. The Dirac bundle DM has fiber dimension 2N .
If necessary, we use capital Latin indices for tensors from
the Dirac bundle. It is connected with the tangent bundle
TM of the spacetime manifold M through the abstract
gamma matrices �a 2 TM �D1

1M, which satisfy

�a�b þ �b�a ¼ 2gab: (2.2)

They generate an irreducible representation of the abstract
Clifford algebra on the Dirac bundle. All linear combina-
tions of products of the abstract gamma matrices (with
spacetime indices contracted) form the Clifford bundle
ClM, which is thus identified with the space D1

1M of all
linear operators on the Dirac bundle. The Clifford multi-
plication (‘‘matrix multiplication’’) is denoted by juxtapo-
sition of the Clifford objects. The gamma matrices also
provide the Clifford map �� and the isomorphism of the
exterior algebra �M and of the Clifford bundle,

! � ��! � X
p

1

p!
ð!pÞa1...ap�a1...ap : (2.3)

Here, ! ¼ P
p!p 2 �M is an inhomogeneous form, !p

its p-form parts, !p 2 �pM, and �a1...ap ¼ �½a1 � � ��ap�.
For future use, we also define an operator � as �! ¼P

pp!p.

We denote the Dirac operator both in the exterior bundle
and Dirac bundle as D:

D ¼ eara; D ¼ ��eara ¼ �ara: (2.4)

Here, ea 2 TM ��M is a counterpart of �a in the exterior
algebra, and r denotes the spinor covariant derivative. We
also denote by Xa the object dual to ea (see, e.g., the
Appendix of [31] for details on the notation).

B. First-order symmetry operators

First-order operators commuting with the Dirac operator
(2.4) were recently studied in all dimensions [31]. Namely,
we have the following result: The most general first-order
operator S which commutes with the Dirac operator D,
½D; S� ¼ 0, splits into the (Clifford) even and odd parts

S ¼ Se þ So; (2.5)

where

Se ¼ Kfo � Xa⌟fora þ �� 1

2�
dfo; (2.6)

So ¼ Mhe � ea ^ hera � n� �� 1

2ðn� �Þ �he; (2.7)

with fo being an inhomogeneous odd Killing-Yano form
and he being an inhomogeneous even closed conformal
Killing-Yano form.
On the Dirac bundle, these operators read (denoting by

Kfo ¼ ��Kfo and Mhe ¼ ��Mhe)

Kfo ¼
X
p odd

1

ðp� 1Þ!
�
�a1...ap�1ðfpÞaa1...ap�1

ra

þ 1

2ðpþ 1Þ2 �
a1...apþ1ðdfpÞa1...apþ1

�
; (2.8)

Mhe ¼
X

p even

1

p!

�
�aa1...apðhpÞa1...apra

� pðn� pÞ
2ðn� pþ 1Þ�

a1...ap�1ð�hpÞa1...ap�1

�
; (2.9)

where p-forms fp and hp (with fo ¼ P
p oddfp and

he ¼
P

p evenhp) are odd Killing-Yano and even closed

conformal Killing-Yano tensors, respectively. That is,
they satisfy the following equations:

raðfpÞa1...ap ¼ 1

pþ 1
ðdfpÞaa1...ap ; (2.10)
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raðhpÞa1...ap ¼ � p

n� pþ 1
ga½a1ð�hpÞa2...ap�: (2.11)

In an odd number of spacetime dimensions, the Hodge
duality of Killing-Yano tensors translates into the corre-
sponding relation of symmetry operators K and M.
Namely, let z be the Levi-Civita n-form satisfying
za1...anz

a1...an ¼ n!.1 Then, the Hodge dual of a p-form !

can be written as

�! ¼ ð�1Þðn�1Þpþ½p=2�z!; (2.12)

and, for the operators of type K and M, it holds that

Kzh ¼ ð�1Þn�1zMh; Mzf ¼ ð�1Þn�1zKf; (2.13)

where f is an odd Killing-Yano form and h an even closed
conformal Killing-Yano form.

III. KERR-NUT-(A)DS SPACETIMES

We shall concentrate on the Dirac equation in general
rotating Kerr-NUT-(A)dS spacetimes in all dimensions [1].
Slightly more generally, we consider the most general
canonical metric admitting a PCKY tensor [36,37] and
intrinsically characterize separability of the massive
Dirac equation in such a background.

The canonical metric is written as2

g ¼ XN
�¼1

�
dx�

2

Q�

þQ�

�XN�1

j¼0

AðjÞ
� dc j

�
2
�

þ "S

�XN
j¼0

AðjÞdc j

�
2
: (3.1)

Here, coordinates x� ð� ¼ 1; . . . ; NÞ stand for the (Wick

rotated) radial coordinate and longitudinal angles, and
Killing coordinates c k ðk¼0; . . . ;N�1þ"Þ denote time

and azimuthal angles associated with Killing vectors �ðkÞ

�ðkÞ ¼ @c k
; �ðkÞ � ð@c k

Þ[: (3.2)

We have further defined3 the functions (note that our sign
convention for U� differs from the one in [18])

Q� ¼ X�

U�

; U� ¼ Y
���

ðx2� � x2�Þ; S ¼ �c

AðNÞ ;

(3.3)

AðkÞ
� ¼ X

�1 ;...;�k
�1<���<�k;�i��

x2�1
� � � x2�k

; AðjÞ ¼ X
�1 ;...;�k

�1<���<�k

x2�1 � � � x2�k
:

(3.4)

Functions AðkÞ
� and AðjÞ can be generated as follows:

Y
�

ðt� x2�Þ ¼
XN
j¼0

ð�1ÞjAðjÞtN�j;

Y
�

���

ðt� x2�Þ ¼
XN
j¼0

ð�1ÞjAðjÞ
� tN�1�j;

(3.5)

and satisfy the important relations

X
�

AðiÞ
�

U�

ð�x2�ÞN�1�j ¼ �i
j;

X
j

AðjÞ
�

U�

ð�x2�ÞN�1�j ¼ ��
�:

(3.6)

The quantities X� are functions of a single variable x�,

and c is an arbitrary constant. The vacuum (with a cosmo-
logical constant) black hole geometry is recovered by
setting

X� ¼ XN
k¼"

ckx
2k
� � 2b�x

1�"
� þ "c

x2�
: (3.7)

This choice of X� describes the most general known Kerr-

NUT-(A)dS spacetimes in all dimensions [1]. The constant
cN is proportional to the cosmological constant, and the
remaining constants are related to angular momenta, mass,
and NUT parameters.
At points with x� ¼ x�, with � � �, the coordinates

are degenerate. We assume a domain where x� � x� for

� � �. In such a domain, we can always order and rescale
the coordinates in such a way that

x� þ x� > 0 and x� � x� > 0 for �< �: (3.8)

With this convention and assuming positive signature, we
have

U� ¼ ð�1ÞN��jU�j; X� ¼ ð�1ÞN��jX�j: (3.9)

We introduce the following orthonormal covector frame
Ea ¼ fE�; E�̂; E0g,

E� ¼ dx�ffiffiffiffiffiffiffi
Q�

p ; E�̂ ¼
ffiffiffiffiffiffiffi
Q�

q XN�1

j¼0

AðjÞ
� dc j;

E0 ¼ ffiffiffi
S

p X
j

AðjÞdc j;

(3.10)

1Note that ��ðzÞ is the ordered product of all n gamma
matrices and, in odd dimensions, it is proportional to a unit
matrix. See also Sec. IVA.

2We assume a Euclidean signature of the metric. The physical
signature could be obtained by a proper choice of signs of the
metric function, a suitable Wick rotation of the coordinates and
metric parameters, and a slight modification of various spinor-
related conventions.

3In what follows, we assume no implicit summing over
�; �; . . . and j; k; l; m; . . . indices. The explicit sums have, unless
specifically indicated otherwise, ranges 1; . . . ; N and 0; . . . ; N �
1þ ", respectively.
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and the dual vector frame Ea ¼ fE�; E�̂; E0g,

E� ¼
ffiffiffiffiffiffiffi
Q�

q
@x�;

E�̂ ¼
ffiffiffiffiffiffiffi
Q�

q X
j

ð�x2�ÞN�1�j

X�

@c j
;

E0 ¼ 1ffiffiffi
S

p
AðNÞ @c N

:

(3.11)

Note that E0 and E0 are defined only in an odd dimension.
In this frame, the metric reads

g ¼X
�

ðE� � E� þ E�̂ � E�̂Þ þ "E0 � E0; (3.12)

and the Ricci tensor is diagonal [9],

Ric ¼ X
�

r�ðE� � E� þ E�̂ � E�̂Þ þ "r0E
0 � E0;

(3.13)

where

r� ¼ � 1

2x�

�X
�

x2�ðx�1
� X̂�Þ;�
U�

þ "
X
�

X̂�

U�

�
;�
;

r0 ¼ �X
�

1

x�

�X
�

X̂�

U�

�
;�
;

(3.14)

and X̂� ¼ X� � "c=x2�. For the Einstein space, polyno-

mials (3.7) lead to a constant value r�.

The canonical metric (3.1) possesses a hidden symmetry
of the PCKY tensor [3]. In the basis (3.10), the PCKY
two-form reads

h ¼ XN
�¼1

x�E� ^ E�̂: (3.15)

This tensor generates the tower of closed conformal
Killing-Yano (2j)-forms (note that this definition differs
by the factorial from [31]):

hðjÞ ¼ 1

j!
h^j ¼ 1

j!
h ^ � � � ^ h; (3.16)

which, in their turn, give rise to Killing-Yano forms

fðjÞ ¼ �hðjÞ ¼ ð�1ÞjzhðjÞ: (3.17)

In the second equality, we have used (2.12). Killing-Yano
tensors (3.17) ‘‘square to’’ second-rank Killing tensors

kðjÞ ¼ X
�

AðjÞ
� ðE� � E� þ E�̂ � E�̂Þ þ "AðjÞE0 � E0:

(3.18)

Obviously, kð0Þ coincides with the metric, and hence it is a
trivial Killing tensor which we include in our tower; so, we
take j ¼ 0; . . . ; N � 1.

The PCKY tensor h generates also all the isometries
(3.2) of the spacetime. In particular, the primary Killing

vector � ¼ �ð0Þ is given by

�a ¼ 1

n� 1
rbh

ba; (3.19)

which can be written explicitly as

� ¼ X
�

ffiffiffiffiffiffiffi
Q�

q
E�̂ þ "

ffiffiffi
S

p
E0 ¼ @c 0

: (3.20)

It satisfies the important relation

� 1

n� 2jþ 1
�hðjÞ ¼ �[ ^ hðj�1Þ: (3.21)

In odd dimensions, we also have

�ðNÞ ¼ ð@c N
Þ[ ¼ ffiffiffiffiffiffiffi�c

p � hðNÞ ¼ ffiffiffiffiffiffiffi�c
p

fðNÞ: (3.22)

Let us finally mention that the explicit symmetries �ðkÞ

and hidden symmetries kðjÞ are responsible for complete
integrability of the geodesic motion, as well as for separa-
bility of the Hamilton-Jacobi equation in spacetimes (3.1).

Moreover, the corresponding operators fð�ðkÞÞara;

raðkðjÞÞabrbg form a complete set of commuting operators
which intrinsically characterize separability of the Klein-
Gordon equation in these spacetimes [14].

IV. COMPLETE SET OF DIRAC SYMMETRY
OPERATORS

A. Operators of the complete set

The canonical spacetime (3.1) admits a complete set of
first-order symmetry operators of the Dirac operator that
are mutually commuting [31]. These operators are deter-
mined by the tower of symmetries built from the PCKY
tensor h. Namely, they are given by (N þ ") Killing-Yano
one-forms �ðkÞ, (3.2), andN closed conformal Killing-Yano

forms hðjÞ, (3.16). In the exterior algebra notation, they read

Kk � K�ðkÞ ¼ Xa⌟�ðkÞra þ 1
4d�ðkÞ; (4.1)

for k ¼ 0; . . . ; N � 1þ ", and

Mj ¼ MhðjÞ � ea ^ hðjÞra � n� 2j

2ðn� 2jþ 1Þ�h
ðjÞ; (4.2)

for j ¼ 0; . . . ; N � 1. Note that the operator M0 corre-
sponds to the Dirac operator, M0 ¼ D. It is the aim of
this section to find an explicit representation of the action
of these operators on the Dirac bundle. As usual, we shall
denote it by the same letter, i.e., we write Kj ¼ ��Kj and

Mj ¼ ��Mj.

Let us remark here that, in odd dimensions, one has a
‘‘different choice’’ of operators commuting with the Dirac
operator—associated with (in this case, odd) Killing-Yano

tensors fðjÞ, (3.17). Using first relation (2.13), one finds that
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KfðjÞ ¼ ð�1ÞjzMj: (4.3)

Since, in our representation (introduced below), we shall
have ��ðzÞ ¼ iN , i.e., a trivial matrix, we can, without loss
of generality, consider only operators Mj. (Operators

KfðjÞ ¼ ð�1ÞjiNMj have the same eigenvectors.) In par-

ticular, due to (3.22), we have the following identification:

KN ¼ ð�iÞN ffiffiffiffiffiffiffi�c
p

MN; (4.4)

which shall be used in Sec. V.

B. Representation of � matrices and spinors

In the canonical spacetimes (3.1), the geometry deter-
mines a special frame Ea, (3.10). This frame can be lifted
to the frame #E in the Dirac bundle by demanding that the
abstract gamma matrices �a have constant components
ð�aÞAB, set to some special values. It was a key observation
of [18] that these components can be chosen as a tensor
product ofN two-dimensional matrices. In other words, the
special geometric structure of canonical spacetimes allows
us to represent the fiber of the Dirac bundle as a tensor
product of N two-dimensional spaces S, DM ¼ SNM,
with gamma matrices adjusted to hidden symmetry. We
use Greek letters 	; &; . . . for tensor indices in these two-
dimensional spaces and we use values 	 ¼ �1 (or just �)
to distinguish the components.

It means that we choose a frame #E in the Dirac bundle
in a tensor product form:

#E ¼ #	1...	N ¼ #	1 � � � � � #	N ; (4.5)

where #þ and #� form a frame in the two-dimensional
spinor space S. With such a choice, we have a natural
identification of Dirac indices E with the multi-index
f	1; . . . ; 	Ng.

A generic two-dimensional spinor can thus be written as

 ¼ 
þ#þ þ 
�#� ¼ 
	#	, with components being two
complex numbers


þ

�

� �
:

Similarly, the Dirac spinors c 2 DM can be written as
c ¼ c 	1...	N#	1...	N , with 2N components c 	1...	N .

Before we write down the gamma matrices in this frame,
let us introduce some useful notation. Let I, �, �, and �̂ be
the unit and, respectively, Pauli operators on S, i.e., their
action is given in components by

ðI
Þ	 ¼ 
	; ð�
Þ	 ¼ 	
	;

ð�
Þ	 ¼ 
�	; ð�̂
Þ	 ¼ �i	
�	:
(4.6)

In matrix form, they are written as

I	& �
1 0

0 1

 !
; �	& �

1 0

0 �1

 !
;

�	
& �

0 1

1 0

 !
; �̂	

& �
0 �i

i 0

 !
:

(4.7)

These operators satisfy the standard relations

�� ¼ ��� ¼ i�̂;

��̂ ¼ ��̂� ¼ i�;

�̂� ¼ ���̂ ¼ i�:

(4.8)

Next, for any linear operator � 2 S1
1M, we denote by

�h�i 2 D1
1M a linear operator on the Dirac bundle

�h�i � I � � � � � I � � � I � � � � � I; (4.9)

with� on the�th place in the tensor product. Similarly, for
mutually different indices �1; . . . ; �j, we define

�h�1...�ji � �h�1i � � � � � �h�ji: (4.10)

Now, we can finally write down the abstract gamma
matrices with respect to the frame Ea ¼ fE�; E�̂; E0g
chosen in tangent space,

�� ¼ �h1...��1i�h�i;

��̂ ¼ �h1...��1i�̂h�i;

�0 ¼ �h1...Ni;
(4.11)

where �0 is defined only in odd dimensions. This definition
essentially fixes the relation of the spinor frame #E to the
frame in the tangent space. It is straightforward to check
that the matrices (4.11) satisfy the property (2.2).
In components, the action of these matrices on a spinor

c ¼ c 	1...	N#	1...	N is given as

ð��c Þ	1...	N ¼
�Y��1

�¼1

	�

�
c 	1...ð�	�Þ...	N ;

ð��̂c Þ	1...	N ¼ �i	�

�Y��1

�¼1

	�

�
c 	1...ð�	�Þ...	N ;

ð�0c Þ	1...	N ¼
�YN
�¼1

	�

�
c 	1...	N :

(4.12)

We shall also use the relations

��̂ ¼ �i�h�i��; ���̂ ¼ i�h�i (4.13)

and the fact that ��ðzÞ ¼ ��1...�N�̂1...�̂N0 ¼ iNI.

C. Explicit form of the operators

Symmetry operators determined by Killing vectors are,
in general, equivalent to the Lie derivative lifted from the
tangent bundle to the Clifford or Dirac bundles. Thanks to
(3.2), we can thus write

DIRAC EQUATION IN KERR-NUT-(A)DS SPACETIMES: . . . PHYSICAL REVIEW D 84, 024008 (2011)

024008-5



Kk ¼ L�ðkÞ ¼ ð

@c k

; (4.14)

where ð
@c k

is a partial derivative along c k which acts only

on the components of the spinor in the frame #E described

above. That is, let 
 ¼ 
E#E be a spinor; then, Kk
 ¼
ð

@c k

 ¼ @
E

@c k
#E (cf. footnote 4).

The operators Mj, (4.2), must be lifted to the Dirac

bundle by using (2.3). Let us start with expressing the

action of a form given by � ^ hðjÞ, with � being a one-
form:

��ð�^hðjÞÞ¼ 1

j!ð2jþ1Þ!ð�^h^���^hÞa0a1...a2j�a0a1...a2j

¼ 1

j!2j
�a0ha1a2 . . .ha2j�1a2j�

a0a1...a2j

¼ 1

j!2j
X

a0 ;a1 ;...;a2j
ai all different

�a0ha1a2 . . .ha2j�1a2j�
a0�a1 . . .�a2j :

(4.15)

In the last equality, we assumed that indices ai correspond
to the orthonormal frame E�, E�̂, E0, which implies that

gamma matrices �a with different indices anticommute. In
such a frame, however, the PCKY tensor h has only non-
zero components h��̂ ¼ �h�̂� ¼ x�. We can thus write

��ð� ^ hðjÞÞ
¼ 1

j!

X
�

X
�1 ;...;�j

�i different
�i��

ð���
� þ ��̂�

�̂Þx�1
. . . x�j

��1�̂1...�j�̂j

þ "
1

j!
�0�

0
X

�1 ;...;�j
�i different

x�1
. . . x�j

��1�̂1...�j�̂j

¼ ij
X
�

� X
�1 ;...;�j

�1<���<�j
�i��

x�1
. . . x�j

�h�1...�ji
�
ð���

� þ ��̂�
�̂Þ

þ "ij
� X

�1 ;...;�j
�1<���<�j

x�1
. . . x�j

�h�1...�ji
�
�0�

0: (4.16)

In the last equality, we have used (4.13) and the symmetry
of the summands with respect to permutation of the �i

indices. The result can be rewritten as

��ð� ^ hðjÞÞ ¼ ij
X
�

BðjÞ
� ð���

� þ ��̂�
�̂Þ þ "ijBðjÞ�0�

0;

(4.17)

where we introduced a spinorial analogue of functions AðjÞ
�

and AðjÞ, (3.4) and (3.5), given by

BðkÞ
� ¼ X

�1 ;...;�k
�1<���<�k;�i��

�h�1ix�1
� � � �h�kix�k

;

BðkÞ ¼ X
�1 ;...;�k

�1<���<�k

�h�1ix�1
� � � �h�kix�k

:

(4.18)

These functions are elementary symmetric functions of
f�h�ix�g and f�h�ix�g���, respectively:

Y
�

ðt� �h�ix�Þ ¼
XN
j¼0

ð�1ÞjBðjÞtN�j;

Y
�

���

ðt� �h�ix�Þ ¼
XN
j¼0

ð�1ÞjBðjÞ
� tN�1�j:

(4.19)

Relations includingBðkÞ
� andBðkÞ can be formally obtained

from the corresponding expressions valid for AðkÞ
� and AðkÞ

by using a simple rule

A $ B , x2� $ �h�ix�: (4.20)

In particular, we can introduce the analogue of functions
U�, (3.3), by

V� ¼ Y
�

���

ð�h�ix� � �h�ix�Þ (4.21)

and derive the relations analogous to Eq. (3.6)

X
�

BðiÞ
�

V�

ð��h�ix�ÞN�1�j ¼ �i
j;

X
j

BðjÞ
�

V �

ð��h�ix�ÞN�1�j ¼ ��
�:

(4.22)

Additional important relations regarding quantities BðkÞ
�

and BðkÞ are gathered in Sec. 2 of the Appendix.
After this preliminary work, we are ready to find the

action of the operators Mj (4.2). Let us start with the

second term in (4.2). Using (3.21), Eq. (4.17), the explicit
expression for the primary Killing vector (3.20), and the
first relation (4.13), we find

��
�
� n� 2j

2ðn� 2jþ 1Þ�h
ðjÞ
�

¼ 1

2
ðn� 2jÞ��ð�[ ^ hðj�1ÞÞ ¼ �ijðN � jþ "=2Þ

�
�X

�

ffiffiffiffiffiffiffi
Q�

q
Bðj�1Þ

� �h�i�� þ i"
ffiffiffi
S

p
Bðj�1Þ�0

�
: (4.23)

Next, we want to find the expression for ��ðea ^ hðjÞraÞ,
where the spin derivative with respect to the chosen frame
Ea is
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ra ¼ ða þ 1
4!abc�

b�c: (4.24)

Here, ða is the derivative acting only on components of the
spinor,4 and the connection coefficients !abc are listed in
Sec. 1 of the Appendix. Using (4.17), we have

��ðe� ^ hðjÞÞ ¼ ijBðjÞ
� ��;

��ðe�̂ ^ hðjÞÞ ¼ ijBðjÞ
� ��̂;

��ðe0 ^ hðjÞÞ ¼ ijBðjÞ�0:

(4.25)

Hence, the derivative term can be expressed, with the help
of (3.11), in terms of partial derivatives

��ðea ^ hðjÞÞða
¼ ij

X
�

ffiffiffiffiffiffiffi
Q�

q
BðjÞ

�

�
ð

@x�
� i�h�i

X�

X
k

ð�x2�ÞN�1�k ð

@c k

�
��

þ "ij
BðjÞffiffiffi
S

p
AðNÞ

ð

@c N

�0: (4.26)

Moreover, using the explicit form of the connection coef-
ficients, we find

1

4
��ðea ^ hðjÞÞ!abc�

b�c

¼ ij
X
�

ffiffiffiffiffiffiffi
Q�

q �
X0
�

4X�

BðjÞ
� þX

�
���

x� þ �h��ix�
x2� � x2�

�
�
BðjÞ

� � 1

2
BðjÞ

�

��
�� þ "ij

X
�

� ffiffiffiffiffiffiffi
Q�

p
2x�

BðjÞ��

þ i
ffiffiffi
S

p
2x�

ðBðjÞ � 2BðjÞ
� Þ�h�i�0

�
: (4.27)

Putting all three terms (4.23), (4.26), and (4.27) together
and using the identities (A6) and (A7), we derive our final
form for the operators Mj:

Mj¼ ij
X
�

ffiffiffiffiffiffiffi
Q�

q
BðjÞ

�

�
ð

@x�
þ X0

�

4X�

þ1

2

X
�

���

1

x���h��ix�

� i�h�i
X�

X
k

ð�x2�ÞN�1�k ð

@c k

þ "

2x�

�
��

þ"ijþ1

ffiffiffi
S

p
2

�
Bðj�1Þ�BðjÞ

�
2

ic

ð

@c N

þX
�

1

�h�ix�

��
�0:

(4.28)

V. R SEPARABILITY OF THE DIRAC EQUATION

Now, we can formulate the main result: the commuting
symmetry operators Kk and Mj have common spinorial

eigenfunctions c :

Kkc ¼ i�kc ; (5.1)

Mjc ¼ Xjc ; (5.2)

which can be found in the tensorial R-separated form

c ¼ R exp

�
i
X
k

�kc k

�O
�


�; (5.3)

where f
�g is an N-tuple of two-dimensional spinors, and
R is the (Clifford-bundle-)valued prefactor5

R ¼ Y

;�

<�

ðx
 þ �h
�ix�Þ�ð1=2Þ: (5.4)

As part of the separation ansatz, we ask that 
� depends
only on the variable x�, 
� ¼ 
�ðx�Þ. (Hence, we have
ð

@c k

� ¼ 0 and ð

@x�

� ¼ 0 for � � �.)

In this section, we are going to show that Eqs. (5.1) and
(5.2) are satisfied if and only if the spinors 
� satisfy the
ordinary differential equations (5.16) below. These equa-
tions are equivalent to the conditions found in [18].
Let us first note that rewriting the tensorial

R-separability ansatz (5.3) in terms of components, we
recover the separated solution of the massive Dirac equa-
tion [equivalent to (5.2) with j ¼ 0] which was found in
[18]:

c 	1...	N ¼ �	1...	N exp

�
i
X
k

�kc k

�Y
�


	�
� : (5.5)

Here, �	1...	N is a diagonal element of the prefactor R,

�	1...	N ¼Y

;�

<�

ðx
 þ 	
	�x�Þ�ð1=2Þ: (5.6)

To derive the announced results, we shall work directly
with the tensorial multiplicative ansatz (5.3) and, only in
the end, we shall make contact with the work of [18] by
finding an equation for the components of each 
�.
The spinor c given by (5.3) satisfies (5.1). To show (5.2),

we need to calculate Mjc , with Mj given by (4.28). We

have
4The derivative ða annihilates the frames Ea � fE�; E�̂; E0g

and #E, ðaE
� ¼ ðaE

�̂ ¼ ðaE
0 ¼ 0, ða#E ¼ 0. It thus acts just

on the components, ða� ¼ ð@a�bÞEb and ða
 ¼ ð@a
EÞ#E. The
connection coefficients are defined as raE

b ¼ �!a
b
cE

c.

5Note that, thanks to our convention (3.8), the operators under
the square root in R are positively definite.
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Mjc

¼ ij exp

�
i
X
k

�kc k

��X
�

ffiffiffiffiffiffiffi
Q�

q
BðjÞ

�

�
ð

@x�
þ X0

�

4X�

þ 1

2

X
�

���

1

x� � �h��ix�
þ

~��

X�

�h�i þ "

2x�

�
��

þ "
i
ffiffiffi
S

p
2

�
Bðj�1Þ �BðjÞ

�
2 ~�N

c
þX

�

�h�i
x�

��
�0

�
R
O
�


�;

(5.7)

where we have performed the derivative with respect to

angles c k and introduced the functions of one variable
~��,

given by

~�� ¼ X
k

�kð�x2�ÞN�1�k: (5.8)

Let us concentrate now on the derivatives of the prefac-
tor R. Using Eq. (A14) and relation (A13), we can bring the
operator R to the front to get

Mjc ¼ ijexp

�
i
X
k

�kc k

�
R

�X
�

ffiffiffiffiffiffiffiffiffiffi
jX�j

q
V�

ð��h�iÞN��BðjÞ
�

�
�

ð

@x�
þ X0

�

4X�

þ
~��

X�

�h�iþ "

2x�

�
�h�iþ"

i
ffiffiffi
S

p
2

�
�
Bðj�1Þ�BðjÞ

�
2 ~�N

c
þX

�

�h�i
x�

��
�0

�O
�


�:

(5.9)

This expression is to be compared with

Xjc ¼ Xj exp

�
i
X
k

�kc k

�
R
O
�


�: (5.10)

To simplify the following expressions, we introduce the

functions ~X� of a single variable x�:

~X� ¼ X
j

ð�iÞjXjð��h�ix�ÞN�1�j: (5.11)

In odd dimensions, the constant XN, defined by MNc ¼
XNc , is not independent. In fact, using Eqs. (4.4), (5.1),
and (5.2), we have

XN ¼ iNþ1ffiffiffiffiffiffiffi�c
p �N: (5.12)

We are now ready to derive the differential equations for

�, so that (5.2) is satisfied. We can cancel the common
expðiPk�kc kÞR prefactor in (5.9) and (5.10) (in the
coordinate domain which we consider, the operator R is

never zero when it is acting on any spinor), multiply
both equations by ð�iÞjð��h�ix�ÞN�1�j, and sum over j to
obtain

~X�

O





 ¼
� ffiffiffiffiffiffiffiffiffi

jX�j
q

ð��h�iÞN��

�
ð

@x�
þ X0

�

4X�

þ
~��

X�

�h�i

þ "

2x�

�
�h�i � "

i
ffiffiffi
S

p
2x2�

BðNÞ�0

�O





; (5.13)

where we have used the latter Eq. (4.22) and identities (A8)
and (A9). Using further the formula

�0
ffiffiffi
S

p ¼
ffiffiffiffiffiffiffi�c

p
BðNÞ ; (5.14)

we can rewrite Eq. (5.13) as

� ffiffiffiffiffiffiffiffiffi
jX�j

q
ð��h�iÞN��

�
ð

@x�
þ X0

�

4X�

þ
~��

X�

�h�i þ "

2x�

�
�h�i

� "
i
ffiffiffiffiffiffiffi�c

p
2x2�

� ~X�

�O





 ¼ 0: (5.15)

We finally note that the operators act only on the 
� spinor,
leaving invariant all the other spinors in the tensor product.
So, we are left with the following ordinary differential
equation for each spinor 
�:

��
d

dx�
þ X0

�

4X�

þ
~��

X�

�h�i þ "

2x�

�
�h�i

� ð��h�iÞN��ffiffiffiffiffiffiffiffiffijX�j
p �

"
i
ffiffiffiffiffiffiffi�c

p
2x2�

þ ~X�

��

� ¼ 0: (5.16)

To make contact with the formalism of [18], we redefine

� in an odd dimension by a suitable rescaling,

~
 � ¼ ðx�Þ"=2
�: (5.17)

Taking the & component of the spinorial equation (5.16),
we then get�

d

dx�
þ X0

�

4X�

� &
~��

X�

�
~
�&
� � ð�&ÞN��ffiffiffiffiffiffiffiffiffijX�j

p
�
�
"
i
ffiffiffiffiffiffiffi�c

p
2x2�

þ ~X�

�
~
&
� ¼ 0: (5.18)

For each �, these are two coupled ordinary differential
equations for components ~
þ

� and ~
�
� , which can be easily

decoupled by substituting one into another.
It can be checked that these are equivalent to the differ-

ential equations given in [18] with a proper identification
of coefficients. In particular, for the eigenvalue of the Dirac
equation, the identification is qN�1 ¼ X0, as expected.
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VI. STANDARD SEPARABILITY

In this section, we shall comment on how to achieve the
standard tensorial separability, without the prefactor R. For
this purpose, it is first instructive to prove directly the
commutativity of operators Mj. This will give us a hint

how to ‘‘upgrade’’ our representation to achieve the stan-
dard tensorial separability.

A. Direct proof of commutativity

Let us start from the expression for Mj (4.28) and apply

the identity (5.14) and (A12), to obtain

Mj ¼ ij
X
�

ffiffiffiffiffiffiffi
Q�

q
BðjÞ

�

�
ð

@x�
þ X0

�

4X�

þ 1

2

X
�

���

1

x� � �h��ix�

� i�h�i
X�

X
k

ð�x2�ÞN�1�k ð

@c k

þ "

2x�

�
��

� 1

2
"ijþ1

ffiffiffiffiffiffiffi�c
p X

�

BðjÞ
�

V�

�
1

x2�
þ 2

ic

1

�h�ix�
ð

@c N

�
:

(6.1)

In order to prove commutativity of these operators, we
introduce new ‘‘auxiliary’’ operators

~Mj � R�1MjR; (6.2)

with R given by (5.4). Then, obviously, if

½ ~Mj; ~Mk� ¼ R�1½Mj;Mk�R ¼ 0; (6.3)

the same is true for operators without tilde.
We calculate

MjR ¼ ij
X
�

ffiffiffiffiffiffiffi
Q�

q
BðjÞ

� RR�1��R

�
ð

@x�
þ X0

�

4X�

þ "

2x�

þ i�h�i
X�

X
k

ð�x2�ÞN�1�k ð

@c k

�
� 1

2
"ijþ1

ffiffiffiffiffiffiffi�c
p

�X
�

BðjÞ
�

V�

�
1

x2�
þ 2

ic

1

�h�ix�
ð

@c N

�
R; (6.4)

where we have used (A14). The first R on the right-hand
side can be brought to the front, whereas, for the product
R�1��R, we use (A13). So, we get

~Mj ¼ ij
X
�

BðjÞ
�

V�

~M�; (6.5)

where the operators

~M� ¼
ffiffiffiffiffiffiffiffiffiffi
jX�j

q �
ð

@x�
þ 1

4

X0
�

X�

þ "

2x�

� i�h�i
X�

X
k

ð�x2�ÞN�1�k ð

@c k

�
ð��h�iÞN���h�i

� i

2
"

ffiffiffiffiffiffiffi�c
p �

1

x2�
þ 2

ic

1

�h�ix�
ð

@c N

�
(6.6)

act only on spinor 
�, and hence ½ ~M�; ~M�� ¼ 0. Using

(4.22), we can invert the relation (6.5),

~M� ¼ XN�1

j¼0

ð�iÞjð��h�ix�ÞN�1�j ~Mj: (6.7)

Following now the procedure in [14], and using the trivial
fact that ½ ~M�; ð��h�ix�ÞN�1�j� ¼ 0, we establish that

XN�1

j;k¼0

ð�iÞjþkð��h�ix�ÞN�1�jð��h�ix�ÞN�1�k½ ~Mj; ~Mk� ¼ 0;

(6.8)

from which Eq. (6.3) follows.

B. R representation and standard separability

We have seen that the new operators ~Mj (6.2) possess a

remarkable property—they can be expressed in the form
(6.5), where the operators ~M� act only on the spinor 
�.

Hence, such operators are directly related to standard
tensorial separability. Indeed, a solution of

Kkc ¼ i�kc ; ~Mjc ¼ Xjc (6.9)

can be found in the standard tensorial separated form

c ¼ exp

�
i
X
k

�kc k

�O
�


�; (6.10)

where 
� satisfy Eq. (5.16). This can be easily seen by
calculating ~M�c while using Eq. (6.7). Note also that the

R separability discussed in Sec. V is recovered by applying
R on the left-hand side of (6.9).
Moreover, operators ~Mj are nothing else but operators

(4.2) in the ‘‘R representation’’ in which we take

~� a ¼ R�1�aR; (6.11)

with �a defined earlier.

VII. CONCLUSIONS

The Dirac equation in Kerr-NUT-(A)dS spacetimes in
all dimensions possesses a truly remarkable property.
Namely, its solution can be found by separating variables,
and the resulting ordinary differential equations can be
completely decoupled.
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We have demonstrated that behind the separability
stands a complete set of first-order mutually commuting
operators that can be generated from the PCKY tensor,
present in the spacetime geometry. These results directly
generalize the corresponding results on separability of the
Hamilton-Jacobi and Klein-Gordon equations and further
establish the unique role which the PCKY tensor plays in
determining the remarkable properties of the Kerr-NUT-
(A)dS geometry in all dimensions.

A very important open question left for the future is
whether the PCKY tensor is also intrinsically linked to
other higher-spin perturbations. In particular, can the elec-
tromagnetic and gravitational perturbations in general ro-
tating higher-dimensional Kerr-NUT-(A)dS spacetimes be
decoupled and separated?
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APPENDIX

1. A spin connection

In even dimensions, the only nonzero connection (Ricci)
coefficients with respect to the frame E�, E�̂ are

!��� ¼ �!��� ¼
ffiffiffiffiffiffiffi
X�

U�

s
x�

x2� � x2�
;

!��̂ �̂ ¼ �!��̂ �̂ ¼
ffiffiffiffiffiffiffi
X�

U�

s
x�

x2� � x2�
;

!�̂ �̂ � ¼ �!�̂��̂ ¼
ffiffiffiffiffiffiffi
X�

U�

s
x�

x2� � x2�
;

!�̂ �̂� ¼ �!�̂��̂ ¼
ffiffiffiffiffiffiffi
X�

U�

s
x�

x2� � x2�
;

!�̂��̂ ¼ �!�̂ �̂ � ¼
ffiffiffiffiffiffiffi
X�

U�

s
x�

x2� � x2�
;

!�̂ �̂� ¼ �!�̂��̂ ¼ 1

2

ffiffiffiffiffiffiffi
X�

U�

s
X0
�

X�

þ
ffiffiffiffiffiffiffi
X�

U�

s X
�

���

x�

x2� � x2�
:

(A1)

Here, indices � and � are different. In odd dimensions, the
same Ricci coefficients apply, plus the following extra
terms:

!��̂0 ¼ �!�0�̂ ¼ �
ffiffiffi
S

p
x�

;

!�̂�0 ¼ �!�̂0� ¼
ffiffiffi
S

p
x�

;

!0�0 ¼ �!00� ¼ �
ffiffiffiffiffiffiffi
X�

U�

s
1

x�
;

!0�̂� ¼ �!0��̂ ¼ �
ffiffiffi
S

p
x�

:

(A2)

2. Useful identities

We generalize the definition of functions BðkÞ
� and BðkÞ,

(4.18), as follows:

B ðkÞ
�1...�j

¼ X
�1 ;...;�k

�1<���<�k
�i��1 ;...;�j

�h�1ix�1
� � � �h�kix�k

: (A3)

Such functions obey

B ðkÞ
�1...�j

¼ BðkÞ
�1...�j� þ �h�ix�B

ðk�1Þ
�1...�j�: (A4)

Therefore, we can writeX
�

���1 ;...;�j

BðkÞ
�1...�j� ¼ X

�
���1 ;...;�j

ðBðkÞ
�1...�j � �h�ix�B

ðk�1Þ
�1...�j�Þ

¼ ðN � j� kÞBðkÞ
�1...�j : (A5)

As a direct consequence of Eqs. (A4) and (A5), we can
derive the following important relations used in the main
text: X

�

Bðj�1Þ
� ¼ ðN � jþ 1ÞBðj�1Þ; (A6)

X
�

���

x� þ �h��ix�
x2� � x2�

ðBðjÞ
� �BðjÞ

� Þ ¼ ðN � jÞ�h�iB
ðj�1Þ
� ;

(A7)

XN
j¼0

BðjÞð��h�ix�ÞN�1�j ¼ 0; (A8)

XN
j¼0

Bðj�1Þð��h�ix�ÞN�1�j ¼ �BðNÞ

x2�
: (A9)

Another important relation is

X
�

BðjÞ
�

�h�ix�V�

¼ BðjÞ

BðNÞ ; (A10)

which, together with (A4) and the equality

X
�

1

x2�V�

¼X
�

1

ð�h�ix�Þ2V�

¼ 1

BðNÞ
X
�

1

�h�ix�
(A11)
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mentioned in [18], can be used to prove that Bðj�1Þ can be
expressed as

B ðj�1Þ ¼ BðjÞX
�

1

�h�ix�
�BðNÞX

�

BðjÞ
�

V�x
2
�

: (A12)

Let us finally state two important relations including the
R factor. Using the fact that U� ¼ ðV��h�iÞ2, we can

derive that

R�1��R ¼
ffiffiffiffiffiffiffiffiffiffi
jU�j

q
V�

ð��h�iÞN���h�i; (A13)

which is an operator analogue of Eq. (20) in [18]. For the
derivative of the factor R, one gets

�
ð

@x�
��R

�
¼ �� ð

@x�
R

¼ �� ð

@x�

�Y
�

�<�

ðx� þ �h��ix�Þ�ð1=2Þ

�Y
�

�<�

ðx� þ �h��ix�Þ�ð1=2Þ

� Y

;�


<�;
;���

ðx
 þ �h
�ix�Þ�ð1=2Þ
�

¼
�
� 1

2

X
�

���

1

x� � �h��ix�

�
��R: (A14)
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[5] D. N. Page, D. Kubizňák, M. Vasudevan, and P. Krtouš,
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[11] V. P. Frolov and D. Kubizňák, Classical Quantum Gravity

25, 154005 (2008).
[12] Y. Yasui and T. Houri, arXiv:1104.0852 [Prog. Theor.

Phys. Suppl. (to be published)].
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