
Acceleration of particles by black holes: Kinematic explanation

O.B. Zaslavskii*

Department of Physics and Technology, Kharkov V.N. Karazin National University, 4 Svoboda Square, Kharkov, 61077, Ukraine
(Received 27 April 2011; revised manuscript received 24 May 2011; published 6 July 2011)

A new simple and general explanation of the effect of acceleration of particles by black holes to infinite

energies in the center of mass frame is suggested. It is based on kinematics of particles moving near the

horizon. This effect arises when particles of two kinds collide near the horizon. For massive particles, the

first kind represents a particle with the generic energy and angular momentum (I call them ‘‘usual’’). Near

the horizon, such a particle has a velocity almost equal to that of light in the frame that corotates with a

black hole (the frame is static if a black hole is static). The second kind (called ‘‘critical’’) consists of

particles with the velocity v < c near the horizon due to special relationship between the energy and

angular momentum (or charge). As a result, the relative velocity approaches the speed of light c, and the

Lorentz factor grows unbound. This explanation applies both to generic rotating black holes and charged

ones (even for radial motion of particles). If one of the colliding particles is massless (photon), the critical

particle is distinguished by the fact that its frequency is finite near the horizon. The existence (or absence)

of the effect is determined depending on competition of two factors—gravitational blue shift for a photon

propagating towards a black hole and the Doppler effect due to transformation from the locally

nonrotating frame to a comoving one. Classification of all possible types of collisions is suggested

depending on whether massive or massless particle is critical or usual.
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I. INTRODUCTION

Recently, an interesting effect was discovered. It turned
out that two particles can collide near the horizon of the
Kerr black hole in such a way that the energy in the center
of mass frame grows unbound [1] (we will call it the BSW
effect). This provoked a series of consequent papers [2–19]
in which details of collision were studied; the effect has
been found in different and more general space-times, etc.
The key role in the BSW effect is played by the fact that
one of the two colliding particles should be ‘‘critical.’’ By
definition, this means that its energy E and angular mo-
mentum L are connected by the relationshipE�!HL ¼ 0
where !H is the angular velocity of the black hole.
(Otherwise, I call a particle ‘‘usual’’). For the Kerr metric,
this was observed in [1] and traced in detail in subsequent
papers [6,14], including even nonequatorial motion [15].
For a generic rotating axially-symmetric dirty black hole
(surrounded by matter) this was found in [11]. In [20] the
most general geometric explanation was suggested that
relies on the relative orientation of the particle’s timelike
four-velocity and the generator of a black hole horizon.

The aim of the present work is to give an alternative,
purely kinematic explanation of the BSW effect with the
emphasis on the role of critical particles in the terms of the
particles’ three-velocities. To the best of my knowledge,
this has not been done yet. In Ref. [1] the remark has been
made in passing that the effect is connected with a crucial
difference between the kinematics of usual and critical
particles. In the first case, a particle hits the horizon of a

rotating black hole perpendicularly; in the second one it
does it at some incident angle. This important observation
does not give, however, the full explanation of the phe-
nomenon. For example, the effect exists even for pure
radial motion of charged particles in the Reissner-
Nordström space-time [12] when, obviously, all particles
approach the horizon perpendicularly. On the other hand,
two different critical particles can collide at some nonzero
angle if they have different momenta. However, this does
not produce the infinite energy in the center of mass frame.
Thus, an interesting property mentioned in [1] is neither
necessary nor sufficient for the explanation of the effect
under discussion.
Below, Secs. II, III, IV, V, and VI show that for the

collision of massive particles, the crucial point is whether
or not a particle has near the horizon the velocity approach-
ing the speed of light. Only the collision of particles of both
different kinds produces the effect. The frame in which the
velocity under discussion is measured is either the static
one (for charged static black holes) or the frame of the zero
angular momentum observer (ZAMO) [21]. Then, as we
will see, the essence of the effect can be understood in the
terms of special relativity in combination with general
consequences of geodesic motion near the horizon.
In Sec. VI, I consider separately the case of collision

between massive and massless particles since explanation
for the BSW effect and the definition and a role of the
critical particle are somewhat different in both cases.
Collisions of this type were considered in [15] but for the
concrete case of the Kerr metric only.
In what follows we assume (as usual for the BSWeffect)

that both colliding particles are ingoing. (The case when*zaslav@ukr.net
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one of two particles is outgoing is more simple and always
leads to infinite energies simply due to blueshift near the
horizon [18].) The effect under consideration is interesting
both from the theoretical viewpoint (since it gives hope to
probe Planck physics near the black hole horizon) and the
astrophysical one (since collisions with divergent energies
can, in principle, leave their imprint on the emergent flux
of particles escaping from a black hole [16,17]).

II. BASIC EQUATIONS

Let us consider the space-time of a rotating black hole
described by the metric

ds2 ¼ �N2dt2 þ g��ðd��!dtÞ2 þ dl2 þ gzzdz
2: (1)

Here, the metric coefficients do not depend on t and �. On
the horizon N ¼ 0. Alternatively, one can use coordinates
� and r, similar to Boyer-Lindquist ones for the Kerr
metric, instead of l and z. In (1) we assume that the metric
coefficients are even functions of z, so the equatorial plane
� ¼ �

2 (z ¼ 0) is a symmetry one. The explicit form of the

metric coefficients is not specified, so consideration ap-
plies to ‘‘dirty’’ black holes surrounded by matter in
equilibrium with the horizon.

We consider the geodesic motion of massive particles in
the equatorial plane � ¼ �

2 . The equations of motion have

the form

_t ¼ u0 ¼ E�!L

N2
; (2)

_� ¼ L

g��

þ!ðE�!LÞ
N2

; (3)

_l 2 ¼ ðE�!LÞ2
N2

� 1� L2

g��

; (4)

where E ¼ �u0 and L ¼ u� are conserved energy and

angular momentum per unit mass, and u� is the four-
velocity. In the present paper I use units in which the
gravitational constant G ¼ 1 and the speed of light c ¼ 1.

We assume that _t > 0, so that E�!L> 0 (motion
forward in time), except, possibly, on the horizon where
we admit the equality E�!HL ¼ 0 (subscript ‘‘H’’
denotes quantities calculated on the horizon). By
definition, if E�!HL > 0 a particle is usual and if
E�!HL ¼ 0 it is critical.

In what follows we will use the tetrad basis. Denoting
coordinates x� as x0 ¼ t, x1 ¼ l, x2 ¼ z, x3 ¼ �, we
choose the tetrad vectors hðaÞ� in the following way:

hð0Þ� ¼ �Nð1; 0; 0; 0Þ; (5)

hð1Þ� ¼ ð0; 1; 0; 0Þ; (6)

hð2Þ� ¼ ffiffiffiffiffiffiffi
gzz

p ð0; 0; 0; 1Þ; (7)

hð3Þ� ¼ ffiffiffiffiffiffiffiffiffi
g��

p ð�!; 0; 0; 1Þ: (8)

If such a tetrad is attached to an observer moving in the
metric (1), it has the meaning of zero angular momentum
observer (ZAMO) [21]. They are ‘‘rotate with the geome-

try’’ in the sense that d�
dt � ! for them. The advantage of

using the tetrad components consists in that one can use the
formulas of special relativity in the flat space-time tangent
to any given point.
Then, we can introduce the three-velocity according to

vðiÞ ¼ vðiÞ ¼
u�h�ðiÞ
�u�h�ð0Þ

: (9)

One can check that

� u�h
�
ð0Þ ¼

E�!L

N
; (10)

u�h
�
ð3Þ ¼

L
ffiffiffiffiffiffiffiffiffi
g��

p : (11)

From equations of motion (2)–(4) and formulas for
tetrad components, we obtain

vð3Þ ¼ LN
ffiffiffiffiffiffiffiffiffi
g��

p ðE�!LÞ ; (12)

vð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N2

ðE�!LÞ2
�
1þ L2

g��

�vuut : (13)

Then, introducing also the absolute value of the velocity
v according to

v2 ¼ ½vð1Þ�2 þ ½vð2Þ�2 (14)

one can find that

E�!L ¼ Nffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p ; (15)

v2 ¼ 1�
�

N

E�!L

�
2
: (16)

III. LIMITING TRANSITIONS
FOR RELATIVE VELOCITY

The energy Ec:m: in the center of mass frame of two
colliding particles can be defined as (see [1] and conse-
quent papers)

E2
c:m: ¼ �ðp�

1 þ p
�
2 Þðp1� þ p2�Þ

¼ m2
1 þm2

2 � 2m1m2u
�
1 u2�: (17)

Here, p
�
i ¼ miu

�
i (i ¼ 1, 2) is the four-momentum of

each particle;mi are their rest masses. By definition, this is
a scalar which can be calculated in any frame. It is conve-
nient to use a frame comoving with respect to one of
colliding particles (say, particle 2). If one uses tetrad
representation, one can exploit formulas known in a flat
space-time. Then, the quantity of interest is
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� ¼ �u�1 u2� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� w2

p (18)

where w is, by definition, their relative velocity (which in
this frame coincides with the velocity of particle 1); � has
the meaning of the Lorentz factor.

The effect of unbound energies occurs if w ! 1,
so � ! 1.

Now, let me remind some simple formulas from special
relativity. If in the laboratory frame particle 1 has the
velocity ~v1 ¼ v1 ~n1 and particle 2 has the velocity ~v2 ¼
v2 ~n2, the value of the relative velocity is equal to

w2 ¼ 1� ð1� v2
1Þð1� v2

2Þ
½1� v1v2ð ~n1 ~n2Þ�2

: (19)

This formula can be found in textbooks (see. e.g., prob-
lem 1.3. in [22]). Now, we enumerate different limiting
transitions for this quantity relevant in our context.

(a) v1 ! 1, v2 < 1, ð ~n1 ~n2Þ is arbitrary.
It is obvious from (19) that in this case w ! 1
independent of the quantity ð ~n1 ~n2Þ. This corre-
sponds to the well-known fact that the velocity of
light c is always equal to 1 (in geometrical units) in
any frame.

(b) v1 ! 1, v2 ! 1 in such a way that vi ¼ 1� Ai�
where Ai (i ¼ 1, 2) are constants, � � 1.
(b1). If ð ~n1 ~n2Þ � 1, it is seen from (19) that

w2 � 1� 4A1A2�
2

½1� ð ~n1 ~n2Þ�2
; (20)

so we have v ! 1 again.
(b2) If ð ~n1 ~n2Þ ¼ 1, the situation changes radically.
Then,

w � jA1 � A2j
A1 þ A2

< 1: (21)

(c) v1 < 1, v2 < 1, ð ~n1 ~n2Þ is arbitrary. Then, it is ob-
vious that w< 1. By itself, this case is trivial.
However, it plays a nontrivial role in the context
under consideration (see below).

IV. ASYMPTOTICS NEAR HORIZON

Let us now look at what happens to particles’ velocities
near the horizon. For an usual particle, E�!HL � 0,
and it follows from (15) that in the horizon limit N ! 0,
v ! 1. Apart from this, it follows from (12) and (13) that

in this limit vð3Þ ! 0, vð1Þ ! 1. Therefore, the unit vector ~n
is pointed along the l direction, so for any two such
particles ð ~n1 ~n2Þ ¼ 1.

However, for a critical particle, the situation is different.
At first, consider the extremal horizon. Then, near it, we
have an expansion

! ¼ !H � B1N þ B2N
2 þ . . . : (22)

For example, for the Kerr metric B1 ¼ M�1 where B is the
black hole mass [11]. We obtain from (15) that

v2 ¼ 1� 1

L2B2
1

< 1: (23)

Apart from this, in the critical case the quantities

vð1Þ and vð3Þ have the same order, so a particle hits the
horizon at some nonzero angle with respect to the normal
direction in accordance with the remark made in [1].
Correspondingly, ð ~n1 ~n2Þ � 1. Now, using the above prop-
erties, we can enumerate different types of collisions near
the horizon.

A. Collision between two usual particles

This situation corresponds to case (b2). Then, it follows
from (21) that w< 1, the Lorentz factor � is finite, so the
effect of infinite energies is absent.

B. Collision between two critical particles

This situation corresponds to case (c). Then, we have
that w< 1, so the effect under discussion is also absent.

C. Collision between an usual (1)
and critical (2) particles

This type of collision falls into the class (a) described
above. As a result, we have w ! 1, � ! 1 and the effect
of infinite acceleration is present. The fact that v2 < 1
explains why the critical particle cannot reach the extremal
horizon for a finite proper time [6,11]. Indeed, the proper
distance is infinite, so the proper time for a particle 2
having v2 < 1 everywhere on its trajectory is certainly
infinite.
In the nonextremal case a near-critical particle cannot

reach the horizon since !�!H � N2 when N ! 0
[11,23], so the right-hand side of (4) cannot be positive.
However, it can approach the horizon as nearly as one
likes. Let E ¼ !HLð1þ �Þ, � � 1. Then, we must keep

� such that � * N to ensure the positivity of _l2 in (4).
Let � ¼ ANðPÞ where A is some finite coefficient,
P is the point of collision. Then, 1� v2 ¼ ð N

E�!HL
Þ2 �

1
ð!HLAÞ2 � 0. Thus, taking the point of collision closer and

closer to the horizon and simultaneously taking the energy
closer and closer to the critical value, we can gain v < 1
and, thus, the effect of infinite acceleration for the energy
in the center of mass for collision between an usual and the
critical particles. However, this requires multiple scattering
since, say, for the Kerr metric, such a particle cannot come
from infinity. Apart from this, the collision should occur in
a narrow strip near the horizon (see [6,11] for details).

V. CHARGED STATIC BLACK HOLES

All the above consideration applies also to charged static
with minimum changes. For simplicity, let us consider the
spherically-symmetric black holes. Then, equations of
motion give us
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_t ¼ u0 ¼ E� ’q

N2
; (24)

_� ¼ L

g��

; (25)

_l 2 ¼ ðE� ’qÞ2
N2

� 1� L2

g��

(26)

where ’ is the electric potential with respect to infinity.
The tetrad basis can be obtained by putting ! ¼ 0 in
(5)–(8). One can find easily that

vð3Þ ¼ LN
ffiffiffiffiffiffiffiffiffi
g��

p ðE� ’qÞ ; (27)

vð1Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N2

ðE� ’qÞ2
�
1þ L2

g��

�vuut (28)

where vð1Þ < 0 since a particle is moving towards the
horizon.

Now, instead of (15), we have

E� ’q ¼ mNffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p (29)

where we restored explicitly in (29) the particle’s rest
mass m.

The condition of criticality is now E� ’þq ¼ 0 where
’þ is the potential of the black hole. Then, for the extremal
case, N � r� rþ � ’þ � ’ where r is the standard
curvature coordinate, rþ is the horizon radius. As a result,
v � 1.

If L � 0, the previous consideration applies and we
again obtain that the effect under consideration is possible
only when collision occurs between an usual (1) and the
critical (2) particles: v1 ! 1, v2 < 1, sow ! 1, � ! 1. In
doing so, an usual particle hits the horizon perpendicularly
whereas the critical one does it at some incident angle,
ð ~n1 ~n2Þ � 1.

A new situation having no analog for rotating case,
arises if L ¼ 0 [12]. Then, for all colliding particles
ð ~n1 ~n2Þ ¼ 1. Nonetheless, the main conclusion about the
effect produced by collision between an usual and the
critical particles is still valid.

In a similar way, for the nonextremal horizon the
energy is finite but can be made as large as one like if
one uses near-critical particles with E ¼ ’þqð1þ �Þ,
where �� N � 1.

VI. COLLISION BETWEEN MASSIVE
AND MASSLESS PARTICLES

If one of particles is massless, the above explanation is
not valid since (i) there is no comoving frame for a mass-
less particle, (ii) in any frame, such a particle moves always

with the velocity of light. Therefore, kinematic explanation
should be somewhat changed. For brevity, we call a mas-
sive particle ‘‘electron’’ and a massless one ‘‘photon,’’
although consideration applies to any kinds of such
particles.
We do not consider the case when both particles are

massless. Classical electrodynamics is linear theory, so
interaction between photons could occur due to weak
quantum-electrodynamic effects only which are neglected
in the present work.
We again consider the geodesic motion of particles in

the equatorial plane � ¼ �
2 . For photons, the equations of

motion have the form

dt

d�
¼ k0 ¼ �0 �!L2

N2
; (30)

d�

d�
¼ L2

g��

þ!ð�0 �!L2Þ
N2

; (31)

�
dl

d�

�
2 ¼ ð�0 � CL2Þ2

N2
� L2

2

g��

; (32)

where �0 ¼ �k0, and L2 ¼ k� are conserved frequency

and angular momentum, k� is the wave vector, and � is the
affine parameter. The quantity �0 has a meaning of fre-
quency measured by a remote observer at infinity where we
assume that ! ! 0, N ! 1.
Thus, the only difference in the form of equations be-

tween the massive (2)–(4) and massless cases reveals
itself is in Eqs. (32) and (4). We assume that dt

d� > 0, so

that �0 �!L> 0 (motion forward in time), except,
possibly on the horizon where we admit the equality
�0 �!HL1 ¼ 0 (critical photon).
Now, the energy Ec:m: in the center of mass frame is

given by the expression

E2
c:m: ¼ �ðp� þ k�Þ2 (33)

where the Planck constant ℏ ¼ 1, p� ¼ mu�, m is the
electron rest mass. Then,

E2
c:m: ¼ m2 � 2mðukÞ; ðukÞ � u�l�: (34)

It follows from (30) and (4) that

� ðukÞ ¼ X1X2 � Z1Z2

N2
� L1L2

g��

; (35)

where X1 � E1 � CL1, X2 ¼ �0 �!L2,

Zi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
i � N2bi

q
; b1 ¼ 1þ L2

i

g��

; b2 ¼ L2
2

g��

:

(36)

When, repeating the straightforward calculations along
the lines of [11] step by step, one can arrive at the con-
clusions that unbound growth of E2

c:m: is indeed possible if
the electron is critical, photon is usual or vice versa.
Meanwhile, it is more important to obtain qualitative
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explanation of infinite growth of E2
c:m: without explicit

calculation of (35). To this end, we use again the ZAMO
frame (5)–(8). We can obtain formulas for the photon. In
contrast to (9), now formulas for the k� do not contain
denominator:

kðiÞ ¼ kðiÞ ¼ k�h�ðiÞ; kð0Þ ¼ k�hð0Þ� ¼�k�h�ð0Þ: (37)

This is due to the fact that instead of the proper time 	 the
parameter � along the geodesics is used, the vector k�

being lightlike.
From equations of motion (2)–(4) and formulas for

tetrad components, we have

kð1Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � L2

g��

vuut ; (38)

kð3Þ ¼ L
ffiffiffiffiffiffiffiffiffi
g��

p ; (39)

where we took sign ‘‘-’’ in (38) since we consider an
ingoing photon. The analog of Eq. (15) reads

� ¼ �0 �!N

N
: (40)

It can be also obtained writing the scalar ðukÞ in two
frames—the original system (1) and the ZAMO one.

Defining k2 ¼ ½kð1Þ�2 þ ½kð2Þ�2, it is seen that

k2 ¼ ð�0 �!LÞ2
N2

¼ �2 (41)

kð0Þ ¼ �k�h
�
ð0Þ ¼

�0 �!L

N
¼ � (42)

as it should be for the lightlike vector since

k2 � ðkð0ÞÞ2 ¼ 0.

In the horizon limit N ! 0, the component vð3Þ ! 0,

vð1Þ ! 1 for an usual electron. Therefore, the unit vector

~n1 ¼ ~v
v is pointed along l direction, perpendicularly to the

horizon. For the critical particle this is not so [1] since

vð1Þ � vð3Þ have the same order. The similar properties hold

in the case of a photon for the vector ~n2 ¼ ~k
k . Thus, in the

horizon limit ð ~n1 ~n2Þ ¼ 1 when both particles are usual and
ð ~n1 ~n2Þ � 1 in other cases.

A. Different types of collisions

Now, we consider separately different cases depending
on which particle (if any) is critical.

1. Case 1: Electron is critical, photon is usual

Let us pass to the frame which is comoving with respect
to the electron. Then, the frequency �0 measured in this
frame is related to the frequency � in the ZAMO frame by
the standard relativistic formula

�0 ¼ �ð�� ~k ~vÞ ¼ ��½1� vð ~n1 ~n2Þ�: (43)

For a critical particle, as is explained above, v � 1,
so the Lorentz factor � is finite. The scalar product
ð ~n1 ~n2Þ � 1, the quantity �0 has the order �. But, as a
photon is usual, � ! 1. Thus, �0 ! 1 as well, so the
effect reveals itself.
The resulting effect can be interpreted as a consequence

of two factors. On one hand, there is an infinite blueshift of
radiation due to strong gravitating field near a black hole.
On the other hand, there is redshift due to the Doppler
effect since in the laboratory frame a receiver of radiation

is moving apart from a photon (both vð1Þ < 0 and kð1Þ < 0).
It turned out that in the case under discussion the first factor
is infinite whereas the second one is finite, so the net
outcome is due to blueshift.

2. Case 2: Electron is usual, photon is critical

As the photon is critical, � is finite. But, as the electron
is usual, v ! 1, � ! 1. The quantity ð ~n1 ~n2Þ � 1. Thus, as
a result, �0 ! 1 and we again obtain the effect under
discussion.
Interpretation again involves the Doppler effect but the

concrete details change. Let in a flat space-time a photon
with the frequency � propagate in the laboratory frame and
some observer moves with the velocity v with respect to
this frame. Then, in its own frame, the observer measures
the frequency of the process which is equal to �0. In the
case under discussion, ð ~n1 ~n2Þ � 1. For simplicity, we can
take ð ~n1 ~n2Þ ¼ 0. Then, the frequency measured in the
frame of a receiver �0 ¼ �� > � due to the transverse
Doppler effect. In the limit v ! 1, the Lorentz factor
� ! 1 and the frequency �0 ! 1. In other words, even
despite a moderate gravitational blueshift that resulted in a
finite �, the net outcome is infinite due to the Doppler
effect.

3. Case 3: Both particles are critical

Then, ð ~n1 ~n2Þ ¼ 1 but v < 1, � is finite. It follows from
(43) that �0 is also finite, so there is no effect under
discussion. In other words, both factors—gravitational
blueshifting and the Doppler effect are restricted and can-
not give rise to infinite energies.

4. Case 4: Both particles are usual

Here, an accurate estimate of different terms in the
horizon limit is required. In the limit N ! 0 the quantities
�� 1

N , �� 1
N as it is seen from (15) and (40). It follows

also from (13), (12), (38), and (39) that

1� ð ~n1 ~n2Þ � N2: (44)

As a result, the factors N2 in the numerator and denomi-
nator compensate each other, �0 remains finite, the effect of
infinite acceleration is absent. One can say that the effect of
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infinite redshift due to the Doppler effect for a receiver
moving apart from the photon is completely compensated
by an infinite blueshifting of the photon frequency.

VII. CONCLUSION

We gave a simple and general explanation of the effect
of infinite energy in the center of mass of particles collid-
ing near the horizon of a black hole. It is based on kine-
matics of particles in a flat space-time plus properties of the
horizon. It is given for massive and massless particles
separately.

For massive ones, it is essential that in the ZAMO frame
(or static one in the case of static charged black holes)
(i) usual particles have the velocities approaching the speed
of light near the horizon, (ii) for a special class of critical
particles this limit differs from the speed of light. Then,
collision between an usual and critical particles produces
the effect under discussion. Thus, critical particles play a
distinguished role in the kinematics of the process. These
particles have also some other properties that distinguish
them from usual ones: they hit the horizon nonperpendic-
ularly (in the case of rotating black holes), and the proper
time required to reach the extremal horizon is infinite.
The distinction between usual and critical particles is
also seen from the simple formulas for the particle’s energy
in the stationary gravitational field (15) and (29), which
shows what happens to the velocity when a particle ap-
proaches the horizon.

For massless particles, we showed that, again, the
distinguished role is played by critical particles although
their definition and properties are somewhat different.
Now, interpretation in terms of the velocity is not valid.
Instead, it is done in terms of the frequency: for photons
their frequency in the same frame remains finite notwith-
standing the vanishing of the lapse function near the hori-
zon. The crucial point is that the BSW effect is possible
only for the case when one and only one of the colliding
particles is critical. The role of critical particles gave rise to
natural classification taking into account two factors—
gravitational blue shift (GB) and the Doppler effect (DE).
Namely, we have four cases: (1) critical electron, usual
photon: infinite GB, finite DE, Ec:m: is infinite, (2) critical
photon, usual electron: finite GB, infinite DE, Ec:m: is
infinite, (3) both particles are critical: finite GB, finite
DE, Ec:m: is finite, and (4) both particles are usual: infinite
GB, infinite DE, Ec:m: is finite due to their compensation.
The corresponding results can be used for investigation of
the Compton effect near black holes. Meanwhile, the pos-
sibility of infinite Ec:m: means that, apart from mutual
scattering of electrons and photons, qualitatively new re-
actions can occur with creation of new kinds of high-
energy particles.
The above consideration is based on test particle

approximation, with backreaction, gravitation, and electro-
magnetic radiation neglected. Whether and how these re-
sults can be changed if these factors are taken into account
remains an interesting task for further studies.
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