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1Dipartimento di Fisica, Università di Bologna, via Irnerio 46, 40126 Bologna, Italy
2INFN, Sezione di Bologna, Via Irnerio 46, I-40126 Bologna, Italy

(Received 1 June 2011; published 5 July 2011)

We consider two spatially flat Friedmann-Robertson-Walker spacetimes divided by a timelike thin shell

in the nontrivial case in which the inner region of finite extension contains radiation and the outer region is

filled with dust. We will then show that, while the evolution is determined by a large set of constraints, an

analytical description for the evolution of the bubble radius can be obtained by formally expanding for

short times after the shell attains its minimum size. In particular, we will find that a bubble of radiation,

starting out with vanishing expansion speed, can be matched with an expanding dust exterior, but not with

a collapsing dust exterior, regardless of the dust energy density. The former case can then be used to

describe the nucleation of a bubble of radiation inside an expanding dust cloud, although the final

configuration contains more energy than the initial dust, and the reverse process, with collapsing radiation

transforming into collapsing dust, is therefore energetically favored. We however speculate a (small)

decaying vacuum energy or cosmological constant inside dust could still trigger nucleation. Finally, our

perturbative (yet analytical) approach can be easily adapted to different combinations of matter inside and

outside the shell, as well as to more general surface density, of relevance for cosmology and studies of

defect formation during phase transitions.
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I. INTRODUCTION

The dynamics of an infinitely thin, spherically symmet-
ric shell � separating two spacetime regions �� with
given metrics is a well-known problem of general relativ-
ity. The general theory dates back to 1965 [1] and is
completely understood. Given the symmetry of the system,
we can use spherical coordinates x

�
� ¼ ft�; r�; �; �g in

��, respectively, where the angular coordinates are the
same in both patches, and 0 � r� < rs�, rsþ < rþ, with
rs� ¼ rs�ðt�Þ the (in general time-dependent) radial coor-
dinates of the shell in��. One then takes specific solutions
g��� of the Einstein equations inside �� and imposes

suitable junction conditions across �, namely, the metric
is required to be continuous across the shell,

gþ��j� ¼ g���j�; (1)

whereas the extrinsic curvature Kij of � is allowed to have

a jump proportional to the surface stress-energy tensor of
the timelike shell�ij (italic indices run on the shell’s three-

dimensional world-sheet),

½Ki
j� � �i

j½Kl
l� ¼ ��i

j; (2)

in which ½Ki
j� � Ki

jjþ � Ki
jj� denotes the difference

between extrinsic curvatures on the two sides of the
shell. Note that we set c ¼ 1 and � ¼ 8�GN=3 ¼ ‘P=MP

( ¼ 1 when convenient), where GN is Netwon’s constant
and ‘P (MP) the Planck length (mass). Although the clas-
sical evolution equation (2) may appear simple, it has been

solved only in a few special cases, most notably for the
vacuum or with cosmological constants in �� [2] (for an
extensive bibliography see Ref. [3]).
A most intriguing result emerges in the semiclassical

picture [4,5], where one finds that ‘‘bubbles’’ can be quan-
tum mechanically created from nothing (in a sense, at the
expense of gravitational energy). This may occur when one
has a classical solution for an expanding shell areal radius
with a (finite) minimum value (turning point of the classi-
cal trajectory, larger than ‘P), and a nonvanishing quantum
mechanical amplitude for the ‘‘tunneling’’ into such a
system from one without the shell (that is, a shell of zero
area). It has been conjectured that these bubbles could
represent child universes generated inside a parent (or
‘‘landscape’’) universe [6–8], if they expand indefinitely
(or at least long enough). Bubble dynamics might also be
used to model regions of space within which a matter phase
transition occurs (from false to true vacuum, as well as
between different forms of matter [9]). One can, for in-
stance, use such a model to approximate the formation of
radiation from a decaying scalar field during reheating
after inflation. It is known that for an inflaton with a
quadratic potential, the time averaged dynamics of the final
oscillation phase mimics that of matter. The approach
developed in this paper could turn out to be suitable to
describe the decay into radiation. In the end, knowing the
correct evolution of such a bubble would be of great help in
understanding how defects formed during phase transitions
are ‘‘ironed out’’ by the expansion of the new phase.
In this paper, we are mainly interested in presenting an

analytical (perturbative in time) approach to study a time-
like shell’s dynamics and to obtain analytical conditions
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for the existence of expanding bubbles in terms of the
energy densities inside and outside the shell, when such
regions contain homogeneous dust or radiation. This prob-
lem is made technically cumbersome because of the oc-
currence of algebraic constraints (to ensure the arguments
of proliferating square roots are positive). We shall there-
fore consider in detail only the specific case of nucleation
of a spatially flat radiation bubble inside (spatially flat)
collapsing or expanding dust, in order to keep the presen-
tation of our method more streamlined. Nonetheless, these
cases are also of particular physical interest. For example,
one can conceive the density inside a collapsing astrophys-
ical object might be large enough to allow for the creation
of supersymmetric matter which, in turn, would then anni-
hilate regular matter and produce a ball of radiation [10].
Likewise, in a dense matter-dominated expanding uni-
verse, one might consider the possibility of spontaneous
nucleation of radiation bubbles. We shall find the dust
energy density just sets the overall scale of the problem.
Assuming the bubble surface density is (initially) constant,
expanding radiation bubbles may then be matched with an
expanding dust exterior, the timelike shell surface density
being uniquely related to the inner radiation density. In
order to view the bubble creation as a phase transition from
dust to radiation (plus the surface density of the shell), one
however needs an external source of energy, since the total
energy of the bubble is larger than the initial energy of the
dust. This implies that the reverse process of collapsing
radiation turning into collapsing dust is actually favored
energetically. Moreover, no configuration with expanding
bubbles is allowed inside collapsing dust, regardless of
how large the dust energy density is, and the conversion
between the two types of matter therefore appears highly
disfavored in this case.

In Sec. II, we briefly review the fundamental equations
and constraints that describe general timelike bubble dy-
namics, following Ref. [9], and then specify all expressions
for �� given by spatially flat Friedmann-Robertson-
Walker (FRW) regions filled with dust or radiation. In
Sec. III, we work out the explicit case of a radiation bubble
of constant surface density nucleated inside collapsing or
expanding dust, for which we obtain the initial minimum
radius in terms of the inner and outer energy densities.
Finally, in Sec. IV, we make some considerations about our
findings and possible future generalizations.

II. BUBBLE DYNAMICS

For our analysis, we will mostly follow the notation of
Ref. [9], where the metric in each portion�� of spacetime
is given by

ds2 ¼ e�ðr;tÞdt2 � e	ðr;tÞdr2 � R2ðr; tÞd�2; (3)

where t ¼ t� are the time coordinates inside the
corresponding patches, and likewise for the three spatial

coordinates. On the shell timelike surface �, one has the
line element

ds2j� ¼ d
2 � �2ð
Þd�2; (4)

in which 
 is the proper time as measured by an observer
at rest with the shell of areal radius � ¼ R�ðrs�ðt�Þ; t�Þ.
The relation between 
 and t� is obtained from the equa-
tion of continuity of the metric, Eq. (1), and is displayed
below in Eq. (25) for the cases of interest. On solving
Eq. (2) in terms of � and _� ¼ d�=d
, one gets the dy-
namical equation

_� 2ð
Þ ¼ B2ð
Þ�2ð
Þ � 1; (5)

where

B2 ¼ ð�þ þ �� þ 9��2=4Þ2 � 4���þ
9�2

; (6)

with � ¼ �0
0ð
Þ the shell’s surface density and �� ¼

��ðt�Þ the time-dependent energy densities in��, respec-
tively. It is important to recall that metric junctions can
involve different topologies for ��, but we are here con-
sidering only the so-called ‘‘black hole’’ type, in which
both portions of spacetime have increasing area radii R� in
the outward direction (of increasing r�). Assuming the
surface density of the shell is positive, one must then have1

�þð
Þ � ��ð
Þ> 9

4
��2ð
Þ (7)

at all times, in order to preserve the chosen spacetime
topology [9,11].
In the pure vacuum case, �� are constant and for con-

stant � the solution is straightforwardly given by

�ð
Þ ¼ B�1 coshðB
Þ; (8)

where B ¼ Bð��; �Þ from Eq. (6) is also constant [2].
In the nonvacuum cases, finding a solution is, however,

significantly more involved. Regardless of the matter
content of ��, it is nonetheless possible to derive a
few general results for a bubble which nucleates at a time

 ¼ 
0, that is a shell that expands from rest,

_� 0 ¼ 0; (9)

with initial finite (turning) radius (�0 > 0), where the sub-
script 0 will always indicate quantities evaluated at the
time 
 ¼ 
0. First of all, from Eq. (5), the initial radius
must be given by

�0 ¼ jB�1
0 j; (10)

which requires B0 real, or

1This also implies that �0þ > �0� and, from the Friedmann
Eq. (16) given below, H2þ >H2�.
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ð�0þ þ �0� þ 9��2
0=4Þ2 > 4�0��0þ: (11)

This condition is always satisfied if �dust0 and �rad0 are both

positive and will therefore be of no relevance in this paper,
but must be carefully considered when allowing for nega-
tive energy densities (and nonvanishing spatial curvature).
Further, upon deriving Eq. (5) with respect to 
 (always
denoted by a dot)

2 _� €� ¼ 2ðB _B�2 þ B2� _�Þ; (12)

and using Eq. (9), one also obtains

_B 0 ¼ 0; (13)

assuming €�0 is not singular. The constraint in Eq. (7) at

 ¼ 
0,

�0þ � �0� > 9
4��

2
0; (14)

and the conditions in Eqs. (9) and (13) will play a crucial
role in the following.

A. Flat FRW regions

Because we wish to study the particular case of a shell�
separating two regions�� filled with homogeneous fluids,
the metrics in �� will be taken to be the usual FRW
expressions. Moreover, we already assumed �� has finite
initial extension and, by definition, represents the interior
of the shell. As a further simplification, we shall only
consider flat spatial curvature and set the cosmological
constant � ¼ 0 everywhere.

The metrics (3) in the inner and outer regions are there-
fore given by

ds2 ¼ dt2 � a2ðtÞ½dr2 þ r2ðd�2 þ sin2�d�2Þ�; (15)

where aðtÞ is the scale factor which evolves according to
the Friedmann equations

H2 ¼
�
1

a

da

dt

�
2 ¼ ��; (16)

2
1

a

d2a

dt2
þ

�
1

a

da

dt

�
2 ¼ �3�p: (17)

We assume the energy density � and pressure p of the
fluids obey barotropic equations of state,

p ¼ w�ðtÞ; (18)

and recover the well-known behaviors

�ðtÞ
�
aðtÞ
a0

�
3ðwþ1Þ ¼ �0; (19)

in which �0 is the density evaluated at a reference instant
of time t ¼ t0 and a0 ¼ aðt0Þ. For dust, w ¼ 0 (p ¼ 0),
whereas for radiation w ¼ 1=3, so that

�dustðtÞ ¼ �0a
3
0

a3ðtÞ ; �radðtÞ ¼ �0a
4
0

a4ðtÞ : (20)

The evolution of scale factors in cosmic time for expanding
( " ) and contracting ( # ) solutions are finally given by

arad"# ðtÞ ¼ ð� 2
ffiffiffiffiffiffiffiffiffiffi
Mrad

p
tÞ1=2; darad"#

dt
¼ �

ffiffiffiffiffiffiffiffiffiffi
Mrad

p

aradðtÞ ; (21)

and

adust"# ðtÞ ¼
�
�� 3

2

ffiffiffiffiffiffiffiffiffiffiffi
Mdust

p
t

�
2=3

;
dadust"#
dt

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mdust

adustðtÞ

s
;

(22)

where, in the above right-hand side, the þ signs are for
expansion and � signs for contraction,

Mrad ¼ �a40�
rad
0 ; Mdust ¼ �a30�

dust
0 ; (23)

and  and � integration constants that determine the size
of the scale factors at t ¼ 0. Later, for convenience, we
will set  ¼ � ¼ 1 at t ¼ 0, so that �ð0Þ ¼ �0 and að0Þ ¼
a0 ¼ 1.
Let us now consider the timelike shell � at r� ¼ rs�ðt�Þ

separating the two regions ��. Clearly, metric continuity
implies

� ¼ a�ðt�Þrs�ðt�Þ: (24)

The inner and outer spaces are characterized by different
physical parameters. In particular, as one can see from
Eq. (6), the shell’s dynamics are determined by the
following:
(1) The type of fluid inside the shell (its equation of

state w�).
(2) The initial values a0� and �0�.
(3) The type of fluid outside the shell (its equation of

state wþ).
(4) The initial values a0þ and �0þ.
(5) The shell surface density � (as a function of the

radius �).

A given configuration of dust, radiation, and surface den-
sity is admissible only if the corresponding initial condi-
tions are such that Eqs. (9), (13), and (14) are satisfied.

B. Time transformations and expansion

The densities �� in Eq. (20) are given in terms of
coordinate times t�. However, it is the time 
 measured
by an observer on the shell which appears in the evolution
Eq. (5). Hence we need to find the transformation from t�
to 
. Following Ref. [9], we recall that metric continuity (1)
implies2

2There is a typo in Eq. (B10) of Ref [9]: �2 is missing in the
last term in the square root.
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dt�
d


���������
¼

�
H� _�

�

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2 ��ð _�2 þH2�2Þ

ðH� _�Þ2
s ��

�
;

(25)

in which H is again the Hubble ‘‘constant,’’ � ¼
���2 � 1, and the expression within braces must be esti-
mated on the two sides of the shell.3 Now, the above two
equations should be solved along with Eq. (5), which
makes it clear why it is impossible to obtain general
analytic solutions.

An important result can be obtained by considering
the time when the bubble is at rest, that is t� ¼ t0� and

 ¼ 
0, with _�ð
0Þ ¼ 0 and H0 � Hðt0Þ, namely,

dt�
d


���������;0
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�H2

0��
2
0

�0�

s
: (26)

From Eq. (16) we see that � ¼ H2�2 � 1, therefore,

dt�
d


���������;0
¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�H2
0��2

0

q ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��0��2

0

q ¼ �1ffiffiffiffiffiffiffiffiffiffiffiffiffi��0�
p ;

(27)

with the signs in the numerator simply reflecting the direc-
tions t� flow relative to 
. It is clear that real solutions to
Eq. (27) exist only if

�0� < 0: (28)

Remarkably, this is the same as stating that the energy
density inside the radius � ¼ �0 must not generate a
black hole, as one can easily check by considering
the Schwarzschild radius rS ¼ 2GNM with M ¼
ð4�=3Þ�0�3

0. This is manifest when considering �0� inside

the bubble, but it must also hold for the energy density �0þ
outside the bubble. For the outer region, this means the
bubble must lie inside the Hubble radius, �0 <H�1

0 .

Putting together these conditions tells us that the temporal
coordinates are properly transformed only within a causal
region of the spacetime.

In order to study how the bubble grows after nucleation,
we can expand t ¼ tð
Þ for short times about t0� and 
0.
Further, we want all times directed the same way, so we
choose the þ sign in the above expression and obtain, to
linear order,

t� ’ t0� þ 
� 
0ffiffiffiffiffiffiffiffiffiffiffiffiffi��0�
p ; (29)

where t0� are integration constants.
Unfortunately, a first-order expansion is not sufficient to

study the evolution of the bubble radius. Since _�0 ¼ 0, we
need at least second order terms in 
 to get significant

results, which makes all expressions very cumbersome. We
shall therefore just consider a few specific cases, general-
izing the exact result (8) for a shell of constant surface
energy in vacuum. For such cases, our perturbative ap-
proach will yield exact conditions for the bubble’s exis-
tence, which we see as a clear advantage with respect to
purely numerical solutions. Other advantages would be
that having analytical expressions is a necessary ingredient
for quantum mechanical (or semiclassical) studies of these
systems. Moreover, adapting our procedure to all possible
combinations of fluids in ��, and for more general shell
surface density, should be rather straightforward.

III. RADIATION BUBBLE INSIDE DUST

The main idea in our approach stems from the observa-
tion that the (three) fundamental (first-order differential)
Eqs. (5) and (25) contain six functions of the proper time 
:
the shell radius �, its surface density �, the two times t�,
and the two Hubble functions H�. Once we choose the
matter content inside �� and on the shell, the Hubble
functions and surface density are uniquely fixed, and we
are left with the three unknowns � and t� (and a set of
constraints for the initial conditions). To determine these
unknowns, we find it convenient to formally expand the
shell radius � and Hubble functions H� for short (proper)
time ‘‘after the nucleation of the bubble’’ (when _�0 ¼ 0),
and solve Eqs. (5) and (25) order by order.
Since expressions rapidly become involved, and a gen-

eral treatment for all combinations of matter content in��
and shell surface density would be hardly readable, we
shall only consider the specific case of a radiation bubble
(w� ¼ 1=3) inside a region filled with dust (wþ ¼ 0). We
further assume the shell’s surface density

�ð
Þ ¼ �0 > 0 (30)

is constant and positive. Since one would expect the shell’s
density decreases as the shell’s surface grows, this assump-
tion might appear rather strong. However, it is the simplest
way to ensure the junction remains of the ‘‘black hole’’
type, and a more thorough discussion of this point can
be found in Ref. [9]. In order to keep the presentation
uncluttered, we also set � ¼ 1 from now on and regard all
quantities as dimensionless (tantamount to assuming they
are rescaled by suitable powers of � ¼ ‘P=MP). This
means that densities will be measured in Planck units,
that is � ¼ 1 corresponds to the Planck density �P ¼
MP=‘

3
P ¼ ‘�2

P and � ¼ 1 to �P ¼ MP=‘
2
P ¼ ‘�1

P . Like-
wise, � ¼ 1 is the Planck length ‘P. We also express the
shell surface density and radiation energy density as frac-
tions of �dust0 > 0,

�rad0 ¼ �dust0 x; �0 ¼
ffiffiffiffiffiffiffiffiffi
�dust0

q
y; (31)

with 0 � x � 1 and y � 0.

3Note the sign ambiguity � in front of the square root just
reflects the double root of a second degree equation and is not
associated with the interior or exterior regions.
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It is natural to choose 
0 ¼ 0, and then proceed to
analyze Eqs. (5) and (25) by formally expanding all rele-
vant time-dependent functions in powers of 
� 
0 ¼ 
:

Step (1): Since _�0 ¼ 0 [see Eq. (9)], we can formally
write the bubble radius as

�ð
Þ ¼ �0 þ 1

2
€�0


2 þOð
3Þ; (32)

where �0 and €�0 are parameters to be determined. In
particular, from Eqs. (6) and (10), we obtain the (not yet
final) expression

�0 ¼ 3�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�0þ þ �0� þ 9��2

0=4Þ2 � 4�0��0þ
q

¼ 3ð�dust0 Þ�1=2yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ xþ 9y2=4Þ2 � 4x
p ; (33)

which only depends on �0� and �0. More precisely, �dust0

sets the overall scale of the shell radius and the fractions x
and y defined in Eq. (31) the detailed form.

We next obtain t� ¼ t�ð
Þ by solving Eq. (25).
However, for this purpose we need the Hubble parameters
H� as functions of 
, whereas they explicitly depend on t�:

Step (2): We replace H in Eq. (25) with the formal
expansion

H ¼ H 0 þ _H 0
þOð
2Þ; (34)

where H 0 and
_H 0 are unknown constant quantities to be

determined by consistency. By expanding the right-hand
side of Eq. (25) to first order in 
 and then integrating, we
obtain t to second order in 
,

t� ’ t0� þ 
ffiffiffiffiffiffiffiffiffiffiffiffiffi��0�
p þ �0H 0�

2�0�

�
€�0 � �0

_H 0�ffiffiffiffiffiffiffiffiffiffiffiffiffi��0�
p

�

2; (35)

where �0 must now be understood as the expression given
in Eq. (33) and t0� are integration constants we can set to
zero without loss of generality. In fact, let us assume we are
at rest in an expanding (or contracting) universe, corre-
sponding to the old exterior phase (with parameters �0þ
and H0þ), and measure a time t0þ from the ‘‘big bang’’
(or beginning of collapse) of this exterior universe
[aþðt0þ ¼ 0Þ ¼ 0 or aþðt0þ ¼ 0Þ> aðt0þÞ for t0þ > 0, re-
spectively]. If, for instance, a new phase bubble arises at
rest at the instant t0þ ¼ t00þ, we can define tþ ¼ t0þ � t00þ,
so that the bubble is created at tþ ¼ 0, and also set
t0� ¼ 0, since an ‘‘inner time’’ is meaningless before any
‘‘inner part’’ exists. For different pictures, similar argu-
ments can likewise be formulated.

Step (3): From Eqs. (21) and (22), we choose an ex-
panding radiation interior and contracting or expanding
dust exterior,

a� ¼ arad" ðt�Þ; aþ ¼ adust#" ðtþÞ; (36)

set a0� ¼ 1 and express t� according to Eq. (35). In so
doing, a� and da�=dt� become explicit functions of 


containing �0, H 0�, and _H 0�. For consistency with
Eq. (34), we must therefore require

Hð
Þ ¼ 1

a

da

dt
¼ H ð
Þ; (37)

with H� ¼ H� > 0 and Hþ ¼ Hþ < 0 for collapsing
dust, or Hþ ¼ Hþ > 0 for expanding dust.
Step (4): To zero order in 
, Eq. (37) gives rise to a first-

order equation for H 0,

H0 ¼ 1

a0

da

dt

��������
¼0
¼ da

dt

��������
¼0
¼ H 0: (38)

The solutions are uniquely given by

H "#
0 ¼ � ffiffiffiffiffi

�0
p

; (39)

in which the " andþ sign (respectively, # and� sign) refer
to expanding (contracting) solutions, i.e. solutions with
increasing (decreasing) scale factor, as before.4 Note
this result also follows directly from the Friedmann
equation (16) for 
 ¼ t ¼ 0.
To first order in 
, one analogously obtains

_H "#
0 ¼ � n�0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
0�0

q ; (40)

with n ¼ 2 for radiation and n ¼ 3=2 for dust, and �0 must
again be understood as the expression given in Eq. (33).
Step (5): Replace �0 from Eq. (33) and the chosen

combination of Hubble parameters (39) inside _B0, which
must then satisfy Eq. (13). This equation will only contain
�0� ¼ �rad0 , �0þ ¼ �dust0 , and �0, so that it can be used to

determine �0 ¼ �0ð�0�; �0þÞ. In particular, introducing
the fractions in Eq. (31), we obtain

_B 0 ¼ �dust0
_b0ðx; yÞ; (41)

from which it appears that the dust energy density just sets
the overall scale like in Eq. (33). For any given values of
�dust0 , the shell surface density is instead determined by the

radiation energy density according to

_b 0ðx; yÞ ¼ 0; (42)

which, for the cases of interest, is a fourth-order algebraic
equation for y. Analytic solutions can be found (in suitable
ranges of x), which we denote as �y ¼ �yðxÞ, so that the
allowed surface densities are given by

�� 0 ¼
ffiffiffiffiffiffiffiffiffi
�dust0

q
�y: (43)

4Note that, for example, the Hubble parameter for the expand-
ing interior phase will carry a second subscript sign and will then
be denoted as H "�, where the subscript � indicates the inner
region and the apex " stands for expansion.
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Step (6): Replace the above surface density ��0 into the
initial radius (33) and obtain its final expression,

�� 0 ¼ 3ð�dust0 Þ�1=2 �yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1þ xþ 9�y2=4Þ2 � 4x
p ; (44)

which can then be used to determine the final forms of
_H 0� and the scale factors a� to first order in 
.
Step (7): One must now check that ��0 and ��0 satisfy all

of the initial constraints and lead to valid time transforma-
tions (25), at least for some values of �rad0 and �dust0 . If not

all of these conditions are met, one must conclude the
corresponding physical system may not exist. Moreover,
we note the condition (28) requires �0 & �P in order to
have a (semi)classical bubble with �0 * ‘P. In the follow-
ing section, one should therefore consider only dust and
radiation energy densities �0 � �P and look at the limiting
case �0 ’ �P as a glimpse into the quantum gravity regime.

If a consistent solution for ��0 and ��0 exists, one can
proceed to determine higher order terms (in 
). However,
due to the increasing degree of complexity of the resulting
expressions, we shall not go any further here. We instead
present our findings for the two cases of interest separately.

A. Collapsing dust

This case is defined by choosing the scale factors

a� ¼ arad" ðt�Þ; aþ ¼ adust# ðtþÞ; (45)

and proceeding as described above. We can then prove that
this case does not admit solutions, in general, by simply
analyzing the constraint (42),

_b0 / 16x2ð3þ 4x3=2Þ þ 4x3=2ð4� 9y2Þð4� 8x� 9y2Þ
þ 3ð4þ 9y2Þð4� 8xþ 9y2Þ ¼ 0; (46)

which admits the four solutions

�y�� ¼ � 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� xÞ 2x

3=4 � i
ffiffiffi
3

p

2x3=4 � i
ffiffiffi
3

p
vuut : (47)

However, for x � 1, all the �y�� are complex and a
complex surface density is obviously unphysical. One
is then apparently left with the only trivial case x ¼ 1,
corresponding to �y ¼ 0 and

�� 0 ¼ ð�dust0 Þ�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 4x3=2

3þ 4x1=2

s
¼ 1: (48)

This case, however, does not satisfy all the required con-
straints. For example, Eq. (14) for �0 ¼ 0 yields

�dust0 > �rad0 ¼ x�dust0 ; (49)

which clearly contradicts x ¼ 1. Correspondingly, the
time transformations (25) are not well defined because
_�t0þ ¼ _�tþð
 ¼ 0; xÞ is complex for 0< x < 1 and both
_t0� diverge for x ! 1.

The overall conclusion is thus that expanding radiation
bubbles with a turning point of minimum radius cannot be
matched with a collapsing dust exterior.

B. Expanding dust

This case is defined by choosing the scale factors

a� ¼ arad" ðt�Þ; aþ ¼ adust" ðtþÞ: (50)

The crucial task is again to solve the constraint in Eq. (42),
namely,

_b0 / 16x2ð3� 4x3=2Þ � 4x3=2ð4� 9y2Þð4� 8x� 9y2Þ
� 3ð4þ 9y2Þð4� 8xþ 9y2Þ ¼ 0; (51)

admitting the four solutions

�y�� ¼ � 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� xÞ 2x

3=4 � ffiffiffi
3

p

2x3=4 � ffiffiffi
3

p
vuut ; (52)

which are real for

xmin ¼
�
3

4

�
2=3

< x< 1: (53)

We discard the negative solutions �y�� associated with
negative surface densities and just analyze the positive
cases �yþ�. It is then easy to see that �yþþ leads to a surface
density that diverges for x ! xmin, and is always too large
to satisfy the condition (14), since

1� x� 9

4
�y2þþ ¼

ffiffiffi
3

p ðx� 1Þ
2x3=4 � ffiffiffi

3
p < 0; (54)

in the range (53). In the limit for x ! 1, �yþþ ! 0; how-
ever, Eq. (14) is still violated in the strict sense and one can

in fact show that _�t0þ diverges.
The only solution that appears consistent is therefore

�� 0 ¼
ffiffiffiffiffiffiffiffiffi
�dust0

q
�yþ� ¼ 2

3

ffiffiffiffiffiffiffiffiffi
�dust0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� xÞ 2x

3=4 � ffiffiffi
3

p

2x3=4 þ ffiffiffi
3

p
vuut ; (55)

with x again in the range (53). This expression yields
a vanishing surface density for the limiting values x ! 1
and x ! xmin (see Fig. 1) and further satisfies the condition
(14),

1� x� 9

4
�y2þ� ¼

ffiffiffi
3

p ð1� xÞ
2x3=4 þ ffiffiffi

3
p > 0: (56)

The corresponding initial bubble radius is an increasing
function of x (see Fig. 1),

�� 0 ¼ ð�dust0 Þ�1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x3=2 � 3

xð4x1=2 � 3Þ

vuut < ð�dust0 Þ�1=2; (57)

with ��0ðx ! 1Þ ¼ ð�dust0 Þ�1=2. Further, the products

�dust0 ��2
0 < 1 and �rad0 ��2

0 < 1; (58)
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for xmin < x< 1, as required by the condition (28). In fact

the initial time derivatives _�t0� are well defined in this range
(see Fig. 2) and only diverge for x ! 1. Note the above
initial radius can be larger than ‘P only if �

dust
0 < �P and for

sufficiently large x, since ��0 ! 0 for x ! xmin (see, for
example, Fig. 3).

Finally, let us check if one can use the process of bubble
nucleation to describe a phase transition from dust to
radiation for the matter inside the sphere of radius ��0,
accompanied by the creation of a layer of nonvanishing
surface density ��0. From Eqs. (55) and (57), one has

�C 0 � �Mdust
0 � �Mrad

0 � �E�
0 < 0; (59)

which means the dust energy inside the sphere of radius
��0 at time of bubble formation, �Mdust

0 ¼ ð4�=3Þ ��3
0�

dust
0 , is

not sufficient to produce the radiation energy �Mrad
0 ¼

ð4�=3Þ ��3
0�

rad
0 and surface energy �E�

0 ¼ 4� ��0�
2
0. An extra

source is thus needed to provide the energy � �C0 > 0. The
reverse process of collapsing radiation reaching a mini-
mum size � ¼ ��0 and then turning into collapsing dust
would instead be energetically favored, with the amount of

energy � �C0 now being released. Of course, in order to
support this kind of argument, the extra contribution should
be a small perturbation on the given background,

j �C0j � �Mdust
0 ; (60)

since it was not included in the dynamical equations. From
Fig. 4, we expect this is indeed a very good approximation
since 0<� �C0 & 0:06 �Mdust

0 .

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have analyzed bubbles of radiation
whose timelike surface starts to expand inside collapsing
or expanding dust with vanishing initial rate, and with the
further (simplifying) assumptions that the bubble’s surface
density is constant and positive, and both interior and
exterior are spatially flat. These bubbles generalize the
simplest self-gravitating case of a shell with constant sur-
face density expanding in vacuum, for which the exact
trajectories are known [1,3]. These generalizations are of
potential interest both for the physics of the early universe
and the description of astrophysical processes. However,
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FIG. 2 (color online). Plot of _�t0þ (solid line) and _�t0� (dashed
line) for y ¼ �yþ�ðxÞ in the range (53).
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FIG. 4. Plot of �C0= �Mdust
0 for ��0 > 0 and y ¼ �yþ�ðxÞ in the

range (53).
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FIG. 1. Plot of ��0=
ffiffiffiffiffiffiffiffiffi
�dust0

q
¼ �yþ�ðxÞ (magnified by a factor

of 10 for convenience, dashed line) and corresponding
��0=ð�dust0 Þ�1=2 (solid line) in the range (53).
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FIG. 3. Plot of ��0 for y ¼ �yþ�ðxÞ with �dust0 ¼ �P=10 (dashed
line) and �dust0 ¼ �P (solid line) in the range (53). Only values

above ‘P ¼ 1 represent acceptable semiclassical radii.
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although the general formalism was already developed a
long time ago [1], and the dynamics are ruled by apparently
simple equations [9], finding explicit solutions is not
straightforward.

By developing an approach to obtain analytical expres-
sions for the evolution of the bubble radius in the shell’s
proper time, � ¼ �ð
Þ with _�ð
 ¼ 0Þ ¼ 0, we determined
the conditions which allow for the existence of such con-
figurations. Although our approach is perturbative (with an
expansion for short times after nucleation), the conditions
for the bubble’s existence are exact, which is a clear
advantage with respect to purely numerical solutions. We
then found that expanding radiation bubbles of constant
surface density may not be matched to a collapsing dust
exterior. More precisely, we found that inside collapsing
dust there may not be a bubble of radiation whose surface
ever reaches vanishing speed of expansion at finite radius.
Bubbles whose radius admits a turning point are instead
allowed inside an expanding dust-dominated universe.
They further can be used to model a phase transition
from radiation to dust if an external source provides part
of the energy required to build the shell, or the converse
process with release of energy (albeit, of an amount small
enough to leave the background configuration unaffected).

Let us clarify this point about energy conservation. The
fundamental equations (5) and (25) are just a different form
of the junction equations (1) and (2) which, in turn, follow
from the Einstein equations. Conservation of the energy
momentum in a given system is therefore guaranteed.
However, when we use bubbles to model a phase transition,
we are considering the possibility that a region of space
filled with dust be replaced by radiation enclosed inside an
expanding shell, or the reverse process. Technically, we are
therefore considering two different systems: one with dust
and one with a bubble of radiation within a shell of positive
surface density whose radius evolves along a trajectory
with a turning point (zero speed at finite minimum radius).
The total energy in the two configurations differ by the
amount �C0 defined in Eq. (59), and a (quantum) transition
between them would therefore violate energy conservation
and be suppressed in the semiclassical regime. By looking
at Fig. 4, we see however that j �C0j � �Mdust

0 . One may thus

argue the unspecified matter contribution carrying the
energy j �C0j should be well approximated as a perturbation
with respect to the dust and radiation, with its backreaction

on the chosen configuration consistently negligible. If so,
one can further speculate if the extra energy required to
nucleate radiation could be provided by pressure in the
initial cloud or by the decay of a region of false vacuum
(with vacuum energy or cosmological constant�þ) to true
vacuum (with cosmological constant �� <�þ), like in
the seminal Refs. [4].
The fact that no consistent solution was found inside

collapsing dust does not mean that expanding radiation
bubbles may not be produced at all in this context, which
includes, for example, the collapsing core of a supernova or
other astrophysical processes leading to black hole forma-
tion. In fact, the situation might change if one, for instance
(and more realistically), includes matter pressure or a
radius-dependent surface density, � ¼ �ð�Þ. This obser-
vation thus brings us to briefly comment on the possible
generalizations and extensions of the present work, which
include the just mentioned nonconstant�, as well as differ-
ent combinations of matter inside and outside the shell, and
cosmological constant(s) ��. Moreover, one might like to
consider the vacuum inside the shell and radiation outside
(with or without ��) and apply the corresponding results
to the thick shell model previously studied in Refs. [12].
Finally, our analysis is entirely based on classical gen-

eral relativity and no attempt was made to compute the
quantum mechanical tunneling probability for radiation
bubbles to come into existence (or convert to dust). Such
an analysis requires the (effective Euclidean) action to be
integrated along the (classically forbidden) trajectory for
the bubble radius � to go from 0 to �0 [5], whose con-
struction is clearly no easy task, given the classical trajec-
tories are so difficult to determine. Nonetheless, another
advantage of our approach is that it provides analytical
(albeit perturbative) expressions, which is a property one
needs for any quantum mechanical (or semiclassical) stud-
ies of these systems. Of course, energy densities above the
Planck scale would not be meaningful in this context, since
one then has no guarantee that the dynamical equations
derived from general relativity can be trusted at all.
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