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The finite-temperature effective potential customarily employed to describe the physics of cosmologi-

cal phase transitions often relies on specific gauge choices, and is manifestly not gauge invariant at finite

order in its perturbative expansion. As a result, quantities relevant for the calculation of the spectrum of

stochastic gravity waves resulting from bubble collisions in first-order phase transitions are also not gauge

invariant. We assess the quantitative impact of this gauge dependence on key quantities entering

predictions for gravity waves from first-order cosmological phase transitions. We resort to a simple

Abelian Higgs model, and discuss the case of R� gauges. By comparing with results obtained using a

gauge-invariant Hamiltonian formalism, we show that the choice of gauge can have a dramatic effect on

theoretical predictions for the normalization and shape of the expected gravity wave spectrum. We also

analyze the impact of resumming higher-order contributions as needed to maintain the validity of the

perturbative expansion, and show that doing so can suppress the amplitude of the spectrum by an order of

magnitude or more. We comment on open issues and possible strategies for carrying out ‘‘daisy

resummed’’ gauge-invariant computations in non-Abelian models for which a gauge-invariant

Hamiltonian formalism is not presently available.
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I. INTRODUCTION

The search for gravitational waves is entering an
exciting phase. The current generation of experiments is
already delivering interesting results, including recent
limits on the amplitude of stochastic gravitational wave
backgrounds from the LIGO Collaboration [1,2]. Rapid
advances in the development of space-borne detectors [3]
that might be operational in the relatively near future are
also expected [4].

As pointed out long ago [5–7], cosmological phase
transitions in the early Universe might produce an imprint
in the form of a stochastic background of relic gravity
waves (GWs). This would arise as a result of the collision
or turbulent motion of bubbles of ‘‘true vacuum’’ expand-
ing and eventually filling the metastable vacuum in a
cosmological first-order phase transition [8]. The resulting
signal might be large enough to be detectable by the next
generation gravity wave search experiments, providing a
unique window on the early cosmological history of the
Universe [9].

The spectrum of the gravity wave background arising
from a first-order cosmological phase transition is

controlled by two physical properties of the phase transition

itself: (a) the amount of false vacuum energy liberated

during the phase transition—in other words, the latent

heat associated with the transition; and (b) the bubble

nucleation time scale, which gives ameasure of how rapidly

the phase transition occurs relative to the early-universe

Hubble expansion rate [8,10]. The resulting gravity wave

normalization and spectral peak can be estimated as a

function of these two physical quantities. Detailed analyti-

cal [8,11] and numerical [12,13] studies exist that relate the

two parameters to the predicted spectrum, in particular, for

the case of detonations, where the speed of the bubble wall

is larger than the speed of sound (see Ref. [13] for a

discussion of the opposite case of deflagration).
One class of models where a strongly first-order phase

transition is a necessary ingredient is electroweak baryo-

genesis [14]. In the presence of B-violating electroweak

sphalerons in the standard model (SM) and sources of CP
violation beyond those of the Cabibbo-Kobayashi-

Maskawa CP-violating phase, the electroweak phase tran-

sition (EWPT) can produce a sufficiently large baryon

number density to explain the observed baryon asymmetry

(for recent studies see e.g. [15–27]). To prevent the wash-

out of the produced asymmetry, the phase transition must

be strongly first order, thus necessarily producing gravity

waves. Interestingly, the typical frequencies at which
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gravity waves from the EWPT are redshifted today falls in
the milli-Hertz to Hertz range, where the expected sensi-

tivity of the space-based interferometer LISA is maximal.

The search for a gravity wave relic from the EWPT is
therefore especially intriguing and promising (see e.g.

[28,29]).
From a particle physics perspective, the determination of

the details of an EWPT depends on the calculation of the
finite-temperature effective action �eff as a function of the
background bosonic fields—denoted generically here as
’ðxÞ—that are present in the theory. In the case of the
SM, lattice computations and the CERN LEP lower bound
on the mass of the Higgs boson imply that electroweak
symmetry breaking in a SM universe occurs through a
crossover transition [30,31]. To obtain a strongly first-order
EWPT as needed for both electroweak baryogenesis
(EWB) and the associated relic gravity waves, one must
augment the SM scalar sector by the addition of new scalar
fields, such as a second Higgs SUð2ÞL doublet as in the
minimal supersymmetric standard model (MSSM) [15–21]
or a real singlet in minimal extensions of the SM scalar
sector (see e.g. [22]). Electroweak bubble nucleation oc-
curs when a combination of one of these new fields and
the neutral component of the SM Higgs doublet becomes
nonzero. The properties of relic gravity waves produced by
bubble collisions then follow from the behavior of
�eff½’ðxÞ�.

The most theoretically robust computations of the effec-
tive action are performed using nonperturbative (lattice)
methods. Given the cost of such computations, however,
this approach is not feasible for exploring EWPT dynamics
in a variety of beyond the standard model (BSM) scenarios.
Consequently, one must resort to perturbation theory
which, in turn, requires the introduction of gauge fixing.
As recognized long ago [32], perturbative computations of
the effective potential—and, more generally, �eff½’ðxÞ�—
generically lead to a gauge-dependent function. Physical
quantities like the latent heat or the bubble nucleation rate
should not, however, exhibit any gauge dependence.

In fact, general arguments imply that the critical tem-
perature [33] and the bubble nucleation rate [34] are gauge
independent. These statements follow from the so-called
Nielsen identities and their generalization [35,36] that
describe the dependence of the effective action on the
gauge-fixing condition imposed on the quantized fields.
In particular, the effective action �eff½’ðxÞ� is gauge in-
variant when ’ðxÞ is an extremal configuration, that is, one
satisfying the equations of motion.1 In principle, then, one
should be able to obtain physical, gauge-invariant quanti-
ties relevant to the EWPT from �eff by working with an
appropriate set of extremal field configurations.

In practice, a nontrivial gauge dependence can enter
perturbative computations from an inconsistent truncation
of the perturbative expansion [37]. In the context of
sphaleron-induced baryon number washout, following ear-
lier work by Refs. [38–40], it was shown in Ref. [37] how a
consistent, systematic order-by-order approach can yield a
gauge-invariant perturbative result. However, most of the
remaining literature on the topic of the EWPT, including
the context of gravity wave production and of baryogenesis
relevant here, appears to suffer from gauge dependence
(typically, perturbative calculations of EWPT-relevant
quantities have been performed in the Landau gauge).2

Apart from the point of principle, the question then arises
as to the quantitative impact that this gauge artifact has
upon predictions of observable quantities.
In the present study, we address this question as it

pertains to computations of gravitational wave spectra
from a first-order EWPT. To that end, we consider the
simplest model involving scalar fields charged under a
gauge group: the Abelian Higgs model, also known as
the Coleman-Weinberg or scalar QED model. We then
resort to a class of gauges known as R� (or renormalizable)

gauges, and we calculate the effective potential at finite
temperature, including its explicit dependence on the pa-
rameter �.
Studying the Abelian Higgs model has two clear advan-

tages. First, its parameter space is small and easily ana-
lyzed. Second, and more importantly, one may calculate its
effective potential using a gauge-invariant Hamiltonian
approach [41] whose results can be compared with those
obtained from the gauge-dependent approach. We then
calculate quantities relevant to the character, strength,
and duration of the EWPT, both in the R� gauges (includ-

ing Landau gauge) and in the gauge-invariant approach,
and systematically compare the results.
We find that the gauge choice may have a dramatic

impact, amounting to several orders of magnitude, on the
inferred gravity wave spectrum, and even on the first- or
second-order character of the phase transition itself. We
also observe that the Landau gauge results closely match,
at least for the Abelian Higgs model, the results using the
explicitly gauge-invariant Hamiltonian formulation. This
situation is perhaps not surprising, given the arguments in
Ref. [42] (see below). We caution, however, that this con-
clusion might not be easily generalizable to non-Abelian
gauge theories and that, even in the Abelian Higgs model, a
gauge-invariant resummation of higher-order terms that
would otherwise spoil the convergence of the perturbative
expansion remains to be developed.3 To underscore the
importance of the latter problem, we study the impact of

1In the case of the effective potential, ’ðxÞ ¼ const � ’min is
just the spacetime-independent background field (e.g. Higgs
vacuum expectation value) that gives a minimum or maximum
of the potential.

2To our knowledge, there exist no nonperturbative computa-
tions of all of the quantities relevant for predictions of GW
spectra.

3A gauge-invariant prescription for estimating these terms was
developed in Ref. [37].
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including the ‘‘daisy resummation’’ in R� gauges. We find

that, in the Landau gauge, inclusion of the resummation
typically reduces the overall amplitude of the GW spec-
trum compared to the gauge-invariant but unresummed
result. We then comment on strategies to tackle these issues
in non-Abelian models (such as the standard model or its
supersymmetric extensions)—including those of Ref. [37].

We begin in Sec. II with the explicit calculation of the
gauge dependence of the effective potential, at both zero
and finite temperature, for the Abelian Higgs model. In
Sec. III, we explain the calculations required to predict
gravitational wave spectra and other physical observables
related to the phase transition. Finally, we present our
results and conclusions in Secs. IV and V.

II. GAUGE DEPENDENCE OF
THE EFFECTIVE POTENTIAL

We are concerned here with an Abelian Higgs model
encompassing a complex singlet Higgs field with the
Lagrangian

L ¼ �1
4F��F

�� þ 1
2ðD��Þ�D��� V0ð���Þ; (1)

where F�� ¼ @�A� � @�A� andD� ¼ @� � ieA� are the

standard electromagnetic tensor and covariant derivative,
respectively. The potential V0 is

V0ð���Þ ¼ �1
2m

2���þ 1
8�ð���Þ2: (2)

The tree-level vacuum expectation value (vev) is v2 ¼ 2m2

� ,

and the bare Higgs mass at the vev is m2
h ¼ 2m2.

In order to perform perturbative calculations, we must
add gauge-fixing and ghost terms to the Lagrangian. In the
R� gauge, these are

Lgf þLghost ¼ � 1

2�
ð@�A� þ �ev�Þ2 þ @� �c@

�c

� �e2v� �cc; (3)

where c is the Grassmann-valued ghost field, and where
we have split � into its real and imaginary components:
� ¼ �þ i�. We choose the vev such that h�i ¼ 0, mak-
ing � the physical Higgs boson and � the nonphysical
Goldstone boson. Note that in Landau gauge (� ¼ 0, fixing

@�A
� ¼ 0), the ghost field completely decouples from the

theory.
To include finite-temperature corrections, we must go

to (at least) one-loop order in the effective potential.
At zero temperature, the calculation of the one-loop
effective potential proceeds by taking the trace of the
inverse propagators for each particle. This yields terms

like 1
2

R
d4k
ð2�Þ4 logðk2 þm2

i ð�ÞÞ, although determining the

proper expression for the � dependence of the gauge boson
is somewhat complicated by the need to sum over Lorentz

indices (see e.g. Ref. [43]). UsingMS renormalization, the
full one-loop zero-temperature potential is

V1ð�; T ¼ 0Þ ¼ X
particles

ni
64�2

m4
i ð�Þ

�
log

�
m2

i ð�Þ
�2

�
� c

�
;

(4)

where ni are the degrees of freedom for each particle and
c ¼ 1

2 for the gauge boson’s transverse modes and c ¼ 3
2 for

its other modes and all other particles.4 Table I lists all
particle masses and their degrees of freedom. Several of the
masses are gauge dependent, and, precisely because of this
fact, the effective potential is also gauge dependent. Note
that at both the origin and the tree-level vev (�2 ¼ v2 ¼
2m2=�) the gauge dependence disappears [37], as expected
from the Nielsen identities [35,36]. However, the value of
� that minimizes the one-loop effective potential is not
gauge invariant.
For the particular case of the Abelian Higgs model,

Fischler and Brout [42] defined an effective potential
from the vacuum-to-vacuum S-matrix element without
resorting to the introduction of sources, a procedure that
contrasts with the conventional definition in terms of the
Legendre transform of the source-dependent generating
functional, Z½j�. In this context, the ‘‘free energy’’ is
minimized by a spacetime-independent background field
only in the Landau gauge, whereas in other gauges the
minimizing fields must carry a spacetime dependence.

TABLE I. Particle content of the Abelian Higgs model, including Fadeev-Popov ghosts. One
ghost effectively cancels the contribution from the unphysical timelike polarization, while the
other cancels either the longitudinal polarization (at � ¼ 0) or the Goldstone boson (at � ¼ v).

Particles d.o.f. ðmassesÞ2 ðthermal massesÞ2
Transverse gauge polarization 2 e2�2

Longitudinal gauge polarization 1 e2�2 1
3 e

2T2

Timelike gauge polarization 1 �e2�2

Higgs boson 1 �m2 þ 3
2��

2 ð13�þ 1
4 e

2ÞT2

Goldstone boson 1 �m2 þ ð12�þ �e2Þ�2 ð13�þ 1
4 e

2ÞT2

Ghosts �2 �e2�2

4In the literature, authors generally use c ¼ 5
6 for all three

physical modes of the gauge boson. This only makes a difference
if one includes thermal masses in the zero-temperature potential,
which is a small correction that few authors include.
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Consequently, only in the Landau gauge does the mini-
mum of the effective potential in the absence of sources
characterize the presence or absence of symmetry break-
ing. For the formulation with sources, a spacetime-
independent background field will yield the minimum of
energy in any gauge of the form given in Eq. (3), implying
equal values of the minima of the effective potential for
any choice of � [35,36]. While the formulation of Ref. [42]
is manifestly gauge invariant by construction, its relation-
ship with the development in terms of sources has not, to
our knowledge, been clarified. That being said, the argu-
ments of Ref. [42] suggest that results obtained with the
Landau gauge effective potential may be most physically
reasonable. Indeed, we find close numerical agreement
between Landau gauge quantities and those obtained using
an explicitly gauge-invariant Hamiltonian formalism (see
below). We emphasize, however, that this agreement does
not carry over to the non-Abelian case.

The finite-temperature contribution can be derived simi-
larly to the zero-temperature contribution, except that the
integral over momenta is replaced with a sum over
Matsubara modes:

R
dk0 ! 1

	

P
	 and k0 ! 2n�

	 . This

yields

V1ð�; T > 0Þ ¼ T4

2�2

X
particles

J

�
m2

i ð�Þ
T2

�
; (5)

where

Jðx2Þ �
Z 1

0
dyy2 logð1� e�

ffiffiffiffiffiffiffiffiffiffi
y2þx2

p
Þ: (6)

In the high-temperature (low-x) limit,

Jðx2Þ � ��4

45
þ �2

12
x2 � �

6
x3 � x4

32
log

x2

ab
�Oðx6Þ; (7)

where logab ¼ 3
2 � 2
E þ 2 logð4�Þ and 
E is the Euler

constant [44]. All higher-order terms are simple polyno-
mials in x2. Again, the gauge dependence disappears at
�2 ¼ v2 and at � ¼ 0, but it is nontrivial everywhere else.
We also observe that the general arguments in Ref. [42] do
not depend on whether one works with a Minkowski or
Euclidean formulation of the functional integral appearing
in the generating functional, so that even at finite T use of
the Landau gauge is equivalent to a gauge-invariant for-
mulation for the Abelian Higgs model.

A. Thermal mass corrections

It is well known that near the critical temperature for a
phase transition, validity of the perturbative expansion of
the effective potential breaks down. Quadratically diver-
gent contributions from nonzero Matsubara modes must be
resummed through inclusion of thermal masses in the one-
loop propagators [45,46]: m2ð�Þ ! m2

effð�Þ ¼ m2ð�Þ þ
m2

thermðTÞ. Table I lists all thermal mass corrections (see

Ref. [47] for further discussion and explicit calculations of

the masses). Generally, one performs this daisy resumma-
tion by only including the thermal masses in the zero-mode
propagators, which results in a mass correction to only the
cubic term in the effective potential. It is slightly more
convenient from a computational standpoint to include the
corrections in all propagators, although we do check that
this only makes a small difference in the resulting
potential.

B. Alternative gauge-invariant formulation

For comparison, we also examine the gauge-invariant
effective potential put forward by Boyanovsky et al. [41].
These authors derive the potential by working in the
Hamiltonian formalism using only gauge-invariant physi-
cal states. In this case, there exist only four independent
degrees of freedom (two transverse gauge, one longitudinal
gauge, and Higgs), with no need for ghost cancellations.
The unrenormalized one-loop effective potential is

V1ð�Þ ¼ 1

2

Z d3k

ð2�3Þ ½2!T þ!h þ!p�; (8)

where !2
T ¼ k2 þm2

T and !2
h ¼ k2 þm2

h arise from the

transverse gauge and Higgs degrees of freedom, respec-
tively, and the plasma frequency !2

p ¼ ðk2 þm2
gÞ�

ðk2 þm2
TÞ=k2 contains the contribution of both the gauge

boson’s longitudinal polarization and the Goldstone boson.
The order parameter � is a spacetime-independent, gauge-
independent shift of the field, and the gauge, Higgs, and
Goldstone massesmT ,mh, andmg are given in Table I with

� ¼ 0 and � ! �. The tree-level potential is unchanged.
The first two contributions to V1ð�Þ exactly match the

transverse gauge polarization and Higgs boson contribu-
tions to the potential inR� gauge. At the tree-level extrema,

the plasma frequency also matches the contributions from
all other modes. However, away from the tree-level ex-
trema, the plasma frequency does not match and looks
similar only to Landau gauge (� ¼ 0), as one would expect
from the general arguments in Ref. [42]. Therefore, we
anticipate the Landau gauge will provide a close approxi-
mation to the gauge-independent Hamiltonian result, a
conclusion similar to what was found in Boyanovsky
et al. [41].

Using MS regularization (see the Appendix), we find
that the plasma frequency contribution to the one-loop
potential is

V1pð�; T ¼ 0Þ ¼ 1

64�2

�
ðm2

T �m2
gÞ2

�
log

m2
T �m2

g

�2
� 3

2

�

þ 4m2
Tm

2
g

�
; (9)

V1pð�; T > 0Þ ¼ T4

2�2
J2

�
m2

T

T2
;
m2

g

T2

�
; (10)

where J2 is calculated by Boyanovsky et al. to be
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J2ða2;b2Þ�
Z 1

0
dyy2 log½1�e�ð1=xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy2þa2Þðy2þb2Þ

p
�: (11)

In the high-temperature expansion, Boyanovsky et al. find
that their gauge-invariant potential is the same as the
potential in Landau gauge up to the cubic terms, but the
equality breaks down beyond this.

In what follows, we compare results for the GW spectra
using the Lagrangian and gauge-invariant Hamiltonian
methods. We observe that the daisy resummation of
higher-order contributions was not considered in
Ref. [41], and it is not immediately clear how one would
do so. Consequently, when comparing results in the two
approaches, we will not include the Daisy resummation in
the Lagrangian formulation.

III. CALCULATION OF GW PARAMETERS

We calculate several parameters of interest to gravita-
tional wave production from early-universe phase transi-
tions using the Abelian Higgs model with full and explicit
gauge dependence in the class of R� gauges. These include

the transition temperature T�, the minima of the low- and
high-temperature phases at the transition, the relative
change in energy density �, and the approximate duration
of the phase transition 	�1.

A. Calculating the transition temperature

In first-order cosmological phase transitions, the low-
temperature phase develops by nucleating bubbles within
the high-temperature phase (see Refs. [48–50] for original
work on cosmological transitions). A critical bubble—one
whose surface tension exactly balances its outward pres-
sure—is given by the Oð3Þ symmetric action

S3 ¼ 4�
Z 1

0
r2dr

�
1

2

�
d�

dr

�
2 þ Vð�ðrÞ; TÞ

�
; (12)

subject to the constraints that the field is smooth at r ¼ 0
and in the high-temperature minimum at r ¼ 1. Smaller
bubbles collapse, while larger bubbles grow and eventually
fill the universe with the new phase. Equation (12) yields
the radial equation of motion

d2�

dr2
þ 2

r

d�

dr
¼ @

@�
Vð�; TÞ; (13)

which we solve using the ‘‘undershoot/overshoot’’ method
(see e.g. Ref. [11]).

To find the exact transition temperature T�, we must
determine when the low-temperature phase nucleates at
least one bubble per Hubble volume. The nucleation rate

goes roughly as � / T4e�S3=T , where the constant of pro-
portionality can be found largely on dimensional grounds.
For electroweak scales, this gives a transition temperature
determined by S3=T� � 140 (see e.g. Ref. [51]). Note that

the exponent changes very rapidly, so determining the
exact form of the coefficient is quantitatively unimportant.
Finding the minima of the low- and high-temperature

phases can be a nontrivial task, especially since the high-
temperature minimum is not necessarily at � ¼ 0 and
intermediate minima can develop for � > 0 (see Sec. IV
below). Our strategy, however, is fairly straightforward.
We first observe that the transition occurs in the range
TC > T� > Tmin, where Tmin is the lowest temperature at
which the original, high-temperature phase exists and
TC is the temperature at which the minima of the potential
in the two phases are degenerate. We then trace the low-
temperature minimum upwards from T ¼ 0 and the
high-temperature minimum downwards from T ¼ T0 by
numerically integrating

d�min

dT
¼ �

�
@2V

@�@T

���
@2V

@�2

�
: (14)

At each point, we calculate the transition rate by finding S3.
Following the evolution of the minima and Sc we then
determine the temperature at which S3=T ¼ 140.

B. Calculating the latent heat and transition duration

With the transition temperature in hand, the relative
change in energy densities � and transition duration 	�1

follow without much effort. When evaluated at its mini-
mum, the effective potential is the same as the free-energy
density of the system.5 Therefore, the energy density dif-
ference between the two phases is

� ¼ ½Vð�hot; T�Þ þ shotT�� � ½Vð�cold; T�Þ þ scoldT��;
(15)

where the entropy density is s ¼ �@V=@T. Note that at
T� ¼ Tc, � is identical to the latent heat. The quantity of
interest in the production of gravitational waves is � ¼
�=rad, where rad ¼ g��2

30 T4 and g� is the number of

relativistic degrees of freedom at the phase transition,
which we take to be 100.
Writing the bubble nucleation rate as � ¼ �0e

	t, 	�1

gives the approximate phase transition duration. For a
radiation dominated universe,

	

H�
¼ T�

dðS3=TÞ
dT

��������T�
; (16)

whereH� is the Hubble expansion rate during the transition
(see e.g. Ref. [11]).

C. Calculating GW spectra

We employ here the analytical approximation provided
in Ref. [12] to the numerical simulations carried out in that

5Here, we neglect kinetic energy contributions associated with
nonvanishing gradients of the background field in the bubble
walls.
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same work. We refer the reader to Ref. [13] for further
insights on the results of Ref. [12]. The gravity wave
spectrum (more precisely, the gravity wave energy density
per frequency octave) from collisions at production is
parametrized by

�GW�ðf�Þ ¼ ~�GW�
ðaþ bÞ~fb�fa�

b~fðaþbÞ
� þ afðaþbÞ

�
; (17)

where the two exponents, obtained from fits to the numeri-
cal results, are set to a ¼ 2:8 and b ¼ 1:0. The spectrum is
redshifted according to

~f ¼ 16:5� 10�3 mHz

�~f�
	

��
	

H�

��
T�

100 GeV

��
g�
100

�
1=6

;

(18)

h2 ~�GW ¼ 1:67� 10�5 ~�GW�
�
100

g�

�
1=3

(19)

¼1:67�10�5 ~��2

�
H

	

�
2
�

�

�þ1

�
2
�
100

g�

�
1=3

; (20)

with the functions ð~f�=	Þ and ~� depending on the bubble
wall velocity vb (and hence implicitly on the relative

FIG. 1. Calculated gauge dependence of phase transition parameters for a low-mass Higgs boson. In all panels, black (grey) lines
denote models with (without) resummation. The arrows denote values corresponding to the solid lines, but calculated in the gauge-
invariant Hamiltonian formalism. All quantities along the y axes are in units of GeV, except for 	=H which is unitless. In the first
panel, solid, dashed, and dotted lines denote the transition temperature T�, the critical temperature Tc, and the minimum temperature at
which the hot phase exists. In the second panel, solid and dashed lines denote the minima of the cold and hot phases. The third panel
shows the relative difference in energy densities at both the critical temperature (dashed line) and the actual transition temperature
(solid line). The final panel gives 	=H�, where 	 is the approximate inverse phase transition duration and H� is the Hubble constant at
the transition temperature.
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energy density difference �) according to the following
parametrization (again as given in Ref. [12]):

~�ðvbÞ ¼ 0:11v3
b

0:42þ v2
b

; (21)

ð~f�=	ÞðvbÞ ¼ 0:62

1:8� 0:1vb þ v2
b

: (22)

Finally, we employ the following parametrization for the
bubble wall velocity [52]:

vb ¼
ffiffiffiffiffiffiffiffi
1=3

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 2�=3

p
1þ �

; (23)

valid in the limit of interest here of strongly first-order
phase transitions. Note that the overall amplitude scales

as h2 ~�GW / g�7=3
� for � � 1, so it can be changed by

several orders of magnitude by choosing a model with a
different g�.
There should also be a contribution to the GW spectra

from the turbulence immediately following the bubble
collisions (instead of from the collisions themselves), and
this contribution may be quite large [53,54]. However, this
still requires a strongly first-order phase transition and will
therefore contain gauge artifacts similar to those in the
simpler calculation. For our toy model, the simpler calcu-
lation suffices for a demonstration of the gauge-
dependence problem.

IV. NUMERICAL RESULTS

In the most basic model without any additional fields,
four parameters determine the effective potential: the

FIG. 2. Calculated gauge dependence of phase transition parameters for a medium-mass Higgs boson. See Fig. 1 for a thorough
explanation of the different lines.
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tree-level Higgs mass mh, the tree-level vev v, the gauge
coupling e2, and the renormalization scale�. We vary only
the first two of these, keeping v ¼ 246 GeV and � ¼
1 TeV fixed. We include phase transition calculations us-
ing the gauge-invariant Hamiltonian formalism of
Boyanovsky et al. [41] without resummation, shown in
the figures as solid arrows.

In order to generate a fairly strong first-order phase
transition, the gauge boson mass must be relatively large.
However, if the mass is too large, then the one-loop
zero-temperature potential overwhelms the tree-level po-
tential and perturbation theory is unreliable. At the tree-

level vev, V0ð� ¼ vÞ ¼ � 1
8�v

4 and V1ð�¼v;T¼0Þ¼
3

64�2 ðe2v2Þ2½logðe2v2

�2 Þ� 5
6� plus a small contribution from the

Higgs boson. These two are roughly equal when e4 � 4�

or e2 � 2mh

v . To be slightly more conservative, we demand

that e2 	 mh

v .

Figures 1–3 display our results for the gauge dependence
of the different phase transition properties. All four prop-
erties—the transition temperature, the values of � corre-
sponding to the minima of the phases, the relative change
in energy density, and the transition duration—heavily
depend upon the choice of gauge. We also show the impact
of including the daisy resummation, as discussed above.
Three broad features emerge from these figures. The

results obtained with the Hamiltonian formulation most
closely match the results of Landau gauge (� ¼ 0).
However, the match is not exact. Most significantly, the
Hamiltonian approach yields a small but measurable in-
crease in the critical and transition temperatures.
Second, at � ¼ 0, there can exist significant shifts in the

GW-wave relevant parameters due to the inclusion
of the daisy resummation. Generally, one finds that the
values of � are decreased while 	=H� are increased due to
the inclusion of the resummation, implying a reduced

FIG. 3. Calculated gauge dependence of phase transition parameters for a high-mass Higgs boson. See Fig. 1 for a thorough
explanation of the different lines.
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amplitude and higher peak frequency in the GW spectrum.
This significant departure from the fully gauge-invariant
results (albeit within the Landau gauge) suggests that
developing a gauge-invariant daisy resummation proce-
dure will be essential for obtaining physically realistic
predictions.

Third, the dependence on � can both exacerbate these
differences and lead to new phase structures that are clearly
unphysical artifacts of the gauge choice. For example, for
mh ¼ 120 GeV (Fig. 3), the phase transition becomes
second order at high �, so the change in energy density
goes to zero and 	 goes to infinity. A change in gauge can
also lead to secondary minima and secondary transitions
(see Fig. 4). In Figs. 1–3, we always perform calculations
for the transition with the largest change in vev, even when
this transition happens after initial symmetry breaking.
This leads to the discontinuities in Figs. 2 and 3. Given
the unphysical nature of these artifacts, we do not discuss

FIG. 4. An example of multiple phase transitions in the same
model. Here, mh ¼ 35 GeV, e2 ¼ 2mh

3v , and � ¼ 3. Since the

existence of the secondary phase transition is gauge dependent, it
is clearly nonphysical.

FIG. 5 (color online). Expected gravitational wave spectrum for a Higgs mass of 10 GeV, calculated in Landau gauge (� ¼ 0), two
high-� gauges (� ¼ 1, 5), and the gauge-invariant Hamiltonian formalism.

FIG. 6 (color online). Expected gravitational wave spectrum for a Higgs mass of 35 GeV, calculated in Landau gauge (� ¼ 0), one or
two high-� gauges (� ¼ 1, 5), and the gauge-invariant Hamiltonian formalism.
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FIG. 7 (color online). Expected gravitational wave spectrum for a Higgs mass of 120 GeV, calculated in Landau gauge (� ¼ 0), a
high-� gauge (� ¼ 1), and the gauge-invariant Hamiltonian formalism.

FIG. 8 (color online). Comparison of gravitational wave spectra calculated without daisy resummation in Landau gauge, and with
resummation (dashed lines) in Landau gauge and two other R� gauges.

FIG. 9 (color online). Comparison of gravitational wave spectra calculated without daisy resummation in Landau gauge, and with
resummation (dashed lines) in Landau gauge and one or two other R� gauges.
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them further but simply point out the danger in this context
of attempting to draw physical inferences from a gauge-
dependent calculation.

Finally, we present our calculations for various gravita-
tional wave spectra in Figs. 5–10. We make comparisons of
the Hamiltonian approach and R� gauges without daisy

resummation in Figs. 5–7, and include the effects of re-
summation in Figs. 8–10. Again, Landau gauge and the
Hamiltonian approach produce very similar results.
However, a change in the gauge parameter produces very
large changes in both the calculated amplitude and peak
frequency of the wave. Without daisy resummation it does
not appear possible, or at least feasible, to determine which
way this change will manifest without doing the full nu-
merical calculation. With resummation, an increase in the
gauge parameter tends to make the phase transition less
strongly first order, thereby decreasing the amplitude and
increasing the peak frequency of the resulting spectrum.

V. DISCUSSION

We have thus far presented numerical calculations of
strongly first-order phase transitions and spectra of the
resultant gravitational waves in the Abelian Higgs model,
both for various values of the gauge parameter � and in
two gauge-invariant formalisms. The gauge-invariant
Hamiltonian formalism closely matches Landau gauge.
We find that small changes in � can produce large changes
in calculated physical quantities, implying that attention to
gauge invariance in GW computations is essential for
reaching physically meaningful predictions. Moreover,
we find that in the Lagrangian formalism, the result may
be significantly affected by inclusion of the daisy resum-
mation, a conclusion similar to what has been observed in
the context of sphaleron rate computations [37].

From these observations, we conclude that the use of a
non-gauge-invariant framework and the neglect of daisy
resummations in computations of GW spectra for non-
Abelian phase transitions are likely to lead to physically

unreliable predictions. At present, it appears that the
generalization of gauge-invariant perturbative methods
applicable in the Abelian Higgs model to non-Abelian
spontaneously-broken theories is not straightforward. The
Hamiltonian formalism does not easily carry over to the
non-Abelian case and, given how drastically observables
change with a change in gauge parameter, one should not
trust gauge-dependent calculations for anything other than
rough estimates.
We see several possible directions. First, one can

compute thermodynamic quantities of interest (such as �
and T�) as well as the bounce action with Monte Carlo
methods, thereby circumventing the gauge problem at the
outset while including all higher-order effects (including
those entering daisy resummed perturbation theory) by
construction. The results would undoubtedly be the most
reliable theoretically, but this approach is unlikely to be
practically feasible for surveying a wide variety of models
or exploring wide regions of parameter space for models
like the MSSM. As an alternative, following Ref. [37], one
can use R� gauge and the Nielsen identities to ensure gauge

independence at each order in ℏ. The latter approach is
relatively straightforward conceptually, but computation-
ally involved, as one must go to at least second order in the
loop expansion. It appears particularly challenging in the
case of the tunneling rate computation. From amore formal
side, it may be possible to construct a gauge-invariant
Hamiltonian formalism for spontaneously broken non-
Abelian gauge theories. Although we are not aware of any
work in this particular direction, we note that such a for-
mulation has been achieved in the absence of spontaneous
symmetry breaking for the specific case of quantum chro-
modynamics (see e.g. Refs. [55,56] and references therein).
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APPENDIX: CALCULATING ONE-LOOP
ZERO-T POTENTIAL

To calculate the one-loop potential, we must examine

integrals like
R

d3k
ð2�Þ3 !. For !2 ¼ k2 þm2, this gives the

standard one-loop potential associated with a particle of
mass m. However, in the gauge-invariant approach of
Boyanovsky et al. the plasma frequency has the form
!2

p ¼ ðk2 þ �Þðk2 þ 	Þ=k2. They perform the integral us-

ing a cutoff regulator, but we would like to use dimensional
regularization in order to better compare with the R�

gauge.
The potential associated with the plasma mode is

given by

Vp ¼ �3�d

2

Z ddk

ð2�Þd
�

k2

ðk2 þ �Þðk2 þ 	Þ
�
n

(A1)

with d ¼ 3 and n ¼ � 1
2 , and � is a mass dimension that

balances the integration measure. For n� d
2 > 0, the inte-

gral converges. Performing the integral over the
d-dimensional sphere yields

Vp ¼ 1

ð4�Þd=2
1

�ðd=2Þ
Z

dkkd�1

�
k2

ðk2 þ �Þðk2 þ 	Þ
�
n

¼ 1

ð4�Þd=2
1

�ðd=2Þ
1

2

Z
dkd=2�1

�


ðþ �Þðþ 	Þ
�
n
:

(A2)

We can introduce a Feynman parameter to rewrite the
fraction as

�


ðþ �Þðþ 	Þ
�
n ¼

Z 1

0
dxdy�ðxþ y� 1Þ

� ðxyÞn�1

ðþ �xþ 	yÞ2n : (A3)

Using this, and the definition of the beta function

Z 1

0
dxxa�1ð1� xÞb�1 ¼ Bða; bÞ ¼ �ðaÞ�ðbÞ

�ðaþ bÞ ; (A4)

one can show that

Vp ¼ 1

ð4�Þd=2
�ðnþ d=2Þ�ðn� d=2Þ

2�ðd=2Þ�ðnÞ2

�
Z 1

0
dx½xð1� xÞ�n�1½�xþ 	ð1� xÞ�d=2�n: (A5)

Then, using the generalized binomial theorem,

Vp¼ 1

ð4�Þd=2
�ðn�d=2Þ

2�ðd=2Þ�ðnÞ2

�X1
l¼0

�ðd=2�nþ1Þ�ðd=2� lÞ�ðnþ lÞ
�ðd=2�nþ1� lÞ�ðlþ1Þ �d=2�n�l	l;

(A6)

where we demand that j	j 	 j�j. Expanding this out in
� ¼ 3�d

2 , one finds

Vp ¼ 1

64�2

�
ð�� 	Þ2

�
� 1

�
þ 
E � logð4�Þ

�

þ ð�� 	Þ2
�
log

�� 	

�2
� 3

2

�
þ 4�	

�
þOð�Þ; (A7)

where 
E is the Euler-Mascheroni constant. In MS
regularization, we simply subtract out the term containing
1=�, as well as the 
E and logð4�Þ terms. Note that
for 	 ¼ 0, this reproduces the standard one-loop potential
in Eq. (4).
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