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Number counts of massive high-redshift clusters provide a window to study primordial non-

Gaussianity. The current quality of data, however, forces the statistical analysis to probe a region of

parameter space—the extreme tail of the mass function—which is neither accessible in any of the

currently available theoretical prescriptions for calculating the mass function, nor calibrated in N-body

simulations. In this work we present a new analytical prescription for calculating a resummed non-

Gaussian halo mass function, which is constructed to remain stable in the extreme tail. We show that the

prescription works well in the parameter regime that has been currently explored in simulations. We then

use Fisher matrix techniques to compare our prescription with an extrapolated fit to N-body simulations,

which has recently been used to obtain constraints from data collected by the South Pole Telecope. We

show that for the current data, both prescriptions would lead to statistically consistent constraints. As the

data improve, however, there is a possibility of introducing a statistically significant bias in the constraints

due to the choice of prescription, especially if non-Gaussianity is scale dependent and becomes relatively

large on cluster scales. It would then be necessary to test the accuracy of the prescriptions in N-body

simulations that can probe clusters with high masses and redshifts in the presence of large

non-Gaussianity.

DOI: 10.1103/PhysRevD.84.023517 PACS numbers: 98.80.�k, 98.65.Cw

I. INTRODUCTION

One of the key aims in cosmology is to determine how
much non-Gaussianity there was in the primordial curva-
ture fluctuations. Canonical single field inflation with a
smooth potential predicts that primordial non-Gaussianity
(NG) should be extremely small [1,2]. Detecting1 an ap-
preciable amount of primordial NG could therefore rule
out these models. Measurements of the cosmic microwave
background (CMB) [4] and the scale-dependent halo bias
[5] provide good constraints on primordial NG on scales of
about k� 0:05 h�1Mpc. Although the Planck experiment
will improve the range of scales constrained [6,7], the
primary CMB will always be limited by foregrounds to
k & 0:2 h�1Mpc. Since it is possible for primordial NG
to be quite strongly scale dependent [8,9], it is important to
constrain it on as wide a range of scales as possible, with
complementary probes when possible. Number counts of
galaxy clusters provide such a probe on smaller scales [7]
(see also Refs. [10–12]). There have been several recent

attempts at using massive high-redshift clusters to
constrain primordial NG [13–17]. Williamson et al.
(W11) [17] analyzed a subset of the clusters detected by
the South Pole Telescope (SPT), using a likelihood analy-
sis that carefully accounts for issues such as the survey
selection function. They find a posterior probability distri-
bution for the standard non-Gaussianity parameter fNL,
and their quoted result is fNL ¼ 20� 450 at 68%
confidence.
A key ingredient in any such analysis is the chosen

prescription for the non-Gaussian halo mass function.
Given a mass function, one can construct a likelihood for
the data by computing the expected number of clusters in a
given mass and redshift range, as an integral of the mass
function. The W11 analysis uses the prescription of Dalal
et al. (D08) [18], that is essentially a fit to N-body simu-
lations. As we will see, however, the W11 likelihood
function probes a region of parameter space (the extreme
tail of the mass function) that has not been calibrated by
D08 (nor indeed, by anyone else). Additionally, all the
other currently available prescriptions [7,19–22] formally
break down in this extreme region.
It is therefore interesting to ask whether one can obtain

any analytical understanding of the mass function in its
extreme tail, and whether the D08 prescription might be
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introducing a bias in the analysis. The main result of this
work is a new prescription for the non-Gaussian mass
function, which involves a resummation of an infinite
perturbative series. The resulting expression compares
well with the results of N-body simulations. More impor-
tantly, it does not formally break down in the region of
parameter space that needs to be probed by the W11 data
analysis and can therefore be used to compare against the
D08 prescription. Using a Fisher analysis, we find that for
the current quality of data the two prescriptions give sta-
tistically identical results. With better quality data, how-
ever, we show that there can be a statistically significant
bias between the two methods, especially if fNL on small
scales is large. It would then be necessary to accurately
calibrate the tail of the non-Gaussian mass function in
simulations.

The paper is organized as follows: Section II motivates
and introduces our new resummed prescription for the
mass function, comparing it with other prescriptions,
both in regimes that have been tested by simulations and
in the extreme tail that has not. In Sec. III we use a Fisher
analysis to compare the error bars on fNL from the D08 and
resummed prescriptions and analyze the level of bias be-
tween the two methods. We end with a brief discussion in
Sec. IV. Technical details of calculations have been rele-
gated to the Appendix. Unless otherwise specified, we
assume a flat �CDM cosmology with parameter values
compatible with WMAP7 [4]: h ¼ 0:703 with H0 ¼
100 hkm s�1 Mpc�1 the Hubble constant, total matter den-
sity �mh

2 ¼ 0:134, baryonic matter density �bh
2 ¼

0:0227, scalar spectral index ns ¼ 0:966, and �8 ¼
0:809. Throughout we use the transfer function of
Bardeen et al. [23], with a baryonic correction as
prescribed in Ref. [24].

II. NUMBER COUNTS IN THE EXTREME TAIL

Within the paradigm of hierarchical structure formation,
any physically acceptable mass function2 must be compat-
ible with the fact that massive objects tend to form late in
the cosmic evolution. Mass functions derived assuming
Gaussian initial conditions [25–27] easily fit the bill by
virtue of being monotonically decreasing at large masses
and redshifts. The situation with non-Gaussian initial con-
ditions is not as clean, however. There are several prescrip-
tions in the literature for theoretically calculating the non-
Gaussian mass function [7,19–22]. All of these rely on a
perturbative treatment of non-Gaussianity and assume a
condition that is at least as strong as j��j< 1 (see
D’Amico et al. (D11) [21] for a detailed comparison),

where �� fNL
ffiffiffiffi
A

p
is a small parameter controlling

the non-Gaussianity (A� 10�9 being the power spectrum
normalization) and

�ðM; zÞ � �c

�M

Dð0Þ
DðzÞ ; (1)

with the threshold �c ¼ 1:686 (for spherical collapse, but
see below), the linear growth rate DðzÞ, and the variance

�2
M � h�̂2

Mi of the linearly extrapolated density field

smoothed on scale R ¼ ð3M=4� ��Þ1=3. While several of
these mass functions have been tested in N-body simula-
tions and do reasonably well in their regime of validity,
when extrapolated to j��j> 1 they lead to unphysical
results (e.g. the Matarrese et al. (MVJ) [19] result becomes
imaginary for fNL > 0 when ��� 3). This would be an
academic issue, were it not for the fact that the current
quality of data requires predictions of number counts at
combinations of ðfNL;M; zÞ values that lie squarely in the
j��j> 1 corner [16]. To see this, note that e.g. the W11
analysis proceeds by calculating the joint probability, for a
given fNL, of observing the ensemble of clusters in their
sample, and of observing nothing else in the parameter
range they explore. The large errors on fNL (� 450)
indicate that their likelihood is non-negligible at say
fNL & 750. Figure 1 shows "1� as a function of mass at
redshift z ¼ 1:5 for some representative fNL values, where

"1 � h�̂3
Mi=�3

M; (2)

with "1 ’ 3� 10�4fNL for a WMAP7 cosmology, and we
identify "1 with the small parameter � mentioned above.
(Throughout this paper we will use the local model
of NG to compute "1, see e.g. D11 for details.) We
see that for fNL ¼ 750 at this redshift, ��� 1 at
M� 5� 1014h�1M�, which is well inside the region
explored by W11.
In contrast with the theoretical approaches, the D08

prescription constructs a non-Gaussian mass function by
convolving a Gaussian mass function with a Gaussian
probability distribution whose mean and variance depend

FIG. 1 (color online). The quantity "1�, where "1 and � were
defined in Eqs. (2) and (1), respectively. The curves are for
redshift z ¼ 1:5 and three different values of fNL, all probed by
the W11 likelihood analysis.

2By mass function we mean fskyðdV=dzÞðdn=dMÞ; where
dn is the comoving number density of halos with masses in
(M,Mþ dM), fsky is the fraction of sky observed, and dV is the
volume element with dV=dz ¼ 4�HðzÞ�1½Rz

0 dz
0Hðz0Þ�1�2.
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on fNL. As it turns out, this prescription results in the only
viable mass function currently on the market that remains
stable at large ðfNL;M; zÞ. Since the W11 analysis uses this
prescription,3 it at least does not suffer from the breakdown
that the MVJ, LoVerde et al. (LMSV) [7] or LoVerde and
Smith [22] mass functions would encounter. There is,
however, some cause for concern. First, the actual parame-
ter values D08 quote are a numerical fit to simulations that
had considerably large Poisson errors and scatter at large
M and z (see Fig. 6 of D08). Subsequent simulations by
Pillepich et al. (PPH) [28] indicate that this specific fit does

not work very well at the low mass end either. The main
problem, however, is that this fit applies in a mass and
redshift regime where j��j is at most�0:5, and there is no
reason to expect it to work accurately when �� > 1. One
would therefore like to have some analytical understanding
of this extreme tail of the mass function.

A New stable non-Gaussian mass function

In this work we present a new analytical non-Gaussian
mass function that is stable in the j��j> 1 regime. As we
show in the Appendix, under some technical assumptions
regarding the form of primordial non-Gaussianity, which
are inspired by a known perturbative hierarchy in the local
model, the perturbative series appearing in the analysis can
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FIG. 2 (color online). Non-Gaussian ratios ðdn=dMÞjNG=ðdn=dMÞjGauss as per different prescriptions, for values of fNL tested in the
PPH N-body simulations [28]. These plots use the same cosmology as used by PPH in their simulations (the WMAP5 values in Table 2
of PPH). The curves correspond to resummed with q ¼ qTinker ¼ 0:837 (solid line), LMSV [7] with q ¼ 0:79 (dotted-dashed line),
MVJ [19] with q ¼ 0:79 (dotted line), and D08 [18] (dashed line) calculated using the Tinker et al. [29] Gaussian mass function. The
different sets of curves in each panel correspond to different redshifts. The lower panels show, from left to right, redshifts z ¼ 1, 0.5,
and 0. The upper panels show z ¼ 1 and 0, with z ¼ 1 corresponding to the lower set of curves in the left panel (fNL ¼ �80) and vice
versa in the right panel (fNL ¼ þ80). We see that in this regime of parameter space, the resummed prescription (which has no free
parameters once the Gaussian mass function is chosen) lies very close to LMSV with q ¼ 0:79. These plots can be directly compared
with Fig. 5 of PPH, who showed that LMSV with q ¼ 0:79 fares very well compared to simulations. Consequently, so does the
resummed prescription.

3Presumably W11 used the exact numbers that D08 quote for
the parameters of their fit; this detail is not mentioned in W11.
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be resummed. The excursion set formalism then gives a
mass function that is valid at arbitrarily large � for a given
positive fNL (which can also be large; see below). The
formal excursion set result needs to be modified in order to
predict the correct Gaussianmass function when fNL ! 0.
Assuming that the Gaussian mass function is well de-
scribed by the Tinker et al. form [29], the resummed
mass function we prescribe is

dn

dM

��������Resum
¼ dn

dM

��������Tinker
�RResum; (3)

where the ratio RResum is given by

RResumðM;z;fNLÞ ¼ ð1þ"1�Þ�1=2 exp

�
1

2
�2

þ 1

"21
ð"1��ð1þ"1�Þ lnð1þ"1�ÞÞ

�
:

(4)

The expression is formally valid for ð1þ "1�Þ> 0 and
receives a relative correction of order Oð"21ð1þ "1�Þ�1Þ
due to a saddle point approximation (see the Appendix for
details). This shows that although fNL cannot be made
arbitrarily large for a given �, values of the order
fNL & 1000 can be easily accommodated over the full
ðM; zÞ range, and the saddle point approximation becomes
increasingly accurate for large ðM; zÞ. Finally, since the

Tinker et al. mass function falls off like�e�0:837�2
c=2�

2
, we

need to redefine the � that appears in RResum by replacing

�c ! ffiffiffiffiffiffiffiffiffiffiffiffiffi
qTinker

p
�c (5)

in Eq. (1) where qTinker ¼ 0:837. This ensures that the
resulting mass function is still stable for arbitrarily large
values of �. This correction is similar to the one first
introduced by Grossi et al. [30] and can be motivated by
appealing to a stochasticity in the spherical collapse barrier
[31]. We emphasize that this modification, and the specific
value qTinker, is forced on us by our choice of the Gaussian
mass function—we have no free parameters to play with in
our derivation.

Figure 2 shows the non-Gaussian ratios according to
various prescriptions, for values of fNL tested in the PPH
simulations. For better comparison with PPH, these plots
assume the same cosmology that PPH used in their simu-
lations (the WMAP5 values in their Table II). We see that
in the range plotted, the ratio RResum is very close to the
LMSV ratio RLMSV (which is plotted using a � corrected
with q ¼ 0:79).4 This can be understood analytically
since in the regime ��3 < 1, RResum and RLMSV become
formally identical when truncated at order Oð��Þ. The

residual difference is due partly to higher order terms and
partly to the different values of the q correction. Figure 2
can be directly compared with Fig. 5 of PPH, who showed
thatRLMSV with q ¼ 0:79 performs very well compared to
simulations in this range. Consequently, so does our re-
summed ratio.
For large negative fNL (or large �) such that �� <�1,

our prescription breaks down. Nevertheless, there is a
very simple way of extending the mass function to this
regime. We notice that for j��j � 1, it is approximately
true that RResumðM; z;�fNLÞ ’ RResumðM; z; fNLÞ�1. We
therefore define the resummed ratio for negative fNL and
arbitrary � by

RResumðM;z;�fNLÞ � ðRResumðM;z;fNLÞÞ�1; fNL> 0:
(6)

Of course this is completely ad hoc, but we see from Fig. 2
that the prescription compares extremely well withRLMSV

at values of fNL < 0 that were tested in the PPH simula-
tions. It will be very interesting to see how the resummed
ratio compares with simulations at high masses and red-
shifts, for both positive and negative fNL values.

III. CONSTRAINTS ON fNL

Figure 2 also shows that for a given positive fNL, the
D08 ratio RDalal is consistently higher than RResum and
therefore predicts more high mass halos. This trend re-
mains true even in the regime �� > 1, as Fig. 3 shows. It is
then worth asking how sensitive the analysis of clusters a la
W11 is to this difference.5

We use a Fisher analysis to make a ‘‘forecast’’ for the
kind of data that SPT has already observed (specifically
the subset used by W11). We set our fiducial cosmology
to the WMAP7 values given earlier, with fNL ¼ 0. We
marginalize over �8 with a WMAP7 prior, but assume
perfect knowledge of all other cosmological parameters.
This is not expected to significantly affect our conclusions.
We bin in redshift between 0:3 	 z 	 2, with a spacing
�z ¼ 0:05. The lower limit is the same used by W11, and
we have checked that the analysis is insensitive to increas-
ing the upper limit. We assume that the survey sees all
clusters in any given redshift bin above a certain constant
mass threshold Mlim, which is approximately true for a
Sunyaev-Zeldovich (SZ) survey such as SPT [33]. We
marginalize over Mlim with a lognormal prior of 30% in

4The MVJ and LMSV ratios in our language are, respectively,
given by RMVJ ¼ ð1� 1

3"1�Þ�1=2e"1�
3=6ð1� 1

2"1�ð1� 2
3 _"1ÞÞ

and RLMSV ¼ 1þ 1
6"1�

3ð1� 1
�2 ð3� 2 _"1Þ � 2

�4 _"1Þ, where _"1 �
d ln"1=d ln�

2.

5We note that in contrast to W11, earlier analyses [15,16]
showed a significant tension with standard�CDM. It would then
seem to be more interesting to perform our analysis on the set of
clusters used in these analyses rather than W11. In fact, these
analyses can be shown to have used a biased statistic, and
removing this bias makes them consistent with the analysis of
W11 [32]. We ultimately choose to study W11 because we find it
easier to approximate the selection function for the Sunyaev-
Zeldovich clusters measured by SPT.
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Mlim, in keeping with typical mass uncertainties quoted by
W11. The fiducial value for Mlim is chosen such that the
total expected number of clusters with masses above Mlim

and at redshifts z 
 0:3 in the fiducial cosmology is
roughly the same as in the W11 analysis, which is 26.
For fNL ¼ 0 (i.e., using the Tinker et al. mass function),
this gives us a fiducial value Mlim ¼ 8:5� 1014h�1M� for
fsky ¼ 0:06.

We then assume a joint likelihood given by a product of
independent Poisson probabilities for each redshift bin,6

and construct the Fisher matrix for parameters �a ¼
ðMlim; �8; fNLÞ [35]

Fab ¼
Xnbins
i¼1

1

�i

@�i

@�a

@�i

@�b
; (7)

where �i is the expected number of clusters in the ith
redshift bin, evaluated as the integral of ðdn=dMÞðdV=dzÞ
over this bin, for masses above Mlim. The results are in
Table I, which shows the marginalized errors on fNL. We
see that the D08 mass function results in a marginal error
�fNL ’ 300, which can be compared with the error quoted

by W11, which is 450. This shows that our analysis works;
the fact that our marginal error for D08 is smaller is
consistent with our simplifying assumptions regarding
the cosmological parameters and selection function. The
errors predicted by the resummed mass function are com-
parable to that predicted by the D08 prescription, indicat-
ing that using either prescription would lead to similar

results. Since the errors are large, however, one might
wonder if the situation would change if the fiducial fNL
were some large value consistent with the error. Table I
shows that the predicted errors from the D08 and re-
summed mass functions are still comparable at a fiducial
fNL ¼ 500 (in this case we used a fiducial Mlim ¼
1:05� 1015h�1M� to get a total expected number close
to 26).
Table II shows the results of a Fisher forecast for a final

Planck-like SZ survey [36], assuming a 2% prior on �8, a
threshold Mlim ¼ 5� 1014h�1M� with a 10% prior, and
binning in redshift between 0:1 	 z 	 2 with a spacing
�z ¼ 0:05 and fsky ¼ 0:8. In this case we also display the

conditional error (i.e., assuming perfect knowledge of
other parameters) as being representative of what can be
achieved when parameter degeneracies are broken using
measurements of, say, the clustering of clusters [10–12].
We see that the predicted conditional and marginal errors
for fNL are again comparable for the two mass functions.7

It appears, therefore, that using the D08 fit at �� > 1, as
opposed to a theoretically motivated mass function such as
the resummed one, does not introduce a significant effect in
the error predicted for fNL from number counts of clusters.
However, since the actual number of halos predicted at any
given fNL is different for these two mass functions, we
must also worry about a possible bias in the central value of
fNL. Estimating this properly would require a full-fledged
Monte Carlo analysis that accurately accounts for survey
selection functions, which is a work in progress. For now,
we perform a cruder analysis. For parameters correspond-
ing to the final Planck-like survey mentioned above, we

FIG. 3. Non-Gaussian ratios ðdn=dMÞjNG=ðdn=dMÞjGauss as
per different prescriptions, for fNL ¼ 500 and z ¼ 1:5.
Comparing with Fig. 1 we see that the curves now enter the
regime �� > 1. The curves correspond to resummed with q ¼
qTinker ¼ 0:837 (solid line), LMSV (dotted-dashed line), and
MVJ (dotted line) with q ¼ 0:79, D08 (dashed line) with the
Tinker et al. Gaussian, and the ‘‘log-Edgeworth’’ ratio prescribed
by LoVerde and Smith [22] (cross-dashed line). The D08 pre-
scription continues to systematically predict a larger number of
massive halos than the resummed.

TABLE I. The marginal Fisher error �fNL as per different
prescriptions, for two different choices of fiducial fNL, for a
survey that is approximately equivalent to the subset of the SPT
clusters analyzed in W11 (see text for details). The margin-
alization is over �8 with a WMAP7 prior and the threshold mass
Mlim with a 30% lognormal prior (see text). We see that the
resummed and D08 prescriptions predict comparable errors in all
cases, while the MVJ and LMSV predict significantly different
values. See text for a discussion.

Marginal �fNL , W11 equivalent

Prescription fNL ¼ 0 fNL ¼ 500

D08 298 463

Resummed 457 599

MVJ 487 288

LMSV 498 1366

6This is similar to what is done by W11, who use a product of
independent Poisson probabilities over a number of bins in the
space of redshift and detection significance that is roughly their
mass proxy. As can be seen from the methods of Ref. [34],
sample covariance should be negligible for this survey.

7This might seem surprising given the difference between the
magnitudes of these mass functions. In fact, it might appear from
Fig. 3 that the MVJ prescription should be closer to D08. Note,
however, that the Fisher matrix (7) depends not only on the
integrated mass function, but also on its derivative with respect
to fNL, leading to a complicated interplay that is difficult to
predict simply by examining plots of the mass function or non-
Gaussian ratio.
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assume a fiducial cosmology of the WMAP7 �CDM but
this time with a nonzero value of fNL ¼ fNL� using the
D08 prescription. We then ‘‘analyze data’’ using the re-
summed prescription, by constructing an approximate like-
lihood given by

LðfNL;MlimÞ / exp

�
� 1

2

Xnbins
i¼1

�ð�Resum
i ��Dalal

i� Þ2
�Resum

i

þ ln�Resum
i

��
; (8)

where �Dalal
i� ¼ �Dalal

i ðfNL�;Mlim�Þ is the fiducial expecta-
tion value in the ith bin, which we treat as ‘‘data,’’ and
�Resum

i ¼ �Resum
i ðfNL;MlimÞ is the model expectation

value computed using the resummed prescription at the
ðfNL;MlimÞ values being analyzed. (We keep �8 fixed in
this exercise.) We marginalize this likelihood over Mlim

with a 10% lognormal prior (assuming a flat prior on fNL),
to obtain a posterior probability distribution for fNL.
Figure 4 shows the results for fNL� ¼ 100 and 500. We
see that for fNL� ¼ 100, the resummed posterior
pðfNLjfNL� ¼ 100Þ peaks close to fNL� and there is no
statistically significant bias; fNL� lies less than 1 standard
deviation away from the peak value. For fNL� ¼ 500 on the
other hand, the value fNL� lies far in the tail (more than 4
standard deviations away from the peak) of the distribution
pðfNLjfNL� ¼ 500Þ, indicating a statistically significant
bias. A similar calculation for the SPT equivalent parame-
ter values used in Table I shows that with the current data
there would be no detectable difference between analyses
based on the resummed or D08 prescriptions. We can
conclude that systematic effects from the choice of non-
Gaussian mass function could become important as the
data improves, if non-Gaussianity is scale dependent and
results in a large fNL on cluster scales. In this case it would
be necessary to properly calibrate the non-Gaussian mass
function in its extreme tail.

IV. SUMMARYAND CONCLUSIONS

Number counts of clusters offer a very interesting probe
of the extreme tail of the mass function of collapsed
objects, and thereby the statistics of the primordial curva-
ture fluctuations. In this work we developed a new pre-
scription for calculating the modification of the mass
function in the presence of primordial non-Gaussianity
[Eqs. (3) and (4)]. The key features of this resummed
prescription are that it is theoretically well motivated (as
opposed to a fit to simulations like D08 [18]) as well as
stable in the extreme region j��j> 1 (unlike all the other
currently available theoretical prescriptions [7,19–22]).
We also showed that this resummed prescription compares
very well against the results of N-body simulations in the
literature (see Fig. 2), despite having no free parameters
left once its Gaussian limit is fixed as the Tinker et al. [29]
mass function.
While this might appear to be an academic issue, we

showed that the current quality of data forces any like-
lihood analysis to enter the regime j��j> 1. It is then
important to analyze how far one can trust the chosen
prescription for the non-Gaussian mass function. The spe-
cific example we dealt with was the W11 [17] analysis of a
subset of the current SPT clusters, which used the D08
prescription to compute the likelihood. We used Fisher
matrix techniques to analyze the consequences of changing
the prescription from D08 to resummed, and found that for
the current data, both prescriptions are expected to give
approximately identical results. As the data improve, how-
ever, there is a possibility of introducing a statistically
significant bias in the analysis, due to the choice of
prescription. It will then become important to evaluate
which is the better method, which will require improved
N-body simulations. This would be especially true if

TABLE II. Fisher errors on fNL for a final Planck-like survey,
with a 2% prior on �8 and a fiducial threshold Mlim ¼
5� 1014h�1M� with a 10% lognormal prior and fsky ¼ 0:8.

The values under ‘‘conditional’’ assume perfect knowledge of all
parameters except fNL and represent what is possible if parame-
ter degeneracies are broken using measurements of, say, the
clustering of clusters [10–12].

�fNL , Planck-like

Conditional Marginal

Prescription fNL ¼ 0 fNL ¼ 500 fNL ¼ 0 fNL ¼ 500

D08 9.1 9.2 45.7 77.9

Resummed 11.0 11.0 64.0 80.5

MVJ 10.8 6.6 72.4 41.7

LMSV 12.0 16.1 69.6 310

FIG. 4 (color online). Testing for bias between D08 and re-
summed for a final Planck like survey: Posterior probability
distribution pðfNLjfNL�Þ computed by marginalizing the ap-
proximate likelihood (8) for the D08 data given the resummed
‘‘model,’’ over Mlim with a 10% lognormal prior. The curves are
for fNL� ¼ 100 (solid, black line) and fNL� ¼ 500 (dashed, red
line). The corresponding vertical lines mark the value of the
respective fNL�. We see a statistically significant relative bias
between the resummed and D08 prescriptions for large fNL�,
while at smaller fNL� the prescriptions are statistically consistent
with each other.
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non-Gaussianity is scale dependent and results in a large
value of fNL on cluster scales [8,9]. Onewould then need to
calibrate the mass function using N-body simulations that
may have to be specially tailored (with larger particle size,
say) to probe clusters with high masses, at large redshifts
and in the presence of large fNL.
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APPENDIX: THE RESUMMED MASS FUNCTION

In this Appendix we sketch the derivation of the re-
summed mass function presented in the text, describing
all the approximations that enter. The non-Gaussian halo
mass function derived from the excursion set formalism for
spherical collapse is

dn

dM

��������NG;exc
¼ ��

M2
fNG;exc

��������d ln�

d lnM

��������; (A1)

where the multiplicity fNG;exc for large masses is given by

(see D11 [21])

fNG;excð�; "1; "2; . . .Þ ¼
ffiffiffiffi
2

�

s
� exp

�X1
n¼3

ð�1Þn
n!

"n�2@
n
�

�

� fe�ð1=2Þ�2 þ . . .g; (A2)

where �ðM; zÞwas defined in Eq. (1) and "n�2 � h�̂n
Mi=�n

M

are the normalized connected moments of the linearly
extrapolated, smoothed density field. This expression as-
sumes that the functions "j are all constant with scale in the

regime of interest, which is reasonable at least in the local
model (see e.g. Fig. 1 of D11). If fNL is the only NG
parameter allowed, then these are perturbatively ordered:

"j � ðfNL
ffiffiffiffi
A

p Þj, with A the normalization of the power

spectrum. The ellipsis in Eq. (A2) indicates terms arising
from ‘‘unequal-time’’ correlations as discussed in
Refs. [20,21]. In the large mass (or large �) limit, these

will be of the form �e�ð1=2Þ�2
Oð��Þ. Experience with the

calculation of D11 indicates that the action of the expo-
nential derivative on all these terms will result in a single
common exponential prefactor multiplying a series expan-
sion in ��. When j��j � 1, the polynomial-type terms
should resum, but it is hard (if not impossible) to predict
the resummed form. We will therefore ignore these terms
and concentrate on the exponential, with the post hoc
justification that the approximations appear to work very

well at intermediate masses and redshifts where non-
Gaussian N-body simulations have been performed.
We are then after the quantity

fNG;excð�;"1;"2; . . .Þ�
ffiffiffiffi
2

�

s
�exp

�X1
n¼3

ð�1Þn
n!

"n�2@
n
�

�
e�ð1=2Þ�2

¼
ffiffiffiffi
2

�

s
�
Z 1

�1
d	ffiffiffiffiffiffiffi
2�

p e
ð	Þ; (A3)

where we defined


ð	Þ � i	�þ X1
n¼2

ð�i	Þn
n!

"n�2; "0 � 1: (A4)

The integral in Eq. (A3) can in principle be done using a
saddle point approximation with calculable corrections,
e.g. along the lines presented in D11. Unfortunately, as
D11 showed, a perturbative treatment will necessarily
require the condition j��j< 1, which is not sufficient for
our purpose. Going beyond this technical barrier requires
knowledge of an infinite number of connected moments
of the density field. A key simplification occurs if we

assume [inspired by the heirarchy "j � ðfNL
ffiffiffiffi
A

p Þj] the

exact relations

"j ¼ �j; � � "1: (A5)

One could treat this as defining a specific model of non-
Gaussianity. Throughout, we will numerically compute "1
as in the local model of NG. The series in
ð	Þ can then be
rearranged to bring the function into closed form,


ð	Þ ¼ i	�þ 1

�2
ðe�i	� þ i	�� 1Þ; (A6)

with derivatives


0ð	Þ¼ i

�
�þ1

�
ð1�e�i	�Þ

�
; 
00ð	Þ¼�e�i	�: (A7)

A saddle point now exists at 	 ¼ 	� where
0ð	�Þ ¼ 0, i.e.

e�i	�� ¼ 1þ ��; (A8)

provided we have 
00ð	�Þ ¼ �ð1þ ��Þ< 0, i.e. if
�� >�1. The leading saddle point result for the

multiplicity follows from setting
R
d	=

ffiffiffiffiffiffiffi
2�

p
e
ð	Þ ¼

e
ð	�Þðj
00ð	�ÞjÞ�1=2, which gives

fNG;excð�; �Þ �
ffiffiffiffi
2

�

s
�ð1þ ��Þ�1=2

� exp

�
1

�2
ð��� ð1þ ��Þ lnð1þ ��ÞÞ

�
� fNG;appð�; �Þ; (A9)

the subscript ‘‘app’’ reminding us of the approximations
involved in the derivation.

EXTREME TAIL OF THE NON-GAUSSIAN MASS FUNCTION PHYSICAL REVIEW D 84, 023517 (2011)

023517-7



One can also estimate the error involved in the saddle
point approximation. The calculation proceeds along the
lines discussed in Appendix D of D11, by first using

the series representation of 
ð	Þ in the integral of e
ð	Þ,
and then Taylor expanding to get (after a change of vari-
ables) the exact result

Z 1

�1
d	ffiffiffiffiffiffiffi
2�

p e
ð	Þ ¼ e
ð	�Þð1þ ��Þ�1=2
Z 1

�1
dyffiffiffiffiffiffiffi
2�

p e�ð1=2Þy2

�
�
1þ ð�iyÞ3

3!
�1=2 þ ð�iyÞ4

4!
�

þ 1

2!

�ð�iyÞ3
3!

�
2
�þ . . .

�
; (A10)

where � � �2=ð1þ ��Þ> 0. Clearly, terms involving half-
integer powers of � will not contribute, and hence the
relative correction to Eq. (A9) is of order Oð�Þ and is
calculable in principle to arbitrary order in �. Since
�� 3� 10�4fNL, the approximation remains valid even
for considerably large positive values of fNL, and becomes
increasingly better for large �. Negative fNL values do not
fare as well though, due to the restriction �� >�1. See the
main text however for a simple way of extending the mass
function to fNL < 0, which appears to work well in the
regime where N-body simulations have been performed.

It is straightforward to check that for fixed fNL, the
multiplicity fNG;appð�; �Þ is monotonically decreasing

with � at large �, and the mass function is therefore stable
in its extreme tail, as needed. One can also easily check
[using lnð1þ xÞ ¼ �P1

n¼1ð�xÞn=n] that the limit � ! 0
recovers the Gaussian Press-Schechter result,

lim
�!0

fNG;appð�; �Þ ¼
ffiffiffiffi
2

�

s
�e�ð1=2Þ�2 � fPSð�Þ: (A11)

In fact, retaining the leading terms in � recovers the MVJ
exponential prefactor

fNG;appð�; �Þ !
ffiffiffiffi
2

�

s
�e�ð1=2Þ�2ð1�ð1=3Þ��þ...Þð1þOð��ÞÞ:

(A12)

Since the Press-Schechter result is known to perform badly
when compared with N-body simulations, we will follow
the usual practice in the literature and prescribe a ratio of
non-Gaussian and Gaussian mass functions. Assuming that
the Gaussian mass function is well described by the Tinker
et al. form [29], the final mass function to use is given by
Eq. (3), with a modified definition of � as discussed in the
main text.
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