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We consider on-center and off-center observers in an inhomogeneous, spherically symmetric,

isocurvature (flat) concentration of dark energy with a typical size of a few Gpc. Such a concentration

could be produced e.g. by a recently formed global monopole with core size that approaches the Hubble

scale. In this case we would have what may be called ‘‘topological quintessence’’ in analogy with the

well-known topological inflation. We show that the minimum comoving radius r0min of such a dark

energy inhomogeneity that is consistent with the Union2 type Ia supernovae data at the 3� level is

r0min ’ 1:8 Gpc. As expected, the best-fit fractional dark energy density at the center, �X;in, approaches

the corresponding �CDM value �X;in ¼ 0:73 for large enough values of the inhomogeneity radius r0
(r0 > 4 Gpc). Using the Union2 data, we show that the maximum allowed shift robs-max of the observer

from the center of the inhomogeneity is about 0:7r0, which respects the Copernican principle. The model

naturally predicts the existence of a preferred axis and alignment of the low CMB multipoles. However,

the constraints on robs-max coming from the magnitude of the CMB dipole remain a severe challenge to the

Copernican principle and lead to robs-max < 110 Mpc, even for an inhomogeneity radius as large as

r0 ¼ 7 Gpc.
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I. INTRODUCTION

Detailed cosmological observations made during the last
decade (see [1] for some of the latest results) have made it
clear that the minimal cosmological model (plain cold dark
matter, or sCDM) based on the cosmological principle
(homogeneity, isotropy, validity of general relativity) and
with a purely radiation and matter content [baryonic and
CDM] is inconsistent with observations. The simplest ex-
tension of sCDM able to reconcile it with the observed
accelerated cosmic expansion (�CDM) involves the exis-
tence of a homogeneous, constant in time energy density
that constitutes about 70% of the total energy density of the
Universe and is known as the cosmological constant [2]. A
time-dependent generalization of this energy has been
dubbed dark energy. The repulsive gravitational properties
of the cosmological constant dominate on large scales and
may induce the observed acceleration. Because of its sim-
plicity and its consistency with most cosmological obser-
vations, �CDM is currently the standard cosmological
model, replacing sCDM, which held that status in the early
1990’s, when observational data were far less extensive
and accurate.

However, �CDM is also faced with some challenges,
which originate from both theoretical and observational
considerations. The two main theoretical challenges of the
model are fine-tuning and lack of theoretical motivation.
Indeed, in order to make the model consistent with obser-
vations, the energy scale of the cosmological constant must
be fine-tuned to an unnaturally small value, 120 orders of
magnitude smaller than the one anticipated from theoreti-
cal models of quantum field theory [2].

From the observational point of view, even though
�CDM is in agreement with the vast majority of data,
there is a set of observations that appear to be mildly
inconsistent with the model at the 2�–3� level. Most of
these observations, which we proceed to summarize, seem
to be related to the existence of a preferred cosmological
axis:
(i) Planarity and alignment of the CMB low multipole

moments.—It has been known since 2003 [3,4] (see
[5,6] for recent reviews) that the quadrupole and
octopole components of the CMB temperature per-
turbation maps (the largest scale part of those maps)
are dominated by planar features which are unnatu-
rally aligned with each other in the direction (per-
pendicular to the planes) ðl; bÞ ’ ð250�; 60�Þ [7–9].
The probability that such a combination of planarity
and alignment occurs in a random Gaussian map is
less than 0.5% [5,6]. This peculiar feature has been
attributed to a posteriori considerations [6]; namely,
within a large number of features of a map, it is
statistically anticipated that some of them will
present large statistical fluctuations. This type of
argument would be stronger if the large fluctuations
affected random uncorrelated features (for example,
multipoles with l ¼ 53 and l ¼ 79). In that case we
would have an a posteriori arbitrary selection of
features. The quadrupole-octopole moments, how-
ever, constitute all the information we have about the
CMB temperature fluctuation maps on the largest
angular scales. Thus the observed alignment could
also be restated by saying that the large-scale
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features of the CMB maps are significantly more
planar than anticipated for random Gaussian maps.
The fact that the preferred plane is relatively close to
the galactic plane (which is usually masked due to
noise, before the construction of the power spectrum
is made) is probably responsible [10] for the rela-
tively low values of the angular power spectrum
components C2, C3, which is considered by some
authors to be an independent puzzle [11].

(ii) Large-scale velocity bulk flows.—Recent studies
[12–14] have detected a large-scale flow with a
bulk velocity in the range ½400; 1000� km=s towards
ðl; bÞ ’ ð282�; 8�Þ on scales 100–800 Mpc. This
detection is larger than the �CDM prediction and
inconsistent with it at the level of 2�–3�.

(iii) Large-scale alignment in the QSO optical polar-
ization data.—Quasar polarization vectors are not
randomly oriented over the sky with a probability
often in excess of 99.9%. The alignment effect
seems to be prominent along a particular axis
with direction ðl; bÞ ¼ ð267�; 69�Þ [15].

(iv) Profiles of cluster halos.—�CDM predicts shallow,
low concentration and density profiles, in contrast
to some observations which point to denser cluster
halos [16,17].

As announced, three of the above four puzzles are large-
scale effects related to preferred cosmological directions
(CMB multipole alignments, QSO polarization alignment,
and large-scale bulk flows); those directions, moreover,
appear to be not far from each other [18], being approxi-
mately normal to the axis of the ecliptic poles ðl; bÞ ¼
ð96�; 30�Þ and lying close to the ecliptic plane and the
equinoxes. This coincidence has triggered investigations
for possible systematic effects related to the CMB pre-
ferred axis, but no significant such effects have been found
[5]. The Union2 type Ia supernovae (SnIa) data [19] have
also been shown recently [18,20] to have a mildly preferred
axis in a similar direction.

Finally, it should be mentioned that, in addition to the
discussed large-scale effects, the �CDM model also faces
some issues on galactic scales (missing satellites problem
[21–23] and the cusp/core nature of the central density
profiles of dwarf galaxies [24]).

In spite of those problems, the construction of general-
izations of �CDM has been motivated so far mainly by
theoretical rather than observational considerations. Some
of the most popular ideas among those that go beyond
�CDM are the following:

(i) Time-dependent dark energy [25].—Within this ap-
proach, dark energy retains its homogeneous and
isotropic character, but may present a time depen-
dence. This time dependence aims at solving (or at
least alleviating) the previously mentioned fine-
tuning problem, i.e. the unnaturally small value of
the current dark energy required by the observations.

Indeed, it turns out that a dark energy density which
is larger at early times and evolves via proper dy-
namics to its present low value is easier to accom-
modate in theoretical models. A representative of
this class of models is quintessence, where the role
of dark energy is played by a dynamically evolving
scalar field. However, for this evolution to be con-
sistent with the observations, the scalar field must be
assigned an extremely (fine-tuned) small mass, a fact
that makes the additional complexity introduced in
this class of models of questionable value.

(ii) Modified gravity.—The repulsive gravity provided
by the cosmological constant on large scales can
also be induced by modifications of general relativ-
ity in the context of a homogeneous and isotropic
background. Several such modifications have been
suggested, including scalar tensor gravity [26],
Dvali-Gabadadze-Porrati models that involve grav-
itons leaking through large extra dimensions [27],
fðRÞ gravity [28], etc. These models are well moti-
vated as complete geometric physical theories, but
they have more degrees of freedom than�CDM and
they also require significant fine-tuning in order to
be consistent with both the observed cosmic accel-
erating expansion and the gravitational solar system
constraints that prevent large local departures from
general relativity.

(iii) Inhomogeneous and isotropic Lemaı̂tre-Tolman-
Bondi (LTB) void models [29–31].—Within this
framework, an additional dark energy component
is not needed to secure consistency with the cos-
mological data that indicate accelerating expan-
sion. The basic idea that lies behind them is to
consider that the increased expansion rate occurs
locally in space rather than at recent cosmological
times, a fact that can be achieved by assuming a
locally reduced matter energy density [32]. Thus,
the observer is placed close to the center of a giant
void with dimensions of a few Gpc [33]. Even
though this approach is free of dark energy, it is
by no means free of fine-tuning. Apart from the
unnatural assumption of giant-size Gpc voids,
which are very unlikely to be produced in any
cosmology, these models require the observer to
be placed within a very small volume at the center
of the void (about 10�6 of the total volume of the
void). A slightly off-center observer, however, will
naturally experience a preferred cosmological di-
rection (towards the center of the void), which may
help to resolve some of the observational puzzles of
�CDM discussed above.

In the present study we consider yet an alternative ap-
proach for the generalization of �CDM. Instead of break-
ing the time translation invariance of dark energy, as in the
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class of quintessence models, we break its space translation
invariance (homogeneity). We thus consider a spherically
symmetric overdensity of dark energy with a typical scale
of a few Gpc: inhomogeneous dark energy (IDE). This
class of models adds degrees of freedom to �CDM in a
manner that is generically different from the other three
classes considered above. Thus, it also has specific advan-
tages as compared to them. In particular, this class has the
following advantages.

(i) Physical mechanism.—There is a well-defined
physical mechanism that can produce this type of
spherically symmetric, Hubble-scale IDE. It is based
on applying the principles of topological inflation
[34] to the case of late-time acceleration. According
to the idea of topological inflation, the false vacuum
energy of the core of a topological defect can give
rise to accelerating expansion if the core size reaches
the Hubble scale when gravity starts dominating
the dynamics. Thus, for example, a recently formed
global monopole with an appropriate scale of
symmetry breaking and coupling could naturally
produce a Hubble-scale, spherically symmetric, iso-
curvature dark energy overdensity. By analogy with
topological inflation, this mechanism may be called
topological quintessence.

(ii) Naturally large scale.—Whereas matter inhomoge-
neities (voids) of a few Gpc are very unlikely to be
formed through large-scale structure mechanisms,
IDE on Hubble scales is more natural and easy to
construct. In the IDE case (also in contrast to in-
homogeneous matter models), the homogeneous
limit (�CDM) is consistent with observations, and
one interesting question is as follows: What is the
smallest scale of inhomogeneity for which this con-
sistency remains?

(iii) More natural off-center observers (less
fine-tuning).—Because of the arbitrarily large scale
of IDE (supported by observations, as we will see),
there is less fine-tuning for the location of the
observer with respect to the center of the spherical
inhomogeneity. In fact, as the inhomogeneity scale
approaches the horizon the model becomes indis-
tinguishable from �CDM and there is no observa-
tional constraint for the location of the observer.

(iv) Natural generation of a preferred cosmological
axis.—As we have seen, most of the observational
challenges of �CDM hint towards the existence of
a preferred cosmological direction. Such a direction
is naturally provided for an off-center observer in
an inhomogeneous matter or dark energy model:
the direction that connects the location of the
observer with the center of the inhomogeneity.
The displacement of the observer naturally leads
to an alignment of low CMB multipole moments
and bulk velocity flows. Such an alignment of

cosmological axes preferred by a diverse set of
cosmological observations has been pointed out
recently in Ref. [18].

The additional degrees of freedom (with respect to
�CDM) introduced in this class of models are similar to
the corresponding ones in models that break the time trans-
lation invariance of dark energy. We also need a scalar
field, but now with spatial rather than temporal depen-
dence. Compared to matter void models, however, the
IDE setup requires more (and less natural) degrees of
freedom. This is the price to pay for the reduction in the
amount of fine-tuning.
The goal of the present study is to investigate some of

the observational consequences and constraints of IDE
models. We focus on the constraints coming from SnIa
data and the CMB lowmultipole moments. We also discuss
the physical mechanism that could give rise to IDE (topo-
logical quintessence), although we postpone a complete
analysis of this mechanism for a future study [35].
The structure of this paper is the following: In the next

section we derive the cosmological equations, lightlike
geodesics, and luminosity distance for on- and off-center
observers in the presence of IDE. We also discuss the
basics of topological quintessence as a mechanism for
producing inhomogeneous dark energy and derive the
angular dependence of the CMB temperature fluctuations
induced by the shift of the observer from the center of the
inhomogeneity. In Sec. III we use the predicted luminosity
distance to constrain the model parameters using the
Union2 SnIa data [19]. In the same section we compare
the values of the low multipole moments (dipole, quadru-
pole) of CMB perturbations induced by the displacement
of the observer from the center to the corresponding ob-
served values and derive constraints on the parameters of
the model. Finally, in Sec. IV we conclude and discuss the
implications and possible extensions of our results. In
what follows, we fix the present age of the Universe to
t0 ¼ 13:7 Gyr. In the best-fit �CDM model, this would
correspond to fixing H0 ¼ 71 km=ðsMpcÞ. We also refer
to a comoving radial distance simply as ‘‘distance.’’

II. COSMOLOGY WITH INHOMOGENEOUS
DARK ENERGY

A. Cosmological equations

The line element of an expanding, spherically symmet-
ric spacetime is given by the LTB metric [29–31]

ds2¼�dt2þX2ðr;tÞdr2þA2ðr;tÞðd�2þsin2�d’2Þ:
(2.1)

We consider a spherically symmetric energy-momentum
tensor

T�
� ¼ diagð��ðrÞ � �Mðr; tÞ; prðrÞ; ptðrÞ; ptðrÞÞ; (2.2)
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where �Mðr; tÞ is the matter density and we have allowed
for a general inhomogeneous and spherically symmetric
static fluid with

ðTfÞ�� ¼ diagð��ðrÞ; prðrÞ; ptðrÞ; ptðrÞÞ (2.3)

[ptðrÞ being the transverse pressure]. This expression is
motivated by the energy-momentum of a global monopole,
which asymptotically is of the form [36]

ðTmonÞ�� ¼ diagð��=r2;��=r2; 0; 0Þ (2.4)

with � the symmetry-breaking scale related to the forma-
tion of the monopole. The Einstein equations G�� ¼
8�GT�� may be obtained from Eqs. (2.1) and (2.2), and

they read

� 2
A00

AX2
þ 2

A0X0

AX3
þ 2

_X _A

AX
þ 1

A2
þ

� _A

A

�
2 �

�
A0

AX

�
2

¼ 8�Gð�M þ �Þ; (2.5)

_A0 ¼ A0 _X

X
; (2.6)

2
€A

A
þ 1

A2
þ

� _A

A

�
2 �

�
A0

AX

�
2 ¼ �8�Gpr; (2.7)

and

� A00

AX2
þ

€A

A
þ

_A

A

_X

X
þ A0X0

AX3
þ €X

X
¼ �8�Gpt: (2.8)

The primes and dots denote derivatives with respect to r
and t, respectively. Equation (2.6) leads to

Xðr; tÞ ¼ CðrÞA0ðr; tÞ � A0ðr; tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kðrÞp ; (2.9)

where CðrÞ is a constant of integration depending only on
the coordinate r and kðrÞ< 1 is a function associated with
the spatial curvature. Thus, the LTB metric (2.1) takes the
form

ds2 ¼ �dt2 þ ðA0ðr; tÞÞ2
1� kðrÞ dr

2 þ A2ðr; tÞðd�2 þ sin2�d’2Þ:
(2.10)

Taking (2.10) to (2.7) we obtain

_A2 þ 2A €Aþ kðrÞ ¼ �8�GprðrÞA2; (2.11)

which implies accelerating expansion for negative pressure
and proper curvature profile. It is straightforward to check
that this equation has the following first integral:

_A2

A2
¼ FðrÞ

A3
� 8�G

3
prðrÞ � kðrÞ

A2
: (2.12)

This last equation may also be written as

H2ðr; tÞ ¼ H2
0ðrÞ

�
�MðrÞ

�
A0

A

�
3 þ�XðrÞ þ�cðrÞ

�
A0

A

�
2
�

(2.13)

provided we define

Hðr; tÞ �
_Aðr; tÞ
Aðr; tÞ ; (2.14)

FðrÞ � H2
0ðrÞ�MðrÞA3

0ðrÞ; (2.15)

where A0ðrÞ � Aðr; t0Þ (t0 is the present time), H0ðrÞ �
Hðr; t0Þ, �XðrÞ � �8�GprðrÞ=3H2

0ðrÞ (which is positive

for negative radial pressure), and �cðrÞ � 1��XðrÞ �
�MðrÞ. Note that the profile of the inhomogeneous dark
energy pressure �XðrÞ is, in principle, arbitrary, being
determined by the physical mechanism that induced the
inhomogeneous overdensity.
The conservation of the energy-momentum tensor (2.3)

leads to the equations

_�þ ð�þ prÞ
_A0

A0 þ ð�þ ptÞ 2
_A

A
¼ 0; (2.16)

p0
r þ 2A0

A
ðpr � ptÞ ¼ 0: (2.17)

In the special case of isotropic pressure (pr ¼ pt � 0) and
Aðr; tÞ ¼ aðtÞr, we obtain the homogeneous dark energy
model which has been well studied. From Eq. (2.17), it is
clear that isotropic pressure would also necessarily imply
homogeneous pressure and therefore homogeneous dark
energy. Since our model is based on inhomogeneous dark
energy, we also have to require anisotropic pressure. In
what follows, we will thus assume the presence of aniso-
tropic pressure, which is naturally realized in the context of
a global monopole with a Hubble-scale core.

B. A physical model: Topological quintessence
from global monopoles

A physical model that can give rise to an energy-
momentum tensor of the form (2.3) is a global monopole
with a Hubble-scale core embedded in an expanding space-
time. Such a system is described by the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
m2

Pl

16�
R� 1

2
ð@��aÞ2 � Vð�Þ

�
; (2.18)

where the Higgs field has three components
�aða ¼ 1; 2; 3Þ, and the potential is
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Vð�Þ ¼ 1
4�ð�2 � �2Þ2; � � ffiffiffiffiffiffiffiffiffiffiffiffiffi

�a�a
p

; (2.19)

with � the vacuum expectation value and � a coupling
constant. In this model, the global monopole field configu-
ration

�a¼�ðt;rÞr̂a��ðt;rÞðsin�cos’;sin�sin’;cos�Þ (2.20)

is topologically stable and cannot decay to the true vacuum
� ¼ � in a continuous manner [36]. These field configu-
rations are expected to form during cosmological phase
transitions when the vacuum manifold of a field theory has
the topology of the sphere S2 via the Kibble mechanism
[37]. They are predicted to form initial isocurvature per-
turbations [38]. The monopole solution has localized en-

ergy in a core where � ! 0 with thickness d� ��1=2��1

and � reaches asymptotically the vacuum expectation
value � as a power law. The asymptotic form of the
energy-momentum tensor is given by Eq. (2.4). A recently
formed global monopole would naturally have a core size
comparable to the present Hubble scale,

��1=2��1 ’ H�1
0 ’ ð10�33 eVÞ�1: (2.21)

For � ¼ Oð1Þ we obtain � ’ 10�33 eV, but this energy
scale can increase significantly if we allow for small
enough values of the coupling constant �. Such a field
configuration could also be considered as a mechanism
leading to spatial variation of fundamental constants (like
the fine-structure constant) through coupling with the spa-
tially varying scalar field of the monopole. In fact there
have been recent claims about detection [39] of spatial
variation of the fine-structure constant along a particular
direction in the sky.

By varying the action (2.18) with respect to the metric
and with respect to the scalar field, we obtain the following
dynamical equations:

G�� � R�� � 1

2
g��R ¼ 8�

m2
Pl

T��; (2.22)

h�a ¼ @Vð�Þ
@�a ; (2.23)

where

T�� ¼ @��
a@��

a � g��½12ð@��aÞ2 þ Vð�Þ� (2.24)

is the energy-momentum tensor of the global monopole.
For the metric (2.10), its components are

T0
0 ¼ ��ðrÞ ¼ �

� _�2

2
þ �02

2Xðr; tÞ2 þ
�2

Aðr; tÞ2 þ Vð�Þ
�
;

T0r ¼ _��0;

Tr
r ¼ prðrÞ ¼

� _�2

2
þ �02

2Xðr; tÞ2 �
�2

Aðr; tÞ2 � Vð�Þ
�
;

T�
� ¼ ptðrÞ ¼ T	

	 ¼
� _�2

2
� �02

2Xðr; tÞ2 � Vð�Þ
�
: (2.25)

For a static global monopole they asymptotically reduce to
the form (2.4) and negative pressure is naturally obtained in
the core where the potential energy dominates. Such a
static solution has been shown to exist in flat spacetimes
[36] and also in expanding spacetimes when the core size is
smaller than the Hubble scale (Fig. 2a of Ref. [40]).
Monopoles with cores larger than a critical fraction [of
Oð1Þ] of the Hubble scale have been shown [34,40] to
become nonstatic, as their core starts expanding along
with the background Hubble expansion. Such an expansion
may also be induced by the false vacuum energy of the
monopole core leading to topological inflation. Even
though there has been no study of the embedded monopole
in an expanding background where matter is also present, it
is conceivable that a similar behavior will also be present in
that case i.e. a static solution will be supported for core
sizes up to about the Hubble scale, and for a larger size, the
core will start expanding along with the background, es-
pecially when the monopole energy density of the core
starts to dominate over the matter energy density. The
behavior of such solutions in the presence of matter is an
issue under investigation [35].

C. General strategy

In what follows, we focus on the cosmological equation
(2.13) and use it to derive observational constraints for
observers that lie at the center of the inhomogeneity and
also for off-center observers. To achieve this goal we use
the following steps:
(1) We assume a dark energy profile�XðrÞ in Eq. (2.13),

characterized by twomain parameters: the scale r0 of
the inhomogeneity and the magnitude of�X;in at the

center [�X;in � �Xðr ¼ 0Þ].
(2) We solve Eq. (2.13) assuming flatness [�MðrÞ þ

�XðrÞ ¼ 1] with initial conditions taken at the
present time t0 as Aðr; t0Þ ¼ r and evolving back-
wards in time [41]. This initial condition is a
gauge choice that corresponds to the usual setting
aðt0Þ ¼ 1 made in homogeneous models. Our as-
sumption for flatness is based on the fact that the
initial perturbations produced by topological defects
are isocurvature, while the Universe is assumed to
be flat before the formation of the Hubble-scale
global monopole.
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(3) Using the derived solution we solve the geodesic
equations and find the lightlike geodesics tð�Þ, rð�Þ,
�ð�Þ for on-center and off-center observers. The off-
center observer geodesics depend on two additional
parameters: the distance robs of the observer from
the center and the angle 
 between the tangent
vector to the geodesic and the unit vector along
the axis connecting the center with the observer
[42]. The value of the angle 
 for each direction in
the sky depends on the assumed position [galactic
coordinates ðlc; bcÞ] of the center of the inhomoge-
neity [i.e. 
 ¼ 
ðlc; bcÞ; see Fig. 1].

(4) Supernovae.—Using the derived geodesics we ob-
tain the luminosity distance and other cosmological
observable distances. These distances depend on the
model parameters, namely, r0 and �X;in for the

central observer and, in addition, robs and ðlc; bcÞ
(the galactic coordinates of the center) for the off-
center observer.

(5) We fit the derived forms of the luminosity distance
to the measured luminosity distances of the Union2
SnIa data and derive the best-fit values of the pa-
rameters r0, �X;in, robs and lc, bc and their 1�
regions.

(6) Cosmic microwave background.—For the derivation
of the additional CMB temperature anisotropy in-
duced by the shift of the observer from the center,
we use the geodesic equations to derive the depen-
dence of the redshift of the last-scattering surface on
the angle 
. Having found zlsð
; robsÞ, we find the
angular dependence of the temperature as

Tð
; robsÞ ¼ Tls

1þ zlsð
; robsÞ ; (2.26)

where Tls is the observed temperature of the last-
scattering surface. This is assumed to be uniform
since we are focusing on the additional temperature
fluctuations induced by the displacement of the
observer. We then convert it to temperature fluc-
tuations from the mean and expand in spherical
harmonics to find the multipole coefficients.
Comparison with the measured values of the mo-
ments (particularly of the dipole) leads to con-
straints on robs.

D. Evolution of the scale factor Aðr; tÞ
Wewill consider the following form for the profile of the

inhomogeneity:

�MðrÞ ¼ �M;out þ ð�M;in ��M;outÞ

� 1� tanh½ðr� r0Þ=2�r�
1þ tanhðr0=2�rÞ ; (2.27)

�XðrÞ ¼ �X;out þ ð�X;in ��X;outÞ

� 1� tanh½ðr� r0Þ=2�r�
1þ tanhðr0=2�rÞ : (2.28)

Keeping in mind the anticipated physical model of a global
monopole, we set�M;out ¼ 1,�X;out ¼ 0, and since we are
considering isocurvature inhomogeneities in a flat universe
[�cðrÞ ¼ 0], we keep �M;in ¼ 1��X;in. In our formulas

we keep �cðrÞ and kðrÞ, even though these quantities turn
out to vanish for the particular profiles we have considered.
We also fix�r ¼ 0:35 Gpc, corresponding to a fairly sharp
transition from ‘‘in’’ to ‘‘out.’’ We are thus left with two
parameters characterizing the profile: the radial size r0 and
the density at the center �X;in.

In order to solve the dynamical equation (2.13) we first
determine H0ðrÞ in units of Gyr�1, assuming a simulta-
neous big bang and, as previously mentioned, an age of the
Universe t0 ¼ 13:7 Gyr. Thus we use

H0ðrÞ ¼ 1

t0

Z 1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�MðrÞx�1 þ�XðrÞx2 þ�cðrÞ

p ; (2.29)

which can be easily derived from Eq. (2.13). We then use
this last equation and the initial condition Aðr; t0Þ ¼ r to
solve Eq. (2.13) and obtain numerically the form of Aðr; tÞ
and its derivatives.

E. Luminosity distance

1. On-center observer

In the case of the on-center observer, spherical symme-
try with respect to the observer is retained, and therefore
light travels radially towards the observer. This implies that
d� ¼ d	 ¼ 0 along the geodesic. The remaining two

FIG. 1. The angle 
 between the tangent vector to the geodesic
and the unit vector along the axis connecting the center with the
observer.
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lightlike geodesics for radially incoming light rays are of
the form [43]

dt

dz
¼ � A0ðr; tÞ

ð1þ zÞ _A0ðr; tÞ ; (2.30)

dr

dz
¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kðrÞp

ð1þ zÞ _A0ðr; tÞ ; (2.31)

where c ’ 0:3 is the velocity of light in units of Gpc/Gyr
used for consistency in order to obtain the luminosity
distance in Gpc. Equations (2.30) and (2.31) with initial
conditions tðz ¼ 0Þ ¼ t0 and rðz ¼ 0Þ ¼ 0 determine tðzÞ
and rðzÞ. The angular diameter and luminosity distance are
then simply given by

dAðz; r0;�X;inÞ ¼ AðrðzÞ; tðzÞÞ; (2.32)

dLðz; r0;�X;inÞ ¼ ð1þ zÞ2dAðzÞ: (2.33)

The corresponding distance modulus, which is the dif-
ference between the apparent magnitude m and the abso-
lute magnitude M, is given by

� � m�M ¼ 5log10

�
dL

1 Gpc

�
þ 40 (2.34)

since dL is obtained in Gpc. It is now straightforward to fit
the predicted distance moduli to the observed ones from
the Union2 data set and derive the best-fit values of pa-
rameters for the on-center observer.

2. Off-center observer

The lightlike geodesics that go through the displaced
off-center observer ðtð�Þ; rð�Þ; �ð�Þ; 	ð�ÞÞ (� is the affine
parameter) are derived by solving the geodesic equations in
a coordinate system with origin at the center of the inho-
mogeneity [42] (see Fig. 1). Taking into account the axial
symmetry around the observer, it is clear that we will have
d	 ¼ 0 along the geodesic. Moreover, due to the four-

velocity identity dx�

d�

dx�
d� � u�u� ¼ 0 (valid for lightlike

geodesics), the time geodesic reduces to a first order ordi-
nary differential equation. The geodesic equation for �ð�Þ
also reduces to first order, thanks to the spherical symmetry
of the inhomogeneity (conservation of angular momen-
tum). Finally, the geodesic for rð�Þ is second order, but it
can be split into two first order equations by means of the
convenient definition p � dr

d� . The resulting system con-

sists of the following five first order equations [42,44]:

dt

d�
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA0Þ2

1� kðrÞp
2 þ J2

A2

s
;

dr

d�
¼ cp;

d�

d�
¼ c

J

A2
;

dz

d�
¼ ð1þ zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA0Þ2
1�kðrÞp

2 þ J2

R2

q
�

A0 _A0

1� kðrÞp
2 þ

_A

A3
J2
�
;

dp

d�
¼ 2 _A0p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

1� kðrÞ þ
J2

A2A02

s
þ c

1� kðrÞ
A3A0 J2

� c

�
kðrÞ0

2� 2kðrÞ þ
A00

A0

�
p2; (2.35)

where

J � A2 d�

d�
¼ const ¼ J0 (2.36)

is the conserved angular momentum [whose conservation
emerges from the geodesic of �ð�Þ]. The initial conditions
are specified at the time t0 when the photon arrives at the
observer’s position, which is given by r ¼ robs and � ¼ 0
since, without loss of generality, we may assume that the
observer is displaced along the z axis. The photon hits the
observer at an angle 
 relative to the z axis. According to
the metric (2.10), the spatial components of the unit vector
along this axis are

vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kðrobsÞ

p
A0ðrobs; t0Þ ð1; 0; 0Þ; (2.37)

where the three components are in the r, �, and 	 direc-
tions, respectively. The unit tangent vector ui to the photon
path at the present time t0 is given by

�u i ¼
��������d�dt

��������
�
dr

d�
;
d�

d�
;
d	

d�

�
¼ � 1

u
ðp; J=A2; 0Þ; (2.38)

where u � dt=d� and the first factor ensures normaliza-
tion, gij �u

i �uj ¼ 1 (notice that j dtd� j ¼ giju
iuj in view of the

lightlike geodesic condition u�u� ¼ 0). The minus sign in

the above equation emerges because we can choose the
affine parameter � such that � ¼ 0 when t ¼ t0 and
ðdtd�Þ0 ¼ u0 ¼ uð� ¼ 0Þ ¼ �1 since the time decreases

from t0 as � increases.
The angle 
 is then given by

cos
 ¼ gij �u
ivj ¼ � A0ðrobs; t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� kðrobsÞ
p pð� ¼ 0Þ

u0
: (2.39)

Notice that at a time t � t0 the angle 
 does not represent
the angle between the geodesic tangent and the z axis but
the angle between the geodesic tangent and the radial unit
vector (which coincides with the z axis unit vector only at
t ¼ t0 when � ¼ 0). In what follows we refer to 
 as the
value obtained from Eq. (2.39) at the present time t0.
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We can now express the initial condition for pð�Þ in
terms of the incident photon angle 
 as

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kðrobsÞ

p
A0ðrobs; t0Þ cos
 ¼ cos
: (2.40)

Also using the fact that �ui evaluated at t ¼ t0 is a unit
vector, we find, using the metric (2.10) and Eq. (2.38),

J ¼ Aðrobs; t0Þ sin
 ¼ robs sin
: (2.41)

Thus, once the incident angle 
 and observer shift robs
are specified, the initial conditions to the system (2.35) are
fixed as follows:

tð0Þ ¼ t0; rð0Þ ¼ robs; �ð0Þ ¼ 0;

zð0Þ ¼ 0; pð0Þ ¼ p0:
(2.42)

Thus, the numerical solution of the system (2.35) with
initial conditions (2.42) is straightforward and leads to
the geodesics tð�; 
; robsÞ, rð�; 
; robsÞ, �ð�; 
; robsÞ, and
zð�; 
; robsÞ. By inverting the expression z ¼ zð�; 
; robsÞ
the affine parameter � may be replaced by the redshift in
t, r, and �.
The luminosity distance is now obtained from the geo-

desics for the case of an off-center observer as [45,46]

d4Lðz; 
; robsÞ ¼ ð1þ zÞ8 Aðrðz . . .Þ; tðz . . .ÞÞ
4sin2�ðz . . .Þ

sin2


�
A0ðrðz . . .Þ; tðz . . .ÞÞ2

Aðrðz . . .Þ; tðz . . .ÞÞ2ð1� kðrðz . . .ÞÞÞ
�
@rðz . . .Þ

@


�
2 þ

�
@�ðz . . .Þ

@


�
2
�
;

(2.43)

where . . .� , 
, robs and the partial derivatives with respect
to 
 are obtained numerically by evaluating the geodesics
at slightly different values of 
. It is easy to see that for
the on-center observer we have @rðz;
;robs¼0Þ

@
 ¼ 0 and
@�ðz;
;robs¼0Þ

@
 ¼ 1 (since � ¼ 
), and therefore we reobtain
the expression of the luminosity distance for the on-center
observer (2.33).

In order to compare the predicted luminosity distance
with the corresponding observed one through SnIa data, it
is important to derive the dependence of the angle 
 on the
coordinates of each SnIa. Let us assume an equatorial
coordinate system, where coordinates are given by the right
ascension � and declination �, since the directions of the
SnIa of the Union2 data set are provided in this coordinate
system [47]. Being the angle between the center-observer
axis and the observer-SnIa direction, 
 depends on both the
coordinates of the inhomogeneity center ð�c; �cÞ and on
the coordinates of each SnIa ð�; �Þ. It may be shown [45]
that the function 
ð�; �; �c; �cÞ is given by


¼ arccos½�sinð90���cÞsinð90���Þ
�cosð�þð360���cÞÞ
þcosð90���cÞcosð90���Þ�: (2.44)

Thus, Eq. (2.44) translates the parameter 
 to the coordi-
nates of the center of the inhomogeneity ð�c; �cÞ and
introduces the SnIa equatorial coordinates ð�; �Þ. This
allows the fit to the SnIa Union2 data and the derivation
of the best-fit parameter values ðrobs; �c; �cÞ.

F. CMB anisotropies for an off-center observer

We assume isotropic temperature on the last-scattering
surface and focus only on those additional temperature
anisotropies that emerge due to the shift of the observer
from the center of the dark energy inhomogeneity. Thus the
CMB temperature measured by the off-center observer is

given by Eq. (2.26). In order to determine zlsð
; robsÞ we
proceed as follows:
(i) We find the lightlike geodesics for an on-center

observer with fixed r0 and �X;in and determine the

time at decoupling tls ¼ tð�lsÞ where �ls is deter-
mined by solving the equation zð�lsÞ ¼ 1100.

(ii) For a given off-center observer shifted by robs and a
given direction 
, we find the lightlike geodesics
and determine �lsðrobs; 
Þ by solving the equation
tls ¼ tð�ls; robs; 
Þ, where tls is the decoupling time
as determined for the on-center observer.

(iii) We determine zlsð
; robsÞ � zð�ls; robs; 
Þ, where
zð�ls; robs; 
Þ is the redshift along the geodesic as
determined in the previous subsection.

In order to calculate the predicted temperature fluctuations
we must also obtain the predicted mean value �T of the
CMB temperature Tð
; robsÞ. Notice that this value is not
exactly equal to the temperature Tls at the last-scattering
surface. The mean temperature �T is evaluated using
Eq. (2.26) as [42]

�TðrobsÞ � 1

4�

Z
d�Tð
; robsÞ

¼ Tls

2

Z �

0
d


sin


1þ zlsð
; robsÞ : (2.45)

The predicted angular dependence of the temperature fluc-
tuations may now be easily evaluated using Eq. (2.45) as

�T
�T
ð
; robsÞ � Tð
; robsÞ � �TðrobsÞ

�TðrobsÞ
¼ �zðrobsÞ � zlsð
; robsÞ

1þ zlsð
; robsÞ ; (2.46)

where �zðrobsÞ is defined as
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�zðrobsÞ � 2

�Z �

0
d


sin


1þ zð
; robsÞ
��1 � 1: (2.47)

The predicted values of the multipole coefficients are
obtained by expanding the temperature fluctuations into
spherical harmonics as

�T
�T
ð
; robsÞ ¼

X
l;m

almYlmð
;	Þ; (2.48)

where the values of the multipole moments alm are ob-
tained as

alm ¼
Z 2�

0

Z �

0

�T
�T
ð
; robsÞY�

lmð
;	Þ sin
d
d	: (2.49)

Because of axial symmetry of the temperature perturba-
tions, all the alm will vanish, except those withm ¼ 0. The
observed CMB dipole a10 is of the order 10

�3. By demand-
ing that the predicted value of a10 does not exceed 10

�3 we
may obtain an upper bound on robs.

There is a Newtonian analytical approximation that can
be made in order to obtain an expression for zð
; robsÞ valid
for small observer displacement robs. The cosmological
setup corresponding to a displaced observer from the cen-
ter of a spherical inhomogeneity may be replaced [42,48]
by that of an observer with a specific peculiar velocity vobs.
This peculiar velocity is due to the increased value of the
Hubble parameter Hin inside the inhomogeneity compared
to the corresponding value that would exist if the inhomo-
geneity was not present (Hout). It is given by

q ¼ vobs

c
¼ Hin �Hout

c
robs: (2.50)

For example, for the profiles of Eqs. (2.27) and (2.28) with
r0 ¼ 3:37 Gpc, �X;in ¼ 0:69 we have

q ’ 0:07
robs

1 Gpc
: (2.51)

This peculiar velocity leads to the observation of
Doppler shifted photon frequencies and to an anisotropic
temperature profile Tobsð
; robsÞ. The ratio of this aniso-
tropic temperature over the isotropic temperature Tc ob-
served by the central observer is [42]

Tobs

Tc

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�q2

p
1�qcos


¼ 1þzls;c
1þzlsð
;robsÞ’

zls;c
zlsð
;robsÞ; (2.52)

where the first equality is obtained by a Doppler shift
analysis and zls;c ’ 1100 is the redshift of the last-

scattering surface as detected by the central observer. For
small q we find

zlsð
; robsÞ ’ zls;cð1� q cos
Þ: (2.53)

Thus, using Eq. (2.53) in Eq. (2.26) we have an approxi-
mate analytic expression for the predicted temperature
profile which may lead to the evaluation of the predicted
low multipole moments. We have checked that our numeri-
cal results presented in the next section are in rough

agreement with the predictions of this Newtonian analyti-
cal model. This model correctly predicts the qualitative
angular dependence of zls on 
 (/ 1� q cos
) but we
found it to be off by a factor �2 on the amplitude q for
the models considered.

III. NUMERICAL ANALYSIS: OBSERVATIONAL
CONSTRAINTS

In this section, we implement the methods described in
the previous section to impose observational constraints
on the parameters of the model. In order to do so we will
use the Union2 SnIa data and also COBE/WMAP results
for the observed CMB low multipole moments.

A. Constraints from the Union2 SnIa data

1. On-center observer

The Union2 SnIa data points are given, after the correc-
tions have been implemented, in terms of the distance
modulus

�obsðziÞ � mobsðziÞ �M: (3.1)

The parameters of the theoretical model are determined by
minimizing the quantity


2
1ðr0;�X;in;�0Þ¼

XN
i¼1

ð�obsðziÞ��thðzi;r0;�X;inÞ��0Þ2
�2

�i

;

(3.2)

where N ¼ 557 and �2
�i are the errors due to flux uncer-

tainties, intrinsic dispersion of SnIa absolute magnitudes,
and peculiar velocity dispersion. These errors are assumed
to be Gaussian and uncorrelated. The theoretical distance
modulus �thðzi; r0;�X;inÞ is given by Eq. (2.34) and we

have allowed for an offset �0 which is dealt with either by
marginalization or by minimization (the choice does not
affect the fit of the other parameters) [49].
In Fig. 2 we show the 1�, 2�, and 3� contours in the

parameter space r0 ��M;in (where �M;in ¼ 1��X;in)

obtained from Eq. (3.2) after minimization with respect
to the nuisance parameter �0. As could have been antici-
pated, there is no upper observational limit on the size of
the inhomogeneity, since the homogeneous limit r0 ! 1
corresponds to the �CDM model, which is indeed consis-
tent with the data. What is more interesting is the fact that
the range r0 & 1:8 Gpc is excluded by the Union2 SnIa
data at the 3� level. The range of allowed values of�X;in is

0:53<�X;in < 0:79 at the 3� level. In Fig. 2 we also show

the corresponding 
2 contours for the usual LTB model
(matterþ curvature, �M;out ¼ 1). Notice the reduced size

of the allowed region in the parameter space and also the
reduced quality of the fit (
2 ’ 556:5) as compared to the
IDE and �CDM models (
2 ’ 541).
In the remainder of the section we move to investigate

the SnIa and CMB results for an off-center observer. Since
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in that case there are three additional parameters,
ðrobs; 
ð�c; �cÞÞ, we will consider a discrete set of values
for ðr0;�X;inÞ, as shown in Fig. 2, paying special attention

to the values (3.37 Gpc, 0.69). These values provide a good
fit to the Union2 data for the on-center observer, while
being distinct from the �CDM limit.

2. Off-center observer

In the case of the off-center observer, the theoretical
distance moduli depend not only on ðz; r0;�X;inÞ, but also
on ðrobs; 
ð�c; �c; �; �ÞÞ [see Eqs. (2.34), (2.43), and (2.44)].
In order to show the effect of the additional parameters on the
luminosity distance and the corresponding distancemodulus,
we show in Fig. 3 the distance modulus as obtained from
Eqs. (2.34) and (2.43) in the direction of the center (
 ¼ �)
and in the opposite direction (
 ¼ 0), for various values
of the observer shift robs and fixed ðr0;�X;inÞ ¼
ð3:37 Gpc; 0:69Þ. We also superpose the Union2 data.
Clearly, values of robs > 1 Gpc in the direction away from
the center do not provide a good fit. However, in the direction
towards the center, the fit is good even for large robs ap-
proaching the size of the inhomogeneity.

In order to find the best-fit values for the parameters of
the model, and assuming that ðr0;�X;inÞ are fixed, we need
to minimize the following 
2 function:


2
2ðrobs;�c;�c;�0Þ

¼XN
i¼1

ð�obsðzi;�i;�iÞ��thðzi;�i;�i;robs;�c;�cÞ��0Þ2
�2

�i

;

(3.3)

where�th is obtained by combining Eqs. (2.34) and (2.43).
The contour plot of 
2

2minðlc; bcÞ obtained for ðr0;�X;inÞ ¼
ð3:37 Gpc; 0:69Þ after conversion to galactic coordinates
and minimization with respect to robs and �0 is shown in
Fig. 4. The best-fit coordinate values for the location of the
center of the dark energy spherical inhomogeneity are
ðlc; bcÞ ¼ ð51:7� � 60�;�24:9� � 65�Þ, where the errors
correspond to a rough estimate of the 1� region.
The corresponding 1� range for the observer shift is
0< robs < 573 Mpc. In Table I and in Fig. 4 we also
show the best-fit directions towards the inhomogeneity
center obtained for the other values ðr0;�X;inÞ shown in

Fig. 2. Even though these directions are in a similar region
in the sky, the uncertainty is clearly very large.
Despite the existence of three additional parameters

ðrobs; �c; �cÞ, the improvement of the fit compared to
the on-center case is marginal [for ðr0;�X;inÞ ¼
ð3:37 Gpc; 0:69Þ we obtain �
2 ¼ �2:17 at the best-fit
point ðrobs; lc; bcÞ ¼ ð573 Mpc; 51:7�;�24:9�Þ]. The im-
provement with respect to the �CDM model is even
smaller: we obtain �
2 ’ �0:3 for the same values of
ðr0;�X;inÞ. We conclude that there is no statistically sig-

nificant advantage of this model over �CDM. However,
the direction of the mildly preferred axis is not far from the
direction of the CMB dipole ðld; bdÞ ’ ð264�; 48�Þ �
ð84�;�48�Þ where we have allowed for identification of
opposite directions.
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FIG. 3 (color online). The distance modulus as obtained from
Eqs. (2.34) and (2.43) in the direction of the center (
 ¼ �) and
in the opposite direction (
 ¼ 0), for various values of the
observer shift robs and fixed ðr0;�X;inÞ ¼ ð3:37 Gpc; 0:69Þ. The
offset �0 has been set to the best-fit value corresponding to

 ¼ �.
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FIG. 2 (color online). The 1�, 2�, and 3� contours in the
parameter space r0 ��M;in for an on-center observer, obtained

from Eq. (3.2). The parameter values ðr0;�X;inÞ ¼
ð3:37 Gpc; 0:69Þ provide a good fit to the data and will often
be assumed when dealing with the off-center case. The corre-
sponding 
2 contours for the usual LTB model (only matterþ
curvature, �M;out ¼ 1) are also shown. Note that the relation

�M;in ¼ 1��X;in is obviously only valid for the IDE model.
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In Fig. 5 we show a contour plot of the best-fit value of
robs as a function of the direction in the sky (given by the
location of the inhomogeneity center), in galactic coordi-
nates. The largest best-fit value is robs ¼ 654 Mpc, corre-
sponding to the direction ðlc;max; bc;maxÞ ¼ ð336�;�47�Þ.

The maximum value of the observer shift robs consistent
with the Union2 data may be obtained by plotting 
2ðrobsÞ
after minimization with respect to �c, �c, �0. This plot is
shown in Fig. 6 for the set of values ðr0;�X;inÞ shown in

Fig. 2. It shows that even values of robs as large as 0:7r0
provide an acceptable fit to the SnIa data i.e. 
2=d:o:f: ’ 1
(even though significantly worse than �CDM, which
corresponds to 
2 ¼ 541). Notice that shifting the observer
by robs results only in a small improvement of the fit
(�
2 & �2) with respect to the on-center case.

B. Predicted CMB low multipole moments:
Constraints from the CMB dipole

Using Eqs. (2.46) and (2.49) it is straightforward
to obtain numerically a10ðrobsÞ, the additional CMB

fluctuations dipole moment induced by the shift robs of
the observer. This quantity is shown in Fig. 7 for various
values of the inhomogeneity scale r0. In the same plot
we show the value of the measured CMB dipole (dashed
line) [50]

�
�T
�T

�
10

¼ 3:35� 10�3 K

2:725 K
¼ ð1:230� 0:013Þ � 10�3;

a10 ¼
ffiffiffiffiffiffiffi
4�

3

s �
�T
�T

�
10

’ ð2:52� 0:03Þ � 10�3: (3.4)

Clearly, for r0 < 5 Gpc the observer is confined to be in a
sphere that is a fine-tuned, small spatial fraction of the dark
energy inhomogeneity [fðr0Þ � ðrobs-max

r0
Þ3 ’ 10�6], which

implies severe fine-tuning of the model as in the case of
LTB models with matter. This is shown in Fig. 8, where
fðr0Þ is plotted for values of r0 between 1 and 7 Gpc. As
shown in that figure, the fine-tuning starts to reduce [fðr0Þ
increases] as the size of the inhomogeneity increases
beyond 6 Gpc. We anticipate it to disappear as the size of
the inhomogeneity reaches �14 Gpc (the comoving dis-
tance to the last-scattering surface).
A potentially interesting observation of this class of

models is the natural alignment of the low CMBmultipoles
since the model includes the existence of a preferred axis
which connects the observer with the center of the inho-
mogeneity. The predicted CMB maps corresponding to
the dipole quadrupole and octopole are shown in
Figs. 9(a)–9(d), where we have selected the direction of
the preferred axis to coincide with the direction of the
observed CMB dipole and set robs ¼ 30 Mpc. To try to
avoid complications related to the numerical precision of

FIT FOR r0 3.37 Gpc, X,in 0.69

Best fit 2 2.17, robs 573 Mpc
Largest best fit shift robs 654 Mpc

r0 1.8 Gpc, X,in 0.54 robs 69 Mpc
r0 2.45 Gpc, X,in 0.62 robs 146 Mpc
r0 3 Gpc, X,in 0.67 robs 358 Mpc
r0 4 Gpc, X,in 0.715 robs 1.05 Gpc
r0 5 Gpc, X,in 0.725 robs 1.94 Gpc

BEST FIT FOR
DIFFERENT r0, X,in

2

2.1

1.6

0.6

180o180o 0o 360o

90o

90o

129°, 26°

87.9°,9.0°

62.7°, 10.8°

31.5°, 41.5°

37.1°, 43.7°

51.7°, 24.9°

336.7°, 46.9°

FIG. 4 (color online). Contour plot of 
2
2minðlc; bcÞ in galactic coordinates obtained after minimization with respect to robs and �0.

The 
2 contours shown correspond to r0 ¼ 3:37 and �X;in ¼ 0:69, and �
2 represents the improvement in the fit with respect to the

on-center case. The best-fit directions towards the inhomogeneity center for all the ðr0;�X;inÞ values in Fig. 2 are also shown. Finally,

the red point indicates the largest best-fit value for the shift of the observer (see the text and Fig. 5).

TABLE I. Best-fit direction ðlc; bcÞ and observer displacement
robs from the center of the inhomogeneity, obtained for the
various values of ðr0;�X;inÞ shown in Fig. 2.

r0 �X;in lc bc robs 
2
min

1.8 0.54 129� �26� 0.069 552.4

2.45 0.62 87.9� 9.0� 0.146 543.3

3.0 0.67 62.7� �10:8� 0.358 541.1

4.0 0.715 31.5� �41:5� 1.05 540.1

5.0 0.725 37.1� �43:7� 1.94 539.6
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the computations (complications that become manifest
mainly for low values of robs), we have computed the
quadrupole (octopole) in the following way: we first calcu-
lated its value [using Eqs. (2.49) and (2.46)] for 30 values
of robs between 0 and 1.2 Gpc and then performed a
quadratic (cubic) fit to those data. The values for a20 and
a30 used in Figs. 9 and 10 have been derived from those
fits. Notice that the predicted magnitude of the quadrupole
is comparable with the observed value. However, the oc-
topole is smaller than the observed value by a factor
�10�4. Even though the alignment is apparent, the fact
that all the alm coefficients with m � 0 vanish destroys all
the planar features on the plane perpendicular to the

preferred axis. Such features could naturally appear if
we had considered a lattice of spherical dark energy
inhomogeneities.
In Fig. 10 we show the quadrupole coefficient a20 as a

function of the observer shift robs. Let us recall that the
angular power spectrum is defined through

halma�l0m0 i ¼ �ll0�mm0Cl: (3.5)

Each Cl can thus be computed by averaging the squares of
the corresponding 2lþ 1 coefficients alm. However, in our
case, due to the axial symmetry (and assuming that the
observed anisotropy were due only to our shift from the
inhomogeneity center) we have just

Best fit 2 2.17, robs 573 Mpc

Largest best fit shift robs 654 Mpc

600

560

500

robs, best fit lc,bc Mpc

180o180o 0o 360o

90o

90o

51.7°, 24.9°

336.7°, 46.9°

FIG. 5 (color online). Contour plot in galactic coordinates of the best-fit value of robs as a function of the location of the
inhomogeneity center, given by the coordinates ðlc; bcÞ). The largest best-fit (robs ¼ 654 Mpc) and absolute best-fit [robs ¼
573 Mpc, corresponding to the minimum value of 
2

2 in Eq. (3.3)] values for the observer’s shift are also shown.
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FIG. 6 (color online). The form 
2ðrobsÞ after minimization
with respect to �c, �c, �0 for various values of r0, �X;in. The fit

is statistically acceptable out to values of robs ’ 0:7r0. Clearly, in
this case the Copernican principle is respected.
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uncertainty is too small to be shown, cf. Eq. (3.4)].
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Cl ¼ jal0j2
2lþ 1

; (3.6)

where, in addition, we should multiply by �T ¼
2:725� 106 �K in order to get the Cl’s in units of �K2,
which is the usual convention. The yellow shaded (central)
region in the plot represents the value measured byWMAP,
C2 ¼ 211� 5 �K2 [1], where the uncertainty only in-
cludes the measurement error. This corresponds to

a20 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5C2

ð2:725� 106 �KÞ2
s

’ 11:9� 1:8: (3.7)

We also plot the 68% (gray) and 95% (blue) confidence
level regions according to the more complete statistical
analysis carried out in [6]. Notice that the observed value
of the quadrupole is reproduced for approximately the
same shift of the observer robs as the one required to
produce the observed dipole. This relatively large value
of the quadrupole we have derived is in agreement with the
results of Ref. [48] but is significantly larger than the value
obtained in Ref. [42] for a purely matter void profile.
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FIG. 8 (color online). The spatial fraction fðr0Þ � ðrobs-max

r0
Þ3,

where the observer needs to be confined in order to be consistent
with the value of the observed CMB dipole, for ðr0;�X;inÞ ¼
ð3:37 Gpc; 0:69Þ. Notice the rapid increase of the maximum
allowed robs-max as we increase the inhomogeneity size r0. It
is anticipated that as we reach the value r0 ’ 13:7 Gpc (the
distance to the last-scattering surface) the model becomes indis-
tinguishable from the �CDM and therefore no constraints are
imposed on the value of robs using the CMB dipole.
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FIG. 9 (color online). The predicted CMB maps of additional temperature fluctuations in galactic coordinates corresponding to the
full map (a), dipole (b), quadrupole (c), and octopole (d). We have selected the direction of the preferred axis to coincide with the
direction of the observed CMB dipole and used ðr0;�X;inÞ ¼ ð3:37 Gpc; 0:69Þ, robs ¼ 30 Mpc.
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IV. DISCUSSION AND CONCLUSIONS

We have considered a generalization of �CDM by
allowing spatial instead of temporal dependence of the
dark energy. An advantage of this class of models is that
they naturally predict a preferred cosmological direction in
agreement with the indications of some cosmological ob-
servations [5,12,15]. We have considered isocurvature
spherically symmetric dark energy inhomogeneities moti-
vated from the possible recent formation of global mono-
poles with Hubble-scale cores. We have found that such
spherical dark energy inhomogeneities with radius less
than about 2 Gpc are excluded at the 3� confidence level
by the Union2 SnIa data. Inhomogeneities with larger
scales are consistent with the SnIa data and with the
CMB dipole, provided that the observer remains close to
the center of the inhomogeneity, at a distance smaller than
a maximum distance robs-max. For the SnIa Union2 data we
find robs-max ’ 0:7r0, demanding 
2=d:o:f: & 1. This is a
factor 4 larger than the corresponding maximum observer
shift in a LTB model based on a matter void implying that
the fine-tuning of the observer location is somewhat re-
duced in the case of inhomogeneous dark energy. This is
partly due to the increase of the size of the observationally
allowed inhomogeneities. The corresponding bound ob-
tained from the CMB dipole, however, is not affected
significantly. We find robs-max ’ 110 Mpc even for inho-
mogeneities as large as 7 Gpc. This value of robs-max

increases rapidly as the size of the inhomogeneity ap-
proaches the comoving radial distance to the last-scattering

surface r0 ’ 14 Gpc. In this limit, the model practically
reduces to �CDM.
Even though the isocurvature nature of the dark energy

inhomogeneities considered here is not an essential ingre-
dient of our model, it is useful to briefly discuss the
possible observational constraints that may emerge from
this assumption. There are tight constraints on isocurvature
perturbations coming from both CMB and large-scale
structure data [51]. However, the scale of the isocurvature
perturbations discussed in the paper (even if we were to
consider a lattice of them) corresponds to the present
Hubble scale: this is a necessary requirement if we want
the perturbations to affect the CMB multipole moments
with l 	 3 and lead to their alignment. Note that the
magnitude of such low-l moments is subject to large un-
certainties due to cosmic variance. Thus, the constraints on
isocurvature perturbations from the CMB angular power
spectrum are very weak on these scales. On the other hand,
a potentially interesting prediction of our model is the
suppression of the large integrated Sachs-Wolfe (ISW)
effect due to the Hubble-scale dark energy isocurvature
perturbations [52]. The latter naturally inhibit the growth
of matter perturbations on such scales, and this could
naturally lead to the observed suppression of the magnitude
of the CMB quadrupole moment with respect to the value
predicted by the �CDM model. In addition, large-scale
structure data cannot constrain isocurvature perturbations
on Hubble scales, since the largest scale that can be ob-
served today is only about k ¼ 0:02 hMpc�1, which is
significantly smaller than the Hubble scale.
Our results have demonstrated that Hubble-scale inho-

mogeneities of dark energy are consistent with CMB and
SnIa cosmological observations, provided that the inho-
mogeneity scale is larger than about 2 Gpc and the observer
is kept close to the center. Potential future extensions of
this project include the following:
(i) One could construct a concrete physical model that

can give rise to such large-scale dark energy inho-
mogeneities. Topological monopole configurations
discussed in Sec. II B constitute a possible physical
basis for such models.

(ii) In the context of the physical model mentioned
above, one could try to derive predictions for other
cosmological observations. For example, the cou-
pling of electromagnetism or gravity to the inhomo-
geneous fields of the topological monopole could
lead to a natural spatial variation of fundamental
constants [53,54] which would be more prominent
along the preferred direction that connects the ob-
server to the center of the inhomogeneity. A similar
coupling could lead to a spatial coherent rotation of
the optical polarization of quasars [15].

(iii) Even though the model does predict an alignment
of the low CMBmultipoles, this alignment does not
affect the multipoles with m � 0. However, this is
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FIG. 10 (color online). The quadrupole moment a20 as a
function of the observer shift robs, for different inhomogeneity
sizes r0 and �X;in ¼ 0:69. The yellow band represents the value

measured by WMAP [1], including just the observational un-
certainty [cf. Eq. (3.7)]. The 68% and 95% confidence level
regions for a20 according to the more complete statistical analy-
sis carried out in [6] are also shown (gray and blue shaded
regions, respectively). Finally, the vertical dashed lines indicate
the maximum value of robs (for each r0) compatible with the
measured dipole, Eq. (3.4).
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no longer true if we consider a superposition of
multiple spherical inhomogeneities with scales and
distances between their centers of a few Gpc. Such
a lattice would keep the existence of a preferred
axis and possibly introduce concentric cycles in the
maps [55,56] while inducing, at the same time,
alignment between multipoles alm with m � 0.
The study of the observational predictions of such
a lattice would be an interesting extension of this
project.

(iv) Hubble-scale dark energy inhomogeneities with
different symmetries would also be potentially in-
teresting. For example, global vortices would give
rise to cylindrically symmetric inhomogeneities,
while a domain wall would give rise to planar
symmetry.

(v) It has been shown that galaxies in the inner region of
a spherical inhomogeneity are seen by an off-center
observer to have a bulk velocity flow relative to
matter outside of the inhomogeneity. In this context,
the displacement of the observer from the center of
the inhomogeneity (robs) determines the magnitude
of the peculiar velocity of the dipole flow [see

Eq. (2.50) and [57]]. The detailed derivation of the
profile and scale of the predicted dipole velocity
flows in this model is beyond the scope of the
present study but constitutes an interesting exten-
sion of it. A smoking gun prediction of this class of
models is the reversal of the direction of the flow at
the center of the inhomogeneity.

In conclusion, the introduction of spatial variation of dark
energy density on Hubble scales constitutes a natural and
straightforward generalization of �CDM which is sup-
ported by concrete physical mechanisms. The detailed
study of this class of models and its comparison with
cosmological observations constitutes an interesting task
that has been initiated by the present study [58].
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