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Conditions for the existence of repeatable light paths (RLPs) in the shearfree normal cosmological

models are investigated. It is found that in the conformally nonflat models the only RLPs are radial null

geodesics (in the spherical case) and their analogues in the plane and hyperbolically symmetric cases. In

the conformally flat Stephani models, there exist special spherically, plane, and hyperbolically symmetric

subcases, in which all null geodesics are RLPs. They are slightly more general than the Friedmann-

Lemaı̂tre-Robertson-Walker models of the corresponding symmetries: their curvature index function kðtÞ
and the scale factor RðtÞ are expressed through a single function of time. In addition to that, there exist

special cases of the Stephani solution in which some of the null geodesics are RLPs. All these special

cases are identified.
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I. THE MOTIVATION

In a recent paper [1] it was found that in a general
Szekeres model [2,3] of the �0 � 0 class there are no
repeatable light paths (RLPs). This means, given a fixed
light source S and a fixed observer O, two light rays
emitted from S in such a direction that they hit O, but at
different time instants, intersect different sequences of
matter world lines on the way. The observer sees then the
light source slowly drifting through the sky. Depending on
the mass distribution along the ray, and on the positions of
O and S with respect to each other, the average rate of
change of the direction toward S measured by O would be
between 10�8 and 10�7 arcsec per year. With the current
precision of direction determination equal to 10�6 arcsec
[1], in the most favorable configuration 10 years of moni-
toring would be required to measure this effect. Since this
drift is strictly zero in the Friedmann-Lemaı̂tre-Robertson-
Walker (FLRW) models, it can be a qualitative observa-
tional test of homogeneity of the Universe.

In Ref. [1] it was found that the only subcase of the
�0 � 0 Szekeres family of models in which all null
geodesics are RLPs are the Friedmann models. The condi-
tion for all null geodesics to be RLPs was the vanishing of
shear in the flow of the cosmic medium, which reduces
the Szekeres model to the Friedmann limit. In the general
Szekeres models, the matter source moves with zero ac-
celeration (i.e. along timelike geodesics) and zero rotation.
This gives rise to the question whether the non-RLP
phenomenon is caused by shear or by the model being
non-Friedmannian.

This question is addressed in the present paper. The
condition of existence of RLPs is applied here to the
shearfree normal (SFN) cosmological models [4,5]—
another class of generalizations of the FLRW models, in
which the matter source is a perfect fluid moving with zero

rotation and zero shear, but nonzero acceleration. In the
most general conformally nonflat SFN models, the only
RLPs are radial null geodesics (in the spherical case) and
their analogues in the plane and hyperbolically symmetric
cases. In the conformally flat Stephani models, there exist
special spherically, plane, hyperbolically, and axially sym-
metric subcases, in which all null geodesics are RLPs.
They are slightly more general than the FLRW models of
the corresponding symmetries: their curvature index func-
tion kðtÞ and the scale factor RðtÞ are expressed through a
single function of time. There also exist special cases of the
Stephani model, in which some of the null geodesics are
RLPs. For example, in the general axially symmetric case
the RLPs are those null geodesics that intersect each space
t ¼ constant on the axis of symmetry (in full analogy
with the Szekeres models [1]). All these special cases are
identified.
Thus, the key to the RLP property is not vanishing shear,

but high symmetry.

II. THE SHEARFREE NORMAL (SFN)
COSMOLOGICAL MODELS

The SFN models are solutions of Einstein’s equations
with a perfect fluid source that moves with zero rotation
and zero shear, but nonzero expansion and acceleration.
The full collection of these models was first found by
Barnes [4] in 1973, but special cases were known before
(see Ref. [5] for a classification of special cases and the
account of historical order). This family of models consists
of the conformally flat Stephani universe [6] found in 1967,
and 3 subfamilies of Petrov type D solutions, first found in
full generality by Barnes [4]. Each of these type D sub-
families has a 3-dimensional symmetry group acting on
2-dimensional orbits; the symmetry is either spherical or
plane or hyperbolic. The spherically symmetric subfamily
was first presented by Kustaanheimo and Qvist in 1948 [7],
but one special case of it was derived by McVittie already*akr@camk.edu.pl
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in 1933 [8]. The other two Petrov type D subfamilies first
emerged in the paper by Barnes [4]. This author [9] found a
coordinate system that covers all 3 subfamilies, but for the
present paper it will be more convenient to consider them
separately.

In the Petrov type D case, the metric in comoving
coordinates is

d s2 ¼
�
FV;t

V

�
2
dt2 � 1

V2
ðdx2 þ dy2 þ dz2Þ; (2.1)

where FðtÞ is an arbitrary function, related to the expansion
scalar � by � ¼ 3=F. The Einstein equations reduce to the
single equation:

w;uu=w
2 ¼ fðuÞ; (2.2)

where fðuÞ is another arbitrary function, while the variable
u and the function w are related to the coordinates x, y, z,
and to the function Vðt; x; y; zÞ differently in each subfam-
ily. We have

ðu; wÞ ¼
8><
>:
ðr2; VÞ with spherical symmetry;

ðz; VÞ with plane symmetry;

ðx=y; V=yÞ with hyperbolic symmetry:

r2 ¼def x2 þ y2 þ z2: (2.3)

The formulas for matter density and pressure are known for
each case, but will not be used in the present paper, so they
are not quoted; see Ref. [5].

The Weyl tensor is proportional to fðuÞ, and so with
fðuÞ � 0 the models given by (2.2) become conformally
flat. Then they become subcases of the Stephani solution
given below, but are still more general than FLRW, see
Ref. [5].

The conformally flat Stephani solution [5,6] has the
metric given by (2.1), the coordinates are still comoving,
but the function Vðt; x; y; zÞ is given explicitly by

V ¼ 1

R

�
1þ 1

4
kðtÞ½ðx� x0ðtÞÞ2

þ ðy� y0ðtÞÞ2 þ ðz� z0ðtÞÞ2�
�
; (2.4)

where ðR; k; x0; y0; z0Þ are arbitrary functions of t. This is
easily seen to be a generalization of the whole FLRW class,
to which it reduces when ðk; x0; y0; z0Þ are all constant. The
constants ðx0; y0; z0Þ can then be set to zero by a coordinate
transformation, the constant k is the FLRW curvature in-
dex, and RðtÞ is the FLRW scale factor. In general, the
solution (2.4) has no symmetry.

As with the type D models, the formulas for mass
density and pressure are known, but will not be used
here, see [5,6]. The mass density depends only on t.

The parametrization used in (2.4) follows the original
source [6] and is designed so that the most popular repre-
sentation of the FLRWmodels is easily obtained from it as

a spatially homogeneous limit. It suggests that V is either
quadratic in ðx; y; zÞ or does not depend on them. In fact,
the metric (2.1) is still conformally flat with V ¼ A0 þ
Aqðx2 þ y2 þ z2Þ þ A1xþ A2yþ A3z, where the A’s are

arbitrary functions of t. However, even when Aq ¼ 0, the

quadratic terms can be restored with use of the Haantjes
transformation, see Refs. [9,10] for the definition and
examples of transformations.
As already mentioned, all these solutions have zero

shear and zero rotation. The quantity that makes them
more general than FLRW is acceleration, which is in every
case proportional to the spatial gradient of the g00 compo-
nent in the metric (2.1). Thus, the invariant condition for
each of the metrics discussed above to reduce to an FLRW
limit is

@

@xi

�
V;t

V

�
¼ 0; i ¼ 1; 2; 3: (2.5)

Note that the metrics (2.1) do not allow a static limit—
V;t must be nonzero. Static solutions that are shearfree and

rotation-free obviously exist, but they form a separate
branch in the family of solutions of Einstein’s equations
and cannot be recovered from (2.1).
There exists a very large body of literature on the SFN

models, their various subcases and generalizations [5], but
it is almost exclusively devoted to finding examples of
solutions of (2.2) and of its charged generalization, w;uu ¼
fðuÞw2 þ gðuÞw3. A general solution is not known.

III. THE GEODESIC EQUATIONS IN THE
SPHERICALLY SYMMETRIC MODELS

For the spherically symmetric SFN models, we first
transform the spatial coordinates of (2.1) to the standard
spherical coordinates. Then the geodesic equations in the
affine parametrization are

d2t

ds2
þ

�
F;t

F
� V;t

V
þ V;tt

V;t

��
dt

ds

�
2

� 1

F2VV;t

��
dr

ds

�
2 þ u

�
d#

ds

�
2 þ usin2#

�
d’

ds

�
2
�

þ 2

�
V;tu

V;t

� V;u

V

�
dt

ds

du

ds
¼ 0; (3.1)

d2r

ds2
þ 2rF2V;t

�
V;tu � V;tV;u

V

��
dt

ds

�
2

� 2
V;t

V

dt

ds

dr

ds
� r

��
d#

ds

�
2 þ sin2#

�
d’

ds

�
2
�

þ 2r
V;u

V

�
�
�
dr

ds

�
2 þ u

�
d#

ds

�
2 þ usin2#

�
d’

ds

�
2
�

¼ 0; (3.2)
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d2#

ds2
� 2

V;t

V

dt

ds

d#

ds
þ

�
1

u
� 2

V;u

V

�
du

ds

d#

ds

� cos# sin#

�
d’

ds

�
2 ¼ 0; (3.3)

d2’

ds2
� 2

V;t

V

dt

ds

d’

ds
þ

�
1

u
� 2

V;u

V

�
du

ds

d’

ds

þ 2 cot#
d#

ds

d’

ds
¼ 0: (3.4)

Equations (3.1)–(3.2) can be simplified when we use the
null condition:
�
dr

ds

�
2 þ u

�
d#

ds

�
2 þ usin2#

�
d’

ds

�
2 ¼ ðFV;tÞ2

�
dt

ds

�
2
: (3.5)

What remains of them is

d2t

ds2
þ

�
F;t

F
� 2

V;t

V
þ V;tt

V;t

��
dt

ds

�
2

þ 2

�
V;tu

V;t

� V;u

V

�
dt

ds

du

ds
¼ 0; (3.6)

d2r

ds2
þ F2V;t

r
ð2uV;tu � V;tÞ

�
dt

ds

�
2

� 2
V;t

V

dt

ds

dr

ds
þ 1

r

�
1� 4u

V;u

V

��
dr

ds

�
2 ¼ 0: (3.7)

From (3.3)–(3.4) it follows that the null geodesics
are plane, i.e. that the coordinates can be adapted to each
single geodesic so that it has # ¼ �=2 all along. However,
in the following we will consider a bundle of geodesics
emanating from a common source, and such an adaptation
of coordinates would not be useful for that.

In this and the next two sections, the same method as in
Ref. [1] will be used, so, for the readers’ convenience, the
relevant short excerpts from there are copied here with
suitable modifications.

For further calculations it is more convenient to use the
coordinate r as a parameter, which will be nonaffine. This
is allowed, but with some caution. It is easily seen from
(3.7) that a curve obeying it, on which dr=ds ¼ 0 over
some open range of s has dt=ds ¼ 0 in that range, and so is
spacelike (the second possibility, 2uV;tu � V;t ¼ 0, could
be compatible with (2.2) only in the prohibited case
V;t ¼ 0). However, (3.6)–(3.7) do not guarantee that

dr=ds � 0 at all points; isolated points along a null geo-
desic, at which dr=ds ¼ 0 can exist. Thus, r can be used as
a parameter on null geodesics only on such segments
where ds=dr > 0 or ds=dr < 0 throughout.

We have, for any coordinate,

d2x�

ds2
¼

�
dr

ds

�
2 d2x�

dr2
þ d2r

ds2
dx�

dr
: (3.8)

Then, from (3.7) we have

d2r

ds2
¼

�
dr

ds

�
2
�
�F2V;t

r
ð2uV;tu � V;tÞ

�
dt

dr

�
2

þ 2
V;t

V

dt

dr
� 1

r

�
1� 4u

V;u

V

��
: (3.9)

Consequently, (3.6), (3.3), and (3.4) become, using (3.9):

d2t

dr2
þ

�
4r

V;tu

V;t

� 1

r

�
dt

dr
þ

�
F;t

F
þ V;tt

V;t

��
dt

dr

�
2

� F2V;t

r
ð2uV;tu � V;tÞ

�
dt

dr

�
3 ¼ 0; (3.10)

d2#

dr2
þ d#

dr

�
�F2V;t

r
ð2uV;tu � V;tÞ

�
dt

dr

�
2 þ 1

r

�

� cos# sin#

�
d’

dr

�
2 ¼ 0; (3.11)

d2’

dr2
þ d’

dr

�
�F2V;t

r
ð2uV;tu � V;tÞ

�
dt

dr

�
2 þ 1

r

�

þ 2 cot#
d#

dr

d’

dr
¼ 0: (3.12)

IV. THE REDSHIFT EQUATIONS IN THE
SPHERICALLY SYMMETRIC MODELS

Consider, in the metric (2.1), two light signals, the
second one following the first after a short time interval
�, both emitted by the same source and arriving at the same
observer. The equation of the trajectory of the first signal is

ðt; #; ’Þ ¼ ðTðrÞ;�ðrÞ;�ðrÞÞ; (4.1)

the corresponding equation for the second signal is

ðt; #; ’Þ ¼ ðTðrÞ þ �ðrÞ;�ðrÞ þ �ðrÞ;�ðrÞ þ c ðrÞÞ:
(4.2)

Thus, we have to allow that, while the first ray intersects
the hypersurface of a given constant value of the r coor-
dinate at the point ðt; #; ’Þ ¼ ðT;�;�Þ, the second ray
intersects the same hypersurface at the point ðt; #; ’Þ ¼
ðT þ �;�þ �;�þ c Þ. In general, it arrives at this hyper-
surface not only later, but also at a different spatial loca-
tion. Thus, those two rays will not intersect the same
succession of intermediate matter world lines on the way.
Note that, since the coordinates used here are comoving,
both the source of light and the observer keep their spatial
coordinates unchanged throughout history. Given this, and
given that a pair of rays emitted by the same source and
received by the same observer is considered, ð�; c Þ ¼
ð0; 0Þ holds at the point of emission and at the point of
reception. However, the second ray is in general emitted in
a different direction than the first one, and is received from
a different direction by the observer. This means that in a
general cosmological model the observed objects should
drift across the sky. (See a brief quantitative discussion of
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this effect in the Lemaı̂tre-Tolman model in Ref. [1].) The
directions of the two rays will be determined by (d�=dr,
d�=dr) and (d�=drþ �ðrÞ, d�=drþ �ðrÞ), respectively,
where � ¼ d�=dr, � ¼ dc =dr. It will be assumed here
that (d�=dr, � , c , �, �) are small of the same order as �, so
all terms nonlinear in any of them and terms involving their
products will be neglected.

In writing out the equations of propagation of redshift,
the symbol � will be used. It denotes the difference be-
tween the relevant expression taken at (tþ �, r, # þ � ,
’þ c ) and at ðt; r; #; ’Þ, linearized in ð�; �; c Þ; i.e. the
difference between the value of a given quantity along the
second ray and along the first ray, taken at a hypersurface
of a given value of the parameter r (and, automatically,
given u). For example Fðtþ �Þ � FðtÞ ¼ �FþOð�2Þ,
Vðtþ �;uÞ�Vðt;uÞ ¼�VþOð�2Þ, �ðd#=drÞ ¼ �. This
operation is a generalization of the calculation by which
Bondi [11] derived the redshift equation for radial null
geodesics in the Lemaı̂tre-Tolman model, see an account
of that method in Ref. [1].

Applying the� operation to (3.10)–(3.12), we obtain the
following general equations of redshift propagation in the
spherically symmetric SFN models:1

d2�

dr2
þ 4r

�
V;ttu

V;t

� V;ttV;tu

V;t
2

�
dt

dr
�

þ
�
F;tt

F
� F;t

2

F2
þ V;ttt

V;t

� V;tt
2

V;t
2

��
dt

dr

�
2
�

� F

r
½ð2F;tV;t þ FV;ttÞð2uV;tu � V;tÞ

þ FV;tð2uV;ttu � V;ttÞ�
�
dt

dr

�
3
�

þ
�
4r

V;tu

V;t

� 1

r

�
d�

dr
þ 2

�
F;t

F
þ V;tt

V;t

�
dt

dr

d�

dr

� 3F2V;t

r
ð2uV;tu � V;tÞ

�
dt

dr

�
2 d�

dr
¼ 0; (4.3)

d�

dr
þ

�
�F2V;t

r
ð2uV;tu � V;tÞ

�
dt

dr

�
2 þ 1

r

�
�

� F

r
½ð2F;tV;t þ FV;ttÞð2uV;tu � V;tÞ

þ FV;tð2uV;ttu � V;ttÞ�
�
dt

dr

�
2 d#

dr
�

� 2F2V;t

r
ð2uV;tu � V;tÞ dtdr

d#

dr

d�

dr

� cosð2#Þ
�
d’

dr

�
2
� � sinð2#Þ d’

dr
� ¼ 0; (4.4)

d�

dr
þ

�
�F2V;t

r
ð2uV;tu � V;tÞ

�
dt

dr

�
2 þ 1

r

�
�

� F

r
½ð2F;tV;t þ FV;ttÞð2uV;tu � V;tÞ

þ FV;tð2uV;ttu � V;ttÞ�
�
dt

dr

�
2 d’

dr
�

� 2F2V;t

r
ð2uV;tu � V;tÞ dtdr

d’

dr

d�

dr
� 2

sin2#

d#

dr

d’

dr
�

þ 2 cot#
d#

dr
�þ 2 cot#

d’

dr
� ¼ 0: (4.5)

Along with these, we can use also the result of � acting on
the null condition (3.5), transformed to the r parametriza-
tion, it is

ð2FF;tV;t
2 þ 2F2V;tV;ttÞ

�
dt

dr

�
2
�þ 2F2V;t

2 dt

dr

d�

dr

¼ 2u
d#

dr
�þu sinð2#Þ

�
d’

dr

�
2
� þ 2usin2#

d’

dr
�: (4.6)

IfT is the period of the electromagnetic wave measured in
the rest frame of the source or of the observer, the redshift
is given by

T ðrobsÞ
T ðremÞ

¼ 1þ zðremÞ; (4.7)

where the labels ‘‘obs’’ and ‘‘em’’ refer to the events of
observation and emission of the ray, respectively [1,10].
The period in the rest frame of an object is measured in the
units of proper time of that object. In the metrics (2.1) the
differential of the proper time ds is related to the differen-
tial of the coordinate time dt by ds ¼ ffiffiffiffiffiffiffi

g00
p

dt, where g00 ¼
ðFV;t=VÞ2. Thus, taking the �ðrÞ found from (4.3)–(4.6) as

corresponding to the period T , we calculate the redshift
from

1þ zðremÞ ¼
ð ffiffiffiffiffiffiffi

g00
p

�Þjtobs;robs
ð ffiffiffiffiffiffiffi

g00
p

�Þjtem;rem
: (4.8)

Note that Eq. (4.3) is decoupled from the other two and
determines the redshift independently of ð�; c ; �; �Þ. This
means that even for a nonradial ray the redshift changes
with r by the same law as for a radial one. [Indeed, (3.6) is
the same for radial and nonradial rays, so � acting on it
gives the same result in both cases.] This is a consequence
of spherical symmetry and zero shear in the SFN models.
Using Eqs. (4.1)–(4.5) and (5.3)–(5.12) of Ref. [1], one can
verify that in the Szekeres model the equation (5.12) that
determines � does depend on ð�; c ; �; �Þ even in the
spherically symmetric subcase, where E;r ¼ 0 and shear

is nonzero.
Since � ¼ c ¼ 0 at the observer, these quantities are

not in fact observable. However, � and � are in general
nonzero at the observer, which implies the change of
direction toward the source with time.

1A quick way to calculate (4.3)–(4.6) is to take the differential
of the corresponding quantity at constant r and replace (dt, d#,
d’, dðd#=drÞ, dðd’=drÞ) by ð�; �; c ; �; �Þ.
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V. REPEATABLE LIGHT PATHS (RLPS) IN THE
SPHERICALLY SYMMETRIC MODELS

We say that the light paths are repeatable when the rays
sent between a given source and a given observer at differ-
ent times always proceed through the same sequence of
intermediate particles of the cosmic medium. This means,
when the rays are registered at an r hypersurface of
coordinate radius r, they arrive there at the same spatial
location (only at different time instants), i.e.,

� ¼ c ¼ � ¼ � ¼ 0 (5.1)

all along each ray. Substituting (5.1) in (4.4)–(4.6), one
obtains the conditions that have to be obeyed in order that
RLPs exist. We first define

	ðt;uÞ¼def dt
dr

�½ð2F;tV;tþFV;ttÞð2uV;tu�V;tÞ

þFV;tð2uV;ttu�V;ttÞ�þ2FV;tð2uV;tu�V;tÞd�dr
(5.2)

and then the conditions are

� F

r
	
dt

dr

d#

dr
¼ 0; (5.3)

� F

r
	
dt

dr

d’

dr
¼ 0; (5.4)

2FV;t

�
ðF;tV;t þ FV;ttÞ dtdr �þ FV;t

d�

dr

�
dt

dr
¼ 0: (5.5)

Discarding in (5.5) the impossible solutions dt=dr ¼ 0
(this would be a spacelike curve) and FV;t ¼ 0
[prohibited—see (2.1)] we obtain

d�

dr
¼ �

�
F;t

F
þ V;tt

V;t

�
dt

dr
�: (5.6)

Equations (5.3)–(5.4) imply that either d#=dr¼d’=dr¼0
or 	 ¼ 0. The first case defines a radial null geodesic. This
means that radial null geodesics are RLPs, as expected in a
spherically symmetric model. Then (5.6) just defines the
redshift as a function of r.

To check the other possibility, we substitute (5.6) in
	 ¼ 0. The result is, after discarding the factor
2uðF2=rÞðdt=drÞ�,

V;ttV;tu � V;tV;ttu ¼ 0: (5.7)

A general solution of this equation is

V ¼ �ðuÞSðtÞ þ �ðuÞ; (5.8)

where�,�, and S are arbitrary functions of their respective
arguments. This must be compatible with (2.2). We dis-
regard the cases �S;t ¼ 0 because they lead to the impos-

sible condition V;t ¼ 0—see the penultimate paragraph of

Sec. II. Then (5.8) is compatible with (2.2) only when

f ¼ 0, i.e. when the metric is conformally flat. The con-
formally flat case belongs to the Stephani class (2.4), which
will be discussed in Secs. X and XI of this paper. However,
in that class the spherically symmetric case emerges
among many others, and it will be more convenient to
discuss it here.2

When f ¼ 0, (5.8) substituted in (2.2) gives �;uu ¼
�;uu ¼ 0, i.e.,

V ¼ A1Sþ B1 þ ðA2Sþ B2Þr2: (5.9)

This is in the Stephani class (2.4), with

1

RðtÞ ¼ A1Sþ B1; kðtÞ ¼ 4
A2Sþ B2

A1Sþ B1

;

x0 ¼ y0 ¼ z0 ¼ 0:
(5.10)

An FLRW limit results from (5.9) when the zero-
acceleration condition (2.5) is fulfilled, i.e. when A2B1 �
A1B2 ¼ 0. If A2 ¼ 0, then in the FLRW limit A1B2 ¼ 0.
But A1 ¼ A2 ¼ 0 is the prohibited case V;t ¼ 0, while
B2 ¼ A2 ¼ 0 is the k ¼ 0 FLRW model. So, for a general
FLRW limit of (5.9) we have A2 � 0 and

B1 ¼ A1B2=A2: (5.11)

Then, in the FLRW limit

V ¼ 1

RðtÞ
�
1þ k

4
r2
�
; (5.12)

where

R ¼ A2

A1ðA2Sþ B2Þ ; k ¼ 4A2

A1

: (5.13)

Since S is arbitrary and ðA1; A2Þ can have any signs, this
shows that the model defined by (5.9) reproduces the whole
FLRW class in the zero-acceleration limit.
In the solution given by (5.9)–(5.10) all null geodesics

are RLPs, since the metric obeys (5.7) with no conditions
imposed on the vectors tangent to null geodesics.
Thus, the result is:
Corollary 1.—In a general spherically symmetric SFN

model the only repeatable light paths are radial null geo-
desics. In the subcase defined by (5.9) all null geodesics are
RLPs. This subcase contains the whole FLRW class, but is

2It may be verified that (5.6) is indeed a first integral of (4.3)
modulo the RLP conditions. Hint: Take a derivative of (5.6)
along a null geodesic (defined byD=dr ¼ ðdt=drÞ@=@tþ @=@r),
then use (3.10) and (5.6) to eliminate d2t=dr2 and d�=dr. The
result will be equal to (4.3) provided that

�

V;t
2
dt

dr
ðV;ttV;tu � V;tV;ttuÞ

�
1�

�
FV

dt

dr

�
2
�
¼ 0:

The expression in ( ) vanishes when (5.7) is fulfilled, the
expression in [ ] vanishes in virtue of the null condition when
the geodesic is radial. Thus, (5.6) is a first integral of (4.3) when
any of the RLP conditions is fulfilled.
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more general than FLRW because it has nonzero accelera-
tion. It has zero Weyl tensor, but is less general than the
spherically symmetric limit of the Stephani solution (2.4);
in the latter kðtÞ and RðtÞ are two independent functions.

VI. THE GEODESIC EQUATIONS IN THE PLANE
SYMMETRIC MODELS

The scheme of the calculation is here the same as in
Secs. III, IV, and V; only the explicit forms of the equations
are different. Thus, we will limit the explanation and the
presentation of intermediate expressions to a necessary
minimum.

Analogously to the spherical case we note that z can be
used as a parameter on open intervals of each geodesic and
use the d2z=ds2 geodesic equation to carry out the repar-
ametrization.3 The geodesic equations parametrized by z
are then

d2t

dz2
� F2V;tV;tz

�
dt

dz

�
3 þ

�
F;t

F
þ V;tt

V;t

��
dt

dz

�
2 þ 2

V;tz

V;t

dt

dz
¼ 0;

(6.1)

d2x

dz2
� F2V;tV;tz

�
dt

dz

�
2 dx

dz
¼ 0; (6.2)

d2y

dz2
� F2V;tV;tz

�
dt

dz

�
2 dy

dz
¼ 0: (6.3)

Equations (6.2) and (6.3) show that (ydx=dz� xdy=dz) is a
constant of the motion. This means that the projection of
each geodesic on the ðx; yÞ plane is a straight line.

In obtaining the redshift equations via the � operation

defined in Sec. IV we take ð�; c Þ¼def�ðx; yÞ and

ð�;�Þ¼defðd=dzÞð�; c Þ. Since we will not use the redshift
equations in full, we do not display them and proceed to the
conditions for the RLPs.

VII. REPEATABLE LIGHT PATHS IN THE PLANE
SYMMETRIC MODELS

We substitute � ¼ c ¼ � ¼ � ¼ 0 in the redshift equa-
tions and in the null condition, and obtain the conditions
for RLPs:

	ðt; zÞ ¼def½ð2F;tV;t þ FV;ttÞV;tz þ FV;tV;ttz� dtdz �

þ 2FV;tV;tz

dt

dz
; (7.1)

� F	
dt

dz

dx

dz
¼ 0; (7.2)

� F	
dt

dz

dy

dz
¼ 0; (7.3)

2FV;t

dt

dz

�
ðF;tV;t þ FV;ttÞ dtdz �þ FV;t

d�

dz

�
¼ 0: (7.4)

Discarding the impossible cases, there are two sets of
solutions to (7.2)–(7.3): (a) dx=dz ¼ dy=dz ¼ 0—the
analogues of radial null geodesics; (b) 	 ¼ 0—the subset
of the plane symmetric models in which all null geodesics
are RLPs. Using (7.4) in 	 ¼ 0 to eliminate d�=dz, we
obtain

V;ttV;tz � V;tV;ttz ¼ 0; (7.5)

a general solution of which is

V ¼ �ðzÞSðtÞ þ �ðzÞ; (7.6)

where�,�, and S are arbitrary functions of their respective
arguments. Just as (5.8), this is compatible with (2.2)
only when the metric becomes conformally flat. Then
�;zz ¼ �;zz ¼ 0 and

V ¼ A1Sþ B1 þ ðA2Sþ B2Þz: (7.7)

This case is not covered by the parametrization of (2.4), but
can be brought into the form of (2.4) by the following
special Haantjes transformation:

ðx; y; zÞ ¼ ðx0; y0; z0 þ Cðx02 þ y02 þ z02ÞÞ
T

; where

T ¼def 1þ 2Cz0 þ C2ðx02 þ y02 þ z02Þ; (7.8)

where C is an arbitrary constant, a group parameter of the
transformation (see Refs. [9,10] for hints on how to handle
the calculations). The result of (7.8) is

V ¼ C½CðA1Sþ B1Þ þ A2Sþ B2�ðx02 þ y02 þ z02Þ
þ ½2CðA1Sþ B1Þ þ A2Sþ B2�z0 þ A1Sþ B1: (7.9)

For later reference we will need (7.9) cast explicitly in the
form (2.4). The functions appearing in (2.4) are in our
present case:

1

R
¼ �ðA2Sþ B2Þ2

4

; (7.10)


¼defC2ðA1Sþ B1Þ þ CðA2Sþ B2Þ; (7.11)

k ¼ � 16
2

ðA2Sþ B2Þ2
; (7.12)

z0 ¼ 1




�
CðA1Sþ B1Þ þ 1

2
ðA2Sþ B2Þ

�
: (7.13)

3If dz=ds ¼ 0 on an open interval of the geodesic, then either
(a) dt=ds ¼ 0, which can hold only on a spacelike geodesic, or
(b) V;t ¼ 0, which is a prohibited case [see the remark below
(2.5)], or (c) V;tz ¼ 0, which is compatible with (2.2) only when
V;t ¼ 0 or f ¼ 0. The latter case is the conformally flat model
that will be dealt with in Sec. VII.
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Equation (7.12) suggests that k < 0 necessarily. However,
the k¼0 case follows directly from (7.7), it is A2¼B2¼0,
and then 1=R ¼ A1Sþ B1. Thus, the plane symmetric
subcase of the Stephani model can reproduce the k � 0
FLRW limits.

The general prescription for the FLRW limit can be
found by substituting (7.7) in the zero-acceleration condi-
tion (2.4); the result is

A1B2 � A2B1 ¼ 0: (7.14)

We will need the formulas for R and k parametrized by
z0 rather than by S. From (7.13) we find

S ¼ B1Cþ B2=2� ðB1Cþ B2ÞCz0
ðCA1 þ A2ÞCz0 � CA1 � A2=2

; (7.15)

and then from (7.12) and (7.10)

1

2K
¼ ðCA1 þ A2ÞCz0 � CA1 � A2=2

C2ðA2B1 � A1B2Þ
; (7.16)

K¼def k

4R
; (7.17)

1

2KR
¼ � 1

2
z0

2 þ z0
C
� 1

2C2
: (7.18)

Equations (7.16) and (7.18) will be needed to recognize the
plane symmetric subcase among the multitude of cases
discussed in Appendix A.

Note that the form (7.16)–(7.18) does not allow taking
the FLRW limit (7.14). This is logical, since in this limit z0
becomes constant while K and R do not, so z0 cannot be
used as a parameter.

We thus have:
Corollary 2.—In a general plane symmetric SFN model

represented as in (2.1)–(2.3) the only repeatable light paths
are null geodesics on which x and y are constant. In the
subcase defined by (7.7), which includes the k � 0 FLRW
subclass, all null geodesics are RLPs. This subcase is
conformally flat, but less general than the conformally
flat limit of the plane symmetric case.

The condition k � 0 is consistent with what is known
about the relation between plane symmetric models and
their FLRW limits [5].

VIII. THE GEODESIC EQUATIONS IN THE
HYPERBOLICALLY SYMMETRIC MODELS

There is a certain complication in discussing this case:
either the metric can be similar to (2.1) or the equation
similar to (2.2), but not both things at once. We choose to
make the metric similar. We use Eq. (2.1) of Ref. [9],

rename the functions by ð3�; Y; bÞ¼defð1=F; V; fÞ, and trans-
form the r coordinate used there by r ¼ expðr0Þ. Dropping
the prime, the metric then becomes

ds2 ¼
�
FV;t

V

�
2
dt2 � 1

V2
ðdr2 þ d#2 þ sinh2#d’2Þ; (8.1)

and the function Vðt; rÞ must obey

V;rr ¼ fðrÞV2 � V: (8.2)

See [9] for the transformation from (8.1) to (2.1)–(2.3).
Just as in Sec. VI we will now skip most of the expla-

nation and of the intermediate expressions because the
calculations exactly parallel those for the spherically sym-
metric models presented in Secs. III, IV, and V.
Using the d2r=ds2 geodesic equation, we change the

parameter to the nonaffine r and obtain

d2t

dr2
þ 2

V;tr

V;t

dt

dr
þ

�
F;t

F
þ V;tt

V;t

��
dt

dr

�
2 � F2V;tV;tr

�
dt

dr

�
3 ¼ 0;

(8.3)

d2#

dr2
� F2V;tV;tr

d#

dr

�
dt

dr

�
2 � cosh# sinh#

�
d’

dr

�
2 ¼ 0;

(8.4)

d2’

dr2
� F2V;tV;tr

d’

dr

�
dt

dr

�
2 þ 2 coth#

d#

dr

d’

dr
¼ 0: (8.5)

We skip through the general redshift equations and
proceed to the RLP equations, where this time
ð�; c Þ¼def �ð#;’Þ and ð�;�Þ¼defðd=dzÞð�; c Þ.

IX. REPEATABLE LIGHT PATHS IN THE
HYPERBOLICALLY SYMMETRIC MODELS

When �¼ c ¼�¼�¼0, the redshift equations become

	ðt; rÞ ¼def½ð2F;tV;t þ FV;ttÞV;tr þ FV;tV;ttr� dtdr �

þ 2FV;tV;tr

d�

dr
; (9.1)

� F	
dt

dr

d#

dr
¼ 0; (9.2)

� F	
dt

dr

d’

dr
¼ 0; (9.3)

2FV;t

�
ðF;tV;t þ FV;ttÞ dtdr �þ FV;t

d�

dr

�
dt

dr
¼ 0: (9.4)

As before, (9.4) implies

d�

dr
¼ �

�
F;t

F
þ V;tt

V;t

�
dt

dr
�: (9.5)

Equations (9.2)–(9.3) tell us that either d#=dr¼d’=dr¼0
or 	 ¼ 0. The first case defines a pseudoradial null geode-
sic. The other possibility is 	 ¼ 0. Using (9.5) we get
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V;ttV;tr � V;tV;ttr ¼ 0: (9.6)

A general solution of this equation is

V ¼ �ðrÞSðtÞ þ �ðrÞ; (9.7)

where �, �, and S are arbitrary functions of their respective
arguments. As before, this is compatible with (8.2) only
when f ¼ 0 and the solution becomes conformally flat.
Then, from (8.2), V must obey, V;rr þ V ¼ 0, and the

solution is

V ¼ ðA1Sþ B1Þ sinrþ ðA2Sþ B2Þ cosr: (9.8)

This is transformed to the standard parametrization (2.4) by
the following chain of transformations.

We first transform the 2-dimensional metric
(d#2 þ sinh2#d’2) into (d�2 þ e2�dz2). An explicit pre-
scription for this is given in Appendix A of Ref. [9]. This
does not affect V because # and ’ are not present in it.
Then we carry out the transformation

r ¼ arcsin
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p ; � ¼ � 1

2
lnðx2 þ y2Þ: (9.9)

The metric then becomes

d s2 ¼
�
FW;t

W

�
2
dt2 � dx2 þ dy2 þ dz2

W2
; (9.10)

where

W ¼def
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
V ¼ ðA1Sþ B1Þyþ ðA2Sþ B2Þx: (9.11)

The metric (9.10)–(9.11) is within the Stephani class, as
can be seen by carrying out the following Haantjes trans-
formation:

ðx; y; zÞ ¼ ðx0 þ Cðx02 þ y02 þ z02Þ; y0; z0Þ
1þ 2Cx0 þ C2ðx02 þ y02 þ z02Þ : (9.12)

After this, the metric acquires the form (2.1) with V
replaced by

W1 ¼ CðA2Sþ B2Þðx02 þ y02 þ z02Þ þ ðA2Sþ B2Þx0
þ ðA1Sþ B1Þy0: (9.13)

When W1 is cast in the form of (2.4), we obtain

x0 ¼ �1
2; (9.14)

y0 ¼ � 1

2

A1Sþ B1

A2Sþ B2

; (9.15)

K¼def k

4R
¼ CðA2Sþ B2Þ; (9.16)

1

R
¼ �C

4
� ðA1Sþ B1Þ2 þ ðA2Sþ B2Þ2

A2Sþ B2

: (9.17)

The constant x0 can be transformed to x0 ¼ 0.
The FLRW limit follows when A1B2 � A2B1 ¼ 0. From

(9.16)–(9.17) we find

k ¼ � 16ðA2Sþ B2Þ2
ðA1Sþ B1Þ2 þ ðA2Sþ B2Þ2

; (9.18)

which shows that k < 0 necessarily. The V given by (9.8)
cannot be made independent of r, so the case k ¼ 0 is not
contained in this model.
For later referencewewill need the formulas forK andR

parametrized by y0 rather than by S. We have

S ¼ �B1 þ 2B2y0
A1 þ 2A2y0

; (9.19)

1

2K
¼ A1 þ 2A2y0

2CðA1B2 � A2B1Þ ; (9.20)

1

2KR
¼ � 1

2C
y0

2 � 1

8C
: (9.21)

Similarly to the plane symmetric model, in this form the
FLRW limit A1B2 � A2B1 ¼ 0 cannot be taken, for the
same reason: in the FLRW models y0 is constant, while K
and R are not, so y0 cannot be used as a parameter.
Thus we have:
Corollary 3.—In a general hyperbolically symmetric

SFN model the only repeatable light paths are the ana-
logues of radial null geodesics, on which # and ’ in (8.1)
are constant. In the subcase defined by (9.10)–(9.11), which
includes the FLRW models with k < 0, all null geodesics
are RLPs. This subcase is conformally flat, but less general
than the conformally flat limit of (8.1).

X. THE GEODESIC EQUATIONS IN THE
STEPHANI MODEL

The metric of this model is (2.1), with V given by (2.4).
We introduce the abbreviation:

D¼def FðtÞV;t=V: (10.1)

The geodesic equations in the affine parametrization, with
the null condition already incorporated, are

d2t

ds2
þ 2

�
D;x

D

dx

ds
þD;y

D

dy

ds
þD;z

D

dz

ds

�
dt

ds

þ
�
D;t

D
� V;t

V

��
dt

ds

�
2 ¼ 0; (10.2)
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d2x

ds2
þ F2V;tV;tx

�
dt

ds

�
2 � 2

V;x

V

�
dx

ds

�
2

� 2

�
V;t

V

dt

ds
þ V;y

V

dy

ds
þ V;z

V

dz

ds

�
dx

ds
¼ 0; (10.3)

d2y

ds2
þ F2V;tV;ty

�
dt

ds

�
2 � 2

V;y

V

�
dy

ds

�
2

� 2

�
V;t

V

dt

ds
þ V;x

V

dx

ds
þ V;z

V

dz

ds

�
dy

ds
¼ 0; (10.4)

d2z

ds2
þ F2V;tV;tz

�
dt

ds

�
2 � 2

V;z

V

�
dz

ds

�
2

� 2

�
V;t

V

dt

ds
þ V;x

V

dx

ds
þ V;y

V

dy

ds

�
dz

ds
¼ 0: (10.5)

Note that if any of dxi=ds, i ¼ 1; 2; 3 [where

ðx1; x2; x3Þ¼defðx; y; zÞ] is zero along an open interval of a
null geodesic, then (10.2)–(10.5) imply either dt=ds ¼ 0 in
the same interval (which is impossible on a null curve) or
V;ti ¼ 0 for the respective i. This second possibility must

be investigated. Suppose first that

V;tx ¼ V;ty ¼ V;tz ¼ 0: (10.6)

This means

�
k

2R

�
;t
¼ x0;t ¼ y0;t ¼ z0;t ¼ 0: (10.7)

The metric is then spherically symmetric and the constants
ðx0; y0; z0Þ can be set equal to zero by coordinate trans-
formations. This case was dealt with at the end of Sec. V, so
we disregard it here.

Hence, we may assume that at least one of the quantities
in (10.6) is nonzero. Since a general Stephani metric does
not change its form under any permutation of the ðx; y; zÞ
coordinates (accompanied by a suitable renaming of the
ðx0; y0; z0Þ functions), we may assume without loss of
generality that V;tz � 0, and then (10.5) shows that dz=ds
cannot be zero over an open interval of a null geodesic.
Consequently, z can be chosen as a (nonaffine) parameter,
with an analogous cautionary remark to the one given
above (3.8).

Consequently, using (10.5) and (3.8) for d2z=ds2 we
change the parameter to z in (10.2)–(10.4) and obtain

d2t

dz2
� F2V;tV;tz

�
dt

dz

�
3 þ

�
F;t

F
þ V;tt

V;t

��
dt

dz

�
2

þ 2

�
V;tx

V;t

dx

dz
þ V;ty

V;t

dy

dz
þ V;tz

V;t

�
dt

dz
¼ 0; (10.8)

d2x

dz2
� F2V;tV;tz

dx

dz

�
dt

dz

�
2 þ F2V;tV;tx

�
dt

dz

�
2 ¼ 0; (10.9)

d2y

dz2
� F2V;tV;tz

dy

dz

�
dt

dz

�
2 þ F2V;tV;ty

�
dt

dz

�
2 ¼ 0: (10.10)

XI. REPEATABLE LIGHT PATHS IN THE
STEPHANI MODEL

In this case we skip the redshift equations because they
are complicated and voluminous, while we are not going to
make any direct use of them. In this section, the meaning of
the symbols in the � operation is

�ðt; x; y; dx=dz; dy=dzÞ ¼defð�; �; c ; �; �Þ: (11.1)

We proceed to the RLP conditions that are obtained
by applying the � operation to (10.9)–(10.10) and imme-
diately assuming � ¼ c ¼ � ¼ � ¼ 0.4 We do not con-
sider the result of � acting on (10.8) because it is the
equation for � that will define the redshift propagation
along the emergent RLP, and it does not lead to any
limitation on the metric.
The null condition in the z parametrization is

F2V;t
2

�
dt

dz

�
2 ¼

�
dx

dz

�
2 þ

�
dy

dz

�
2 þ 1; (11.2)

and the RLP condition resulting from it is

ðF;tV;t þ FV;ttÞ dtdz �þ FV;t

d�

dz
¼ 0 (11.3)

[we ignore the cases FV;t ¼ 0—prohibited in (2.1), and

dt=dz ¼ 0—which defines a spacelike curve].
We denote

Hi ¼def V;ti

V;t

; Gi ¼defHi;t; i ¼ 1; 2; 3; (11.4)

where ðx1; x2; x3Þ¼defðx; y; zÞ. We find d�=dz from (11.3) and
use it in the RLP conditions resulting from (10.9)–(10.10)
in the way described above. The result is

Gx �Gz

dx

dz
¼ 0; (11.5)

Gy �Gz

dy

dz
¼ 0: (11.6)

Since the analysis of (11.5)–(11.6) is complicated, we state
here only the results, and present the calculations in
Appendix A. The RLPs defined by (11.5)–(11.6) exist in
the following cases:

(1) (Case 1.1.1.1.2.1.1 of Appendix A)

When y0 is defined by (A23), K¼defk=ð4RÞ by (A24)
and R by (A39), some of the null geodesics are

4Similarly to what footnote 1 says, a quick way to obtain the
equations that follow is to take the differentials of (10.8)–(10.10)
at constant ðx; y; zÞ and replace dt by �.
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RLPs, and they are solutions of (A52), with F 1 and
G1 given by (A40)–(A42) and (A50)–(A51). It is not
known whether this subcase of the Stephani solution
admits an FLRW limit. If it does, then only after a
reparametrization. As noted for the plane and hyper-
bolically symmetric cases, when k and R are pa-
rametrized by x0, y0, or z0, the FLRW limit cannot
be calculated.
Several subcases of this spacetime appear separately
in Appendix A, but they are not listed here.

(2) (Case 1.1.1.2.1.2.1 of Appendix A)
When y0 ¼ D1x0, z0 ¼ C3x0, and R is determined
by (A64), but KðtÞ ¼ k=ð4RÞ is arbitrary, again
some of the null geodesics are RLPs. They are
determined by (A52), whereF 1 andG1 are given by
(A66)–(A67).
Also here, several subcases appear separately, but
they do not admit more RLPs.

(3) (Case 1.1.2.2.2 of Appendix A)
This is a copy of the subcase of the spherically
symmetric Stephani solution discussed in Sec. V.
All of its null geodesics are RLPs, and it contains
the FLRW limit in full generality. It is not identical
to FLRW because in general it has nonzero
acceleration.

(4) (Case 1.2.1.2 of Appendix A)
Then x0 ¼ C1z0, y0 ¼ C3z0, RðtÞ is arbitrary, V and
k are determined by (A111) and (A112). This is an
axially symmetric subcase of the Stephani model,
and its RLPs are determined by (A113). All the
RLPs intersect the symmetry axis x ¼ y ¼ 0 in
each space of constant t.

(5) (Case 2.1 of Appendix A)
Then y0 ¼ C2x0, z0 ¼ C3x0, K ¼ k=ð4RÞ is deter-
mined by (A137) and R is determined by (A141). As
indicated there, C2 ¼ C3 ¼ 0 may be achieved by a
coordinate transformation, and then the model is
seen to be axially symmetric. All of its null geo-
desics are RLPs. It is less general than the previous
one (see under (4) above) because the former has
RðtÞ arbitrary, while the current one has R deter-
mined by (A141).

XII. SUMMARY

The existence of repeatable light paths (RLPs) was
investigated for the cosmological models found by
Barnes [4] and Stephani [6]. They are called shear-free
normal (SFN) because the perfect fluid source in the
Einstein equations moves with zero shear and zero rota-
tion. The Barnes models are either spherically symmetric
(SS) or plane symmetric (PS) or hyperbolically symmetric
(HS). In general, in each of these classes only those null
geodesics are RLPs that are orthogonal to the symmetry
orbits (the radial ones in the SS case). However, each one
contains a subclass in which all null geodesics are RLPs.

This subclass is in each case more general than FLRW.
In the SS case, this special subclass has the metric (2.4)
with V given by (5.9) and (5.10), and contains the whole
FLRW family. In the PS case, the special subclass has V
given by (7.9)–(7.13) and contains only those FLRW mod-
els for which the curvature index k � 0. In the HS case, the
special subclass is given by (9.13)–(9.17) and contains only
the k < 0 FLRW models. All these special subclasses are
conformally flat, but less general than the corresponding
conformally flat limits of the SS, PS and HS cases.
For the Stephani models the situation is summarized in

Sec. XI. In general, no RLPs exist. The conditions of
existence of RLPs, (11.5)–(11.6), put limitations on the
Stephani metric. There exist subcases in which some of the
null geodesics are RLPs, for example the axially symmet-
ric subcase given by (A111)–(A112). There exists also a
subclass in which all null geodesics are RLPs, it is axially
symmetric as well.
This study, as explained in the introduction, was moti-

vated by the question: what is the geometrical condition for
the existence of RLPs; is it vanishing shear in the flow
of the cosmic medium, as suggested by the result of
Ref. [1], or rather a high symmetry of the spacetime?
The solutions of Einstein’s equations investigated in the
present paper all have zero shear, and yet their null geo-
desics are RLPs only in special situations. Thus, the key to
the RLP property is a symmetry of the spacetime rather
than vanishing shear.
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APPENDIX A: RLPS OBEYING (11.5)–(11.6)

The calculations in this Appendix are trivial in principle.
The reason why they are presented in some detail is that
the various separate subcases form a very complicated
binary tree that would be difficult to duplicate without a
guidebook.
Case 1: The general case: Gz � 0
Then (11.5)–(11.6) become

dx

dz
¼ Gx

Gz

;
dy

dz
¼ Gy

Gz

: (A1)

We calculate the derivatives of dx=dz and dy=dz along a
null geodesic by the rule

D

dz
¼ dt

dz

@

@t
þ dx

dz

@

@x
þ dy

dz

@

@y
þ @

@z

and substitute the results in (10.9)–(10.10). Then we use
(A1) and (11.2) to eliminate dx=dz, dy=dz, and ðdt=dzÞ2.
The resulting equations are
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GzðGzGx;t �GxGz;tÞ dtdzþGxðGzGx;x �GxGz;xÞ
þGyðGzGx;y �GxGz;yÞ þGzðGzGx;z �GxGz;zÞ
þ ðHxGz �HzGxÞðGx

2 þGy
2 þGz

2Þ ¼ 0; (A2)

GzðGzGy;t �GyGz;tÞ dtdzþGxðGzGy;x �GyGz;xÞ
þGyðGzGy;y �GyGz;yÞ þGzðGzGy;z �GyGz;zÞ
þ ðHyGz �HzGyÞðGx

2 þGy
2 þGz

2Þ ¼ 0: (A3)

After (11.4) are substituted for Gi and Hi, the terms free of
dt=dz sum up to zero in each of (A2)–(A3), so both
coefficients of dt=dz must be zero, too. This implies�

Gx

Gz

�
;t
¼

�
Gy

Gz

�
;t
¼ 0: (A4)

The integrals of these are

Gx ¼ F 1ðx; y; zÞGz; Gy ¼ G1ðx; y; zÞGz; (A5)

where F i and Gi, i ¼ 1; 2; 3 are arbitrary functions.
Recalling (11.4), these are integrated again with the result

Hx ¼ F 1Hz þF 2ðx; y; zÞ;
Hy ¼ G1Hz þG2ðx; y; zÞ:

(A6)

Finally, recalling the definitions of Hx and Hy from (11.4),

Eqs. (A6) are integrated with the result

V;x ¼ F 1V;z þF 2V þF 3ðx; y; zÞ; (A7)

V;y ¼ G1V;z þ G2V þG3ðx; y; zÞ: (A8)

We introduce the following conventions:

(i) Ci;Di; ci; di; Ei; i ¼ 1; 2; . . . will denote arbitrary
constants,

(ii) F j;Gj; j ¼ 4; 5; . . . will denote arbitrary functions

of spatial coordinates, not necessarily of all of them.

Since the alternatives considered below will be in most
cases mutually exclusive, we will reuse the same names of
constants and functions with different meanings.

In every case we will follow the same scheme of reason-
ing. Our initial equation (IE) will be (A7) or (A8), usually
multiplied by some factor (1=2K or F 2

�1 or G2
�1). Then,

the following operations will be executed on IE, each one
followed by conclusions:

(1) differentiate IE by y and t;
(2) differentiate IE by y alone;
(3) differentiate IE by x and t;
(4) differentiate IE by x alone;
(5) differentiate IE by z and t;
(6) Differentiate IE by z alone.

At this stage, ðF i;GiÞ; i ¼ 1; 2; 3, K and R will be defined,
and the corresponding Stephani model admitting RLPs (if

any) will be identified. The functions ðF 1;G1Þ, substituted
in (A1), will define the RLPs.
Wewill present in detail the whole 6-step procedure only

for the first case considered.
It will turn out in several places along the way that the

function x0ðtÞ is in fact constant. In those cases, we will
assume that x0 ¼ 0 because this result can be achieved by
the coordinate transformation x ¼ x0 þ x0. The same is
true for the pairs ðy0; yÞ and ðz0; zÞ.
Case 1.1: F 2 � 0
Then (A7) can be written as

x� x0
F 2

¼ ðz� z0ÞF 1

F 2

þ 1

2KR
þ 1

2
½ðx� x0Þ2 þðy� y0Þ2

þðz� z0Þ2�þ 1

2K

F 3

F 2

; (A9)

where we have introduced the symbol

K¼def k

4R
: (A10)

In writing (A9) we assumed k � 0 because k ¼ 0 is the
spatially flat FLRW model, in which we know that all null
geodesics are RLPs. Taking the second derivative of (A9)
by y and t we obtain

x0;t

�
1

F 2

�
;y
¼ z0;t

�
F 1

F 2

�
;y
þ y0;t �

�
1

2K

�
;t

�
F 3

F 2

�
;y
: (A11)

Case 1.1.1: x0;t � 0
Then we divide (A11) by x0;t and differentiate the result

by t, obtaining

�
z0;t
x0;t

�
;t

�
F 1

F 2

�
;y
þ

�
y0;t
x0;t

�
;t
�

�
1

x0;t

�
1

2K

�
;t

�
;t

�
F 3

F 2

�
;y
¼ 0:

(A12)

Case 1.1.1.1: ðz0;t=x0;tÞ;t � 0
Then we divide (A12) by ðz0;t=x0;tÞ;t and differentiate the

result by t. We get

��
y0;t
x0;t

�
;t

��
z0;t
x0;t

�
;t

�
;t
� 	ðtÞ

�
F 3

F 2

�
;y
¼ 0; (A13)

where

	ðtÞ ¼def
��

1

x0;t

�
1

2K

�
;t

�
;t

��
z0;t
x0;t

�
;t

�
;t
: (A14)

Case 1.1.1.1.1: 	ðtÞ � 0
Then we get

1

	

��
y0;t
x0;t

�
;t

��
z0;t
x0;t

�
;t

�
;t
¼

�
F 3

F 2

�
;y
¼ C1 ¼ constant; (A15)

both expressions being constant because the first one de-
pends only on t, while the second one depends only on
ðx; y; zÞ. Integrating both equations we obtain
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C1

2K
¼ D1x0 þ y0 þD3z0 þD4; (A16)

F 3 ¼ ðC1yþF 4ðx; zÞÞF 2: (A17)

In principle, we would have to consider the cases C1 � 0
and C1 ¼ 0 separately. However, they lead to the same
result. When C1 � 0, (A16) determines 1=ð2KÞ. Then we
substitute (A16) and (A17) in (A12) and obtain

�
z0;t
x0;t

�
;t

��
F 1

F 2

�
;y
�D3

�
¼ 0: (A18)

Since in Case 1.1.1.1 the first factor is nonzero, we have

F 1 ¼ ðD3yþF 5ðx; zÞÞF 2: (A19)

When we substitute (A17) and (A19) in (A11) we obtain

x0;t

��
1

F 2

�
;y
þD1

�
¼ 0: (A20)

Since x0;t � 0 in our current Case 1.1.1, we have

1

F 2

¼ �D1yþF 6ðx; zÞ: (A21)

Using (A21), (A19), and (A17) in (A9) we obtain

xð�D1yþF 6Þ � x0F 6 ¼ zðD3yþF 5Þ � z0F 5 þ 1

2KR

þ 1

2
½ðx� x0Þ2 þ y2 þ y0

2

þ ðz� z0Þ2� þ 1

2K
F 4 þD4y:

(A22)

The derivative of this by y now gives �D1x ¼ D3zþ yþ
D4, which is a clear contradiction.

When C1 ¼ 0, K remains undetermined, and instead
(A15) determines y0 ¼ �D1x0 �D3z0. Equations (A19)
and (A21) still follow and (A22) results with D4 ¼ 0,
leading to the same contradiction.

Case 1.1.1.1.1 thus turned out to be empty, and we go
back to (A13) to consider:

Case 1.1.1.1.2: 	ðtÞ ¼ 0
Then (A13) implies ½ðy0;t=x0;tÞ;t=ðz0;t=x0;tÞ;t�;t ¼ 0,

which is integrated with the result

y0 ¼ C1x0 þ C3z0 (A23)

(the additive constant was set to zero by a transformation
y ¼ y0 þ constant), and 	ðtÞ ¼ 0 implies, via (A14),

1

2K
¼ D1x0 þD3z0 þD4: (A24)

We substitute (A23)–(A24) in (A12) and obtain
�
z0;t
x0;t

�
;t

��
F 1

F 2

�
;y
�D3

�
F 3

F 2

�
;y
þ C3

�
¼ 0: (A25)

Since we are still in Case 1.1.1.1, where ðz0;t=x0;tÞ;t � 0,
the above leads to

F 1 ¼ D3F 3 þ ðF 4ðx; zÞ � C3yÞF 2: (A26)

Substituting this and (A23)–(A24) in (A11) we get

x0;t

��
1

F 2

�
;y
� C1 þD1

�
F 3

F 2

�
;y

�
¼ 0: (A27)

In Case 1.1.1, where x0;t � 0, the above implies

D1F 3 ¼ ðC1yþF 5ðx; zÞÞF 2 � 1: (A28)

Case 1.1.1.1.2.1: D1 � 0
Then (A28) determines F 3. Using (A26), (A24), and

(A23) in (A9) we get

x

F 2

¼ z

�
D3

F 3

F 2

þF 4 � C3y

�
� z0F 4 þ 1

2KR

þ 1

2
½ðx� x0Þ2 þ y2 þ ðC1x0 þ C3z0Þ2

þ ðz� z0Þ2� þD4

F 3

F 2

þ x0F 5: (A29)

We differentiate this by y alone and obtain

x

�
1

F 2

�
;y
¼ z

�
D3

�
F 3

F 2

�
;y
� C3

�
þ yþD4

�
F 3

F 2

�
;y
:

(A30)

Integrating this back and using (A28) for F 3 we obtain

1

F 2

¼
1
2D1y

2 þ ðC1D3 � C3D1Þyzþ C1D4y

D1xþD3zþD4

þF 6ðx; zÞ:
(A31)

Using (A28) and (A31) in (A29) we obtain

xF 6ðx;zÞ¼ ðz�z0ÞF 4ðx;zÞþ 1

2KR
þx0F 5ðx;zÞ

þ1

2
½ðx�x0Þ2þðC1x0þC3z0Þ2þðz�z0Þ2�

þ 1

D1

ðD3zþD4ÞðF 5ðx;zÞ�F 6ðx;zÞÞ: (A32)

Taking the second derivative of this by x and t we obtain

� z0;t
x0;t

F 4;x � 1þF 5;x ¼ 0: (A33)

In Case 1.1.1.1, where ðz0;t=x0;tÞ;t � 0, this implies

F 4 ¼ F 4ðzÞ; F 5 ¼ xþF 7ðzÞ: (A34)

Putting this in (A32) and taking its derivative by x alone,
then integrating back, we get
�
xþD3zþD4

D1

�
F 6ðx; zÞ ¼ 1

2
x2 þ xðD3zþD4Þ

D1

þF 8ðzÞ: (A35)
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Using this in (A32), then taking the second derivative by z
and t we get

� z0;t
x0;t

ðF 4;z þ 1Þ þF 7;z ¼ 0: (A36)

In the present case this means

F 7 ¼ C4 ¼ constant; F 4 ¼ �zþ C5: (A37)

Feeding this information in (A32) and using (A24) we get

F 8ðzÞ �D3C4

D1

zþ 1

2
z2 � C5z�D4

D1

C4 ¼ E1; (A38)

1

R
ðD1x0 þD3z0 þD4Þ þ C4x0 � C5z0

þ 1

2
½x02 þ ðC1x0 þ C3z0Þ2 þ z0

2� ¼ E1; (A39)

the two expressions being constant because they are equal,
while the first one depends only on z and the second one
only on t. Equations (A38)–(A39) define RðtÞ and F 8ðzÞ,
and are the final solution of (A7).

Picking up the pieces, we obtain the following formula:

F 1 ¼ U1

U2

; (A40)

U1 ¼def 12D3ðx2 � y2 � z2Þ þ ðC1D3 � C3D1Þxy
�D1xzþ ðC4D3 þ C5D1Þx� C3D4y

�D4zþ C5D4 �D3E1; (A41)

U2 ¼def 12D1ðx2 þ y2 � z2Þ þD3xzþ ðC1D3 � C3D1Þyz
þD4xþ C1D4yþ ðC4D3 þ C5D1Þz
þ C4D4 þD1E1: (A42)

Nowwewill deal with (A8), still within Case 1.1.1.1.2.1.
Case 1.1.1.1.2.1.1: G2 � 0
Then (A8) is written as

y� C1x0 � C3z0
G2

¼ ðz� z0ÞG1

G2

þ 1

2KR
þ 1

2K

G3

G2

þ 1

2
½ðx� x0Þ2 þ ðy� C1x0 � C3z0Þ2

þ ðz� z0Þ2�; (A43)

We follow exactly the same sequence of steps that we did
in solving (A9). We take the second derivative of (A43) by
y and t and obtain, using (A24),
�
C1 þ C3

z0;t
x0;t

��
1

G2

�
;y
¼ z0;t

x0;t

�
G1

G2

�
;y
þ

�
C1 þ C3

z0;t
x0;t

�

�
�
D1 þD3

z0;t
x0;t

��
G3

G2

�
;y
: (A44)

Since we are in Case 1.1.1.1, the coefficients of ðz0;t=x0;tÞ
and the remaining terms must balance separately.

Moreover, we are in Case 1.1.1.1.2.1, where D1 � 0.
Integrating the two equations with respect to y we obtain

G1

G2

¼
�
C1D3

D1

� C3

��
y� 1

G2

�
þ G4ðx; zÞ;þD3G5ðx; zÞ;

(A45)

G3

G2

¼ C1

D1

�
y� 1

G2

�
þ G5ðx; zÞ: (A46)

We substitute (A45)–(A46) in (A43) differentiated by y
alone and obtain

1

G2

þ y

�
1

G2

�
;y
¼ z

�
C1D3

D1

� C3

��
1�

�
1

G2

�
;y

�

þ C1D4

D1

�
1�

�
1

G2

�
;y

�
þ y: (A47)

From here,

1

G2

¼
1
2D1y

2 þðC1D3 �C3D1ÞyzþC1D4yþD1G6ðx; zÞ
D1yþðC1D3 �C3D1ÞzþC1D4

:

(A48)

After substituting (A45), (A46), (A48), (A23), and (A24)
in (A43) we obtain

ðz� z0ÞG4ðx; zÞ þ ðD1x0 þD3z0 þD4Þ 1R
þ 1

2
½ðx� x0Þ2 þ ðC1x0 þ C3z0Þ2 þ ðz� z0Þ2�

þ ðD1x0 þD3zþD4ÞG5ðx; zÞ � G6ðx; zÞ ¼ 0: (A49)

Following further exactly the same scheme that we pre-
sented in solving (A7), we arrive at an equation determin-
ing RðtÞ that is identical with (A39), i.e. does not put any
additional limitation on the R determined by (A39). Thus,
(A39) gives the final condition for the existence of RLPs in
Case 1.1.1.1.2.1.
Putting together all the partial results we get

G 1 ¼ U3

U2

; (A50)

U3 ¼def 12ðC1D3 � C3D1Þð�x2 þ y2 � z2Þ þD3xy�D1yz

þ C3D4xþ ðC4D3 þ C5D1Þy� C1D4z

þD4ðC1C5 þ C3C4Þ � E1ðC1D3 � C3D1Þ; (A51)

where U2 is given in (A42). Now the equations

dx

dz
¼ F 1ðx; y; zÞ; dy

dz
¼ G1ðx; y; zÞ (A52)

do determine the RLPs, with F 1ðx; y; zÞ and G1ðx; y; zÞ
given by (A40)–(A42) and (A50)–(A51).5

5The correctness of (A39)–(A42) and (A50)–(A51) was veri-
fied by the computer algebra program ORTOCARTAN [12,13].
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By comparing (A24) and (A39) with (7.15)–(7.16), we
see that the latter is contained in (A39) as the subcase
x0 ¼ 0 ¼ C3, with D3, D4, C5, and E1 expressed in terms
of C, A1, A2, B1, and B2.

Likewise, comparing (A24) and (A39) with (9.19)–
(9.20), we see that the latter is contained in (A39) as the
subcase x0 ¼ 0 ¼ C3 ¼ C5, with y0 transformed to z0 by
the coordinate transformation ðy; zÞ ¼ ðz0; y0Þ. The other
constants in (A39) are expressed in terms of those from
(9.19) and (9.20).

These two special Stephani solutions will be contained
also in several other subcases of {(A24),(A39)} that will
appear in the following text. The spherically symmetric
Stephani solution will appear in several places as well, but
each time it will be easy to recognize.

For completeness, we will still consider:
Case 1.1.1.1.2.1.2: G2 ¼ 0
With D1 � 0 � x0;t and ðz0;t=x0;tÞ;t � 0 still applying,

G2 ¼ 0 quickly leads to a contradiction; it is enough to
divide (A8) by 2K, then differentiate the result by y and t
and use the conclusion in the derivative by y alone. This
case is thus empty.

Case 1.1.1.1.2.1 is thereby exhausted, and we go back to
(A28) to consider:

Case 1.1.1.1.2.2: D1 ¼ 0
By applying the same scheme as with D1 � 0 we obtain

formulas forF 1,G1, and R that are the subcasesD1 ¼ 0 of
(A39)–(A42) and (A50) and (A51).

When C1 ¼ 0, we obtain x0;t ¼ 0, which contradicts the
definition of Case 1.1.1.

This exhausts Case 1.1.1.1, so we go back to (A12) to
consider

Case 1.1.1.2: ðz0;t=x0;tÞ;t ¼ 0
Then (A12) becomes

�
y0;t
x0;t

�
;t
�

�
1

x0;t

�
1

2K

�
;t

�
;t

�
F 3

F 2

�
;y
¼ 0: (A53)

Case 1.1.1.2.1: ½ð1=x0;tÞð1=2KÞ;t�;t � 0
For the sake of comparison with the previously consid-

ered cases, from this place up to (A65) we replace the
capital letters denoting constants by their corresponding
lower case letters. Then the solution of (A53) is

�
y0;t
x0;t

�
;t

��
1

x0;t

�
1

2K

�
;t

�
;t
¼

�
F 3

F 2

�
;y
¼ c1: (A54)

Case 1.1.1.2.1.1: c1 � 0
We then get

c1
2K

¼ d1x0 þ y0 þ d4; (A55)

F 3 ¼ ðc1yþF 4ðx; zÞÞF 2: (A56)

z0 ¼ c3x0; (A57)

the last one from the definition of Case 1.1.1.2.

We substitute (A55)–(A57) in (A11). In Case 1.1.1,
where x0;t � 0, the resulting equation integrates as

c3F 1 ¼ 1þ ðd1y�F 5ðx; zÞÞF 2: (A58)

Case 1.1.1.2.1.1.1: c3 � 0
We then use (A55)–(A58) in (A9) differentiated by y and

obtain

1

F 2

¼
1
2 y

2 þ d1
c3
yzþ d4yþF 6ðx; zÞ
x� z=c3

: (A59)

After substituting (A55)–(A59) in (A9) we obtain

� z

c3
F 5ðx; zÞ þ 1

2KR
þ x0F 5ðx; zÞ �F 6ðx; zÞ

þ 1

2
½ðx� x0Þ2 þ y0

2 þ ðz� c3x0Þ2�

þ 1

c1
ðd1x0 þ y0 þ d4ÞF 4ðx; zÞ ¼ 0: (A60)

Following the same sequence of steps that we described
below (A8), we arrive at

1

c1R
ðd1x0 þ y0 þ d4Þ þ 1

2
½ð1þ c3

2Þx02 þ y0
2�

þ c5x0 þ c6y0 ¼ E1 ¼ constant: (A61)

This is equivalent to the subcase C3 ¼ 0 of (A39)
transformed by ðy; zÞ ¼ ðz0; y0Þ (this transformation inter-
changes the names of y0 and z0). Note from (A5) that the
interchange of y and z implies the interchange of Gy and

Gz, and consequently the transformation ðF 1;G1Þ !
ðF 1=G1; 1=G1Þ. Thus the F 1 and G1 for (A61) are ob-
tained from (A40)–(A42) and(A50)–(A51) in this way,
with the substitutions C3 ¼ 0 and ðy; zÞ ! ðz; yÞ. To have
a consistent naming of the constants, one should do the
following replacement in (A61):

ðd1=c1; 1=c1; d4=c1; c3; c5; c6Þ
¼ ðD1; D3; D4; C1; C4;�C5Þ: (A62)

This is the end of Case 1.1.1.2.1.1.1. We go back to
(A58) and consider now
Case 1.1.1.2.1.1.2: c3 ¼ 0
Even though the limit c3 ¼ 0 is singular in (A59)–(A60),

by going through the usual procedure we end up with the
subcase c3 ¼ 0 of (A61). This is also a regular subcase of
the current F 1 and G1, calculated in the way explained
above.
Thus we go back to (A54) and consider now
Case 1.1.1.2.1.2: c1 ¼ 0
Then (A55) does not exist because (A54) only deter-

mines ðy0;t=x0;tÞ;t ¼ 0 and ðF 3=F 2Þ;y ¼ 0. From the first

of these we have

y0 ¼ C2x0; (A63)

and (A56) still holds with c1 ¼ 0.
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Case 1.1.1.2.1.2.1: c3 � 0
Proceeding as before by consecutive differentiations we

end up with the following equation:

1

2KR
þ c4

2K
þ 1

2
ð1þ C2

2 þ c3
2Þx02 þ c5x0 þ c6 ¼ 0:

(A64)

The function KðtÞ is still arbitrary at this point. Since in the
acceleration-free limit x0 and KR ¼ k=4 are constant, we
see that k=R ¼ constant in this limit. So, (A64) can repro-
duce the k ¼ 0 FLRW limit.

Running this solution through (A8) with G2 � 0,
with the current values of y0 and z0, and with ½ð1=x0;tÞ�
ð1=2KÞ;t�;t � 0 as appropriate for the current

Case 1.1.1.2.1, we obtain

1

2KR
þ E1

2K
þ 1

2
ð1þ C2

2 þ c3
2Þx02 þ E2x0 þ E3 ¼ 0;

(A65)

where Ei, i ¼ 1; 2; 3, are new arbitrary constants. Choosing
ðE1; E2; E3Þ ¼ ðc4; c5; c6Þ we make (A65) identical to
(A61). Then (A64) does define a subcase of the Stephani
model, different from (A39), that also has RLPs. The
corresponding F 1 and G1 are found to be

F 1 ¼
1
2 ðx2 � y2 � z2Þ þ C2xyþ C3xzþ C5xþ C6

1
2C3ð�x2 � y2 þ z2Þ þ xzþ C2yzþ C5zþ C3C6

;

(A66)

G 1 ¼
1
2C2ðx2 � y2 þ z2Þ � xy� C3yz� C5y� C2C6

1
2C3ðx2 þ y2 � z2Þ � xz� C2yz� C5z� C3C6

;

(A67)

Even though the subcase C3 ¼ 0 requires separate treat-
ment at intermediate stages of the calculation, the final
formulas for 1=R, F 1 and G1 turn out to be contained in
(A64), (A66), and (A67), as the regular subcase C3 ¼ 0.
While considering C3 ¼ 0, the subcase C2 ¼ 0 also re-
quires separate treatment, but in the end leads to R,F 1 and
G1 given by (A64)–(A67) with C3 ¼ C2 ¼ 0. When
C2 ¼ 0, the G2 in (A8) must be zero.6

When we run the general expression for (A64) through
(A8) with G2 ¼ 0, we quickly obtain c3 ¼ C2 ¼ 0 as a
necessary consequence.

Having thus exhausted Case 1.1.1.2.1 we go back to
(A53) and consider

Case 1.1.1.2.2: ½ð1=x0;tÞð1=2KÞ;t�;t ¼ 0
Then, using (A53) and the definitions of Cases 1.1.1.2

and 1.1.1.2.2 we obtain

1

2K
¼ D1x0 þD2; y0 ¼ C2x0; z0 ¼ C3x0:

(A68)

Proceeding further by the ordinary scheme we obtain
from (A9)

1

R
ðD1x0 þD2Þ þ 1

2
ð1þ C2

2 þ C3
2Þx02 þ C4x0 ¼ C5:

(A69)

This is formally a subcase of (A39), but it has Gx ¼ Gy ¼
Gz ¼ 0, and so belongs in Case 2 considered further on.
This exhausts Case 1.1.1, so we go back to (A11) and

consider
Case 1.1.2: x0;t ¼ 0
Then (A11) becomes

z0;t

�
F 1

F 2

�
;y
þ y0;t �

�
1

2K

�
;t

�
F 3

F 2

�
;y
¼ 0: (A70)

Case 1.1.2.1: y0;t � 0
Then we divide (A70) by y0;t and differentiate the result

by t, obtaining
�
z0;t
y0;t

�
;t

�
F 1

F 2

�
;y
�

�
1

y0;t

�
1

2K

�
;t

�
;t

�
F 3

F 2

�
;y
¼ 0: (A71)

Case 1.1.2.1.1: ðz0;t=y0;tÞ;t � 0
Then we divide (A71) by ðz0;t=y0;tÞ;t and differentiate the

result by t.
Case 1.1.2.1.1.1: 	1ðtÞ � 0
where

	1ðtÞ ¼def
��

1

y0;t

�
1

2K

�
;t

�
;t

��
z0;t
y0;t

�
;t

�
;t
: (A72)

Then ðF 3=F 2Þ;y ¼ 0 and (A71) immediately implies

ðF 1=F 2Þ;y ¼ 0. However, then (A70) gives a contradic-

tion with y0;t � 0. This case is thus empty, so we proceed to

consider the complementary
Case 1.1.2.1.1.2: 	1ðtÞ ¼ 0.
Then we have

1

2K
¼ D1 þD2y0 þD3z0; (A73)

and from (A71)

F 1

F 2

¼ D3

F 3

F 2

þF 4ðx; zÞ: (A74)

Proceeding from (A9) by the usual method we arrive at

1

R
ðD1 þD2y0 þD3z0Þ þ 1

2
ðy02 þ z0

2Þ
þ C4y0 þ C5z0 ¼ E1: (A75)

This is equivalent to the subcase C1 ¼ C3 ¼ 0 of (A39)
under the coordinate transformation ðx; yÞ ¼ ðy0; x0Þ that
interchanges the names of x0 and y0. Note, by looking at

6The correctness of (A64)–(A67) was verified by the computer
algebra program ORTOCARTAN [12,13].
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(A7)–(A8), that the interchange of x and y implies
the interchange of F 1 and G1. Thus, the corresponding
F 1 and G1 are found from (A40)–(A42) and (A50)–(A51)
as, respectively, the old G1 and F 1 in the limit
C1 ¼ C3 ¼ 0 with ðx; yÞ ! ðy0; x0Þ, and with the additional
renaming ðC5; D1; D4Þ ! ð�C5; D2; D1Þ [compare (A39)
with (A75)].

So we go back to (A71) to consider
Case 1.1.2.1.2: ðz0;t=y0;tÞ;t ¼ 0
Then

z0 ¼ C3y0: (A76)

Case 1.1.2.1.2.1: ½ð1=y0;tÞð1=2KÞ;t�;t � 0
Then (A71) gives

F 3=F 2 ¼ F 4ðx; zÞ; (A77)

and (A70) implies

C3

F 1

F 2

¼ �yþF 5ðx; zÞ: (A78)

Note that C3 � 0, or else (A78) is a contradiction.
Proceeding from (A9) by the usual routine we obtain

1

2KR
þ C4

2K
þ 1

2
ð1þ C3

2Þy02 þ C5y0 þ C6 ¼ 0; (A79)

with KðtÞ undetermined. This is equivalent to the subcase
C2 ¼ 0 of (A64). The transformation from (A64) and
(A66)–(A67) to the current case is ðx; yÞ ¼ ðy0; x0Þ, with
the accompanying renaming ðx0; y0Þ ! ðy0; x0Þ. As ex-
plained under (A75), the interchange of x and y implies
the interchange ofF 1 andG1, so the currentF 1 andG1 are
obtained as the G1 and F 1, respectively, of (A66)–(A67)
with ðx; yÞ ! ðy; xÞ and C2 ¼ 0.

So, we go back to (A71) once more and consider the
second possibility:

Case 1.1.2.1.2.2: ½ð1=y0;tÞð1=2KÞ;t�;t ¼ 0
Then

1

2K
¼ D1 þD2y0; (A80)

and from (A70), since y0;t � 0,

C3

F 1

F 2

¼ D2

F 3

F 2

� yþF 4ðx; zÞ: (A81)

Case 1.1.2.1.2.2.1: C3 � 0
Then, by the usual routine, (A81) used in (A9) leads to

1

R
ðD1 þD2y0Þ þ 1

2
ð1þ C3

2Þy02 þ C4y0 ¼ C5; (A82)

which is formally the subcase C5 ¼ D3 ¼ 0, z0 ¼ C3x0 of
(A75). However, in this case we have Gx ¼ Gy ¼ Gz ¼ 0

in (11.5)–(11.6). Thus, it is in fact excluded from the
present consideration and will appear later, when we con-
sider Case 2.

Case 1.1.2.1.2.2.2: C3 ¼ 0

Then the subcase C3 ¼ 0 of (A82) is obtained, so it
belongs in Case 2, too.
This exhausts Case 1.1.2.1, so we go back to (A70) to

consider
Case 1.1.2.2: y0;t ¼ 0
Then y0 ¼ 0 by a transformation of y, and in (A70) we

consider
Case 1.1.2.2.1: z0;t � 0
Then (A70) may be written as

�
F 1

F 2

�
;y
� 1

z0;t

�
1

2K

�
;t

�
F 3

F 2

�
;y
¼ 0: (A83)

When fð1=z0;tÞ½1=ð2KÞ�;tg;t � 0, this yields ðF 1=F 2Þ;y ¼
ðF 3=F 2Þ;y ¼ 0, and the usual routine leads from (A9) to

1

2KR
þ C4

2K
þ 1

2
z0

2 þ C5z0 þ C6 ¼ 0; (A84)

with KðtÞ undetermined. This is the subcase c3 ¼ C2 ¼ 0
of (A64) obtained by the coordinate transformation
ðx; zÞ ¼ ðz0; x0Þ that interchanges x0 with z0. Note from
(A5) that the interchange of x and z implies the interchange
of Gx and Gz, and consequently the transformation
ðF 1;G1Þ ! ð1=F 1;G1=F 1Þ. Thus, the F 1 and G1 for
(A84) are obtained from (A66)–(A67) in this way, with
the substitutions C2 ¼ C3 ¼ 0 and ðx; zÞ ! ðz; xÞ.
Thus we assume ½ 1

z0;t
ð 1
2KÞ;t�;t ¼ 0 in (A83). Then

1

2K
¼ D1 þD3z0; (A85)

F 1

F 2

¼ D3

F 3

F 2

þF 4ðx; zÞ: (A86)

This leads from (A9) to

1

R
ðD1 þD3z0Þ þ 1

2
z0

2 þ C5z0 ¼ E1: (A87)

This is the subcase y0 ¼ 0 of (A75). As with (A82), in this
case we have Gx ¼ Gy ¼ Gz ¼ 0, and so it is excluded

from the present consideration—it will appear in Case 2.
So we go back to (A71) and consider
Case 1.1.2.2.2: z0;t ¼ 0
With x0;t ¼ y0;t ¼ z0;t ¼ 0 now being the case, we are in

the spherically symmetric subcase of the Stephani solution.
Then (A9) may be written as

x

F 2

¼ z
F 1

F 2

þ 1

2KR
þ 1

2
ðx2 þ y2 þ z2Þ þ 1

2K

F 3

F 2

: (A88)

The t derivative of this is

�
1

2KR

�
;t
þ

�
1

2K

�
;t

F 3

F 2

¼ 0: (A89)

If ð2KRÞ;t ¼ 0, then this is simply the FLRW family of

models that we need not investigate. Consequently, we take
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ð2KRÞ;t � 0. Then both of the other factors must be

nonzero, and

�
1

2KR

�
;t

��
1

2K

�
;t
¼ �F 3

F 2

¼ C1: (A90)

This is the subcase of the spherically symmetric Stephani
solution that we identified in Sec. V, and the equation
above is consistent with (5.10). All of its null geodesics
are RLPs. The FLRW limit of this model is C1 ¼ 0, and it
includes the whole FLRW family.

Equation (A90) is the final solution of (A7). To prevent
(A8) from imposing any limitations on it, it is sufficient to
choose G2 ¼ G3 ¼ 0, G1 ¼ y=z.

This exhausts Case 1.1, so we go back to (A7) and take
Case 1.2: F 2 ¼ 0
Then (A7) can be rewritten as

x� x0 ¼ ðz� z0ÞF 1 þ 1

2K
F 3: (A91)

We differentiate this by y and t and obtain

� z0;tF 1;y þ
�
1

2K

�
;t
F 3;y ¼ 0: (A92)

Case 1.2.1: z0;t � 0
Then from (A91)

�F 1;y þ 1

z0;t

�
1

2K

�
;t
F 3;y ¼ 0: (A93)

When ½ 1
z0;t

ð 1
2KÞ;t�;t � 0, we haveF 1;y ¼ F 3;y ¼ 0, and then

we differentiate (A91) by x to get

1 ¼ ðz� z0ÞF 1;x þ 1

2K
F 3;x: (A94)

Differentiating this by t we get F 1;x ¼ F 3;x ¼ 0 in con-

sequence of the assumptions about the functions of t, but
this is a contradiction with (A94). This means that
½ 1
z0;t

ð 1
2KÞ;t�;t ¼ 0, i.e.,

1

2K
¼ D3z0 þD4: (A95)

Continuing from (A91) by the usual procedure we get the
following final solution:

x0 ¼ C2z0; (A96)

F 1 ¼ D3xþ C2D4

D4 þD3z
; (A97)

F 3 ¼ x� C2z

D4 þD3z
; (A98)

and we next have to verify (A8). We first try
Case 1.2.1.1: G2 � 0

Then (A8) can be written as

y�y0
G2

¼ðz�z0ÞG1

G2

þ 1

2KR

þ1

2
½ðx�C2z0Þ2þðy�y0Þ2þðz�z0Þ2�þ 1

2K

G3

G2

;

(A99)

Using (A95) and (A96) we take the second derivative of
this by y and t. Since we are in Case 1.2.1, where z0;t � 0,
we get

�
G1

G2

�
;y
�D3

�
G3

G2

�
;y
¼ y0;t

z0;t

��
1

G2

�
;y
� 1

�
: (A100)

Case 1.2.1.1.1: ðy0;t=z0;tÞ;t � 0
Then (A100) solves as

1

G2

¼ yþG4ðx; zÞ; (A101)

G 1 ¼ D3G3 þ G5ðx; zÞ
yþ G4ðx; zÞ : (A102)

Proceeding from (A99) by the usual routine we findG3 and
the arbitrary functions of ðx; zÞ, and we end up with

1

R
ðD4 þD3z0Þ þ 1

2
½y02 þ ð1þ C2

2Þz02�
þ C4y0 þ C5z0 ¼ E1: (A103)

This is equivalent to the subcase D1 ¼ C1 ¼ 0 of (A39)
under the coordinate transformation ðx; yÞ ¼ ðy0; x0Þ that
interchanges x0 with y0. The remark under (A75) about
the transformation of F 1 and G1 applies also here.
We go back to (A100) and consider
Case 1.2.1.1.2: ðy0;t=z0;tÞ;t ¼ 0
Then

y0 ¼ C3z0; (A104)

G1

G2

¼ D3

G3

G2

þ C3

�
1

G2

� y

�
þ G4ðx; zÞ: (A105)

In the usual way this leads from (A99) to

1

R
ðD4 þD3z0Þ þ 1

2
ð1þ C2

2 þ C3
2Þz02 � C5z0 ¼ E1;

(A106)

which is formally the subcase C1 ¼ C4 ¼ D1 ¼ 0, x0 ¼
C2z0 of (A39), but belongs to the class with Gx ¼ Gy ¼
Gz ¼ 0 considered under Case 2.
This exhausts Case 1.2.1.1., so we consider
Case 1.2.1.2: G2 ¼ 0
Then (A8) becomes, using (A95)

y� y0 ¼ ðz� z0ÞG1 þ ðD4 þD3z0ÞG3: (A107)
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By the normal routine this leads to

y0 ¼ C3z0; (A108)

G 1 ¼ D3yþ C3D4

D4 þD3z
; (A109)

G 3 ¼ y� C3z

D4 þD3z
; (A110)

which does not impose any limitation on (A95)–(A98) and
leaves R undetermined. Thus, this subcase has a nontrivial
FLRW limit. We have

V ¼ 1

R
þ k

4R
½x2 þ y2 þ z2 � 2ðC2xþ C3yþ zÞz0

þ ð1þ C2
2 þ C3

2Þz02�; (A111)

k ¼ 2R

D4 þD3z0
: (A112)

The flat FLRW model is contained here in the limit
ðD4; D2Þ ! 1. In the general case, an orthogonal trans-
formation of ðx; y; zÞ may be used to achieve C2 ¼ C3 ¼ 0

(z0 is then transformed to ~z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

2 þ C3
2

q
z0), and

then the model is seen to be axially symmetric, with the
orbits of symmetry in the new ðx; yÞ plane. Assuming
C2 ¼ C3 ¼ 0 and using (A97), (A109), and (A111) in
(A1) we get

dx

dz
¼ D3x

D4 þD3z
;

dy

dz
¼ D3y

D4 þD3z
(A113)

as the equations defining the RLPs in this case. As is easy
to see, they obey ydx=dz� xdy=dz ¼ 0, and so are, in the
ðx; yÞ surface, straight lines passing through the symmetry
axis x ¼ y ¼ 0.

Thereby, Case 1.2.1 is exhausted, so we go back to (A92)
to consider

Case 1.2.2: z0;t ¼ 0
This is equivalent to z0 ¼ 0. Then (A92) leads to two

further subcases:
Case 1.2.2.1: ð1=2KÞ;t � 0
By the usual method we obtain from (A92) and (A91):

F 1 ¼ x� E4

z
; F 3 ¼ E3;

E3

2K
¼ E4 � x0;

(A114)

with R undetermined. This is the final solution of (A7).
For checking (A8) we have to consider separately
Case 1.2.2.1.1: E3 � 0
Then (A114) determines K, and from the definition of

Case 1.2.2.1 it follows that x0;t � 0. But to continue, we

have to separately consider G2 being zero or not.
Case 1.2.2.1.1.1: G2 � 0

Then (A8) is written as

y� y0
G2

¼ z
G1

G2

þ 1

2KR
þ 1

2
½ðx� x0Þ2 þ ðy� y0Þ2 þ z2�

þ 1

E3

ðE4 � x0ÞG3

G2

: (A115)

Taking the derivative of this by y and t, and knowing that
x0;t � 0, we get

y0;t
x0;t

��
1

G2

�
;y
� 1

�
¼ 1

E3

�
G3

G2

�
;y
: (A116)

Case 1.2.2.1.1.1.1: ðy0;t=x0;tÞ;t � 0
Then

1

G2

¼ yþ G4ðx; zÞ; G3

G2

¼ G5ðx; zÞ: (A117)

Proceeding from (A115) in the usual way we obtain

1

E3R
ðE4 � x0Þ þ 1

2
ðx02 þ y0

2Þ þ C4x0 � C5y0 ¼ E1:

(A118)

This is the subcase of (A39) that results when we take
C1 ¼ C3 ¼ D3 ¼ 0 in (A39) and interchange y0 with z0.
How the new F 1 and G1 are calculated after such a trans-
formation is explained under (A61). To have a consistent
naming of the constants, one must take in (A39)
ðD1; D4Þ ¼ ð�1=E3; E4=E3Þ.
We go back to (A116) and consider
Case 1.2.2.1.1.1.2: ðy0;t=x0;tÞ;t ¼ 0
Then from the definition above

y0 ¼ C2x0; (A119)

and by integrating (A116)

G3

G2

¼ C2E3

�
1

G2

� y

�
þ E3G4ðx; zÞ: (A120)

By continuing from (A115) in the usual way we get finally

1

E3R
ðE4 � x0Þ þ 1

2
ð1þ C2

2Þx02 þ C4x0 ¼ E1: (A121)

This is formally the subcase y0 ¼ C2x0 of (A118), again
with some renaming of the constants. However, it has
Gx ¼ Gy ¼ Gz ¼ 0, so in fact it belongs in Case 2 con-

sidered further on.
This completes Case 1.2.2.1.1.1, so we go back to

(A114) to consider
Case 1.2.2.1.1.2: G2 ¼ 0
Then (A8) is written as

y� y0 ¼ zG1 þ 1

E3

ðE4 � x0ÞG3: (A122)
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Case 1.2.2.1.1.2.1: x0;t � 0
Then the final solution of (A122) is

y0 ¼ C2x0; G1 ¼ 1

z
ðy� E4C2Þ; G3 ¼ C2E3;

(A123)

where C2 is allowed to be zero. This imposes no additional
conditions on (A114), and R remains undetermined. The
function V is in this case

V ¼ 1

R
þ E3

2ðE4 � x0Þ ½x
2 þ y2 þ z2 � 2x0ðxþ C2yÞ

þ ð1þ C2
2Þx02�: (A124)

This is equivalent to (A111)–(A112), which is seen when
we transform C2 to 0 by a rotation in the ðx; yÞ plane.
Subsequently, the new ðx; zÞ have to be transformed by
ðx; zÞ ¼ ðz0; x0Þ. How the new F 1 and G1 are calculated
after such a transformation is explained under (A84).

We go back to (A122) to consider
Case 1.2.2.1.1.2.2: x0;t ¼ 0
Then (A122) implies y0;t ¼ 0. With x0;t¼y0;t¼ z0;t¼0

we are then in the spherically symmetric subcase of the
Stephani solution, but not in its full generality. Since
(A114) still applies, with x0 ¼ constant we have K �
k=ð4RÞ ¼ constant, and this corresponds to the subcase
A2 ¼ 0 of (5.10). Since this has already been investigated,
we go back to (A114) to consider

Case 1.2.2.1.2: E3 ¼ 0
Then (A114) leaves K still arbitrary, but implies

x0 ¼ E4. By a transformation of x this can be changed to

x0 ¼ E4 ¼ 0: (A125)

With this, we go on to consider (A8). Recall that we are
still in Case 1.2.2, where also z0 ¼ 0.

Case 1.2.2.1.2.1: G2 � 0
Then (A8) is written as

y� y0
G2

¼ z
G1

G2

þ 1

2KR

þ 1

2
½x2 þ ðy� y0Þ2 þ z2� þ 1

2K

G3

G2

: (A126)

Taking the derivative of this by y and t we get

� y0;t

�
1

G2

�
;y
¼ �y0;t þ

�
1

2K

�
;t

�
G3

G2

�
;y
: (A127)

We are still in Case 1.2.2.1, where ð1=2KÞ;t � 0, so we

divide (A127) by ð1=2KÞ;t and consider first

Case 1.2.2.1.2.1.1: ½y0;t=ð1=2KÞ;t�;t � 0
Then (A127) implies ð1=G2Þ;y � 1 ¼ ðG3=G2Þ;y ¼ 0.

This leads to a simple coordinate transform of (A84) (z0
replaced by y0), which is a subcase of (A64).

We go back to (A127) and consider
Case 1.2.2.1.2.1.2: ½y0;t=ð1=2KÞ;t�;t ¼ 0

We have then y0 ¼ D1=ð2KÞ þD2. We do not have to
consider the case D1 ¼ 0 because this would mean y0 ¼ 0
in addition to x0 ¼ z0 ¼ 0, and we would be back in the
spherically symmetric Stephani solution, considered in
Sec. V. So the new situation arises only when D1 � 0,
and then we can rewrite the last formula as

1

2K
¼ D1 þD2y0; (A128)

obtaining from (A127)

1

G2

¼ y�D2

G3

G2

þ G4ðx; zÞ: (A129)

This leads to the subcase y0 ¼ 0 of (A118), with x0
subsequently changed to y0. This again has Gx ¼ Gy ¼
Gz ¼ 0 and belongs in Case 2.
Case 1.2.2.1.2.1 is now exhausted, so we go back to

(A125) and consider
Case 1.2.2.1.2.2: G2 ¼ 0
Then (A8) becomes

y� y0 ¼ zG1 þ 1

2K
G3: (A130)

This leads to

G 1 ¼ y� C4

z
; G3 ¼ C5;

C5

2K
¼ C4 � y0:

(A131)

When C5 � 0 this is equivalent to (A123)–(A124), with
the constants in (A131) related to those in (A123) by
ðC4; C5Þ ¼ C2ðE4; E3Þ. When C5 ¼ 0, we are back in the
spherically symmetric subclass.
This completes Case 1.2.2.1. We have to go back as far

as (A92) and consider
Case 1.2.2.2: ð1=2KÞ;t ¼ 0
With z0;t ¼ 0 now being considered (Case 1.2.2), (A92)

is fulfilled identically, and (A91) immediately implies
x0;t ¼ 0. Taking x0 ¼ z0 ¼ 0 and 1=2K ¼ B ¼ constant in

(A91) we get

x ¼ zF 1 þ BF 3; (A132)

with no limitation on R, and this is the final solution of
(A7). Running this through (A8) with G2 � 0 we obtain

B

R
þ 1

2
y0

2 þ C4y0 ¼ C5: (A133)

This case again has Gx ¼ Gy ¼ Gz ¼ 0, and so belongs in

Case 2.
Running (A132) through (A8) with G2 ¼ 0 we imme-

diately get y0;t ¼ 0 and no limitation on R. This is a sub-

case of the spherically symmetric Stephani solution, the
same one that we obtained in Case 1.2.2.1.1.2.2.
This completes Case 1.2, and the whole Case 1. Sowe go

back to (11.5)–(11.6) and consider
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Case 2: Gz ¼ 0
Then we immediately have Gx ¼ Gy ¼ 0 in (11.5)–

(11.6). This means that (11.5) and (11.6) are fulfilled for
any dx=dz and dy=dz, i.e. that all null geodesics are RLPs
in this case.

Multiplying the equations Gx ¼ Gy ¼ Gz ¼ 0 by V;t
2

we turn them into polynomials in ðx; y; zÞ. Taking the
coefficients of x2 in each polynomial we get7

� 2KK;ttx0;t þ 2Kx0;ttK;t þ 4K;t
2x0;t ¼ 0; (A134)

2KK;tty0;t � 2Ky0;ttK;t � 4K;t
2y0;t ¼ 0; (A135)

2KK;ttz0;t � 2Kz0;ttK;t � 4K;t
2z0;t ¼ 0: (A136)

These are easily integrated, but a few cases have to be
considered separately. One solution is x0;t¼y0;t¼ z0;t¼0,
but this is the spherically symmetric Stephani model that
we investigated in Sec. V. So we assume that at least one
of the functions ðx0; y0; z0Þ is nonconstant. By a coordinate
transformation we may choose this to be x0. When
x0;t � 0, (A134) is integrated with the result

1

2K
¼ D1x0 þD2; (A137)

and then we consider
Case 2.1: D1 � 0
In this case, (A135)–(A136) imply

y0 ¼ C2x0; z0 ¼ C3x0; (A138)

with zero values of C2 and C3 allowed.

The terms free of ðx; y; zÞ in the equations Gx ¼ Gy ¼
Gz ¼ 0 are all the same:�

1

R

�
;t
K;tt �

�
1

R

�
;tt
K;t � 2KK;tðx0;t2 þ y0;t

2 þ z0;t
2Þ ¼ 0:

(A139)

Likewise, the terms linear in ðx; y; zÞ are the same in all 3
equations, namely,

K

�
1

R

�
;tt
x0;t � K

�
1

R

�
;tt
x0;tt � 2K;t

�
1

R

�
;t
x0;t

þ 2K2x0;tðx0;t2 þ y0;t
2 þ z0;t

2Þ ¼ 0; (A140)

and the analogous equations with x0;t replaced by y0;t and
z0;t.
Using (A137) and (A138), Eqs. (A139) and (A140)

become identical and are integrated with the result:

1

R
ðD1x0 þD2Þ þ ð1þ C2

2 þ C3
2Þx02 þ C4x0 ¼ C5:

(A141)

By an orthogonal coordinate transformation in the ðx; y; zÞ
space, one can obtain C2 ¼ C3 ¼ 0. Then the model is
seen to be axially symmetric, but is more general than the
plane- or hyperbolically symmetric subcases.
Case 2.2: D1 ¼ 0
Then K ¼ 1=ð2D2Þ ¼ constant, and (A134)–(A136)

and (A139) are fulfilled identically. Instead of (A140)
and its associated equations we then have their subcases
K;t ¼ 0 which imply either x0;t ¼ y0;t ¼ z0;t ¼ 0 or

(A138) plus the integral of (A140), which is

1

R
þ 1

2D2

ð1þ C2
2 þ C3

2Þx02 þ E1x0 ¼ E2: (A142)

This is the subcase D1 ¼ 0 of (A141).
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