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In the full nonlinear cosmological perturbation theory in the leading order of the gradient expansion, all

the types of the gauge invariant perturbation variables are defined. The metric junction conditions across

the spacelike transition hypersurface are formulated in a manifestly gauge invariant manner. It is

manifestly shown that all the physical laws such as the evolution equations, the constraint equations,

and the junction conditions can be written using the gauge invariant variables which we defined only.

Based on the existence of the universal adiabatic growing mode in the nonlinear perturbation theory and

the � philosophy where the physical evolution are described using the energy density � as the evolution

parameter, we give the definitions of the adiabatic perturbation variable and the entropic perturbation

variables in the full nonlinear perturbation theory. In order to give the analytic order estimate of the

nonlinear parameter fNL, we present the exponent evaluation method. As the models where fNL changes

continuously and becomes large, using the � philosophy, we investigate the non-Gaussianity induced by

the entropic perturbation of the component which does not govern the cosmic energy density, and we show

that in order to obtain the significant non-Gaussianity it is necessary that the scalar field which supports

the entropic perturbation is extremely small compared with the scalar field which supports the adiabatic

perturbation.
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I. INTRODUCTION AND SUMMARY

In the inflationary scenario, the quantum fluctuations of
the scalar fields driving the inflationary expansion of the
Universe are the origins, which are the seed perturbations
of the temperature fluctuations of the cosmic microwave
background radiation (CMB) and the cosmic large scale
structures such as galaxies and clusters of galaxies. These
seed perturbations generated in the horizon during the
inflationary expansion are stretched and go out of the
horizon. They stay outside the horizon until they return
into the horizon in the Friedmann expansion stage.
Therefore, in order to compare the theory with the obser-
vation, it is necessary to solve the evolutions of the cos-
mological perturbations on superhorizon scales using the
concrete theoretical models such as the various inflation
and reheating scenarios [1–8]. Fortunately as for the evo-
lutions of the cosmological perturbations in the long wave-
length limit, the exact solution is constructed in terms of
the evolution of the corresponding locally homogeneous
universe; as for the linear perturbations in Refs. [4,7,9,10]
and as for the full nonlinear perturbations in
Refs. [8,11,12]. The final form of the exact solutions of
the evolutions of the cosmological perturbations in the long
wavelength limit is established by the Kodama Hamazaki
construction (KH construction), as for the linear perturba-
tions in the Refs. [4,7], and as for the full nonlinear
perturbations in Ref. [8]. In the KH construction, the
physical quantities related with the exactly homogeneous

universe, such as the scalar quantity perturbations, are
given as the solutions of the evolution equations of the
corresponding locally homogeneous universe and the
physical quantities not related with the exactly homoge-
neous universe, such as the vector quantity perturbations,
are given by solving the first order evolution equations, that
is, the spatial components of the Einstein equations. It was
shown that the second order evolution equations of the
spatial unimodular metric including the information of
the adiabatic decaying mode is exactly solvable. In the
present paper, we use the KH construction.
The general theory of relativity is a gauge theory. When

we solve the equations of the general theory of relativity,
the nondynamical gauge modes are contained in the solu-
tions. Therefore, in order to extract the dynamical modes
only, it is desirable to write down the equations in terms of
the gauge invariant variables only. In the linear perturba-
tion theory, the program of the gauge invariant perturbation
variables was first performed in Ref. [13], and was ex-
tended so that we can treat the multicomponent systems
[14–16]. In the second order perturbation theory, the
gauge invariant perturbation theory was constructed in
Refs. [17–19]. In our previous paper [8], the full nonlinear
perturbation theory in the leading order of the gradient
expansion was constructed and several main definitions
of the gauge invariant perturbation variables including
the nonlinear Bardeen parameters [8,12,13,16,20] were
presented. In the present paper, in a more general way,
definitions of all the types of the gauge invariant perturba-
tion variables are constructed and it is manifestly shown
that all the perturbation equations of the physical laws such*yj4t-hmzk@asahi-net.or.jp
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as the evolution equations, the constraint equations, and
the metric junction conditions can be written by using the
gauge invariant perturbation variables which we defined
only. By solving the equations of the gauge invariant for-
mulation of the full nonlinear perturbations in the leading
order of the gradient expansion which we formulated, we
can extract the full nonlinear physically meaningful, dy-
namical information of the cosmological perturbations on
superhorizon scales.

In order to interpret the physics of the evolutionary
behaviors of the cosmological perturbations, the adia-
batic/entropic decomposition (A/E decomposition) of the
cosmological perturbations is efficient. The essence of the
A/E decomposition is in defining the adiabatic perturbation
variable and the entropic perturbation variables. Although
the linear version of the A/E decomposition has already
been established [14,15], satisfactory definitions of the
adiabatic perturbation variable and the entropic perturba-
tion variables in the nonlinear perturbation theory have not
been completed yet. In the present paper, we give the
definitions of the adiabatic perturbation variable and
the entropic perturbation variables which can be used in
the nonlinear perturbation theory by using the fact that the
universal adiabatic growing mode always exists in the
solutions in the nonlinear perturbation theory in the long
wavelength limit [4]. That is, we call the perturbation
variable which does not vanish for the universal adiabatic
growing mode the adiabatic perturbation variable and we
call the perturbation variable which vanishes for the uni-
versal adiabatic growing mode the entropic perturbation
variable. In particular, the adiabatic/entropic perturbation
variables which are defined under the � philosophy where
the evolutions of the system are traced by choosing the
energy density � as the evolution parameter, have desirable
properties. All the perturbation variables in this set are
continuous across the metric junction hypersurface which
is defined by � ¼ const such as the slow rolling-oscillatory
transitions of the scalar fields and the reheating transitions.
The evolution equations of the perturbation variables in
this set which can be derived by quite easy calculation have
very simple expression. The adiabatic perturbation vari-
able in this set is the well-known Bardeen parameter
[8,12,13,16,20].

In the near future, more precise observations of CMB
will be performed and it is expected that the information of
the nonlinearity of the CMB fluctuations will be obtained.
Motivated by the observational advancement, the models
which generate the significant nonlinearity characterized
by the large non-Gaussianity parameter fNL [21] have been
proposed; the inhomogeneous end of the inflation [22,23],
the modulated reheating [24], the curvaton scenario [25],
the vacuum dominated inflation [26,27]. The former two
cases are related with the metric junction hypersurface
which cannot be defined by � ¼ const and the large non-
Gaussianities fNL are generated discontinuously on the

transition hypersurface. In the latter two cases, the non-
Gaussianity fNL grows continuously and becomes very
large transiently. In the present paper, we present the ex-
ponent evaluation method which enables us to give the
analytic order estimates of the non-Gaussianities fNL in
these models. We discuss that the mechanisms which gen-
erate the large non-Gaussianities fNL in the latter two cases
are common, although in the first case in the latter two
cases the cosmological term does not exist, while in the
second case in the latter two cases the cosmological term
exists. In the latter two cases, the entropic perturbation of
the component which does not govern the cosmic energy
density can trigger the growth of the Bardeen parameter
�nð�Þ and the non-Gaussianity fNL, when the scalar fields
which support the entropic perturbation are very small,
since the influences of these small scalar fields on the
Bardeen parameter �nð�Þ can become large.
The rest of the present paper is organized as follows.

In Sec. II, we give the definitions of all the types of the
gauge invariant perturbation variables and show manifestly
that in the long wavelength limit all the perturbation equa-
tions of all the physical laws derived by the general theory
of relativity can be written in the gauge invariant manner.
In Sec. III, under the � philosophy, we complete the A/E
decomposition of the full nonlinear perturbations by giving
the definitions of the adiabatic perturbation variable and
the entropic perturbation variables. In Sec. IV, as the
application of the A/E decomposition based on the �
philosophy formulated in the previous section, we inves-
tigate the evolutions of the cosmological perturbations in
the Universe where the growth of the adiabatic perturbation
variable called the Bardeen parameter [8,12,13,16,20] is
induced by the entropic perturbation of the subdominant
component. We evaluate the non-Gaussianity parameter
fNL by the exponent evaluation method. We present the
condition for which the non-Gaussianity fNL becomes
large in the models where fNL changes continuously.

II. THE MANIFESTLY GAUGE INVARIANT
FORMULATION OF THE NONLINEAR
COSMOLOGICAL PERTURBATION
THEORY IN THE LEADING ORDER
OF THE GRADIENT EXPANSION

A. The evolution equations and the constraint equations

We consider the Einstein equationsG�� ¼ �2T�� where

�2 is expressed in terms of the Newtonian gravitational
constant G as �2 ¼ 8�G, using the 3þ 1 decomposition
[8,28,29]. The Greek indices �;�; . . . run from 0 to 3 and
the Latin indices i; j; . . . run from 1 to 3. The metric tensor
g�� is expressed as

g00 ¼ ��2 þ �k�
k; (2.1)

g0i ¼ �i; (2.2)
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gij ¼ 	ij; (2.3)

where � is the lapse and �i is the shift vector. The index of
�i is raised by 	ij which is the inverse matrix of 	ij. The

spatial metric 	ij is factorized as

	ij ¼ a2 ~	ij; (2.4)

where ~	ij is the unimodular matrix whose inverse matrix is

expressed as ~	ij and a is the scale factor. The energy
momentum tensor of the total system T�� is expressed as

T�� ¼ ð�þ PÞu�u� þ Pg��; (2.5)

where �, P and u� are the energy density, the pressure and

the four velocity vector of the total system, respectively.
Because of the normalization condition u�u� ¼ �1, u�
can be parametrized as

u0 ¼ �u0f�2 � �kð�k þ vkÞg; (2.6)

uk ¼ u0ð�k þ vkÞ; (2.7)

where u0 ¼ g0�u� is given by

u0 ¼ f�2 � ð�k þ vkÞð�k þ vkÞg�1=2; (2.8)

vk is the three velocity of the total system and the index of
vk is raised by 	ij. T�� is expressed as

T�� ¼ X
�

T��� þ TS��; (2.9)

where T��� is the energy momentum tensor of the perfect

fluid component � and TS�� is the energy momentum

tensor of all the scalar fields. T��� is expressed by (2.5),

(2.6), (2.7), and (2.8) where �, P, u� and vi are replaced

with ��, P�, u�� and v�i, respectively. TS�� is expressed

by

TS�� ¼ X
a

@�
a@�
a � 1

2

�X
a

g��@�
a@�
a þ 2U

�
g��:

(2.10)

As for the scalar fields, since we cannot decide to which
component a each term of the potential U belongs, TS��

cannot be decomposed into Ta��. In this way, the indices of

the component A are divided into the perfect fluid indices�
and the scalar field indices a. The energy momentum
transfer vectors of the perfect fluid component � and the
scalar field component a are expressed by

Q�� ¼ Q�u� þ f��; u�f�� ¼ 0; (2.11)

Qa� ¼ Sa@�
a; (2.12)

where Q� and f�� are the energy transfer and the momen-

tum transfer of the perfect fluid component �, respectively,
and Sa is the source function of the scalar field component
a. The energy momentum conservation gives

X
�

Q�� þX
a

Qa� ¼ 0: (2.13)

As for the perfect fluid component �, r�T
�
�� ¼ Q�� gives

the equation of motion of the perfect fluid component �.
As for the scalar fields, r�T

�
S� �

P
aQa� ¼ 0 can be ex-

pressed as the linear combination of @�
a. By assuming
that the each coefficient of @�
a is separately vanishing,
we can derive the phenomenological equation of motion of
the scalar field 
a, h
a � @U=@
a ¼ Sa.
Since we want to treat the cosmological perturbations on

superhorizon scales, we put the gradient expansion as-
sumptions by using the small parameter � characterizing
the inverse of the long wavelength of the cosmological
perturbations. Since the spatial scale of the inhomogeneity
of all the physical quantities is of the order of 1=�, we
assign @i ¼ Oð�Þ. As for the metric, we assign g0i ¼ Oð�Þ.
For arbitrary vector fields V� satisfying V�V� ¼ Oð1Þ
including u�, u��, we assume that Vi ¼ Oð�Þ. Therefore,
�i, �

i, vi, v
i, v�i, v

i
� and f�i are of the order of �. As for

the velocity vector of the total system and the perfect fluid
component �, the leading order of the gradient expansion
can be expressed by

u0 ¼ ��þOð�2Þ; (2.14)

ui ¼ 1

�
ðvi þ �iÞ þOð�3Þ; (2.15)

u�0 ¼ ��þOð�2Þ; (2.16)

u�i ¼ 1

�
ðv�i þ �iÞ þOð�3Þ: (2.17)

As for the momentum transfer vector of the perfect fluid
component �, u�f�� ¼ 0 gives

f�0 ¼ 0þOð�2Þ: (2.18)

We consider the gauge transformation laws of all the
physical quantities. The gauge transformation laws are
written in terms of the Lie derivative. The Lie derivatives
of the quantity with an upper index and the quantity with a
lower index are expressed by

LðTÞX� ¼ T�@�X
� � @�T

�X�; (2.19)

LðTÞX� ¼ T�@�X� þ @�T
�X�: (2.20)

The Lie derivative of the tensor field of an arbitrary rank is
given by the above two definitions and the Leibniz rule.
Because of the gradient expansion assumption, the infini-
tesimal coordinate transformation generating the Lie de-
rivative T�@� satisfies Ti ¼ Oð�Þ. Under the gradient

expansion assumption, the Lie derivative of the scalar S
is given by

LðTÞS ¼ T0 _SþOð�2Þ; (2.21)
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and the Lie derivative of the vector V� is given by

LðTÞV0 ¼ T0 _V0 þ _T0V0 þOð�2Þ; (2.22)

LðTÞVi ¼ T0 _Vi þ @iT
0V0 þOð�3Þ: (2.23)

Under the gradient expansion scheme, it is possible that the
quantity which is not a scalar, for example 	ij, has the Lie

derivative of the scalar type (2.21). So we expand the
definitions of the scalar field and the vector field as follows.

Definition: The physical quantity which has the Lie
derivative (2.21) is called the scalar-like object. The physi-
cal quantity which has the Lie derivative (2.22) and (2.23)
is called the vector-like object.

Following these definitions, the physical quantities such
as a, 	ij, ~	ij, 	

ij, ~	ij are the scalar-like objects and the @�
derivative of these quantities is the vector-like object. We
can demonstrate the following propositions easily.

Proposition 1: For a scalar-like object S, @�S is a vector-

like object.
Please use LðTÞ@�A ¼ @�fLðTÞAg for an arbitrary quan-

tity A.
Proposition 2: For two arbitrary vector-like objects

A�, B�,

A0

B0

; Ai � A0

B0

Bi (2.24)

are scalar-like objects.
Corollary: For a scalar-like object A, DtA, where

Dt :¼ 1

�

@

@t
(2.25)

is also a scalar-like object.
Please notice that u0 ¼ ��þOð�2Þ, and that @�A is a

vector-like object.
Corollary: For scalar-like objects A, B, DiðAÞB, where

DiðAÞ :¼ @i � @iA
_A

@

@t
(2.26)

is also a scalar-like object.

Please notice that @�A, @�B are vector-like objects.

Corollary: For a scalar-like object A,

@iAþ
_A

�2
ðvi þ �iÞ (2.27)

is also a scalar-like object.
Please notice that the above quantity can be written as

@iA� ð _A=u0Þui where u� is the velocity vector of the total

system and that @�A is a vector-like object.

Proposition 3: In the background level, all the evolution
equations and all the constraints can be expressed in the
form that polynomials of the scalar-like objects only are
vanishing.
As the proof, we write down the Einstein equations. As

for the space-space components of the metric tensor, we
use the matrix notation:M :¼ ð~	ijÞ,M�1 :¼ ð~	ijÞ.H is the

Hubble parameter defined by _a=a The Einstein equations
G�� ¼ �2T�� give the Hamiltonian constraint

�
1

�
H

�
2 ¼ �2

3
�þ 1

24
tr

�
1

�
_MM�1 1

�
_MM�1

�
; (2.28)

and the evolution equations

1

�

@

@t

�
H

�

�
¼ � 1

8
tr

�
1

�
_MM�1 1

�
_MM�1

�
� �2

2
ð�þ PÞ;

(2.29)

1

�

@

@t

�
1

�

@M

@t

�
þ 3

H

�

�
1

�
_M

�
� 1

�
_MM�1 1

�
_M ¼ 0;

(2.30)

and the momentum constraint

0 ¼ 1

2

_a

�
DiðaÞ

�
�

_a

��
M�1 1

�
_M

�
i

j
þ 1

2

�
M�1DiðaÞM �M�1 1

�
_M

�
i

j
� 1

2

�
M�1 1

�
@tfDiðaÞMg

�
i

j

þ 1

4
tr

�
M�1DjðaÞM �M�1 1

�
_M

�
þ 2DjðaÞ

�
H

�

�
� �2h

�

aH
Zj; (2.31)

where Zi is the scalar-like object defined by

Zi :¼ @iaþ _a

�2
ðvi þ �iÞ: (2.32)

h
a � @U=@
a ¼ Sa gives

1

�

@

@t

�
1

�

@
a

@t

�
þ 3

H

�

_
a

�
þ @U

@
a

þ Sa ¼ 0: (2.33)

As for the perfect fluid components, r�T
�
�0 ¼ Q�0 and

r�T
�
�i ¼ Q�i give

1

�
_�� ¼ �3

H

�
ð�� þ P�Þ þQ�; (2.34)

and
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0 ¼ 1

�a3

�
a2h�

�

H
Z�i

�� þDiðaÞP� þ h�a
H

�
DiðaÞ

�
�

_a

�

� 1

a

�

H
Q�Zi � f�i; (2.35)

where h� :¼ �� þ P� is the enthalpy of the fluid compo-
nent � and Z�i is the scalar-like object defined by

Z�i :¼ @iaþ _a

�2
ðv�i þ �iÞ: (2.36)

Then we conclude that all the evolution equations and all
the constraints can be written in terms of the scalar-like
objects only. The evolution equations of M (2.30) can be
solved as

M ¼ R1 exp

�Z
t0

dt
�

a3
R2

�
; (2.37)

where R1, R2 are the 3� 3 time independent matrices
depending on x: R1 is unimodular symmetric, R2 is trace-
less and R1R2 is symmetric [8]. By using (2.37), the term in
(2.28) and (2.29) can be written as

1

4
tr

�
1

�
_MM�1 1

�
_MM�1

�
¼ cR

a6
; (2.38)

where

cR :¼ 1
4 trðR2

2Þ: (2.39)

We consider the perturbation. We assume that the arbi-
trary background quantity A depends not only on ðt; xÞ, but
also on  which characterizes the perturbation. We can
Taylor expand A around  ¼ 0 as

Að ¼ 1Þ ¼ X1
k¼0

1

k!

dkAðÞ
dk

��������¼0
; (2.40)

where Að ¼ 1Þ is a full nonlinear quantity. We can iden-
tify

dkAðÞ
dk

��������¼0
$ �kA; (2.41)

where �kA is the k-th order perturbation of A. The gauge
transformation of the background quantity A is defined by

Að;�Þ ¼ exp½�LðTÞ�Að;� ¼ 0Þ; (2.42)

where LðTÞ is the Lie derivative generated by the in-
finitesimal displacement T :¼ T�@�, Að;� ¼ 0Þ is the

quantity before the gauge transformation and Að;� ¼ 1Þ
is the quantity after the gauge transformation. This expres-
sion (2.42) is a solution of the differential equation

d

d�
A ¼ LðTÞA; (2.43)

which we use instead of solution (2.42) from now on.
By differentiating (2.43) with respect to , we get

d

d�

dA

d
¼ L

�
dT

d

�
Aþ LðTÞ dA

d
; (2.44)

since not only the background quantity A but also the
infinitesimal displacement generating the Lie derivative
T depends upon . In general, the gauge transformation
of the  derivative of A contain the Lie derivatives gen-
erated by dkT=dk. But we can make a new quantity B by
combining the  derivatives of the background quantity
appropriately, so that

d

d�
B ¼ LðTÞB (2.45)

which does not contain the Lie derivatives generated by
dkT=dk (k ¼ 1; 2; � � � ) can hold. So we can put the
definition as follows.
Definition: We call a quantity B which has the gauge

transformation (2.45) the background-like object.
Any background-like object is a gauge invariant quantity

with respect to all the infinitesimal gauge transformation
satisfying Tð ¼ 0Þ ¼ 0. We can prove the following
proposition.
Proposition 4: Let A, B be the scalar-like objects and the

background-like objects. Then DðAÞB, where

DðAÞ :¼ d

d
� dA

d

1
_A

d

dt
(2.46)

is also a scalar-like object and a background-like object.
Corollary: Under the assumptions in the previous prop-

osition, DðAÞnB (n ¼ 1; 2; � � � ) are also scalar-like objects
and background-like objects.
For the proof, please see our previous paper [8].
Proposition 5: All the perturbation equations of the

evolution equations and the constraints can be expressed
in the form that the polynomials of the quantities which are
the scalar-like objects and the background-like objects are
vanishing. That is, all the perturbation equations of the
evolution equations and the constraints can be expressed in
a manifestly gauge invariant manner.
The perturbation equations can be obtained by operating

DðSÞ where S is an arbitrary scalar-like object on (2.28),
(2.29), (2.30), (2.31), (2.33), (2.34), and (2.35) which are
written in terms of the scalar-like objects. Since a scalar-
like object operated DðSÞ on is a scalar-like object and a
background-like object, the assertion of the proposition 5
follows. If we want to move the time derivative to the
outermost position, you can use

�
DðSÞ; 1

�

@

@t

�
¼ �

_S

�
DðSÞ

�
�
_S

�
1

�

@

@t
; (2.47)

where ½A; B� :¼ AB� BA.

B. The junction conditions

In the early Universe, there exist periods when the
equation of state changes quite rapidly, such as the slow
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rolling-oscillatory transition and the reheating transition
[3]. As the zeroth order approximation, it is appropriate to
treat these transitions by connecting two spacetimes which
have different equations of state by the metric junction
formalism [30]. These transition hypersurfaces are defined
by the particular equations; for the slow rolling-oscillatory
transition, H=� ¼ m, and for the reheating transition
H=� ¼ � where m, � are the mass, the decay constant of
the scalar field, respectively. Motivated by the above point,
we extend the metric junction theory across the spacelike
hypersurface defined by C ¼ 0 where C is the scalar-like
object, within the framework of the full nonlinear pertur-
bation theory in the leading order of the gradient expan-
sion. In Appendix B, we formulate the metric junction in
the linear perturbation theory in the long wavelength limit,
and mention its consistency with the full nonlinear theory.

We consider a four-dimensional spacetime M and a
three-dimensional hypersurface �. � separates M into
two region: Mþ which is the future of � and M� which
is the past of �. The hypersurface � is parametrized by the
intrinsic coordinate yi (i ¼ 1, 2, 3) as

x0� ¼ t� þ �Z�ðyÞ; (2.48)

xi� ¼ yi þ �Zi�ðyÞ; (2.49)

where x
�
� are spacetime coordinates in the region M�,

respectively, and t� is a constant common to M�. From
now on, we omit index�. The gauge transformation of �Z,
�Zi are given by

LðTÞ�Z ¼ �T0; (2.50)

LðTÞ�Zi ¼ �Ti: (2.51)

Proposition 6: Let A�, B� be vector-like objects. Then

A0@i�Zþ ðA0=B0ÞBi is the scalar-like object.
Corollary: 
i :¼ �@i�Zþ ð�= _aÞ@ia is a scalar-like

object.
In the previous proposition, as A�, B�, please adopt u�,

@�a, respectively.

As the junction hypersurface, we adopt the hypersurface
characterized by C ¼ 0 where C is a scalar-like object.
Then we get

@i�Z ¼ �@iC
_C
; (2.52)

which yields


i ¼ ��
_C
DiðaÞC: (2.53)

The normal vector n� of the hypersurface � pointing from

M� to Mþ is given by

n� ¼ �sgnð _CÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�g��@�C@�C
p @�C; (2.54)

and the tangential vector e�i on � are given by

e
�
i ¼ @x�

@yi
ði ¼ 1; 2; 3Þ: (2.55)

Then we get

n�n
� ¼ �1; n�e

�
i ¼ 0: (2.56)

We define the intrinsic metric qij and the extrinsic curva-

ture Kij of � by

qij :¼ e
�
i e

�
j ðg�� þ n�n�Þ; (2.57)

Kij :¼ e
�
i e

�
jr�n�: (2.58)

In the case of � defined by C ¼ 0, we obtain

qij ¼ 	ij þOð�2Þ; (2.59)

Kij ¼ 1

2�
_	ij þOð�2Þ: (2.60)

As for the energy momentum tensor T��, we obtain

Tnn :¼ n�n�T�� ¼ �þOð�2Þ; (2.61)

Tni :¼ n�e�i T�� ¼ �ð�þ PÞ�
_a
fZi �DiðCÞag þOð�3Þ;

(2.62)

Tij :¼ e
�
i e

�
j T�� ¼ P	ij þOð�2Þ: (2.63)

We notice that qij, Kij, Tnn, Tni and Tij can be written by

the scalar-like objects only. The junction condition formu-
lated by Israel [30] is given by

½qij�þ� ¼ ½Kij�þ� ¼ ½Tnn�þ� ¼ ½Tni�þ� ¼ 0; (2.64)

where ½Q�þ� :¼ Qþ �Q�. In our notation, the above junc-
tion condition is written by

½a�þ� ¼ ½~	ij�þ� ¼
�
_a

�

�þ
�
¼

� _~	ij

�

�þ
�
¼ ½��þ�

¼ ½ð�þ PÞfZi �DiðCÞag�þ� ¼ 0: (2.65)

Proposition 7: In the background level, the metric junc-
tion condition can be expressed in terms of the scalar-like
objects only.
We consider the perturbation of the junction condition.

As for the perturbation, the next proposition is essential.
Proposition 8: Let the matching hypersurface be defined

by C ¼ 0 where C is a scalar-like object. For an arbitrary
scalar-like object S satisfying ½S�þ� ¼ 0, DðCÞS, DiðCÞS
are continuous across the matching hypersurface:
½DðCÞS�þ� ¼ 0, ½DiðCÞS�þ� ¼ 0.
For the proof, please see Appendix A. By applying the

above proposition finite times, we obtain the following
corollary.
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Corollary: Under the assumption presented by the pre-
vious proposition, ½DðCÞnS�þ� ¼ 0 for an arbitrary natural
number n.

As forM :¼ ð~	ijÞ,M is solved as (2.37). From (2.65),M

in Mþ is given by

Mþ ¼ R1� exp

�Z t�þ�Z�

t0

dt
�

a3
R2 þ

Z t

t�þ�Zþ
dt

�

a3
R2

�
;

(2.66)

where R1� is R1 in M�, and R2 in Mþ and R2 in M� is
the same R2þ ¼ R2� ¼: R2.

As the junction, we consider the transition where the
energy �A� transfers into the energy �Aþ which has
the different equation of state from �A�. From (2.65), the
energy momentum conservation

½�A�þ� ¼ 0; (2.67)

½ð�A þ PAÞfZAi �DiðCÞag�þ� ¼ 0 (2.68)

must hold. In the above discussion, all the perturbation
equations of the metric junction conditions are written in
the form that the polynomials of the quantities which are
the scalar-like objects and the background-like objects
are vanishing; therefore, all the perturbation equations of
the metric junction conditions are gauge invariant.

III. CHOICE OF THE INDEPENDENT GAUGE
INVARIANT VARIABLES BASED ON THE

CLASSIFICATION OF THE PERTURBATION
SOLUTIONS INTO THE ADIABATIC MODE

AND THE ENTROPIC MODES

A. The universal adiabatic growing mode

All the evolution equations of the locally homogeneous
universe are invariant under the transformation defined by

a ! a�; (3.1)

R2 ! R2�
3; (3.2)

� ! �; (3.3)

W ! W; (3.4)

where � is the lapse function and W is an arbitrary scalar
quantity. � is a time independent function � ¼ �ðxÞ.
Taking the variation with respect to  considering that
only � is dependent upon  gives the obvious perturbation
solution. We call this solution the universal adiabatic
growing mode [4]. For an arbitrary scalar quantity S, the
first order and the second order perturbation solutions of
the universal adiabatic growing mode are written as

DðaÞS ¼ �
_S

H

d

d
ln�; (3.5)

DðaÞ2S ¼ �
_S

H

d2

d2
ln�þ 1

H

d

dt

� _S

H

��
d

d
ln�

�
2
; (3.6)

where the first order expression is very familiar in the
literature. We call the gauge invariant perturbation variable
defined by

�nðSÞ :¼ DðSÞn lna (3.7)

the generalized Bardeen parameter induced by the scalar-
like object S. When we adopt an arbitrary scalar quantity
W or H=� as the scalar-like object S, the perturbation
solution of the universal adiabatic growing mode is written
as a time independent form:

�nðSÞ ¼ dn

dn ln�: (3.8)

B. The adiabatic perturbation variable and the
entropic perturbation variables

In order to interpret the physics of the linear cosmologi-
cal perturbations, the classification into the adiabatic
perturbation and the entropic perturbations was often con-
venient [1,14–16]. Therefore, the generalization of this
classification into higher order perturbations are thought
to be useful. So we define the adiabatic perturbation vari-
able and the entropic perturbation variables in the higher
order perturbation theory.
Definition: We call the perturbation variable which does

not vanish for the universal adiabatic growing mode the
adiabatic perturbation variable. We call the perturbation
variable which vanishes for the universal adiabatic growing
mode the entropic perturbation variable.
We will present the examples of the adiabatic and the

entropic perturbation variables. We assume that S, Si
(i ¼ 1, 2) are the scalar-like objects such as W, _W=�,
H=�, where W is an arbitrary scalar variable. The gener-
alized Bardeen parameter �nðSÞ and DðaÞnS are adiabatic
perturbation variables and �nðS1Þ � �nðS2Þ and DðS1ÞnS2
are entropic perturbation variables.

C. The N philosophy and the � philosophy

We call the expressions representing the physical quan-
tities at the final time in terms of those at the initial time the
S formulas [7]. Our final purpose is to construct the S
formulas of the adiabatic perturbation variable such as
the Bardeen parameter �nð�Þ :¼ Dð�Þn lna. In the previous
section, it was shown that the Bardeen parameter �nð�Þ is
time independent for the universal adiabatic growing
mode. Therefore, we expect that the formulation in which
the difference between the Bardeen parameter at the final
time and that at the initial time can be expressed in terms of
the entropic perturbation variables may exist. In this sec-
tion, we choose the appropriate set of the entropic pertur-
bation variables and we construct the formulation in which
the time change of the Bardeen parameter is brought about
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by the evolutions of the set of these entropic perturbation
variables.

Until now in order to understand the evolutions of linear
cosmological perturbations in the Universe governed by
the multiple component energy densities, the decomposi-
tion of the perturbations into the adiabatic component and
the entropic components has already been performed
[1,14–16]. In the nonlinear perturbation theory, the follow-
ing set of perturbation variables was adopted: as the adia-
batic perturbation variable, the Bardeen parameter �nð�Þ,
and as the entropic perturbation variables, the difference
between the generalized Bardeen parameters induced
by the energy densities of the different components
Snð�A; �BÞ :¼ �nð�AÞ � �nð�BÞ where the subscripts A, B
represent the different components [31]. Since all the
perturbation variables in this formulation [31] are based
on perturbations of the logarithm of the scale factor N :¼
lna, we call this formulation the N philosophy. But in
the N philosophy, it is difficult to write down the evolution
equations in terms of the set of variables �nð�Þ, Snð�A; �BÞ
in the closed form. From now on, we often consider the
matching of the metric across the matching hypersurface
defined by � ¼ const. Across such matching hypersurface,
the perturbation variables in the N philosophy, Snð�A; �BÞ
jump by finite values.

In order to solve the defects in the N philosophy, we
propose the new set of the perturbation variables. We
choose

D

�
H

�

�
n
lna; D

�
H

�

�
n
sA; (3.9)

where sA :¼ �A=�, as the adiabatic perturbation variable
and the entropic perturbation variables, respectively. sA
satisfies

P
AsA ¼ 1. As for the new set of the perturbation

variables, no finite jumps do not exist across the slow
rolling-oscillatory transition H=� ¼ m where m is the
mass of the scalar field and across the reheating transition
H=� ¼ � where � is the decay constant of the scalar field.
In order to avoid the calculational complexity, we assume
that cR ¼ 0, since we can neglect the second term of the
right hand side of the Hamiltonian constraint (2.28) with
(2.38) because of the rapid growth of the scale factor a
during the inflationary expansion of the Universe. In the
condition cR ¼ 0, the matching conditions of the slow
rolling-oscillatory transition, of the reheating transition
are reduced into �� 3m2=�2 ¼ 0, �� 3�2=�2 ¼ 0, re-
spectively. Under the simplification of cR ¼ 0, the set of
the perturbation variables which we adopted in (3.9) is
reduced into

Dð�Þn lna; Dð�ÞnsA: (3.10)

Since these perturbation variables are continuous across
the matching hypersurface defined by � ¼ const, we only
have to concentrate on solving the evolution equations of
these perturbation variables. Since all these variables are

defined by Dð�Þ, we call the use of these variables pre-
sented in (3.10) the � philosophy.
We will give the evolution equations of the perturba-

tion variables (3.10). For simplicity, we assume that the
multiple components do not interact and that �A obeys
d�A=dN ¼ �gA�A where gA will be called the g factor
from now on. When the � component is the perfect
fluid with w� :¼ P�=��, its g factor is given by g� ¼
3ð1þ w�Þ. When the a component is the slow rolling
massive scalar field with mass ma, its g factor is given
by ga ¼ 2m2

a=�
2�. Since it was shown that the oscillatory

massive scalar field can be approximated by the perfect
fluid with w� ¼ 0 [2,5–7], we can use the perfect fluid
with g� ¼ 3 instead of the oscillatory massive scalar field.
The evolution equations of N :¼ lna, sA are given by

d

d�
N ¼ � 1

�s
; (3.11)

d

d�
sA ¼ 1

�

�
�sA þ gAsA

s

�
; (3.12)

where s :¼ P
BgBsB. We choose the total energy density �

as the evolution parameter instead of the cosmic time t, and
the right hand sides of (3.11) and (3.12) are written by �, sA
only. The evolution equations of the perturbation variables
in the � philosophy are given by operating Dð�Þ finite
times on (3.11) and (3.12). In this case, it is important to
notice thatDð�Þ and d=d� are commutative since d=dt and
d=d are commutative.
In the � philosophy, all the perturbation variables are

continuous across the matching hypersurface defined by
� ¼ const because of proposition 8, and we can easily
derive the evolution equations of the perturbation varia-
bles. Since the � philosophy is superior to the N philoso-
phy because of the above two reasons, we will adopt the �
philosophy from now on.

IV. THE NON-GAUSSIANITIES
OF THE NONLINEAR COSMOLOGICAL

PERTURBATIONS

In this section, we discuss the non-Gaussianities
generated in several cosmological models. The non-
Gaussianities are measured by the fNL parameter [21]. It
is assumed that the logarithm of the scale factor N :¼ lna
is given by the function of the energy density � as the
evolution parameter and of the solution constants. We only
consider the models where the origins of the cosmological
perturbations are in the quantum fluctuations of the scalar
fields 
a in the inflationary Universe. The statistical mean
values of the perturbation amplitudes are given by		

d
að0Þ
d

d
bð0Þ
d




�H2�ab; (4.1)

where 
að0Þ is the expectation value of the scalar field 
a

at the first horizon crossing and H is the Hubble parameter
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at the first horizon crossing. In this case, the solution
constants are given by the set of the expectation values
of the scalar fields at the first horizon crossing f
að0Þg.
In this case, using the logarithm of the scale factor
N ¼ Nð�;
1ð0Þ; 
2ð0Þ; � � �Þ the non-Gaussianity parame-
ter fNL is defined by

fNL :¼ NabN
aNb

ðNcN
cÞ2 ; (4.2)

Na :¼ @

@
að0ÞN; Nab :¼ @2

@
að0Þ@
bð0ÞN: (4.3)

[21].
Since the cosmological perturbations have the origin in

the scalar field fluctuations in the de Sitter stage, the
deviations of the spectral indices of the Bardeen parameter
�1ð�Þ from the scale invariance d ln� �1ð�Þ � =d lnk are
suppressed by the slow rolling parameter. Since the first
horizon crossing is defined by the relation

k ¼ aH ¼ eN	
�ffiffiffi
3

p �ð0Þ1=2; (4.4)

where N	, �ð0Þ is the logarithm of the scale factor, energy
density at the first horizon crossing time, respectively, we
obtain

d lnk ¼
�
1þ 1

2

1

�ð0Þ
d�ð0Þ
dN	

�
dN	: (4.5)

The slow rolling phase is characterized by the smallness of
the g factors of the scalar fields 
að0Þ whose size is
bounded by �S a small constant characterizing the slow
rolling of the scalar fields; jgaj 
 �S where ga is defined
by the evolution equations of the energy densities of the
scalar field 
a; �a at the first horizon crossing:
d�að0Þ=dN	 ¼ �ga�að0Þ. In all the cases which we
consider, the following evaluations hold: @ ln� �21 ð�Þ �
=@�að0Þ � 1=�að0Þ. By using the above properties, we can
conclude that the Bardeen parameter in the first order
perturbation theory �1ð�Þ has almost complete scale invari-
ance:

d

d lnk
ln� �21 ð�Þ � ��S: (4.6)

Then we concentrate on the non-Gaussianity parameter
fNL from now on.

Except for the cases where the large fNL is generated
discontinuously on the transition hypersurface such as the
inhomogeneous end of the inflation [22,23] and the modu-
lated reheating [24,32], different two cases have been
discussed. One is the curvaton scenario [25] and the other
is the vacuum dominated two scalar fields [26,27]. We
discuss that the mechanism which generates the large
fNL continuously in the above two different cases can be
explained from the three common viewpoints which will
be presented in Sec. IVB. In this section, we use two strong

methods; the exponent evaluation method and the � phi-
losophy. By the exponent evaluation method, it becomes
possible to evaluate the order of fNL analytically in the
wide ranges of parameters. In the � philosophy, the time
evolutions of the above two systems are traced using the
logarithm of the scale factorN as the adiabatic independent
variable, s2 which implies the ratio of the energy density of
the component which does not govern the energy density of
the Universe as the entropic independent variable, and the
energy density � as the evolution parameter. The � phi-
losophy makes the instant when fNL grows large and the
length of the period when the large fNL continues clear.

A. The exponent evaluation method

In many papers, the calculations of the non-Gaussianity
parameter fNL were performed: for the inhomogeneous
end of the inflation [22,23], for the modulated reheating
[24], for the curvaton [25] and for the vacuum dominated
inflation represented by the hybrid inflation [26,27]. In
many papers so far, the calculations of fNL were performed
numerically and in the extreme situations where only one
factor is concerned the analytic formulas of fNL were
given. In this subsection, we present the exponent evalu-
ation method by which it becomes possible to give the
analytic order estimates of fNL in the wide range including
cases where more than two factors are concerned.
We explain the exponent evaluation method by adopting

the inhomogeneous end of the inflation [22,23] as an
example. We consider the two scalar fields 
1, 
2 gov-
erned by the vacuum dominated potential given by

U ¼ U0 þ
X2
a¼1

1

2
�a


2
a; (4.7)

where �a (a ¼ 1, 2) are negative and U0 is the large
constant compared with the terms quadratic with the scalar
fields. Under the approximation where the vacuum energy
U0 is the dominant contribution of the energy density � and
where the scalar fields
a (a ¼ 1, 2) are slow rolling on the
potential, the evolutions of 
a (a ¼ 1, 2) are given by


a ¼ 
að0Þ exp
�
� �a

�2U0

N

�
: (4.8)

For simplicity, �a (a ¼ 1, 2) are assumed to be a indepen-
dent: �a ¼ �. We assume that the inflation ends in the
bifurcation set defined byX

a

	a

2
a ¼ �2: (4.9)

On the bifurcation set, the waterfall field which interacts
with the inflatons
a (a ¼ 1, 2) gets the negative mass and
the large vacuum energy �U0 is transferred into the oscil-
lation energy of the waterfall field and into the radiation
energy which interacts with the waterfall field. Also in the
situation where along the curve defined by (4.9) the deep
ditch of the potential exists, the inflation ends on the curve
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(4.9). The logarithm of the scale factor N at which the
scalar fields reach the bifurcation set (4.9) is given by

N ¼ �2U0

2�
ln

�
1

�2

X
a

	a

2
að0Þ

�
: (4.10)

In order that the inflation can solve the horizon problem,
we assume that � :¼ �2U0=2� ¼ 102. The non-
Gaussianity parameter fNL is calculated as

fNL ¼ 1

�

�
A1A3

2A2
2

� 1

�
¼:

1

�
ðp� 1Þ; (4.11)

where

An :¼
X2
a¼1

	n
a


2
að0Þ: (4.12)

From now on, we neglect numerical factors of order unity
without mentioning. By setting

	r :¼ 	2

	1

¼ 10k; 
r :¼ 
2ð0Þ

1ð0Þ ¼ 10�l; (4.13)

we obtain

p ¼ ð1þ 10k�2lÞð1þ 103k�2lÞ
ð1þ 102k�2lÞ2 : (4.14)

The exponent evaluation method gives

k < 2
3l p ¼ 1; (4.15)

2
3 l < k < l p ¼ 103k�2l; (4.16)

l < k < 2l p ¼ 10�kþ2l; (4.17)

2l < k p ¼ 1: (4.18)

As an example of application of the exponent evaluation
method, we adopt l < k < 2l. Since l < k < 2l, we obtain

1þ 10k�2l � 1; (4.19)

1þ 103k�2l � 103k�2l; (4.20)

1þ 102k�2l � 102k�2l; (4.21)

and get

p ¼ 1 � 103k�2l

ð102k�2lÞ2 ¼ 10�kþ2l: (4.22)

p takes the maximum at k ¼ l: p ¼ 10l, then fNL ¼ 10l�2.
In the exponent evaluation method, we take only the term
which has the largest exponent in the polynomial con-
structed by several 10M type terms.

As the second example of application of the exponent
evaluation method, we consider the modulated reheating
[24,32]. The scalar field 
1 on the potential U ¼ m2
2

1=2
causes the chaotic inflation:

N ¼ �2

4
f
2

1ð0Þ �
2
1g: (4.23)

When H2 ¼ m2 where H is the Hubble parameter, the
scalar field 
1 begins to oscillate and behaves like a dust
fluid [2,5–7]:

N ¼ �2

4

2

1ð0Þ �
3

2
� 1

3
ln

�
�2�

3m2

�
: (4.24)

When H2 ¼ �2 where � is the decay constant of the scalar
field 
1, the scalar field oscillation is transformed into the
radiation fluid:

N ¼ �2

4

2

1ð0Þ �
3

2
� 1

3
ln
�2

m2
� 1

4
ln

�
�2�

3�2

�
: (4.25)

In the modulated reheating, we consider that the decay
constant of the first scalar field 
1; � is the function of the
second scalar field 
2 as � ¼ �d


n
2ð0Þ where �d is a

constant and n is an integer. In this case, N takes the
form as

N ¼ �2
2
1ð0Þ þ ln
2ð0Þ; (4.26)

up to the � dependent part which does not contribute
the Bardeen parameters �nð�Þ. In order that the 
1 in-
flation can solve the horizon problem, we assume that

1ð0Þ ¼ 10=�. We assume that the second scalar field

2ð0Þ takes a small value as 
2ð0Þ ¼ 10�l=�. The non-
Gaussianity parameter fNL is calculated as

fNL ¼ 102 � 104l

ð102 þ 102lÞ2 : (4.27)

The exponent evaluation method gives

l < 1
2 fNL ¼ 10�2; (4.28)

1
2 < l < 1 fNL ¼ �10�4ðl�1Þ; (4.29)

1< l fNL ¼ �1; (4.30)

When the second scalar field 
2 takes a very small value,
a significant non-Gaussianity fNL is generated.

B. The non-Gaussianities induced by the entropic
perturbation of the component which does

not govern the cosmic energy density

In this section, we investigate the mechanism which
triggers the large fNL in the two different models, i.e.,
models 1 and 2, where the large fNL can be generated
continuously. Model 1 is the radiation-dust system and the
non-Gaussianity fNL in model 1 was investigated in
Ref. [25] in the context of the curvaton scenario.
Model 2 is the vacuum dominated two scalar fields and
the non-Gaussianity fNL in model 2 was investigated in
Refs. [26,27] in the context of the hybrid inflation.
Although model 1 and model 2 are quite different
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apparently, we consider the mechanisms which generate
the large fNL’s in model 1 and in model 2 as completely the
same. It is assumed that the inflation sufficient to solve the
horizon problem N � 102 is brought about by the first
scalar field 
1. Under this assumption, the common points
are summarized in the following three points:

(A) The expectation value of the second scalar field
2;

2ð0Þ is very small compared with that of the first
scalar field 
1; 
1ð0Þ at the first horizon crossing.

(B) The component which originates from the second
scalar field 
2ð0Þ does not govern the cosmic en-
ergy density �.

(C) The g factor of the component originating from the
second scalar field 
2ð0Þ; g2 is smaller than the g
factor of the component governing the cosmic en-
ergy density �; g1.

The condition A guarantees that the contribution from
the second scalar field 
2ð0Þ to the Bardeen parameters
�nð�Þ (n ¼ 1; 2; � � � ) is large. For example, we assume that
N can be written as the sum of the 
ið0Þ dependent parts;
N ¼ P

ifið
ið0ÞÞ and that each fi is the power or the
logarithm of 
ið0Þ. Then the contribution from 
2ð0Þ to
�1ð�Þ is proportional to @N=@
2ð0Þ � f2ð
2ð0ÞÞ=
2ð0Þ
which is quite large when 
2ð0Þ is very small even if the
contribution from 
2ð0Þ to N; f2ð
2ð0ÞÞ is quite small.
Owing to condition A, it becomes possible that the entropic
perturbation of the component which does not govern the
cosmic energy density � brings about significant contribu-
tions to the Bardeen parameters �nð�Þ (n ¼ 1; 2; � � � ) with-
out contributing N. From the structure of the evolution
equation of N :¼ lna (3.11) and that of sA (3.12), the
growth of the Bardeen parameters �nð�Þ :¼ Dð�ÞnN are
governed by the entropic perturbation Dð�ÞksA of the
component A whose ratio of the energy density sA is very
small jsAj � 1. In addition, when jsAj � 1, the entropy
perturbation Dð�ÞksA can grow or decrease rather rapidly.
Therefore, condition B requires the existence of such a
component. Owing to condition C; g2 < g1, the contribu-
tion of s2 to N is monotonically increasing for the time
evolution when the evolution parameter � becomes de-
creasing; therefore, the contribution from Dð�Þks2 to the
Bardeen parameter �nð�Þ :¼ Dð�ÞnN is also increasing.

Since g2 < g1 from condition C, the ratio of the energy
density of the second component s2 grows compared with
that of the first component s1. Since the second component
s2 begins to dominate the cosmic energy density � soon,
the period when condition B is satisfied is only the early
period of time from the beginning. So the large fNL is
realized only transiently in this period.

Both model 1 and model 2 share the above three prop-
erties. Model 1 is treated as the case without the cosmo-
logical term in Sec. IVB 1 and model 2 is treated as the
case with the cosmological term in Sec. IVB2.

In the rest of this section, we analyze the con-
crete physical systems using Dð�Þn lna, Dð�ÞnsA as the

independent perturbation variables and � as the evo-
lution parameter. This scheme that we proposed as the �
philosophy in Sec. III C is supported by the results of
Secs. II and III. Section II A guarantees that these inde-
pendent perturbation variables Dð�Þn lna, Dð�ÞnsA are
gauge invariant perturbation variables. Section III B states
that Dð�Þn lna, Dð�ÞnsA can be regarded as the adiabatic
perturbation, the entropic perturbations in the higher order
perturbation, respectively. This A/E interpretation is useful
when we interpret the time evolutions of the concrete
physical systems. Since Dð�Þ� ¼ 0, that is Dð�Þ can be
interpreted as the partial derivative with respect to with �
fixed, the � dependences of lna, sA are directly reflected to
the � dependences ofDð�Þn lna, Dð�ÞnsA. This fact makes
the calculations and the interpretations of the time evolu-
tions of the perturbation variables transparent. By the �
philosophy which we explained above, in the rest of this
section, we clarify that the entropy perturbation Dð�Þns2
supported by the energetically subdominant component �2

makes the adiabatic perturbation Dð�Þn lna and the non-
Gaussianity fNL grow considerably under the conditions
that the g factor of this energetically subdominant compo-
nent �2 is smaller than the g factor of the energetically
dominant component �1 and that the subdominant compo-
nent �2 is supported by the extremely small scalar field
expectation value.

1. The case without the cosmological term

We consider the two component system. We assume that
the g factor of the component �A (sA) is gA. Assuming that
js2j � 1 and linearizing (3.11) and (3.12) with respect to
s2, we obtain

d

d�
s2 ¼ 1

�

�
�1þ g2

g1

�
s2; (4.31)

d

d�
N ¼ � 1

�g1
þ 1

�g1

�
�1þ g2

g1

�
s2; (4.32)

whose solution is given by

s2 ¼ �2ð1Þ
�1ð1Þ

�
�

�1ð1Þ
��1þg2=g1

; (4.33)

N ¼ Nð1Þ � 1

g1
ln

�

�1ð1Þ þ
1

g1

�2ð1Þ
�1ð1Þ

�
�

�1ð1Þ
��1þg2=g1

;

(4.34)

where the g factors are assumed to be constant and Xð1Þ
implies the physical quantity X at an initial time. When
g2 < g1, s2 and the contribution to N from the �2ð1Þ
dependent term increase and they are not bounded for the
time evolution � ! 0. When g2 > g1, s2 and the contribu-
tion to N from the �2ð1Þ dependent term decrease for the
time evolution.
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When g2 < g1, the ratio of the energy density s2 in-
creases and almost reaches unity. In this case, the evolution
Eqs. (3.11) and (3.12) give

d

d�
s1 ¼ 1

�

�
�1þ g1

g2

�
s1; (4.35)

d

d�
N ¼ � 1

�g2
þ 1

�g2

�
�1þ g1

g2

�
s1; (4.36)

by linearizing (3.11) and (3.12) with respect to s1 assuming
that js1j � 1. The solution is given by

s1 ¼ �1ð1Þ
�2ð1Þ

�
�

�2ð1Þ
��1þg1=g2

; (4.37)

N ¼ Nð1Þ � 1

g2
ln

�

�2ð1Þ þ
1

g2

�1ð1Þ
�2ð1Þ

�
�

�2ð1Þ
��1þg1=g2

:

(4.38)

When g2 < g1, s1 and the contribution to N from the �1ð1Þ
dependent term decrease for the time evolution � ! 0.

In the above, the independent variables lna, sA are
written as functions of � as the evolution parameter.
By operating Dð�Þ derivatives on expressions of lna, sA,
we can obtain the expressions of the A/E perturbation
variables Dð�Þn lna, Dð�ÞnsA in the form of the functions
of �. Please notice that theDð�Þ derivative can be regarded
as the partial derivative with respect to with the evolution
parameter � fixed. Therefore, the � dependencies of lna,
sA completely correspond with the � dependencies of
Dð�Þn lna, Dð�ÞnsA. In the above calculations and discus-
sions, we can see that the entropic perturbation Dð�Þns2 of
the energetically subdominant component �2 with g factor
smaller than the g factor of the energetically dominant
component �1 makes the adiabatic perturbation variable
Dð�Þn lna grow transiently while the energy density ratio
s2 is increasing.

When we calculate the non-Gaussianity fNL, the expres-
sions of Na, Nab are necessary. The subscript a implies
the @=@
að0Þ derivative with � fixed. The � philo-
sophy proposed in Sec. III C makes the calculations and
the interpretations of the time evolutions of the non-
Gaussianity fNL as well as the A/E perturbation variables
Dð�Þn lna, Dð�ÞnsA more simple and more transparent.

We apply the above results to the following concrete
situation. Before N ¼ Nð1Þ, �1 causes the chaotic inflation
Nð1Þ � 102, and at N ¼ Nð1Þ decays into the radiation.
After N ¼ Nð1Þ, �1 is radiation (g1 ¼ 4). After N ¼ Nð1Þ,
�2 is still in the slow rolling phase. Because we assume that
m2 � m1, 
2 hardly moves from the initial value 
2ð0Þ

(g2 ¼ 0). At �2�=3 ¼ m2
2, the slow rolling phase of �2

ends and begins to oscillate. After �2�=3 ¼ m2
2, �2 be-

haves like dust fluid (g2 ¼ 3) [2,5–7]. Then applying (4.34)
to the above situation yields

N ¼ Nð1Þ þ 1

4
ln
�1ð1Þ
�

þ 1

8
m2

2

2
2ð0Þ

�
�2

3m2
2

�
3=4

� 1

�1=4

1

ð1� �2
2
2ð0Þ=6Þ3=4

: (4.39)

This solution is simplified into the model given by

N ¼ �2
2
1ð0Þ þ �2�ð�Þ
2

2ð0Þ; (4.40)

up to the � dependent part which is not related with the
Bardeen parameters �nð�Þ, where �ð�Þ is a function of �
and increases for the time evolution � ! 0. All the nu-
merical coefficients of order unity are dropped without
mentioning from now on. We assume that 
1 causes the
inflation enough to solve the horizon problem and that 
2

is a small field enough to contribute to the Bardeen pa-
rameters �nð�Þ sufficiently:


1ð0Þ ¼ 1

�
10; 
2ð0Þ ¼ 1

�
10�l; (4.41)

where l is a positive number. �ð�Þ is written by
�ð�Þ ¼ 10k where k increases for the time evolution
� ! 0. Since we adopt the approximation that �2 (s2)
does not govern the cosmic energy density �, we obtain
k < 2l. The non-Gaussianity parameter fNL of the model
(4.40) is calculated as

fNL ¼ 1

102
1þ 103k�2l�2

ð1þ 102k�2l�2Þ2 : (4.42)

The exponent evaluation method yields

k <
2ðlþ 1Þ

3
fNL ¼ 10�2; (4.43)

2ðlþ 1Þ
3

< k< lþ 1 fNL ¼ 103k�2l�4; (4.44)

lþ 1< k< 2l fNL ¼ 10�kþ2l: (4.45)

For 2ðlþ 1Þ=3< k < lþ 1, fNL increases and reaches
the maximum fNL ¼ 10l�1 at k ¼ lþ 1. For lþ 1<
k< 2l, fNL decreases and reaches fNL ¼ 1 at k ¼ 2l.
The non-Gaussianity parameter fNL takes a large value
transiently. So if we want to obtain the large fNL from
the present observation, we need �2 to decay into radiation
at k ¼ lþ 1. Next we consider the period when the second
component �2 gets to dominate the cosmic energy density
�. In this period, the first component �1 is subdominant.
So we can use (4.38) and get
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N ¼ Nð1Þ þ 1

3
ln

�
m2

2

2
2ð0Þ

2�

�
�2�1ð1Þ
3m2

2

�
3=4 1

ð1� �2
2
2ð0Þ=6Þ3=4

�
þ 1

3

�
2

m2
2


2
2ð0Þ

�
4=3 3m2

2

�2

�
1� �2
2

2ð0Þ
6

�
�1=3; (4.46)

which is simplified into the model (4.26) for small �. Then
we can obtain the evaluation of fNL (4.28), (4.29), and
(4.30). If we want fNL of order of unity, we need l > 1.

There is a case where the contribution to N from the
second component �2ð1Þ dependent term increases but is
bounded in spite of g2 < g1. In this case, the non-
Gaussianity parameter fNL cannot grow into a significant
value. We consider the case where
a (a ¼ 1, 2) with mass
ma (m2

2 <m2
1) are in the slow rolling phase. In this case,

ga ¼ 2m2
a=�

2�. Unlike the previous case, ga depends on
the cosmic energy density �. The ratio of the energy
density of the second component s2 and the logarithm of
the scale factor N are given by

s2 ¼ �2ð0Þ
�ð0Þ

�
�

�ð0Þ
��1þm2

2
=m2

1
; (4.47)

N ¼ � �2

2m2
1

ð�� �ð0ÞÞ þ �2

2m2
1

�m2
1 þm2

2

m2
2

�2ð0Þ

�
��

�

�ð0Þ
�
m2

2
=m2

1 � 1

�
; (4.48)

where 0 in �ð0Þ, �að0Þ implies the first horizon cros-
sing time and �ð0Þ ¼ �1ð0Þ þ �2ð0Þ where �að0Þ ¼
m2

a

2
að0Þ=2. From the above expression ofN, we can verify

that the �2ð0Þ dependent term is bounded and suppressed
by �2
2

2ð0Þ; therefore, fNL is suppressed by 10�2.

2. The case with the cosmological term

In cases where the cosmological term U0 exists, we use
� :¼ ��U0 as the evolution parameter. In these cases,
the evolution equations corresponding to (3.11) and (3.12)
are the same evolution Eqs. (3.11) and (3.12) but all �’s are
replaced with �’s. sA is defined by sA :¼ �A=� and sat-
isfies

P
AsA ¼ 1. When js2j � 1, linearizing with respect

to s2 gives (4.31) and (4.32) but all �’s are replaced with
�’s. In the same way, when js1j � 1, linearizing with
respect to s1 gives (4.35) and (4.36) but all �’s are replaced
with �’s.

We consider two scalar fields
a (a ¼ 1, 2) which move
on the potential given by

� ¼ U0 þ
X2
a¼1

�a; �a ¼ 1

2
�a


2
a: (4.49)

In this case, the g factor of the scalar field 
a (a ¼ 1, 2) is
given by ga ¼ 2�a=�

2� ffi 2�a=�
2U0. In order that the

inflation can solve the horizon problem, we assume that
ga � 10�2. We assume that �1 >�2. First the energy of
the scalar field 
1, �1 dominate � and next the energy of

the scalar field
2, �2 grows and gets to dominate �. In the
first period where �1 dominates �, N is given by

N ¼ ��2U0

2�1

ln
�

�1ð0Þ þ
�2U0

2�1

�2ð0Þ
�1ð0Þ

�
�1ð0Þ
�

�
1��2=�1

;

(4.50)

where

�að0Þ :¼ 1

2
�a


2
að0Þ: (4.51)

In the second period where �2 dominates �, N is given by

N ¼ ��2U0

2�2

ln
�

�2ð0Þ þ
�2U0

2�2

�1ð0Þ
�2ð0Þ

�
�2ð0Þ
�

�
1��1=�2

;

(4.52)

which can be obtained when all the subscripts 1, 2 are
exchanged in the expression of N in the first period (4.50).
We consider the case that�1 > 0,�2 < 0. In this case, in

the first period � is positive, decreases for the time evolu-
tion, and then the �2ð0Þ dependent term in N (4.50) grows
boundlessly. In the first period,N can be simplified into the
model given by

N ¼ 102 ln
1ð0Þ � �2�ð�Þ
2
2ð0Þ; (4.53)

up to the � dependent part which is not related with the
Bardeen parameters �nð�Þ, which yields the non-
Gaussianity parameter fNL given by

fNL ¼
�
�106

1


4
1ð0Þ

� �6�3ð�Þ
2
2ð0Þ

��
�
104

1


2
1ð0Þ

þ �4�2ð�Þ
2
2ð0Þ

�
2
: (4.54)

We put


1ð0Þ ¼ 1

�
10m; 
2ð0Þ ¼ 1

�
10�l; �ð�Þ ¼ 10k;

(4.55)

where k grows for the time evolution and k < 2lþ 2 for
the condition that �2 is subdominant. The non-Gaussianity
parameter fNL is written by

fNL ¼ �106�4m � 103k�2l

ð104�2m þ 102k�2lÞ2 : (4.56)

The exponent evaluation method gives

k < k1 fNL ¼ �10�2; (4.57)

k1 < k< k2 fNL ¼ �103k�2l�8þ4m; (4.58)

k2 < k < k3 fNL ¼ �10�kþ2l; (4.59)
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where

k1 :¼ 2� 4

3
mþ 2

3
l; k2 :¼ 2�mþ l; k3 :¼ 2lþ 2:

(4.60)

For k1 < k< k2, the absolute value of fNL grows and
reaches the maximum fNL ¼ 10�2þmþl at k ¼ k2. For
k2 < k< k3, the absolute value of fNL decreases and
reaches fNL ¼ 10�2 at k ¼ k3. In the second period, � is
negative, �� grows, and the �1ð0Þ dependent term in N
(4.52) decays. N in the second period (4.52) can be sim-
plified into the model given by

N ¼ �102 ln
2ð0Þ þ �2�ð�Þ
2
1ð0Þ; (4.61)

up to the � dependent part which is not related with the
Bardeen parameters �nð�Þ. Putting

1ð0Þ ¼ 1

�
10m; 
2ð0Þ ¼ 1

�
10�l; �ð�Þ ¼ 10�k;

(4.62)

where k increases for the time evolution and satisfies
k > 2m� 2 for the condition that �1 is subdominant, we
obtain

fNL ¼
�
106

1


4
2ð0Þ

þ �6�3ð�Þ
2
1ð0Þ

��
�
104

1


2
2ð0Þ

þ �4�2ð�Þ
2
1ð0Þ

�
2

¼ 106þ4l þ 10�3kþ2m

ð102lþ4 þ 10�2kþ2mÞ2 ffi 10�2: (4.63)

We consider the case �1, �2 < 0 (�1 >�2). In the first
period, � is negative, �� increases, and the �2ð0Þ depen-
dent term in N (4.50) grows boundlessly. In the first period,
N (4.50) can be simplified into the model given by

N ¼ �102 ln
1ð0Þ � �2�ð�Þ
2
2ð0Þ; (4.64)

up to the � dependent part which is not related with the
Bardeen parameters �nð�Þ, which yields the non-
Gaussianity parameter fNL given by

fNL ¼
�
106

1


4
1ð0Þ

� �6�3ð�Þ
2
2ð0Þ

��
�
104

1


2
1ð0Þ

þ �4�2ð�Þ
2
2ð0Þ

�
2

¼ 106þ4m � 103k�2l

ð102mþ4 þ 102k�2lÞ2 ; (4.65)

by putting


1ð0Þ ¼ 1

�
10�m; 
2ð0Þ ¼ 1

�
10�l; �ð�Þ ¼ 10k;

(4.66)

where in the first period �1 is dominant m< l and k
increases for the time evolution, k < 2lþ 2 from the

condition that �2 is subdominant. The exponent evaluation
method gives

k < k1 fNL ¼ 10�2; (4.67)

k1 < k< k2 fNL ¼ �103k�2l�4m�8; (4.68)

k2 < k < k3 fNL ¼ �10�kþ2l; (4.69)

where

k1 :¼ 2

3
lþ 4

3
mþ 2; k2 :¼ lþmþ 2; k3 :¼ 2lþ 2:

(4.70)

For k1 < k < k2, the absolute value of fNL grows,
reaches the maximum fNL ¼ �10l�m�2 at k ¼ k2. For
k2 < k< k3, the absolute value of fNL decreases, reaches
fNL ¼ �10�2 at k ¼ k3. In the second period, � is nega-
tive, �� grows and the �1ð0Þ dependent term in N (4.52)
decays.N in the second period (4.52) can be simplified into
the model given by

N ¼ �102 ln
2ð0Þ � �2�ð�Þ
2
1ð0Þ; (4.71)

up to the � dependent part which is not related with the
Bardeen parameters �nð�Þ, which yields

fNL ¼
�
106

1


4
2ð0Þ

� �6�3ð�Þ
2
1ð0Þ

��
�
104

1


2
2ð0Þ

þ �4�2ð�Þ
2
1ð0Þ

�
2

¼ 106þ4l � 10�3k�2m

ð102lþ4 þ 10�2k�2mÞ2 ffi 10�2; (4.72)

putting


1ð0Þ ¼ 1

�
10�m; 
2ð0Þ ¼ 1

�
10�l;

�ð�Þ ¼ 10�k;

(4.73)

where k grows for the time evolution, and k >�2m� 2
from the condition that �1 is subdominant. The above
results about two scalar fields in the vacuum domination
can be investigated by the method of the � function. [8] The
same results given in this section are reproduced using the
� function in Appendix C.
The mechanism which produces the large fNL depends

on the fact that g1 > g2 and that s1 is dominant in the first
time and that s2 begins to govern the cosmic energy density
� gradually. So when s1 is the radiation g1 ¼ 4, and s2 is
the scalar field with the negative mass g2 ¼ 2�=�2U0

(�< 0), the non-Gaussianity fNL can grow transiently,
because the third term which depends on �2ð0Þ
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N ¼ Nð0Þ � 1

4
ln

�

�1ð0Þ þ
1

4

�2ð0Þ
�1ð0Þ

�
�1ð0Þ
�

�
1��=2�2U0

;

(4.74)

can grow boundlessly.

V. DISCUSSION

In the first half of this paper, that is Secs. II and III, is
devoted to the general considerations about the gauge
invariant nonlinear cosmological perturbation theory on
superhorizon scales and the latter half, that is Sec. IV, is
devoted to the investigations of the concrete physical sys-
tems. Here we discuss how the general theory in the first
half is used in the analysis of the concrete physical systems
in the latter half.

(I) In Sec. II A, we gave the definitions of all the types
of gauge invariant perturbation variables. The nu-
merical data obtained by the cosmological observa-
tions are related with the gauge invariant
perturbation variables, since both quantities do not
depend on how we set up the spacetime coordinate
system. Therefore, it is desirable to express all the
physical laws in the form closed by the gauge in-
variant quantities only. By Sec. II A, it is guaranteed
that the perturbation variables given by operating
Dð�Þ derivatives on the scalar-like objects such as
lna, sA :¼ �A=� are gauge invariant. In the analysis
of the concrete physical systems in the latter half of
the present paper, the adiabatic perturbation variable
Dð�Þn lna, the entropic perturbation variables
Dð�ÞnsA are used as the independent variables and
the total energy density � is used as the evolution
parameter. This formalism by the A/E decomposi-
tion given in Sec. III B and the � philosophy pro-
posed in Sec. III C is very useful for the physical
interpretations of the results obtained in the latter
half of the paper.

(II) In Sec. II B, we construct the metric junction for-
malism as the method treating the sudden change of
the equation of state. The metric junction formalism
given in Sec. II B is used in the analysis of the
concrete physical systems in the latter half of
the paper, since they contain the transitions such
as the slow rolling-oscillatory transition and the
reheating transition. Since it is proven in Sec. II B
that our A/E perturbation variables Dð�Þn lna,
Dð�ÞnsA are continuous across the matching surface
defined by � ¼ const, this set of variables must be
useful in the research of the transitions even if we
assume that the transition do not occur instantly.

(III) Based on the � philosophy proposed in the
Sec. III C, in Sec. IV the evolutions of lna, sA are
described as the functions of the evolution parame-
ter �. The evolutions of our A/E perturbation var-
iables Dð�Þn lna, Dð�ÞnsA are given by operating

Dð�Þ derivatives on the solutions of lna, sA ex-
pressed as the functions of �. Since Dð�Þfð�Þ ¼ 0
for an arbitrary function of �; fð�Þ, the � depen-
dences of lna, sA are directly reflected to the �
dependences of Dð�Þn lna, Dð�ÞnsA. For this rea-
son, by the formalism prepared in Sec. III, in
Sec. IV we can manifestly clarify the time evolu-
tions in which the entropic perturbation of
the energetically subdominant component makes
the adiabatic perturbation Dð�Þn lna grow. We can
show thatDð�Þn lna, the non-GaussianityfNL grow
considerably and transiently when the energy ratio
s2 of the energetically subdominant component
which has g factor smaller than the g factor of
the dominant component �1 and which is sup-
ported by the extremely small scalar field expecta-
tion value, begins to increase. Since until now as
for Dð�Þn lna only expression of the final state
when the growth of Dð�Þn lna has already ended,
has been given, the � philosophy given in Sec. III is
superior in that the time evolution and the mecha-
nism of the growth of the adiabatic perturbation
variable called the Bardeen parameters Dð�Þn lna,
the non-Gaussianity fNL can be described.

In the following paragraphs, the two points which was
not treated in the first section are discussed. The first point
is on the existence of more than two sources of cosmologi-
cal perturbations. The second point is on the modeling of
the abrupt cosmic evolution by the metric junction across
the spacelike hypersurface.
(1) The present amplitude of the Bardeen parameter

�nð�Þ can be decomposed as �nð�Þ ¼ �n slð�Þ þ
�n entð�Þ. �n slð�Þ is the component generated from
the adiabatic mode in the slow rolling phase, and
�n entð�Þ is the adiabatic component generated from
the entropy mode in the slow rolling phase by suc-
cessive Universe evolution. In many excellent pa-
pers, many authors insisted that a significant large
nonlinearity can be generated in the inhomogeneous
end of the inflation [22,23], in the modulated reheat-
ing [24], in the curvaton scenario [25] and in the
vacuum dominated inflation [26,27]. Unfortunately
in the partial studies, without any plausible reasons it
is assumed that �n slð�Þ is negligibly small compared
with �n entð�Þ and the non-Gaussianity parameter fNL
is calculated from �n entð�Þ only. However the infla-
ton which drives the Universe expansion enough to
solve the horizon problem, the flatness problem, but
do not generate any cosmological perturbations, does
not exist. In this point of view, it is wonderful that the
authors of Ref. [25] tried to treat the contribution of
the inflaton �n slð�Þ and the contribution of the cur-
vaton �n entð�Þwith equal importance from the stand-
point of the mixed scenario. In this paper, we
investigate whether a significant non-Gaussianity
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fNL is generated in the successiveUniverse evolution
taking into account the cosmological perturbations
generated in the slow rolling phase. When we ana-
lyze the systems where more than two factors are
concerned, the exponent evaluation method pre-
sented in this paper is very efficient.

(2) In the early Universe, there exists a period before
which and after which the dynamical behaviors of
each component are very different. As for the scalar
field with mass m, while m � H, where H is the
Hubble parameter, holds, the scalar field is in the
slow rolling phase when its energy density changes
mildly compared with the cosmic expansion, and
while H � m holds, the scalar field is in the oscil-
latory phase when its energy density behaves like a
dust fluid [2,5–7]. In the reheating [3,7], the energy
of the oscillatory scalar field behaving like a dust
fluid is transformed into that of the radiation fluid.
In the hybrid inflation, the energy of the slow rolling
scalar field is transformed into that of the oscillatory
scalar field and into that of the radiation fluid on the
bifurcation set. Such phase transitions are quite com-
plicated and the completely rigorous mathematical
treatment is beyond our scope. For example, we
consider the slow rolling-oscillatory transition. In
the m � H region and in the H � m region, the
expansion schemes investigating the dynamical be-
haviors of the scalar field can be developed with
m=H and H=m as the expansion parameter, respec-
tively [2,5–8]. But at the transition period H �m,
any expansion schemes cannot be developed because
of no expansion parameters. However, in spite of
complicated behaviors at the transition, the period
of the transition can be thought to be short compared
with the periods before and after the transition char-
acterized by m � H, H � m, respectively. There-
fore, we think the transitions as the instantaneous
transient phenomena and may treat such transitions
as the metric junctions across the spacelike hyper-
surfaces. In the above reasons, in our paper, the
metric junction formulation on the cosmological
perturbations in the long wavelength limit, linear
and nonlinear, are constructed. On the spacelike
hypersurface defined byH ¼ m, the spacetime gov-
erned by the slow rolling scalar field and the space-
time governed by the oscillatory scalar field is
connected. In case of reheating, On the spacelike
hypersurface defined byH ¼ �where � is the decay
constant of the scalar field, the spacetime governed
by the oscillatory scalar field and the spacetime
governed by the radiation fluid is connected.
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APPENDIX A: PROOF OF PROPOSITION 8

Solving the matching condition Cðt; x; Þ ¼ 0 with
respect to t gives t ¼ tðx; Þ. By differentiating
Cðt; x; Þ ¼ 0 with respect to , xk, we obtain

dt

d
¼ � 1

_C

dC

d
;

@t

@xk
¼ � 1

_C
@kC: (A1)

Differentiating ½S�þ� ¼ 0 with respect to , xk gives�
dS

d
þ _S

dt

d

�þ
�
¼ 0;

�
@iSþ _S

@t

@xi

�þ
�
¼ 0 (A2)

From the two sets of equations, we obtain ½DðCÞS�þ� ¼ 0,
½DiðCÞS�þ� ¼ 0.

APPENDIX B: THE JUNCTION CONDITION
IN THE LINEAR PERTURBATION THEORY

In this section, we consider the metric junction across

the matching hypersurface characterized by ~C ¼ 0 where
~C is the scalar quantity in the linear perturbation theory,
since the previous papers treating this problem [33–35]
sometimes contain some typographical errors, derive the
matching conditions without keeping the gauge invariance
completely and are lacking in the physical interpretations
from the viewpoint of the long wavelength limit. The
notations used in this section are based on the
Refs. [4,7,14]. The metric tensor is given by

~g 00 ¼ �ð1þ 2AYÞ; (B1)

~g 0i ¼ �aBYi; (B2)

~g ij ¼ a2½ð1þ 2HLYÞ�ij þ 2HTYij�; (B3)

where Y, Yi and Yij are harmonic scalar, vector and tensor

for a scalar perturbation with wave number k:

Y :¼eikx; Yi :¼�i
ki
k
Y; Yij :¼

�
1

3
�ij�

kikj

k2

�
Y; (B4)

where k2 :¼ P
ikiki. The energy momentum tensor of the

total system is given by

~T �� ¼ ð~�þ ~PÞ~u�~u� þ ~P~g��; (B5)

where ~�, ~P and ~u� are the energy density, the pressure, and

the four velocity of the total system. For the scalar quan-

tities ~S ¼ ð~�; ~PÞ, ~S is expanded as ~S ¼ Sþ �SY, and the
four velocity ~u� is written by

~u 0 ¼ �ð1þ AYÞ; (B6)

~u i ¼ aðv� BÞYi: (B7)
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We define the gauge dependent geometrical quantities as

R :¼ HL þ 1

3
HT; �g :¼ a

k
_HT � B: (B8)

For the scalar quantity ~S,

DS :¼ �S�
_S

H
R (B9)

is gauge invariant. For the four velocity ~u�, the variable

defined by

Z :¼ R� aH

k
ðv� BÞ (B10)

is gauge invariant. The Newtonian potential � defined by

� :¼ R� aH

k
�g (B11)

is gauge invariant.
We consider the metric junction across the hypersurface

� defined by

x0 ¼ t� þ �Z0Y; xi ¼ yi þ �ZYi; (B12)

which connects the future spacetime Mþ and the past
spacetime M�. From �Z0, �Z, we can define two gauge
invariant quantities as


0 :¼ �Z0 þ 1

H
R; (B13)


 :¼ �Z� 1

k
HT: (B14)

We consider the case where the matching hypersurface� is

defined by ~C ¼ 0. In this case


0 ¼ � 1
_C
DC: (B15)

The normal vector of the matching hypersurface which
points from M� to Mþ is given by

~n � ¼ �sgnð _~TÞ½�~g��@� ~T@� ~T��1=2@� ~T: (B16)

We define the intrinsic metric, the extrinsic curvature, the
intrinsic energy momentum tensor by

~q ij :¼ ~e
�
i ~e

�
j ð~g�� þ ~n�~n�Þ; (B17)

~K ij :¼ ~e
�
i ~e

�
j
~r�~n�; (B18)

~T nn :¼ ~n�~n� ~T��; (B19)

~T ni :¼ ~n�~e�i ~T��; (B20)

where ~e
�
i
:¼ @x�=@yi. These quantities of the matching

hypersurface � defined by ~C ¼ 0 can be written as

~q ij ¼ a2
�
�ij þ 2�ijY

�
�H

DC
_C
þ k

3



�
þ 2Yijð�k
Þ

�
;

(B21)

~Kij ¼ a2H�ij þ
��
�2a2H2 � a2 _H þ k2

3

�
DC
_C

þ 2

3
a2Hk
þ a2

2
H
D�

�

�
Y�ij

þ
�
�2a2Hk
� k2

DC
_C
� k2

H
�

�
Yij; (B22)

~T nn ¼ �þ
�
� _�

_C
DCþD�

�
Y; (B23)

~T ni ¼ ð�þ PÞ
�
k
DC
_C
þ k

H
Z

�
; (B24)

where right hand sides are written in the gauge invariant
form. The metric junction conditions across the matching
hypersurface � are given by

½~qij�þ� ¼ ½ ~Kij�þ� ¼ ½ ~Tnn�þ� ¼ ½ ~Tni�þ� ¼ 0; (B25)

which yield the matching conditions in the long wave-
length limit: in the background level,

½a�þ� ¼ ½H�þ� ¼ ½��þ� ¼ 0; (B26)

and in the perturbation level,

½
�þ� ¼ 0; (B27)

½k2��þ� ¼ 0; (B28)

�
DC
_C

�þ
�
¼

�
� _�

_C
DCþD�

�þ
�
¼ 0; (B29)

�
ð�þ PÞ

�
DC
_C
þ 1

H
Z

��þ
�
¼ 0: (B30)

Owing to our previous paper [7], in the long wavelength
limit, the solution of DS where S is the scalar quantity is
given by

DS ¼ DS] þ
_S

H
c
Z
t0

dt
1

a3
; (B31)

where

DS] :¼ @S

@C?

�
_S

_a

@a

@C?

(B32)

where @S=@C?, @a=@C? are the derivatives of the back-
ground quantities S, a with respect to the solution constant
C? and c is a constant characterizing the adiabatic decay-
ing mode. The solution of the Newtonian potential � is
given by
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k2� ¼ 3H

a
cþOðk2Þ: (B33)

Therefore, (B28) and (B29) give

½c�þ� ¼ 0; (B34)

½DðCÞa�þ� ¼ ½DðCÞ��þ� ¼ 0; (B35)

where as for scalar-like object S

DðCÞS :¼ @S

@C?

�
_S
_C

@C

@C?

: (B36)

Equations (B34) and (B35) are consistent with the metric
junction conditions of the full nonlinear gradient expansion
case represented by (2.66) and proposition 8.

APPENDIX C: THE ANALYSES OF THE
EVOLUTION OF THE MULTIPLE
VACUUM DOMINATED SCALAR
FIELDS BY THE � FUNCTION

The � function was presented as the method of analyzing
the evolution of the multiple scalar fields [8]. Under the
slow rolling approximation, the evolution of the scalar
fields is described by

d
a

dN
¼ � 1

�2U

@U

@
a

; (C1)

which are decomposed as

d
a

d�
¼ � @U

@
a

;
dN

d�
¼ �2U; (C2)

introducing the � function as the new evolution parameter
[8]. It is much easier to treat the new evolution Eqs. (C2)
than to treat the original evolution Eqs. (C1) for many
cases.

We consider the vacuum dominated case given by

U ¼ U0 þ
X
a

1

2
�a


2
a: (C3)

In this case, the evolution of 
a is given by


a ¼ 
að0Þ expð��a�Þ: (C4)

By using the � function as the evolution parameter, the
Bardeen parameter �nð�Þ are given by

�nð�Þ ¼
�
@

@
�U

U�

@

@�

�
n
�
�2

Z
0
d�U

�
; (C5)

where the subscripts , � are interpreted as the derivatives
with respect to , �, respectively; for example,

U� :¼ @

@

@

@�
U: (C6)

Concretely �1ð�Þ, �2ð�Þ are given by

1

�2
�1ð�Þ ¼

Z
0
d�U �U

U�

U; (C7)

1

�2
�2ð�Þ ¼

Z
0
d�U �U2



U�

þ U

U2
�

�
�UU� þ 2UU� �U2



U�

U��

�
; (C8)

and the coefficients Na, Nab are given by the expansions

�1ð�Þ ¼
X
a

Na

d
að0Þ
d

;

�2ð�Þ ¼
X
ab

Nab

d
að0Þ
d

d
bð0Þ
d

;

(C9)

where we assume that all the nonlinear perturbations at the
first horizon crossing in the inflationary expansion are
vanishing: dn
að0Þ=dn ¼ 0 (n � 2). By using Aðn; kÞ
defined by

Aðn; kÞ :¼ X
a

�n
a


2
að0Þ expð�2k�a�Þ; (C10)

and collecting the leading order terms with respect to U0,
we obtain

fNL ¼ 1

�2U0

�
Að2; 1ÞAð3; 3Þ

Að2; 2Þ2 � 4
Að3; 2Þ
Að2; 2Þ þ 2

Að3; 1Þ
Að2; 1Þ

�
:

(C11)

We consider the system where two scalar fields evolve.
Since only the first term in (C11) can change the exponent
for the moving �, we concentrate on the first term written
by ðfNLÞ1 from now on. ðfNLÞ1 can be written by

ðfNLÞ1 ¼ �1

�2U0

ð1þ �2
r


2
rerÞð1þ �3

r

2
re

3
rÞ

ð1þ �2
r


2
re

2
rÞ2

; (C12)

where

�r :¼�2

�1

; 
r :¼
2ð0Þ

1ð0Þ ; er :¼ expf�2ð�2��1Þ�g:

(C13)

In order that the inflation can solve the horizon problem,
we assume �a=�

2U0 � 10�2.
First we consider the case �1 > 0, �2 < 0. We put


1ð0Þ ¼ 1

�
10m; 
2ð0Þ ¼ 1

�
10�l; er ¼ 10p;

(C14)

then we get

ðfNLÞ1 ¼ 10�2 ð1þ 10�2ðlþmÞþpÞð1� 10�2ðlþmÞþ3pÞ
ð1þ 10�2ðlþmÞþ2pÞ2 :

(C15)

The exponent evaluation method gives
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p < p1 ðfNLÞ1 ¼ 10�2; (C16)

p1 <p< p2 ðfNLÞ1 ¼ �103p�2ðlþmÞ�2; (C17)

p2 < p< p3 ðfNLÞ1 ¼ �10�pþ2ðlþmÞ�2; (C18)

p3 <p ðfNLÞ1 ¼ �10�2; (C19)

where

p1 :¼ 2

3
ðlþmÞ; p2 :¼ ðlþmÞ; p3 :¼ 2ðlþmÞ:

(C20)

The above evaluations agree completely with
(4.57), (4.58), and (4.59) by taking the correspondence
p ¼ kþ 2m� 2.

Next we consider the case where �a < 0, �1 >�2.
We put


1ð0Þ ¼ 1

�
10�m; 
2ð0Þ ¼ 1

�
10�l; er ¼ 10p;

(C21)

where m< l, then we obtain

ðfNLÞ1 ¼ �10�2 ð1þ 10�2ðl�mÞþpÞð1þ 10�2ðl�mÞþ3pÞ
ð1þ 10�2ðl�mÞþ2pÞ2 :

(C22)

The exponent evaluation method gives

p < p1 ðfNLÞ1 ¼ �10�2; (C23)

p1 < p< p2 ðfNLÞ1 ¼ �103p�2ðl�mÞ�2; (C24)

p2 < p< p3 ðfNLÞ1 ¼ �10�pþ2ðl�mÞ�2; (C25)

p3 < p ðfNLÞ1 ¼ �10�2; (C26)

where

p1 :¼ 2

3
ðl�mÞ; p2 :¼ ðl�mÞ; p3 :¼ 2ðl�mÞ:

(C27)

The above evaluations agree completely with
(4.67), (4.68), and (4.69) by taking the correspondence
p ¼ k� 2m� 2.
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