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We calculate the vacuum fluctuations that may affect the evolution of cosmological domain walls.

Considering domain walls, which are classically stable and have interaction with a scalar field, we show

that explicit symmetry violation in the interaction may cause quantum bias that can solve the cosmological

domain-wall problem.
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I. INTRODUCTION

The Casimir effect suggested originally in 1948 has been
used to understand the contribution from the vacuum fluc-
tuations of quantum fields [1]. The variation in the vacuum
fluctuations, which appears in the excitations as the con-
sequence of the nontrivial boundary conditions or the
topology of the space, causes a shift of the vacuum energy.
The original model, which appears as the two conducting
parallel plates in the free R3 space, the attractive force is
confirmed experimentally by Sparnaay [2] and a more
precise result have been given more recently in Ref. [3].

For the simplest one-dimensional model, the sum of
excitations in the (1þ 1)-dimensional spacetime, where
the boundaries are separated by the distance L, is given by

EL � X1
n¼1

1

2
ℏ!n � �ℏ

2L

X1
n¼1

n; (1.1)

where ℏ is the reduced Planck constant. We define the
averaged energy density by

�L � EL

L
¼ �ℏ

2L2

X1
n¼1

n: (1.2)

Hereafter we set ℏ ¼ c ¼ 1. In the limit of L ! 1, this
gives for the massless field

�1 � E1
L

¼
Z 1

0

dk

2�
k; (1.3)

where k denotes the continuous (Ł ! 1) limit of
kn � �

L n. The Casimir energy is defined (regularized) by

�E � EL � E1. To obtain a finite result, consider the
regularization [4]

�̂ L � 1

2L

X1
n¼1

!ne
�!n=� ¼ �2

2�
� �

24L2
þO

�
1

�

�
(1.4)

and

�̂1 � 1

2�

Z 1

0
d!we�!=� ¼ �2

2�
; (1.5)

where � is introduced as the manifestation of the

cutoff scale. Here e�!n=� ! 0 is assumed for n ! 1.
Regularization using the �-function is also possible.
Considering the regularization, the energy shift caused by
the boundary is estimated as

�R � �L � �1 ’ � �

24L2
: (1.6)

Domain Walls in cosmology

In the context of the hot big bang theory, the fundamen-
tal theory of unification predicts a sequence of phase
transitions during the cosmological evolution of the
Universe. These phase transitions can be accompanied by
the formation of domain structures that is determined by
the symmetry breaking at the phase transition. Wall domi-
nation, which always leads to a serious problem if the
energy scale of the domain wall exceeds 1 MeV, can be
avoided if a small bias �� � � � 0 appears. The bias (here
we use this word specifically for the energy difference
between the false and the true vacua) becomes important
when the force per unit area on the walls becomes compa-
rable to the tension of the wall. Then, the condition for the
successful decay of the cosmological domain walls is
satisfied when [5]

� > G�2; (1.7)

where � denotes the tension of the wall.
The condition shows that the global discrete symmetry,

which leads to the domain-wall formation, must be broken
explicitly. In that case, the magnitude of the (explicit)
breaking parameter must explain the bias � > G�2. This
idea is useful in supersymmetric theory, in which the
supergravity potential breaks discrete symmetry with the
required magnitude [6]. Usually, the origin of the bias is
considered for the explicit symmetry breaking in the
potential. Walls that are formed after brane inflation are
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realized by the deformation of the brane configuration in
the compactified space [7]. Wall-like structure observed on
a cosmic string may appear as a monopole connected by
the strings, which turns out to be a so-called cosmic
necklace [5,8]

In this paper, we consider a simple model in which
the mass of an additional field � is induced by the
interaction

L int ¼ 1

2
g2�2�2; (1.8)

where � is the field that forms the wall configuration. It
would be easy to find that an explicit symmetry breaking in
the interaction causes a small mass difference in m�. The

small mass difference between the adjacent vacua, which
may be very small compared with the energy scale of the
domain wall, may cause a bias when the vacuum fluctua-
tions are considered. In addition to the conventional vac-
uum fluctuations, which may be the dominant contribution,
the mass difference causes a boundary for the excitations
of the �-field, which leads to another source of the bias.
Calculation of the vacuum fluctuations (i.e., the quantum
bias caused by the Casimir effect) shows that the Casimir
force may have a significant impact on the evolution of the
cosmological domain walls.

Although the Casimir force for the massless field seems
to be consistent with the experiments, it may have serious
drawbacks1 when it is applied to the issue of the cosmo-
logical constant. Since we are considering quantum bias
between adjacent vacua, we cannot be free from the pecu-
liar assumptions that are needed to understand or explain
the (almost) vanishing cosmological constant. In this paper
we are making best effort to find a sensible result for the
quantum bias, but it should be noted that our results are
based on these assumptions, which will be further ex-
plained in Sec. III.

II. CASIMIR ENERGY FOR THE DOMAIN WALLS
WITH A SMALL MASS-GAP (1þ 1 DIMENSIONAL

TOY MODEL)

In the four-dimensional model, it is possible to consider
a double-well potential Vð�Þ ¼ 1

4	ð�2 � v2Þ2, which has

a Z2 symmetry (� ¼ þv $ � ¼ �v). This symmetry is
broken spontaneously in either vacuum. Interaction with a
real scalar field � can be given by Lint ¼ 1

2 g�
2�2, which

gives a mass to the field �. The domain walls are kinks of a
real scalar field �, which mediate between the two vacua

� ¼ v and� ¼ �v. As we mentioned, we do not consider
explicit breaking of the discrete symmetry in the potential
Vð�Þ. Instead, we add a small but explicit symmetry break-
ing to the interaction, so that it leads to a small mass-gap
for the �-field. Obviously, there is no bias in the classical
vacua. The source of the quantum bias can be explained by
a small breaking of the Z2 symmetry in the interaction,
which can be expressed as

L int ¼ 1

2
g2ð�� �zÞ2�2; (2.1)

where �z measures the explicit symmetry breaking in the
interaction.2 Denoting the mass of � in each domain by
mlo

� � gðv� �zÞ and mhi
� � gðvþ �zÞ, and placing the

lower-mass domain in the area sandwiched by two
domain walls, the �-field excitations that are discretized
(trapped) by the boundary have !2

n ¼ k2n þ ðmloÞ2 <
ðmhiÞ2. Obviously, the excitations with !n < mhi

� can

exist only in the domain sandwiched by the walls,
while other (higher) excitations are continuous in both
domains.3

Let us first consider a simple model in one-dimensional
space (x), and place domain walls at x ¼ 0 and x ¼ L. The
sum of the excitations discretized by the domain walls
leads to the energy density

FIG. 1. The field � feels a mass-gap at the domain walls,
which are placed at x ¼ 0 and x ¼ L. The excitations that are
trapped inside 0< x< L are discrete.

1The regularization of the Casimir energy is under control. On
the other hand, the root of the cosmological constant problem is
not quite obvious. At this moment, it is not obvious whether an
improvement is required in the regularization in solving the
cosmological constant problem. The word ‘‘drawbacks’’ has
been used to mention the specific situation in relation to the
cosmological constant.

2We pointed out that the bias introduced by the Casimir effect
may be important for the evolution of the cosmological domain
walls. On the other hand, if one diagonalizes the whole
Lagrangian, although the calculation is highly model-dependent
and is not suitable for our argument, these domain walls may be
unstable classically. In that case the bias introduced by the
Casimir effect may be smaller than the classical bias. Note
that we are not arguing that the classical bias is always smaller
than the Casimir effect.

3See Fig. 1.
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�trap � 1

2L

XnMax

n¼1

!n; (2.2)

where the integer nMax is approximately given by nMax �
L
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmhi

� Þ2 � ðmlo
� Þ2

q
¼ 2Lg

�

ffiffiffiffiffiffiffiffi
v�z

p
. For the estimation of the

Casimir effect, we set nMax ¼ 2Lg
�

ffiffiffiffiffiffiffiffi
v�z

p
hereafter. With

regard to the wavelength of these excitations, the effective
length Leff may depend on !. The difference Leffð!Þ �
L � 0 may be significant near nMax, where the excitations
penetrate into the higher-mass domains. However, for the
simple estimation of the Casimir effect, we choose the
approximation Leffð!Þ ¼ L in this paper.

Despite the simplicity of the scenario, regularization of
the vacuum fluctuations requires nontrivial assumptions
that are far from obvious. In order to compare our result
with the usual Casimir effect, it would be useful to start
with a massless field. Therefore, we first consider a model
with mlo ¼ 0 and mhi � 0, so that we can calculate the
Casimir energy using the conventional assumptions.
The Casimir energy density in the constrained massless
domain, which is sandwiched by the walls at x ¼ 0 and
x ¼ L, is given by

�R � �L � �1 ¼ 1

2L

XnMax

n¼1

�

L
n�

Z kMax

0

dk

2�
k; (2.3)

where the cancellation occurs in the continuous part

k > kMax. Here we set nMax ¼ Lmhi

� and kMax ¼ mhi.

Executing the finite sum, it leads to

�R ¼ �

2L2

nMaxðnMax � 1Þ
2

� 1

4�
ðmhiÞ2 ¼ � 1

4L
mhi;

(2.4)

where nMax ¼ Lmhi

� > 1 is required to obtain a nontrivial

result.
In the above calculation, the origin of the Casimir energy

is the discretization of the excitations, which is obviously
finite. We subtracted the ‘‘common’’ part, which is con-
tinuous and divergent. In doing this, we assumed that the
discretization of the excitations does not affect the regu-
larization of the continuous part above k > kMax.

In the above calculation, we defined the Casimir energy
in the massless domain by �L � �1 [4]. However, the bias
between the adjacent vacua may ‘‘not’’ be measured by the
Casimir effect in the massless domain. Namely, there is the
possibility that �lo1 � �hi1 may become the dominant part of
the bias. In such calculation we have to reconsider regu-
larization in the massive domain.

To understand the problem, consider two domains de-
noted by ‘‘A’’ and ‘‘B,’’ which are separated by a wall.

Then the vacuum fluctuations are (naively) given by �A1 �
R1
0

dk
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

A

q
and �B1 � R1

0
dk
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

B

q
, respectively.

Without additional principle for the regularization,

mA � mB leads to j�A1 � �B1j �m2
A �m2

B. If the above
calculation is true, the total vacuum fluctuations may
depend explicitly on the particle content of the vacuum.
The simplest way to avoid this problem is to assume some
(unknown) regularization scheme that explains vanishing
vacuum fluctuations in the L ! 1 limit, which works for
each field. If this assumption is true, one always finds
�i1 ¼ 0 for the entire field labeled by i. Instead, one may
consider a delicate cancellation between fields with differ-
ent masses and spins, which eventually leads to the effec-
tive cosmological constant �eff

c � �0 þP
�i1 ’ 0, where

�0 denotes contributions from other effects. Obviously, in
the latter case the delicate cancellation is crucial for the
bias calculation. Namely, if the delicate cancellation is
violated in a false-vacuum domain, where the mass distri-
bution is different from the true vacuum, the quantum bias
is more significant compared with the Casimir energy
calculated above.
In the next section, we consider a realistic four-

dimensional model of cosmological domain walls and
examine the cosmological domain-wall problem with the
use of the quantum bias, which is caused by the symmetry
breaking in the interaction.

III. CASIMIR ENERGY FORTHE DOMAINWALLS
WITH A SMALL MASS-GAP

We first consider a massless domain sandwiched
by massive domains. For this thought experiment, a spe-
cific form of the potential can be expressed by Vð�Þ �
�2ð�� vÞ2 (in this case there is no Z2 symmetry but the
degeneracy of the classical vacua still remains), or alter-
natively a fine-tuning can be considered in the interaction
term (i.e., v ¼ �z makes mlo ¼ 0). In order to realize a
small mass-gap compared with the domain-wall tension
(mhi � v), we consider g � 1. Consider the domain sand-
wiched by two infinite and flat walls in the free R3 space.
The walls are placed at distance L apart and lie in the
xy-plane. The standing waves are

�nðx; y; x; tÞ ¼ e�i!nt½eikxxeikyy� sinknz; (3.1)

where kx and ky are the wave vectors in the direction

parallel to the walls, which are continuous, while the
discretized wave vector

kn ¼ �

L
n (3.2)

is perpendicular to the walls. Because of the ‘‘shallow’’
potential, discretization occurs for the low-energy excita-
tions k � kMax. The vacuum fluctuations in the massless
domain are given by

�L ¼
Z dkxdky

ð2�Þ2
�
1

2L

Xnmax

n¼1

!n þ
Z 1

kmax

dkz
ð2�Þ!

�
; (3.3)

where the discretized wave (!n) is given by
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!n �
�
k2x þ k2y þ

�
n�

L

�
2
�
1=2

; (3.4)

while for the continuous wave, it is given by

! � ½k2x þ k2y þ k2z�1=2: (3.5)

After integration and subtraction of �1, it leads to the
regularized vacuum energy [4]

�R � �L � �1

¼ 1

12�

�
� �3

2L4

Xnmax

n¼1

n3 þ
Z kmax

0

dkz
2�

k3z ;

�

¼ 1

12�

�
� �3

2L4

n2maxðnmax þ 1Þ2
4

þ k4max

2�
;

�

¼ � 1

96

�
2m3

L
þ �m2

L2

�
; (3.6)

where the last equation is derived for kmax ¼ �
L nmax � m.

Here m denotes the mass of the field � in the massive
domain.

In the above calculation, we considered a massless
domain sandwiched by massive domains with a mass-gap
�m� ¼ m at the boundary (domain wall). Unlike the

conventional Casimir effect, however, the discretization
occurs only for a finite number of the excitations.

The above calculation for the ‘‘massless’’ domain is
straight and very instructive, but here we must remember
that the most important situation in our model is that the
‘‘massive’’ field feels a small mass-gap at a domain wall. In
that case, the Casimir energy may cause the energy differ-
ence that depends on the mass distribution, as we already
mentioned in the previous section for the domain walls.
The situation seems unfavorable for the cosmological con-
stant problem. Since the root of the cosmological constant
problem is not obvious yet, and this is not the topic I am
discussing in this paper, we follow the conventional calcu-
lation and try to find sensible consequences that may have
phenomenological interest.

For instance, let us consider a bias � for the cosmologi-
cal domain walls with the tension �� v3. If the (almost)
vanishing cosmological constant is explained by the deli-
cate cancellation (�eff

c � �0 þP
�i1 ’ 0), the bias be-

tween the domains with mA ¼ mþ �m and mB ¼ m is
calculated as

�� ðmþ �mÞ4 �m4 � 4m3�m: (3.7)

For the interaction that leads to m ¼ gv, the required
condition for the safe decay is

�m> �c � v3

4M2
pg

3
¼ 1

4g3

�
v

Mp

�
2
v; (3.8)

which is about g�3ðv=MpÞ2 � 1 times smaller than v.4 In

this case, we may conclude that a small mass-gap that is

caused by the symmetry breaking in the interaction term
can be used to solve the cosmological domain walls prob-
lem. We find, therefore, a very useful solution to the
cosmological domain-wall problem when the cosmologi-
cal constant is tuned by the delicate cancellation.
If one cannot agree with such cancellation, an alternative

assumption would be that the Casimir energy vanishes for
each massive field in the infinite-volume limit (i.e., �i1 ¼ 0
for any i). Our purpose in this paper is not to argue which
assumption is plausible, but to address the consequences
that result from these assumptions. If the result obtained
from our calculation turns out to be false in some experi-
ment, one needs to introduce an additional principle for
the regularization, so that one can calculate correctly the
Casimir effect caused by the mass-gap. In any case, we
believe that studying cosmological domain walls in terms
of the Casimir effect can make a difference to the usual
approaches to these problems.
Note however that, as far as the ‘‘Casimir energy’’ is

defined using �L � �1, it is always possible to calculate
the Casimir energy in an automatic manner. Therefore, in
this paragraph, we are not going to argue the authenticity of
the Casimir effect for a massive field, which may need
improvement if it is responsible for the cosmological con-
stant, but to calculate the Casimir effect in the automatic
way. Consider two domains in which the masses of the
field � are given by ðmhiÞ2 ¼ m2 þ �m2 in the high-mass
domain and mlo ¼ m in the low-mass domain.5 The vac-
uum fluctuations in the low-mass domain, which is sand-
wiched by the two walls and the high-mass domains
outside, is given by

�L ¼ 1

L

Z dkxdky

ð2�Þ2
�
1

2

Xnmax

n¼1

!n þ
Z 1

kmax

dkz
ð2�Þ!

�
: (3.9)

Here, for the discretized wave, !n is given by

!n �
�
m2 þ k2x þ k2y þ

�
n�

L

�
2
�
1=2

; (3.10)

while for the continuous wave, ! is given by

! � ½m2 þ k2x þ k2y þ k2z�1=2: (3.11)

After integration and subtraction of �1, it leads to the
regularized vacuum energy6

4Even if g is very small, the condition is conceivable for v�
TeV � Mp domain walls.

5In this notation �m2 is not identical to ð�mÞ2.
6Here the word ‘‘regularization’’ means specifically the sub-

traction of �1. See also Ref. [4] in which ‘‘normal ordering’’ has
been discussed in relation to the regularization.
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�R � �L � �1

¼ 1

12�

�
� 1

2L

Xnmax

n¼1

�
m2 þ

�
n�

L

�
2
�
3=2

þ
Z kmax

0

dkz
2�

ðm2 þ k2zÞ3=2
�
; (3.12)

where we set kmax ’ �
L nmax �

ffiffiffiffiffiffiffiffiffi
�m2

p
. In the limit of

�m2=m2 � 1 we consider the approximation

ðm2 þ k2zÞ3=2 ’ m3 þ 3

2
mk2z ; (3.13)

which leads to

�R ’� 1

24�L

�
nMaxm

3þ�2m

4L2
nMaxðnMaxþ 1Þð2nMaxþ 1Þ

�

þ 1

24�2
m3kMaxþ 1

48�2
mk3Max

¼� 1

96

�
3m�m2

�L
þ m

L2

ffiffiffiffiffiffiffiffiffi
�m2

p �
: (3.14)

Going back to cosmological domain walls, we find
immediately that the walls may appear equally in the x
and y directions. Also, the shape of the domain may affect
the calculation. However, a simple estimation of the vac-
uum fluctuation is not difficult, which leads to

�R � c
m�m2


ðtÞ ; (3.15)

where c� 10�2 is a numerical constant and 
ðtÞ denotes
the distance between walls. Since the Hubble parameter at
the beginning of the wall domination is Hd ’ �=M2

p [5],

the Casimir energy at the wall domination is expressed as

�R � c
�

M2
p

m�m2; (3.16)

where the typical scale of the wall structure is assumed to
be 
d �H�1

d . Considering �m2 � ðmþ �mÞ2 �m2 ¼
2m�mþ ð�mÞ2 in our notation, the Casimir force may
satisfy the bias condition �z > �2=M2

p when

�m>
v

cg2
: (3.17)

Therefore, the ‘‘Casimir force’’ calculated above seems to
be unimportant for the domain-wall problem. On the other
hand, structures like wiggles or foldings may typically
have much smaller scale compared with H�1. The evolu-
tion of these small-scale structures of the cosmological
domain walls may be affected by the Casimir force.7

Can the multiplicity enhance the Casimir effect?

If the field � has the origin in some higher dimensional
theory, one cannot neglect the multiplicity of the field.
Namely, if the explicit symmetry breaking in the interac-
tion term causes a mass-gap ��m to the lowest state, it
may also cause the same mass-gap to the Kaluza-Klein
states. Then, the Casimir force calculated above can
be enhanced by the number of the Kaluza-Klein states.
For the specific scenario, we consider the mass for the k-th
Kaluza-Klein state;

m2
k ¼ m2 þ k2

R2
5

; (3.18)

where k is an integer. Then the Casimir energy is
calculated as

�R � �L � �1

¼ 1

12�

X
k

�
� 1

2L

Xnmax

n¼1

�
m2

k þ
�
n�

L

�
2
�
3=2

þ
Z kmax

0

dkz
2�

ðm2
k þ k2zÞ3=2

�

’ � 1

96

�
3ð�m2Þ
�L

þ �m

L2

�X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

R2
5

vuut ; (3.19)

where the result can be expressed formally in terms of
Epstein �-function.8

IV. CONCLUSIONS

In this paper we considered two types of vacuum fluc-
tuations for the evolution of the cosmological domain
walls. We considered a potential which does not break
explicitly the Z2 symmetry. Instead, we added the interac-
tion that breaks explicitly the symmetry. This term does not
cause any bias in the classical vacua, but may source the

FIG. 2. Wiggles or foldings may appear in the small-scale
structure of the cosmological domain wall.

7See Fig. 2

8The Casimir energy in relation to extra dimensions has been
studied by many authors [9,10]. With regard to brane models,
the finite temperature Casimir force due to a massless scalar in
the bulk of a brane model has been calculated in Ref. [11]. The
Casimir energy of massless and massive bulk fields can generate
a potential that stabilizes the radius of the compact direction
while it may be driving the accelerated expansion in the non-
compact directions [12]. The Casimir force acting on two
parallel planes lying within the single brane of a Randall-
Sundrum scenario has been discussed in Ref. [13].
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quantum bias. Then the two vacua at � ¼ �v, which are
classically degenerate, can be split by the Casimir effect. In
the first example, in which we compared the vacuum
fluctuations in different domains assuming that the vanish-
ing cosmological constant is explained by the delicate
cancellation, we find that domain walls can decay safely
due to the quantum bias. In the second example, in which
we considered the effect of the boundaries that are formed
by the domain walls, the mass gap leads to a discretization

of the excitations. The latter effect may be important for
the small-scale structures of the domain walls, while it may
be unimportant for the safe decay.
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