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Cosmological runaway solutions may exhibit an exact dilatation symmetry in the asymptotic limit of

infinite time. In this limit, the massless dilaton or cosmon could be accompanied by another massless

scalar field—the bolon. At finite time, small time-dependent masses for both the cosmon and the bolon are

still present due to imperfect dilatation symmetry. For a sufficiently large mass, the bolon will start

oscillating and play the role of dark matter, while the cosmon is responsible for dark energy. The common

origin of the mass of both fields leads to an effective interaction between dark matter and dark energy.

Realistic cosmologies are possible for a simple form of the effective cosmon-bolon potential. We find an

inverse bolon mass of a size where it could reduce subgalactic structure formation.
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I. INTRODUCTION

Dilatation symmetry and its anomaly could play an
important role for cosmology [1]. Models with a
dilatation-symmetric fixed point could provide a dynami-
cal solution for the cosmological constant problem [1–3].
As one of the most characteristic features, such models
have predicted the presence of a homogeneous dark energy
component [1], long before its observational discovery.
Recent investigations of higher-dimensional settings have
shed new light on such theories [4]. It has been shown
that dimensional reduction of a dilatation-symmetric
quantum effective action in higher dimensions leads to
four-dimensional models with a vanishing cosmological
constant. If the cosmological solution approaches the
dilatation-symmetric fixed point in the limit t ! 1, such
models can naturally give rise to an asymptotically vanish-
ing cosmological constant. In such a scenario the observed
particle masses are due to the spontaneous breaking of
dilatation symmetry by the cosmological or vacuum solu-
tion. At the fixed point one will therefore encounter a
massless Goldstone boson—the dilaton. For finite time,
the dilatation symmetry is broken by anomalous terms
which generate a small time-dependent mass for the dila-
ton. This picture can give rise to a quintessence cosmology
where the dilaton rolling toward the fixed point plays the
role of the scalar ‘‘cosmon’’ field with a slowly decreasing
mass [1,2]. This higher-dimensional dilatation-symmetric
setup naturally leads to scaling solutions where the cosmon
mass tracks the Hubble parameter.

First investigations of the manifold of extrema of a
dilatation-symmetric higher-dimensional quantum effec-
tive action often reveal the presence of additional massless
scalar fields besides the dilaton [4]. These may correspond
to a change of the characteristic length scale of internal
space—the radion—or other changes in geometry, similar
to the moduli fields in string theory. In this work we will
concentrate on one such field and name it the ‘‘bolon,’’

since it will ultimately be responsible for dark matter and
therefore for the emergence of structure (i.e. ‘‘lumps’’ or
‘‘bola’’) in the cosmos.
We start with a quick revision of the key concept of

dilatation symmetry. Then we will investigate the coupled
system of cosmon and bolon and show that it can reproduce
the standard cosmological evolution at the background
level for rather simple potentials. After a radiation-
dominated period during which the cosmon and bolon act
as early dark energy and play a subdominant role, the bolon
starts to oscillate around a partial potential minimum. Its
oscillation energy (potential and kinetic) is diluted as
nonrelativistic matter and thus it will eventually become
dominant, enforcing a transition to a matter-dominated
period. After the transition the fluid equations for the
energy density of bolon fluctuations obey the standard
form for cold dark matter, with a small coupling to the
cosmon. Thus the simple model with two scalars describes
a cosmology with coupled dark matter and dark energy.
We further proceed to slight modifications of the sim-

plest potential for which dark energy finally dominates the
energy density of the Universe. This can be achieved by an
effective stop in the cosmon evolution, induced either by a
characteristic change in the scalar potential or a leaping
kinetic term, or if the scaling behavior of the cosmon gets
terminated by a cosmic trigger event. An example of the
last scenario is given by the growing neutrino quintessence
model [5].

II. DILATATION SYMMETRY

Dilatations correspond to a rescaling of each dynamical
field of a given theory corresponding to an appropriate
scaling dimension. For a theory involving a metric g��

and a scalar field � in d dimensions this means

g�� ! �2g��; � ! ��ððd�2Þ=2Þ�: (1)
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Any dilatation-symmetric quantum effective action � is
then given by an action

� ¼
Z

d4xg1=2L (2)

with

L ! ��dL (3)

under dilatations. This puts severe restrictions on the
allowed interactions in L. Dilatation symmetry ensures
the absence of any explicit mass scales of the model.
These restrictions have particularly interesting consequen-
ces in a higher-dimensional setting. For d > 6 no polyno-
mial potential for the scalar field is allowed, and
dimensional reduction of such a higher-dimensional
dilatation-symmetric theory gives rise to a rather generic
class of effective four-dimensional theories with a vanish-
ing cosmological constant [4]. This finding has been
generalized to arbitrary dilatation-symmetric �, for ex-
ample, based only on the metric without a scalar field [4].

In our scenario we consider theories with a dilatation-
symmetric fixed point, which corresponds to field configu-
rations reached in the limit of cosmic time going to infinity.
One possibility is to start with a generic action �, not
necessarily dilatation symmetric, and to consider a family
�� obtained by a rescaling

��½g��; �� ¼ �½��2g��; �
dðd�2Þ=2��: (4)

This becomes dilatation symmetric in the limit � ! 1.
One may imagine that a dynamical runaway solution drives
� effectively to infinity for t ! 1, for example, by a
monotonic increase of the cosmological value of the
scalar �.

Dimensional reduction of such an action leads to infi-
nitely many fields in four dimensions. We consider only
massless or light fields which play a role in cosmology
after a possible inflationary period. They are described by
an effective theory, encoded in the four-dimensional,
dimensionally reduced action, plus the metric and the
particles of the standard model of particle physics. The
latter will dominate the radiation-dominated era, while in
the matter-dominated era the small component of baryons
is subleading and can be neglected for the overall picture of
dark matter. Our starting point for the effective action of
two scalars ’ and � is a standard kinetic term and a
potential Vð’;�Þ. Dilatation symmetry at the fixed point
enforces the common potential of the two fields to vanish
for ’ ! 1 [4].

III. THE MODEL

Away from the dilatation-symmetric fixed point the
four-dimensional quantum effective action will contain
an effective potential Vð’;�Þ for the cosmon field ’ and

the bolon field �, generated by dilatation anomalies. The
formulation in terms of the quantum effective action means
that no further quantum corrections to the potential are
present. If we were to start at the classical theory, various
quantum corrections would appear in the process of quan-
tization. They may in fact be responsible for the existence
of a fixed point. In this case the effective dilatation sym-
metry at the fixed point is due to quantum fluctuations
(rather than being destroyed by them) and may be realized
even for a classical action without dilatation symmetry. In
the vicinity of a fixed point, asymptotic dilatation symme-
try guarantees that the potential vanishes as the fixed point
is approached for ’ ! 1. It also ensures a vanishing mass
at the fixed point. The bolon mass also vanishes at the fixed
point.
We work within the effective four-dimensional theory

(obtained after dimensional reduction) and use the Einstein
frame (with fixed Planck mass). Furthermore we assume
first a normalization of ’ and � such that both have
standard kinetic terms. In this frame the ’-dependence of
the potential is typically of exponential shape [1], and we
start with a simple model where

V ¼ M4

��
�

M

�
A
e��’=M þ

�
�

M

�
B
e�2�’=M

�
�

M

�
2
�
: (5)

HereM is the four-dimensional effective Planck mass, and
� � M is the scale of anomalous dilatation symmetry
breaking. We assume the dimensionless constants A, B,
� and � to be all positive. The ‘‘anomalous dimensions’’
A, B characterize the impact of explicit mass scales of
the model (violation of dilatation symmetry) on the
four-dimensional world. The asymptotic solution will cor-
respond to ’ ! 1 where the potential V vanishes and
dilatation symmetry becomes exact. Then also the mass
matrix for the cosmon and bolon, given by the second
derivatives of V, approaches zero. The simple quadratic
form for � is assumed to be a good approximation for �
close to a partial minimum of the potential in this direction.
Small deviations of � from the partial extremum will be
sufficient for the understanding of late cosmology. For very
early cosmology the quadratic approximation for � may
become insufficient, and we discuss generalizations below.
There we also briefly address the possibility that the
’-dependence of the partial minimum for � cannot be
neglected [as for the potential (5)].
An important ingredient for our setting concerns

the observation that the approach to the fixed point at
’ ! 1, � ! 0 can be characterized by a different scaling
for the cosmon and the bolon directions. For � at its
minimum, the size of the ‘‘anomalous potential’’ is dic-
tated by the parameters A and �. Different parameters B
and � may describe the scaling of V away from the partial
minimum, e.g. for � � 0. The characteristic scaling be-
havior and its motivation by the properties of solutions in
the vicinity of a higher-dimensional dilatation-symmetric
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fixed point distinguishes our approach from other settings
where dark energy and dark matter are described by two
scalar fields, as realized, for example, in a model for the
axion and the cosmon or in the work of Refs. [6–11].
Because of the factor expð�2�’=MÞ, the mass of the
bolon field will depend on the value of the cosmon field.
If the bolon plays the role of dark matter, we expect a
coupling between dark energy and dark matter ��, as
discussed previously in models of coupled quintessence
[2,12]. We emphasize that a cosmon-bolon coupling is
necessary in our setting since the bolon mass is assumed
to vanish for the asymptotic solution.

IV. COSMIC EVOLUTION

To simplify the analysis of the dynamics, we perform a
shift ’ ! ’� ðMA=�Þ lnð�=MÞ which corresponds to
A ! 0 and B ! ~B ¼ B� �A=� in Eq. (5). This rescaling
shows that our model depends effectively on three parame-
ters, namely, the dimensionless couplings � and � and
the effective scale for the bolon mass, which involves the

parameter ð�=MÞ ~B. We define the energy densities

�’ ¼ 1

2
_’2 þM4e��’=M; (6)

�� ¼ 1

2
_�2 þM4

�
�

M

� ~B
e�2�’=M

�
�

M

�
2
; (7)

which will be associated with dark energy and dark matter
components, respectively. In addition to �� and �’, we

assume that the Universe also contains a homogeneous
radiation component �r which dominates at early times.

The ’-dependent mass of the bolon, reflected by the
factor expð�2�’=MÞ in Eq. (7), will lead to a coupling
between dark matter and dark energy of strength �, similar
to generic models of coupled quintessence [2,12]. We
would like to point out that in our model the coupling
between the bolon and the cosmon does not arise from
matter particles coupling to a metric related to the Einstein
frame metric by a conformal transformation as e.g. in
generalized Jordan-Brans-Dicke theories [13]. Rather, it
emerges as a feature of the common cosmon-bolon poten-
tial from the breaking of dilatation symmetry and is crucial
to restore dilatation symmetry at the fixed point. Possible
couplings of the cosmon to other forms of matter as
baryons or neutrinos are not directly related to the coupling
� appearing in Eq. (5). In particular, there is no reason to
expect a baryon-cosmon coupling of equal strength as the
coupling between dark matter and dark energy. Limits on
the time variation of couplings and violations of the weak
equivalence principle imply for most models that the
baryon-cosmon coupling must be much smaller than the
value of � discussed in this paper [1,2,14]. Nevertheless it
is possible to add a baryonic fluid which can be either
uncoupled, very weakly coupled or coupled with gravita-
tional strength to the dilaton without qualitatively changing

our conclusions. In the last case, however, one would need
to invoke some kind of mechanism to avoid constraints
from local tests of gravity, like the Damour-Polyakov
effect [15,16] or the chameleon mechanism [17,18].
For � � 2�, the two terms in (5) decay at different rates

as ’ ! 1. The qualitative features of the dynamics in the
early radiation-dominated epoch depend on the ratio of �

and� and the magnitude of the prefactor ð�=MÞ ~B. We start
by discussing solutions for which the potential (5) is domi-
nated by the first term in the early radiation-dominated
Universe and the second term becomes dominant at late
times, causing a transition into a matter-dominated epoch.
The growth of the second term in (5) relative to the first one
requires 2�<�, but we will actually impose a stronger
condition, � � �. This will also ensure that the resulting
dark matter–dark energy interaction remains compatible
with cosmological observations. The dominance of the first
term in (5) (small positive values of ’) requires

ð�=MÞ ~B�2 � M2.
In the early radiation-dominated Universe, we then have

V ’ M4e��’=M, and the system rapidly approaches the
well-known attractor solution [1,2]

’ ¼ �M

�
ln

�
4H2

M2�2

�
; �’ ¼ 12

�2
H2M2: (8)

The behavior of � depends on the magnitude of its effec-
tive mass which obeys for the scaling solution (8)

m2
� ¼ 2M2

�
�

M

� ~B
�2�=�

’

�
H

M

�
4�=�

; (9)

where�’ ¼ �’=ð3M2H2Þ ¼ 4=�2. For 2�<�, the mass

grows relative to the Hubble rate, m�=H / t1�2�=�. For

early cosmology one has H � m� and the field �, starting

from some initial configuration �in, _�in, settles rapidly to a
constant value �0. Subsequently, it remains nearly frozen
at �0 until m� �H, when � starts to oscillate.

Assuming �� to be still subdominant compared to �’ at

this point, we can use the scaling solution (8) to obtain
_m�=m

2
� ¼ �4ð�=�ÞH=m�. For� � �,m� soon becomes

nearly constant in a time scale of one oscillation cycle
1=m�. As a consequence, the bolon � oscillates in an

effectively quadratic potential with a slowly decreasing
mass term. Its energy density behaves almost as that of a
nonrelativistic matter component [19] and eventually
comes to dominate over �’ and over the radiation

component.
For an estimate of the onset of oscillations we define tosc

by the condition HðtoscÞ ¼ m�ðtoscÞ. In the absence of a

coupling between � and ’, � ! 0, we obtain HðtoscÞ ¼ffiffiffi
2

p
Mð�=MÞ ~B=2. The time of matter-radiation equality is

approximately given by

Heq

M
�

�
�

M

� ~B=2
�
�eq

M

�
: (10)
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Here �eq denotes the bolon amplitude at teq and obeys

�eq

M
�

�
�0

M

�
4

(11)

if �0 � M. For a weakly coupled system with �=� � 1,
the energy density stored in the oscillations �� �
ð1=2Þm2

��
2 dilutes slightly faster than a�3 due to the

decrease of the mass m2
�ð’Þ. Our numerical analysis re-

veals that Eq. (10) gives a fairly accurate estimate in the
weakly coupled case as well. Realistic cosmologies require
matter-radiation equality to happen at Heq=M �
8� 10�56. For initial conditions leading to �0 of the order

0:1M, this requires a small value of ð�=MÞ ~B=2, say, � �
108 GeV for ~B ¼ 10. (Still, the value of � is much larger
than all the energy scales of the standard model of particle
physics—smaller � can be obtained for smaller ~B.)

After the onset of the bolon oscillations, the evolution
equations for the system can be expressed in the form

€’þ 3H _’� �M3e��’=M ¼ �

M
��; (12)

_�� þ 3H�� ¼ � �

M
�� _’; (13)

_�	 þ 4H�	 ¼ 0; (14)

3M2H2 ¼ ð�r þ �� þ �’Þ; (15)

where we have averaged over an oscillation cycle and used

the results h _�2i ¼ 2hM2ð�=MÞ ~Be�2�’=M�2i ¼ ��, valid

for H � m� and ð _m�=m�Þ � H. For these ‘‘late’’ times

the cosmon-bolon system bears much resemblance to other
theories where a quintessence field couples to dark matter
through the trace of the energy-momentum tensor, e.g.
chameleon models [17] or the model investigated in [20].
(The main difference between the cosmic evolution de-
scribed in [20] and our scenario—besides the obvious
differences for early cosmology—is that the authors of
[20] describe a ‘‘freezing’’ solution. There the universal
attractor is characterized by an accelerated expansion and
the cosmon field remains frozen until very recently and
then starts to dominate the cosmic evolution. While this
type of solution is also present in our scenario for a suitable
choice of parameters and initial values, it is very sensitive
to the choice of initial conditions. For this reason we will
focus here on scaling solutions for the cosmon field during
both the matter- and the radiation-dominated eras. We will
see in Sec. V how this can ensure insensitivity to initial
conditions. There we also discuss possibilities of how to
break this behavior and reach cosmic acceleration.)

The dynamics of the system described by Eqs. (12)–(15)
was analyzed in [2,12]. For �=� � 1, it admits an effec-
tively matter-dominated attractor solution with

a / t1��=�; �’ ¼ 3M2H2fð�;�Þ; (16)

where f ¼ ð18þ 6�2 � 6��Þ=ð6ð�� �Þ2Þ. For � � 1,
as required by �’ � �r in the early scaling epoch, stability

and existence of the solution is guaranteed for 4�<�<
�þ 3=�. Expanding fð�;�Þ around �=� ¼ 0, we find

�’ ¼ 3

�2
� �

�

�
1� 6

�2

�
þOð�2=�2Þ; (17)

which shows that�’ decreases slightly as compared to the

early radiation-dominated epoch. For ��Oð10Þ, �’ con-

stitutes a few percent of the total energy density in the
matter-dominated epoch.
At this stage the coupled cosmon-bolon system de-

scribes a cosmology with dark matter, radiation and a small
constant fraction of early dark energy. A realistic cosmol-
ogy requires a dark matter–dark energy crossover where,
after redshift z � 5, dark energy increases from a few
percent to its present fraction �’ > 0:7. This can be

achieved by an effective stop or strong slowing down of
the evolution of ’. Such a stop may be induced by a
cosmological trigger event—such as neutrinos becoming
nonrelativistic [5] or scalar backreaction due to structure
formation [21]—or by a qualitative change of the cosmon
potential or the kinetic term for ’ exceeding a character-
istic value [22].

V. MODIFICATIONS OF THE
SCALAR POTENTIAL

A. Bolon scaling in the early Universe

For the potential (5) quadratic in �, the time of matter-
radiation equality teq depends on both the model parameter

ð�=MÞ ~B and the initial conditions for �; see Eq. (10). This
is illustrated in Fig. 1. The memory of the initial conditions
for ’ disappears as the cosmon hits the attractor solution.
For a very wide range of initial conditions, this happens
long before the transition to matter domination, as
demonstrated in Fig. 1. A dependence of teq (and the final

FIG. 1. Evolution of the density parameters �r, �� and �’

for � ¼ ffiffiffi
2

p � 10, � ¼ 0:05, ð�MÞ ~B ¼ 10�100 and _�in ¼ 0. We

show three different values for �in=M: 0.1 (solid line),
ffiffiffi
2

p � 0:1
(dashed line) and 0.2 (dotted line). We also vary �’ (z ¼ 1013).
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value of ��a
3) on the initial conditions for � is common to

other dark matter models like the axion. While realistic
cosmology can be obtained for rather natural-looking ini-

tial conditions, e.g. for �0 �M with ð�=MÞ ~B � 10�100, it
is noteworthy that the initial energy density �� needs to be

considerably smaller than �’ (and �r) for the potential (5)

to work. One could presume that the fields ’ and � have
been excited at some point after inflation in a similar
process, possibly connected to the production of baryonic
matter and radiation. In this case, initial energy densities of
the same order of magnitude would seem more natural.
Furthermore, assuming the quadratic dependence on � in
Eq. (5) to remain valid all the way to the inflationary epoch,
one would run into problems with the excessive isocurva-
ture perturbations arising from the fluctuations of the
light bolon.

We therefore consider Eq. (5) to be a valid approxima-
tion only for late cosmology (i.e. field configurations close
to the fixed point). Indeed, there is no reason to assume a
quadratic dependence on � for large values, as relevant for
early cosmology. In this regime the potential may be much
steeper, typically involving � exponentially. Steep poten-
tials typically admit tracker solutions for which �� will

either scale like the dominant background fluid (for an
exponential �-dependence) or slowly catch up to it. This
could lead to a setting where the time of matter-radiation
equality depends only on model parameters and not any
longer on the initial conditions for �. In a first period, �
will then rapidly evolve until it settles at a value ��0. There
it sits until �� has caught up with the energy density of the

tracker solution, which it will follow from this point on.
Once � has reached values sufficiently close to its mini-
mum, the quadratic approximation for the �-dependence
may be used. This behavior occurs for a large range of
initial conditions and guarantees that the bolon enters the
flat part of the potential with predetermined values of
� and _�, which now depend only on model parameters.

A simple example for such a mechanism can be obtained
by replacing �2=M2 in Eq. (5) by ðcoshð
�=MÞ � 1Þ, a
form considered in the context of uncoupled scalar dark
matter in Refs. [6,7]. This potential has an asymptotically
exponential shape for large �-values, allowing for an
attractive scaling solution in the uncoupled case � ¼ 0.
Our numerics reveal that the qualitative behavior is main-
tained in the weakly coupled case with small �. The range
of initial conditions resulting in realistic cosmologies for
this modification is rather large, including equipartition of
the energy densities ��ðtinÞ � �rðtinÞ. Figure 2 demon-

strates that this wide range of initial conditions influences
only early cosmology. Close to matter-radiation equality,
essentially no memory of the initial conditions survives.
For late cosmology the behavior is very similar to the
potential (5), but now with an effective value �0 that is
determined by model parameters and no longer by initial
conditions. Wewould like to point out that the price we pay

for the independence of initial conditions is, as usual, the
introduction of an additional parameter (in this simple
model, 
). It determines at which field value the bolon
potential makes a transition from a ‘‘steep’’ to a ‘‘flat’’
regime. The parameter needs to be adjusted to give a
realistic cosmic evolution with the correct ‘‘timing’’ of
matter-radiation equality.

B. Breaking the scaling behavior with a
cosmon-dependent minimum

A further interesting generalization of our model
potentially concerns a ’-dependence of the partial mini-
mum for � according to substituting �2 in Eq. (5) by

e�2	�=Mð�� gð’ÞÞ2. This could lead to a late time accel-
erated expansion if gð’Þ has a characteristic shape where it
changes its form abruptly once ’ passes a characteristic
value ’0. We demonstrate this in Fig. 2 for a simple toy
model where gð’Þ ¼ cð’� ’0Þ�ð’� ’0Þ, � being the
Heaviside function. One observes a crossover from matter
domination to dark energy domination in the present cos-
mological epoch.
If the partial minimum for the bolon depends on ’, the

separation of the combined cosmon-bolon energy density
into dark matter and dark energy is less straightforward.
A reasonable approximation for ’>’0 is given by

�dm ¼ 1

1þ c2
ð _�� c _’Þ2 þ Vð’;�Þ � Vð’; gð’ÞÞ;

�de ¼ 1

1þ c2
ðc _�þ _’Þ2 þ Vð’; gð’ÞÞ:

(18)

The time-averaged evolution equations for these quantities
are given by Eqs. (12) and (13), but with ��, �’, �, �

and ’ replaced by �dm, �de, �c ¼ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

p
, �c ¼

ð�þ c	Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

p
and the approximation for the cosmon,

� ¼ ðc�þ ’Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

p
, respectively. For ’>’0, the

scaling solution (17) remains no longer valid—the

FIG. 2. Dark matter–dark energy crossover for parameters
	 ¼ 0, � ¼ ffiffiffi

2
p � 10, � ¼ 0:05, ð�MÞ ~B ¼ 10�96, c ¼ 10 and

’0 ¼ 8:7M. The potential for large � values was modified to
have exponential shape by replacing �2 by ðcoshð
�Þ � 1Þ,

 ¼ 15. The bold curve for �dm reflects a large range of initial
conditions after inflation. We demonstrate the insensitivity to
initial values by setting new ‘‘initial conditions’’ at z ¼ 13 with
� between 4M and 5M, _� ¼ 0 (dashed curves).
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asymptotic behavior is now governed by �c and the new
coupling �c. For an appropriate choice of parameters, the
only stable fixed point of this system is an accelerated
expansion [12]. We show an example in Fig. 2. Such a
setting resembles certain cases discussed in Ref. [23].

We expect that similar features can also arise from a
qualitative change of the scalar kinetic terms for ’>’0.
Let us recall, however, that the dark matter–dark energy
crossover may also be induced by a cosmological trigger
event [5,21]. In this case, no particular feature for the scalar
potential or the kinetic terms at ’ ¼ ’0 is needed, as for
the leaping kinetic term of Ref. [22].

VI. DISCUSSION

In summary, we have found rather simple models for
coupled cosmon and bolon scalar fields which realize a
consistent cosmology without the need of other dark matter
particles. The essential ingredients are the presence of a
period where the bolon energy density is much smaller
than radiation, and the increase of the bolon mass relative
to the Hubble parameter due to � � �.

Remarkably, the inverse bolon mass in the present cos-
mological period,

m�1
� ¼

ffiffiffi
1

3

s
�eq

M
H�1

eq e
��’=M �

�
10�0

M

�
4
pc; (19)

is typically found at subgalactic scales and could reduce
the clustering of dark matter on these and smaller scales

[6,7]. Here, �’ ¼ ’today � ’eq, and the last factor is

neglected in the weak-coupling approximation. We
found that for the type of models discussed in Sec. V,
values of �0=M � 1 or somewhat larger are naturally
realized, independent of the precise initial conditions.
(A bolon mass of a galactic scale of 10 kpc is realized
for �0=M � 1.)
Since a coupling of the bolon to ordinary matter has

presumably at most gravitational strength, a direct detec-
tion by the searches for WIMP-like particles or axions
seems excluded. On the other hand, a coupling � between
dark energy and dark matter is a generic feature of our
setting. It reflects the common origin of the cosmon-bolon
potential and the cosmon and bolon masses from the
deviations from dilatation symmetry. Interestingly, if cos-
mological measurements should indicate an equation of
state wde <�1 for uncoupled dark energy, the coupling �
can be used to explain such observations [24].
Furthermore � influences both the behavior of the cosmo-
logical solution and the properties of dark matter on
smaller-length scales. A test of the interesting observatio-
nal consequences can constrain � or give hints in the
direction of the coupled dark energy and dark matter of
our model.
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