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In this paper, we compare seven popular dark energy models under the assumption of a flat universe by

using the latest observational data of gravitationally-lensed image separations observed in the Cosmic

Lens All-Sky Survey (CLASS), the PMN-NVSS Extragalactic Lens Survey (PANELS), the Sloan Digital

Sky Survey (SDSS) and other surveys, which are (nearly) complete for the image separation range

000:3 � �� � 700. We combine the 29 lens redshift data with the cosmic microwave background (CMB)

observation from the Wilkinson Microwave Anisotropy Probe (WMAP7) results, the baryonic acoustic

oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey (SDSS) Data Release. The

model comparison statistic, the Bayesian information criterion is also applied to assess the worth of the

models. This statistic favors models that give a good fit with fewer parameters. Based on this analysis, we

find that the simplest cosmological constant model that has only one free parameter is still preferred by the

current data. For the other dynamical dark energy models, we find that some of them, such as the Ricci

dark energy model, the Affine equation-of-state dark energy, and the generalized Chaplygin gas, can

provide good fits to the current data. The Dvali-Gabadadze-Porrati model is the only one-parameter model

that can give a rather good fit but also nest� while the three-parameter model, namely, the interactive dark

energy, is clearly disfavored by the data, as it is unable to provide a good fit.

DOI: 10.1103/PhysRevD.84.023005 PACS numbers: 98.70.Vc, 95.36.+x

I. INTRODUCTION

Dark energy has become one of the most important
issues of modern cosmology ever since the observations
of type Ia supernovae (SNe Ia) first indicated that the
Universe is undergoing an accelerated expansion at the
present stage [1,2]. It is known that the ordinary matter
and fields of the standard model are not sufficient to
accommodate the present phase of acceleration.
Moreover, recent observational data when interpreting
the Big Bang model have provided some interesting infor-
mation about another composition of the Universe called
dark energy. It has been predicted that this quaint compo-
sition must have negative pressure and is uniformly dis-
tributed (i.e., unclustered), and thus may be responsible for
the present acceleration of our Universe. In the past deca-
des various models concerning dark energy have been put
forward, the most simple candidate for which is considered
to be in the form of vacuum energy density or cosmological
constant (�). However, the cosmological constant is al-
ways entangled with two fatal problems: (i) fine tuning
problem (present amount of the dark energy is so small
compared with fundamental scale) and (ii) coincidence
problem (dark energy density is comparable to critical
density today). Alternatively there exist other choices
such as (i) an X-matter component, which is characterized
by an equation of state p ¼ w�, where�1 � w< 0 [3,4],

(ii) an exotic fluid, Chaplygin gas [5], (iii) a result of
gravity leaking out into the bulk at large scales [6], etc.
In the face of so many competing dark energy candi-

dates, it is important to find other effective methods to
decide which one is right, or at least, which one is most
favored by the observational data, although the accumu-
lation of the current observational data including the
Constitution SNIa data [7,8] and other cosmological
probes such as the distance information measured by the
Wilkinson Microwave Anisotropy Probe (WMAP) [9] and
Baryon Acoustic Oscillations (BAO) [10] have opened a
robust window for constraining the parameter space of
dark energy models. In the meantime, strong lensing has
become an important astrophysical tool for probing both
cosmology [11–20] and galaxies (their structures, forma-
tions, and evolutions [21–31]). At the time of this writing
we have collected 29 galactic-scale strong lenses with
measured source redshift, lens redshift and image separa-
tion, which form a well-defined sample useful for statisti-
cal analysis [32]. They are from the Cosmic Lens ALL-Sky
Survey (CLASS; [33,34]), the Sloan Digital Sky Survey
(SDSS), the PMN-NVSS Extragalactic Lens Survey
(PANELS; [35]), and other large systematic surveys of
gravitationally-lensed quasars. We note that these well-
defined samples are particularly useful not only for
constraining the statistical properties of galaxies such as
optical region velocity dispersions (e.g., [27,29]) and gal-
axy evolutions (e.g., [25,26]), but also for constraining
cosmological parameters such as the present-day matter
density �m, dark energy density �x and its equation of
state w [15,16,18,32,36].
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In this paper, we pay attention to assessing several
popular dark energy models with this observational lens
redshift data. The goal of this work is to use the lens
redshift data concerning strong lensing statistics with the
SDSS DR5 velocity dispersion function (VDF) of early-
type galaxies and the newly measured late-type galaxies
VDF, together with the BAO, CMB data to constrain seven
popular cosmological models assuming a flat cosmology.
Moreover, in order to make a comparison for various dark
energy models with different numbers of parameters and
decide on the model preferred by the current data, follow-
ing Davis et al. [37], we apply a model comparison statis-
tic, i.e., the Bayesian information criterion (BIC) [38] in
our analysis.

This paper is organized as follows. In Sec. II, we briefly
introduce the statistical method applied in the paper, dis-
cuss the information criterion in the context of dark energy
model selection, and give details of the lens redshift data.
Section III describes a certain number of popular dark
energy models, illustrates the constraint results, and
assesses which one is preferred by the observational data.
Finally the results are discussed in Sec. IV.

II. DATA AND METHOD

The number density of galaxies as a function of lumi-
nosity is described by the Schechter luminosity function
(LF) �L given by

dn ¼ �LðLÞdL ¼ ��
�
L

L�

�
�L

exp

�
� L

L�

�
dL

L�
: (1)

We note that the velocity dispersion � may also relate to
various observable qualities such as the Einstein radius
(�E) and the luminosity (L). For instance, Lee and Ng
(2007) [20] used the Einstein radius (�E), which is propor-
tional to both Dds=Ds and velocity dispersion squared, �

2,
to investigate the property of dark energy, and concluded
that a single strong gravitational lensing by use of the
Einstein radius may not be a proper method to constrain
cosmological parameters. In our analysis, we assume an
effective power-law relation between the luminosity (L)
and the velocity dispersion (�)

L

L�
¼

�
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�
�
; (2)

then the number density of galaxies as a function of
velocity dispersion can be described by the VDF �VD

given by
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where � ¼ ð�L þ 1Þ�.
As for the parameters in the VDF for the early-type and

late-type galaxies, we use the latest much larger SDSS
DR5 [39] and the result from Ref. [36] using the Tully-
Fisher relation and SIE galaxy model:

ð��; �; �ÞDR5 ¼ ½161 km s�1; 2:32; 2:67�;
ð��; �; �Þlate ¼ ½133 km s�1; 0:30; 2:91�; (4)

with the evolutions of the characteristic velocity dispersion
��: ��ðzÞ ¼ ��;0ð1þ zÞ�v , where the best-fit parameters

are [40] �v ¼ �0:01 for early-type galaxies and �v ¼
�0:186 for late-type.
The particular differential probability that a source at

redshift zs be multiply-imaged with image separation ��
by a distribution of galaxies at redshift zl following Eq. (3)
can be written as

�pIS� d2p
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(5)

where ��� is the characteristic image separation given by

��� ¼ 	8

Dðz; zsÞ
Dð0; zsÞ

�
��
c

�
2
; (6)

where 	 � 1 is a dynamical normalization factor [16,27]
and Dðz1; z2Þ is the angular-diameter distance between
redshifts z1 and z2.
To fit the DE model parameters we use a maximum

likelihood method based on those recently used by
Refs. [15,16,27,36]. The likelihood for lensing is defined
by

lnL ¼ XNIS

j¼1

wj ln�pISðjÞ; (7)

which is due to the relative image separation probabilities
of lensed sources as defined by Eq. (5). Parameters wj are

the weight factors for different types of galaxies defined by
Ref. [32]. Using Eq. (7), we define a ‘‘�2’’ as follows:

�2
lens ¼ �2 lnL: (8)

In this paper, we use the lens redshift data of a well-defined
statistical sample including 29 lenses from the CLASS, the
PANELS, the SDSS, the JVAS and the Snapshot survey.
The sample is summarized in Table I of Ref. [32], where

TABLE I. Summary of models.

Model Abbreviation Parameters k

Cosmological constant � �� 1

Constant w w �x, w 2

Interacting dark energy IDE �x, w, � 3

Dvali-Gabadadze-Porrati DGP �m 1

Generalized Chaplygin gas GCG As, 
 2

Affine equation-of-state AEOS �x, � 2

Ricci dark energy RDE �m, � 2
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one can find the source and lens redshifts, the largest image
separations and galaxy types. Here we just list the names of
lensing systems considered. From the CLASS survey:
B0414þ 054, B0712þ 472y, B1933þ 503y, B1938þ
666, 0712þ 472, B1359þ 154, B2045þ 265, B1608þ
656, B0128þ 437, B1152þ 199y, B0218þ 357,
B1600þ 434; from the PANELS survey: J1632� 0033,
J1838� 3427, J0134.0931; from the SDSS survey:
J0246� 0825, SBS0909þ 523, J0924þ 0219, J1226�
0006, J1335þ 0118, Q0957þ 561, J1332þ 0347,
J1524þ 4409, J1620þ 1203; from the JVAS survey:
B1030þ 074, B1422þ 231y and from the Snapshot sur-
vey: Q0142� 100, PG1115þ 080, Q1208þ 1011.

However, given the fact that the lens redshift data only
give a weak constraint on the model parameters [32], there
are some other observational data relevant to this work,
such as the observations of CMB anisotropy [9] and large-
scale structure (LSS) [41,42]. We use the shift parameter R
from the CMB, and the distance parameter A of the mea-
surement of the baryon acoustic oscillation (BAO) peak in
the distribution of SDSS luminous red galaxies, which are
argued as model-independent [43]. As is well known, the
shift parameter R of the CMB is defined as [43,44]

R � �1=2
m

Z z�

0

d~z

Eð~zÞ ; (9)

where �m is the present fractional density of pressureless
matter and z� ¼ 1091:3 is the redshift of recombination,
which has been updated in the WMAP7 data [9]. The shift
parameter R relates the angular-diameter distance to the
last scattering surface, the comoving size of the sound
horizon at z�, and the angular scale of the first acoustic
peak in the CMB power spectrum of temperature fluctua-
tions [43,44]. The value of R has been updated to 1:725�
0:018 from the WMAP7 data [9]. On the other hand, the
distance parameter A of the measurement of the BAO peak
in the distribution of SDSS luminous red galaxies [42] is
given by

A � �1=2
m EðzbÞ�1=3

�
1

zb

Z zb

0

d~z

Eð~zÞ
�
2=3

; (10)

where zb ¼ 0:35. Eisenstein et al. has determined the value
of A as 0:469ðns=0:98Þ�0:35 � 0:017 [41]. Here the scalar
spectral index ns is taken to be 0.963, which has been
updated from the WMAP7 data [9]. So, the total �2 is
given by

�2 ¼ �2
lens þ �2

BAO þ �2
CMB; (11)

where �2
CMB ¼ ðR� RobsÞ2=�2

R and �2
BAO ¼ ðA�

AobsÞ2=�2
A. The best-fit model parameters are determined

by minimizing the total �2. The 68.3% confidence level is
determined by ��2 � �2 � �2

min � 1:0, 2.3 and 3.53 for

k ¼ 1, 2 and 3, respectively, where k is the number of free
model parameters. On the other hand, the 95.4% confi-

dence level is determined by ��2 � �2 � �2
min � 4:0,

6.17 and 8.02 for k ¼ 1, 2 and 3, respectively.
However, the �2 statistic alone is not sufficient enough

to provide an effective way to make a comparison between
different models since this method is based on the assump-
tion that the underlying model is the correct one. Since in
general a model with more parameters tends to give a lower
�2
min, it is unwise to compare different models by simply

considering �2
min with likelihood contours or best-fit pa-

rameters. Instead, one may employ the information criteria
(IC) to assess different models. In this paper, we use the
BIC, also known as the Schwarz information criterion [38]
as a model selection criterion. The BIC is given by

BIC ¼ �2 lnLmax þ k lnN; (12)

whereLmax is the maximum likelihood, k is the number of
parameters, and N is the number of data points used in the
fit. Note that for Gaussian errors, �2

min ¼ �2 lnLmax, and

the difference in BIC can be simplified to �BIC ¼
��2

min þ �k lnN. A difference in BIC (�BIC) of 2 is

considered positive evidence against the model with the
higher BIC, while a �BIC of 6 is considered strong
evidence.

III. DE MODELS AND CONSTRAINT RESULTS

All of the models considered in this section are currently
possible candidates to explain the cosmic acceleration, i.e.
they have not been completely falsified by available tests of
the background cosmology. Considering the current cos-
mological observations, there is no strong reason to go
beyond the simple, standard cosmological model with
zero curvature and a cosmological constant �; however,
when one attempts to reconcile its observed value with
some estimates derived from fundamental arguments [45],
a vast difference is arising. Therefore, it is still interesting
to explore as many cosmological models as possible.
Unless stated otherwise, throughout our paper we calculate
the best-fit values found in that work, and vary the parame-
ters within their 2� uncertainties for each class of model,
on an assumption of a flat universe.
In what follows, we choose several popular dark energy

models and examine whether they are consistent with the
lens redshift data available to us. We divide these models
into seven classes:
(1) Cosmological constant model;
(2) Dark energy with constant equation-of-state;
(3) Interacting dark energy;
(4) Dvali-Gabadadze-Porrati model;
(5) Chaplygin gas models;
(6) Affine equation of state;
(7) Ricci dark energy model.

The models discussed and the parameters that describe
each model are summarized in Table I. The fit and infor-
mation criterion results are summarized in Table II.
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Next, we shall outline the basic equations describing the
evolution of the cosmic expansion in each of the dark
energy models, calculate the best-fit values of their pa-
rameters, and find their corresponding �BIC values.

A. The standard cosmological model

The current standard cosmological model, also known as
the simplest scenario is the case where the dark energy is
simply a cosmological constant, �, i.e., a component with
constant equation of state w ¼ p=� ¼ �1. If flatness of
the FRW metric is assumed, the Hubble parameter evolves
according to the Friedmann equation, which, for this
model, is

E2ðzÞ ¼ �m

a3
þ��; (13)

where �m and �� quantify the density of matter and
cosmological constant, respectively. When flatness is as-
sumed, � ¼ �m þ�� ¼ 1, this model has only one free
parameter ��.

The best-fit value of the parameter is

�� ¼ 0:75þ0:02
�0:02: (14)

We plot the 68.3% and 95.4% confidence limits for this
model in the�� ���2 plane in Fig. 1. This model has the
lowest value of BIC in all the tested models, so �BIC
is measured with respect to this model (see Table II).
Meanwhile, for comparison, we also show the constraining
result with BAO+CMB to demonstrate the non-negligible
effect of the lens redshift data on the parameter constraints.

Note that a similar analysis for this concordance model
was previously done in Ref. [36], which improved the
constraints on cosmological parameters with the CLASS
statistical sample and the image separation distribution of
the CLASS and the PANELS radio-selected lenses, and
found that the cosmological matter density �m ¼
0:25þ0:12

�0:08 (68.3% CL) assuming evolutions of galaxies

predicted by a semianalytical model of galaxy formation
and�m ¼ 0:26þ0:12

�0:08 assuming no evolution of galaxies for

the �CDM model. Moreover, the current best-fit value
from cosmological observations is �� ¼ 0:73� 0:04 in
the flat case [37]. Komatsu et al. (2009) [46] also gave the

best-fit parameter: �m ¼ 0:274 for the flat �CDM model
from WMAP 5-year data combined with BAO, CMB and
the SNe Ia Union data. We find that our result from the lens
redshift data is consistent with the previous works.

B. Dark energy with constant equation of state

In this case, the equation-of-state parameter of dark
energy is assumed to be a constant. In a zero-curvature
universe, the Hubble parameter for this generic dark energy
component with density �x then becomes

E2ðzÞ ¼ �m

a3
þ �x

a3ð1þwÞ : (15)

When flatness is assumed, � ¼ �m þ�� ¼ 1. It is ap-
parent that this is a two-parameter model with model
parameters: � ¼ f�x; wg.
We plot the likelihood contours for the this model in the

�x � w plane in Fig. 2 with the best fit (see Ref. [32]):

�x ¼ 0:71þ0:07
�0:07; w ¼ �0:78þ0:22

�0:34: (16)

For comparison, we also present the constraining results
only with BAO and CMB. Obviously, the combined data
contours including the lens redshift data are shifted com-
pared to those with BAOþ CMB, which also demon-
strates the non-negligible effect of the strong lensing data
on model constraints. We also find that this constraint
result is much more stringent than that of Ref. [36], which
obtained w<�1:2 at the 68.3% C.L. Meanwhile, com-
pared to the cosmological constant model, this flat cosmol-
ogy with constant EoS dark energy gives a lower �2

min, but

due to the one extra parameter it has, it is punished by the
information criterion: �BIC ¼ 2:34.

TABLE II. Summary of the information criterion. The �BIC
values for all other models in the table are measured with respect
to the cosmological constant model.

Model Abbreviation �BIC

Cosmological constant � 0

Constant w w 2.34

Interacting dark energy IDE 5.21

Dvali-Gabadadze-Porrati DGP 0.40

Generalized Chaplygin gas GCG 1.88

Affine equation of state AEOS 1.86

Ricci dark energy RDE 0.86

0.7 0.72 0.74 0.76 0.78 0.8
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FIG. 1 (color online). The �CDM model constraint by the
joint analysis (purple dots) as well as BAOþ CMB (blue
dots): 68.3% and and 95.4% confidence limits.
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C. Interacting dark energy

In the interacting dark energy model, the dark energy
interacts with other components including baryonic and
dark matter through an energy exchange term. The conser-
vation equations for matter and dark energy can be written
in a very general way as

_�m þ 3H�m ¼ 3QH�m; (17)

_�x þ 3H�xð1þ wÞ ¼ �3QH�m; (18)

which preserves the total energy conservation equation
_�tot þ 3Hð�tot þ ptotÞ ¼ 0. We assume that the EoS of
dark energy w � p=� is a constant in spatially flat FRW.
IfQ is a nonzero function of the scale factor, the interaction
makes �m and �x to deviate from the standard scaling. One
Q with only one parameter comes from the assumption
[47,48]:

�X

�m
¼ �X0

�m0

a�; (19)

where � is a constant parameter, which quantifies the
severity of the coincidence problem. The Hubble parame-
ter or this model then reads

E2ðzÞ ¼ a�3ð1��xð1� a�ÞÞ�3ðw=�Þ; (20)

which reduces to the uncoupled case for � ¼ �3w.
Evidently, there are three independent model parameters
in this model: � ¼ f�x; w; �g. According to the current
data analysis, we find the best-fit parameters:

�x ¼ 0:76; w ¼ �1:30; � ¼ 4:77: (21)

We plot the likelihood contours for the IDE model in the
�x � � plane in Fig. 3. Note that the best-fit parameters of
the �CDM model (�x ¼ 0:73, w ¼ �1 and � ¼ 3) still
lie in the 1� regions of the IDE model, indicating that the
�CDM model is fairly in concordance with the current
observational data. However, compared with �x, the EoS
parameter w and the interaction term � are weakly con-
strained with � ¼ 4:77þ5:23

�4:75 at 68.3% confidence level.

Meanwhile, since the IDE model has three free model
parameters, it should have made considerable improve-
ment in the fit, however, it gives a slightly lower �2

min

contrasting to the constant w model (only smaller by
1.31). The difference in the information criterion with
respect to the �CDM model is �BIC ¼ 5:21. Such a
poor information criterion result implies that the IDE
model is too complex to be necessary in explaining the
strong lensing data, compared with the simpler models
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Ω
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FIG. 2 (color online). The w model constraint by the joint
analysis (red dots) as well as BAOþ CMB (black dots): like-
lihood contours at 68.3% and 95.4% confidence levels in the
�x � w. The unfilled circle and the cross here and in other
figures correspond to the best-fit parameters for the two data sets,
respectively.
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FIG. 3 (color online). The IDE model constraint by the joint
analysis: likelihood contours at 68.3% and 95.4% confidence
levels in the �x � w and �x � � planes.
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such as the � model and the constant w model. Moreover,
in respect to the relatively large range of w and � in the 1�
region, both of the cosmological parameters are not really
well constrained by the lens redshift data compared with
the SNe Ia Union data [49].

D. Dvali-Gabadadze-Porrati model

The DGP model arises from the brane world theory in
which gravity leaks out into the bulk at large scales, giving
birth to the possibility of an accelerated expansion of the
Universe [6]. In this model, the Friedmann equation is
modified as

3M2
Pl

�
H2 � H

rc

�
¼ �mð1þ zÞ3; (22)

where rc ¼ ðH0ð1��mÞÞ�1 is the crossover scale. In this
model, EðzÞ is given by

EðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mð1þ zÞ3 þ�rc

q
þ

ffiffiffiffiffiffiffiffi
�rc

q
; (23)

where�rc ¼ 1=ð4r2cH2
0Þ is a constant. The flat DGP model

only contains one free model parameter, � ¼ f�mg.
For the DGP model, the best-fit parameter is

�m ¼ 0:32þ0:02
�0:02: (24)

The 68.3% and 95.4% confidence limits for this model in
the �� ���2 plane are shown in Fig. 4. We find that the
DGP model, as a single-parameter model, is only a bit
worse than the �CDM model under the observational test.
Its �2

min is smaller than that of the �CDM model by about

0.4, and it yields �BIC ¼ 0:40. So, the fitting result shows
that the DGP model fares the best, except for the �CDM
model, under the current observational tests (see also
Ref. [37]), which is in good agreement with the results
from gravitational lensing statistics using the Cosmic Lens

All-Sky Survey (CLASS) lensing sample, �m ¼ 0:30þ0:19
�0:11

[50].

E. Generalized Chaplygin gas model

Bento et al. (2008) [5] proposed an interesting model of
dark energy, named the generalized Chaplygin gas (GCG)
model, which has an exotic equation of state:

p ¼ � A

�
 ; (25)

where A is a positive constant. Combining the equation of
state and the energy conservation equation for the GCG,
we gain the energy density of the GCG:

�ðaÞ ¼ �ð0Þ
�
As þ 1� As

a3ð1þ
Þ

�
1=1þ


; (26)

where As � A=�1þ
ð0Þ. Apparently, for � ¼ 0, the GCG
model behaves like the cold dark matter plus a cosmologi-
cal constant. When As ¼ 0 the GCG behaves always like
matter and when As ¼ 1 the GCG behaves like a cosmo-
logical constant. So, the GCG model is considered to be
able to unify dark energy and dark matter. In a flat universe,
we have

E2ðzÞ ¼ �ba
�3 þ ð1��bÞðAs þ ð1� AsÞa�3ð1þ
ÞÞ1=1þ
;

(27)

where �b is the present dimensionless density parameter
of the baryonic matter. We consider �bh

2 ¼ 0:0233�
0:0008 and the dimensionless Hubble constant h ¼ 0:72
given by the WMAP5 observations. This model has two
independent model parameters: � ¼ fAs; �g. The cosmo-
logical constant model is recovered for � ¼ 0 and �m ¼
1� Asð1��bÞ.
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FIG. 4 (color online). The DGP model constraint by the joint
analysis: 68.3% and 95.4% confidence limits.
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The best-fit parameters are

As ¼ 0:75þ0:04
�0:04; 
 ¼ 0:046þ0:064

�0:052: (28)

The best-fit value of 
 is approaching zero, implying that
the �CDM limit of this model is still favored. We plot the
likelihood contours for the GCG model in the As � 
 in
Fig. 5. However, we can see that compared with the cos-
mological constant model, this model gives a lower �2

min,

with the information criterion:�BIC ¼ 1:88, which means
the GCG model, as a two-parameter model, performs very
well under the information criterion test.

F. Affine equation of state

Considering the equation of state for the dark energy, it
is possibly modeled by a generic expression p ¼ pð�Þ, as
is extensively discussed by Refs. [51–53]. In particular,
when the Taylor expansion of an arbitrary equation of state
is truncated to the first order, e.g., p ¼ p0 þ �� [54], it is
interesting to find that such an affine equation of state can
be used to describe a simple unified dark matter model. In
this model, the time evolution of the background den-

sity reads �ðaÞ ¼ �� þ ð�o � ��Þa�3ð1þ�Þ, where �� �
�p0=ð1þ �Þ and �0 is the dark energy fluid energy den-
sity at present. The Hubble parameter is given by

E2ðzÞ ¼
~�m

a3ð1þ�Þ þ��; (29)

where ~�m � ð�o � �xÞ=�c. With � ¼ 0 this model recov-

ers the standard �CDM case. In a flat universe, ~�m þ
�x ¼ 1, and the model has two independent parameters:
� ¼ f��; �g.

The best-fit parameters are

�� ¼ 0:73þ0:04
�0:04; � ¼ 0:007þ0:008

�0:008: (30)

We plot the likelihood contours for this model in the�x �
� plane in Fig. 6. The currently preferred values of� in this
model still include the cosmological constant case: � ¼ 0.
Compared with the cosmological constant model, this
model gives a lower �2

min with the information criterion:

�BIC ¼ 1:86, which means the AEOS model, as a two-
parameter model, is in concordance with the�CDMmodel
in the 1� region under this observational test. Meanwhile,
considering the small value of �, the fitting result shows
that the AEOS model is generally consistent with the
cosmological constant case.

G. Ricci dark energy model

There exists a possibility that the average radius of the

Ricci scalar curvature jRj�1=2 may provide us with an IR
cutoff length scale. In a flat universe, the Ricci scalar is
R ¼ �6ð _H þ 2H2Þ [55–57], and therefore the energy
density of RDE reads

�de ¼ 3�M2
Plð _H þ 2H2Þ; (31)

where � is a positive constant. The Hubble parameter
could be derived rom the Friedmann equation:

E2ðzÞ ¼ 2�m

2� �
ð1þ zÞ3 þ

�
1� 2�m

2� �

�
ð1þ zÞð4�ð2=�ÞÞ:

(32)

This is a two-parameter model, and its free model parame-
ters are � ¼ f�m; �g.
For the RDE model, the best-fit parameters and the

corresponding �2
min are

�m ¼ 0:14þ0:08
�0:07; � ¼ 0:23þ0:06

�0:06: (33)
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FIG. 6 (color online). The AEOS model constraint by the joint
analysis: likelihood contours at 68.3% and 95.4% confidence
levels in the �� � � plane.
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We plot the likelihood contours for the RDE model in the
�m � � plane in Fig. 7. Out of all the two-parameter
cosmological models we consider, the RDE model per-
forms the best, which gives the smallest �2

min and smallest

information criterion result: �BIC ¼ 0:86.

IV. DISCUSSION

In this work, we use the distribution of gravitationally-
lensed image separations observed in the Cosmic Lens All-
Sky Survey (CLASS), the PMN-NVSS Extragalactic Lens
Survey (PANELS), the Sloan Digital Sky Survey (SDSS),
and other large systematic surveys of gravitationally-
lensed quasars, combined with the BAO and CMB data,
to constrain several popular dark energy models with the
new measurements of the velocity dispersion function of
early-type and late-type galaxies based on the SDSS DR5
data. We have explored seven popular dark energy models
in the context of a flat universe assumption. To assess
various competing dark energy models and make a com-
parison, the information criterion, the BIC, is also applied
in this analysis.

For each model, we have calculated the best-fit values of
its parameters and found its �BIC value. Table I summa-
rizes all the models in consideration and the parameters
describing each model. We have plotted the likelihood
contours of parameters for all the models. The fit and
information criteria results have been summarized in
Table II. Note that the cosmological constant model has
the lowest value of BIC and the value of�BIC is measured
with respect to this model.

From Table I, we see that according to the number of
parameters, these models can be divided into three classes:
the one-parameter models, including the � and DGP mod-
els; the two-parameter models, including the constant w,
GCG, AEOS and RDE models; and the three-parameter
model, namely, the IDE model. If only comparing �2

min, we

find that the � model is not the best one, and there are five
models, namely, the constant w, GCG, AEOS, IDE, and
RDE models, a little bit better than the � model according
to this criterion. However, if the economical efficiency is
considered, we also will find that the � model is the best
one to explain the current lens redshift data together with
BAO and CMB, since the BIC value it yields is the small-
est. For the two-parameter models, the RDE model pro-
vides the smallest �2

min and smallest information criterion

result among all of the two-parameter cosmological mod-
els. Meanwhile, the AEOS model performs best in explain-
ing the current data. As for the three-parameter model,
although the IDE model can fit the current data well with
lower �2

min, it is too complex (it has three free model

parameters) to be necessary, yet.
We also provide a graphical representation of the IC

results in Fig. 8 which directly shows the results in the BIC
test for each model. Out of all the candidate models, it is
obvious that the simplest � model remains the best one.

Following it are the RDE model and two models that give
comparably good fits but have one more free parameter, the
AEOS and GCG models, which can also reduce to the �
model and their best-fit parameters indeed do so (within 1�
range). The DGP model is the only one-parameter model
that can give a rather good fit but also nest �. The three-
parameter model, IDE, is clearly disfavored as it is unable
to provide a good fit to the data.
In conclusion, given the current observational lens red-

shift data combined with the BAO and CMB data, under
the assumption of a flat universe, the information criterion
indicates that the cosmological constant model is still the
best one and there is no reason to prefer more complex
models. This conclusion is in accordance with the previous
results [37]. Finally, as mentioned by Ref. [32], we pin our
hope on the future observational lens redshift data of high
accuracy and more precise CMB data from the ESA Planck
satellite [58], as well as other complementary data such as
Gamma Ray Bursts data [59–61], the data of X-ray gas
mass fraction in cluster [62–64] and gravitational lensing
data (see Ref. [65] and corresponding references therein).
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