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Model of flavor with quaternion symmetry
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We present a renormalizable fermion mass model based on the symmetry Q, that accommodates all
fermion masses and mixing angles in both the quark and lepton sectors. It requires the presence of only
four SU(2) doublet scalar fields transforming nontrivially under the flavor symmetry and the assumption
of an alignment between first and second generation Yukawa couplings. No right-handed neutrinos are
present in the model and neutrino masses are generated radiatively through the introduction of two
additional SU(2) singlet fields charged under both hypercharge and lepton number.
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I. INTRODUCTION

Discrete symmetries have been used extensively in mod-
els of fermion masses for several years now (for an exten-
sive list of references, please see [1-3]). The finiteness in
their number of representations lets one imagine the pos-
sibility of a predictive scenario. Their actual implementa-
tion into a realistic model, however, usually comes with a
plethora of assumptions and additions to the standard
model (SM) that, depending on the specific setup and
ambition, may or not be experimentally testable.

The recent results on neutrino mixing angles and mass
squared differences have given more impetus to the flavor
model builders, particularly the observation that the neu-
trino mixing angles closely match the so-called tribimax-
imal mixing [4]. This observation alone has led to a close
analysis on the symmetry properties needed (inherent) in
the lepton sector [5]. Among the most popular—and pro-
lific—groups explored in this regard is A4, the group of
even permutations on four elements (same as 7, the group
of orientation-preserving symmetries of a tetrahedron) [6].

Itis not a settled matter whether or not quarks and leptons
are both touched by the same flavor symmetry. On the one
hand, the unexpected maximality in the neutrino mixing
sector,1 compared to the hierarchical and small mixing
observed in the quark sector, could be an indication that
they should be treated independently. On the other hand,
models that incorporate a single symmetry in both sectors
do exist and thus, from a model building perspective, it is
certainly possible to have both sectors connected through a
single flavor symmetry. This last possibility can also be
motivated in grand unified scenarios.
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Models in this category contain a large number of addi-
tional fields to those of the SM (or other frameworks such
as the minimal supersymmetric standard model, grand
unified theories, etc.). Most of these new additional fields
are scalar fields needed to break the flavor symmetry and/
or to generate hierarchies through ratios of their vacuum
expectation values (vevs) to high energy flavor scales.
In most cases, these so-called flavon fields are taken to
be heavy and do not lead to detectable phenomenology
(for a study of possible flavon effects at the LHC, see [10]).
A possible alternative to this situation is provided by
renormalizable flavor models in which the scalars respon-
sible for electroweak symmetry breaking (EWSB) are also
charged under the flavor symmetry [11,12]. In such a
scenario, the scalar fields may have significant phenome-
nology at accessible energy scales.

Neutrino mass generation plays an important role on
both approaches. The smallness of neutrino masses has to
be attributed to some additional mechanism that must be
incorporated into the models, the seesaw being the most
popular and perhaps successful [13]. The end result is the
need to add more scalars and/or energy scales. In some
renormalizable models, nonrenormalizable operators are
introduced to generate neutrino masses and this requires
also the introduction of some high energy scale (without
the introduction of right-handed neutrinos). As a side note,
we mention that for models with right-handed neutrinos,
there has been a recent interest in the possibility of low-
ering down the scale associated to neutrino mass genera-
tion close to the electroweak scale and thus, perhaps, make
it accessible to experiments at the Large Hadron Collider
(LHC). See [14] for an incomplete list of examples.

The two general approaches described above are then
useful and have led to interesting possibilities. If one is
interested in explaining the observed hierarchies in the
masses without assuming a hierarchical structure for the
Yukawa couplings, then the first (flavon-based) approach
seems appropriate at the expense of introducing high
energy—unobservable—scales. If one is instead interested
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in the possibility of accessing the phenomenology associ-
ated to a possible flavor model, then the second approach
may seem more appropriate—at the expense of assuming
hierarchical couplings. Nothing is for free.

As mentioned above, one of the attractive features of
renormalizable models is that the SU(2) doublet scalar
fields transform nontrivially (at least some of them) under
the flavor symmetry and this can, in principle, be reflected
phenomenologically. Most models however require a large
number of SU(2) doublets (and sometimes triplets) in order
to obtain realistic fermion mass matrices and mixing an-
gles. Most models have in their construction the strong
requirement for the symmetry to determine the tribimax-
imality in the lepton sector. The quark sector is then
accommodated through the incorporation of more scalars
and/or additional Abelian symmetries. An interesting ques-
tion is to determine if it is possible to create a renormaliz-
able model with a few (compared to = 7 for models in the
literature) SU(2) doublet scalar fields that would in prin-
ciple lead to interesting—more tractable—EW scale
phenomenology.

In this work, we address this question and find that,
under certain conditions, it is possible to create models
with a minimum of four SU(2) doublet scalar fields. The
starting point for our approach relies on the study of the
Fritzsch-like textures [15] in the quark sector in order to
determine which groups can be used to reproduce them
with the minimum number of SU(2) doublets (we only
consider nonsupersymmetric models). Once this is deter-
mined, the charged lepton sector can be obtained automati-
cally in analogy with the down-type quarks—note however
that this determines the representation of left-handed neu-
trinos under the flavor symmetry and so it must be checked
whether or not that same representation leads to acceptable
results for neutrino mass differences and mixing angles (in
general it does not). As for the neutrino sector, the models
do not include right-handed neutrinos and masses are
generated radiatively [16]. In order to accomplish this, at
least two additional SU(2) singlet scalar fields are needed
with nonzero hypercharge, charged under Lepton number,
and with nontrivial representations under the flavor sym-
metry. The smallest group we find that can be used in this
scenario is the quaternion group Q,, and a model based on
it is presented in detail. The model successfully accommo-
dates all data on both quark and lepton sectors only for an
inverted hierarchy in the neutrino sector and without exact
tribimaximality (Q4 has been used before as a flavor sym-
metry in different scenarios, see for example [17]).

In Sec. II, we present the general description of the
model based on Q, including the results and discussion
of the numerical analysis. The scalar potential and vacuum
alignment for the model is discussed in Sec. III. The
phenomenological study associated to the scalar sector is
under investigation and will be presented in another
publication. We then present our conclusions and final
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remarks. We have included three appendices where we
give some details on the group Q,, the analysis of the
Yukawa mass matrices in the quark sector, and finally the
radiative generation of neutrino masses.

II. THE MODEL

Consider the SM gauge and fermion content plus four
additional SU(2) scalar doublets (H;, i = 1, 2, 3, 4) and
two SU(2) singlet scalar fields (n; and 71,) with hyper-
charge ¥ = —1 and Lepton number L = 2 (note that no
right-handed neutrinos are present). Now assume there is
an additional flavor symmetry Q4 under which the fields
above transform in the following way:

O0~1""el"" o1 " ={0, 00, ®0;}
dp ~20 17" ={(dgdg,) ® dps}
ug ~20 17" = {(upytupy) ® ups}

L~201t ={(L,[,) L, (D
er~1"" @1t @1 " ={ez @ ep, ® eps)
H~201""®1 ~ ={H, = (HH,) ® H; ® H,}
n~2={np=(mm}

where Q and L denote the SU(2) doublets for left-handed
quarks and leptons, respectively, and fields with subscript
R denote SU(2) singlet right-handed fermion fields. Note,
in particular, that the ordering of first and second genera-
tion fields in the doublet of Q, for the right-handed up-type
quarks is reversed compared to the down-type quarks. This
is necessary in order to obtain the same texture in both
sectors (see Appendix B for a possible alternative). This is
interesting since one naively could expect that the ordering
of families should have no effect, i.e. it would amount to a
basis rotation. Nevertheless, the nontrivial transformation
under the flavor symmetry does produce an effect [18].
Another thing to note is the difference in representations
between Q and L. We alluded to this in the Introduction
and, as it turns out, letting L ~1 & 1 & 1 does not accom-
modate acceptable results in the neutrino sector. This is an
interesting result that shows that the symmetry does play a
role in the determination of the mixing angles and mass
differences in the neutrino sector as well.

We now present the consequences of these charge as-
signments for the quarks and lepton mass matrices.

A. Quark sector

The down-type quark mass matrices are obtained from
the following gauge and flavor invariant terms (see
Appendix A):

YgQ_ldDRHD = 1+jL ®2®2 D 1++
31++

= Y{0,dyH, — Y{01d\xHy, (2
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YldQ_ZdDRHD = 1+_ ® 2 ® 2 D 1++

D1t~
= Y{0,d\xH, — Y{Q2d>xH,,  (3)

YgQ_fidDRHD = 17+ ® 2@2 D 1++
o1t
= Y{QsdigH, + Y{Q3dogH,, (4

YgQ_2d3RH3 -~ 1+_ ® 1+_ ® 1++ D) 1++, (5)

YfQ_3d3RH4 -~ 17+ ® 1+7 ® 177 D) 1++, (6)

where the Q, products are shown explicitly and where the
Y¢ represent numerical unknown coefficients to be deter-
mined later. We have omitted their Hermitian conjugates
for simplicity.

After electroweak symmetry breaking (EWSB), which
we assume is triggered by the CP-even vacuum expecta-
tion values (vevs) of the SU(2) doublets H;, the following
mass matrix is obtained:

_ngz ngl 0
Md = val _Yijvz YéjUS B (7)
Yélvz ngl Yf‘lv4

where the v;s denote the vevs (H;) = v,.
For the up-type quark sector, we obtain

Y(’fQ_luDRI:ID = 1++ ®22 D 1++
51t

= Y§OuiHy + Y§OrusgHy,  (8)

YIMQ_ZuDRI'NID = 1+7 ® 2@2 D 1++
o) R
= Y QyuprHy + Y QouigHy,  (9)

Y2uQ3MDRI:ID == 17+ ® 2®2 D) 1++
o1 7
= Y{QsuprH, — Y{Qsu\xH,, (10)

YiQousrH; ~17" @17 @17t D117, (11)
YiQsuzrHy~1""®@17" @17~ D117, (12)
where H = io,H*. After EWSB these expressions lead to
ngz Y(Iilvl 0
M,=1| Y{v, Y{v, Yivus | (13)
_Y;UZ ngl Y4M'U4

In order to obtain a Fritzsch-like pattern for these ma-
trices, the following assumptions are made: Y¢ = Y{,
Yy =Y}, and v, = 0. We were not able to obtain the
condition on the unknown coefficients from the flavor
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symmetry without enlarging the model by using larger
groups and more scalars, and thus it is our strongest
assumption. The vacuum alignment condition is analyzed
in Sec. III where it is shown that it is consistent with
vacuum stability.

Under these assumptions, the mass matrices acquire the
following textures:

0 A, 0
Mu,d = (Au,d 0 Bu,d): (14)

0 Du,d Cu,d

where we have parametrized the products of the unknown
coefficients Y with the vevs in terms of the new coefficients
A, B, C, and D.

Following the analysis presented in [12,19] and taking
Cya = Y& m,,, we rewrite the mass matrices above in
terms of the quark masses and free parameters y, ; [20],

0 QM,d/yu,d 0

Mu,d = myy QM,d/yu,d 0 bg,d B (15)
O du,d yuyd
where
2 my gMe g
Qua =73 (16)
my),
m2  + m?2
Pua = 45—, (17)
mp
d,, = Puat1— }’i,d + R4 _ (CIM,d)2 (18)
“ \ 2 Yu,d '
b, = Pua t 1= yi,d — R4 . (qu,d)z (19)
“ \ 2 Yu,d '

R,g=((1+pa—yi)* —4(puatdas)+842 520"
(20)

and where Mu,d are matrices with real entries obtained
from the phase factorization of M, ; [20] through

M,,= P, ,MP,, (21)

with P, ; diagonal phase matrices such that P = P, P, =
diag(1, e'Pu, ei®u) with B,;, =B, — B; and a,; =
o, — .

The free parameters are then y, 4, @,4, and 8,,, and the
CKM matrix is given by

Vekm = 0,PO), (22)
where the O, ; matrices diagonalize M2 , via
O, aM, M} ,OF , = diag(m? ;, m? , m?,). (23)

Using the values y, = 0.9964, y, = 0.9623, «,, =
1.9560, and B,,; = 1.4675, we obtain
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—0.0197 + i0.2239
0.00676 + i0.00505

0.97434 + i0.00976
Vi = 0,POT =

and so

0.974386  0.224853

V&l = (0.224723

0.00844  0.0396092

—0.22086 + i0.0422
0.10837 + i0.9675
0.0258 + i0.03006
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0.0035 — 0.00098
0.03395 — i0.02179 )
—0.373764 + i0.92664

and” 8, = 1.19528 in agreement with the experimental data [22]

0.97428 £ 0.00015 0.2253 = 0.0007

0.2252 = 0.0007
0.00862 000026

[Vexml =

and Scgy = 1.2014670.0478.

B. Lepton sector
In this case, the allowed Yukawa terms are
Y§iLper Hp =2®1"" @2 D177
= Y{Le\xH, — Y{L,exH,, (26)

YfZDeRZHD - 2® 1+_ ®2 D 1++
= Y{LexxH, — Y{LyerpH,, 27

Yfl_,DeR3HD = 2@ 1,+ ®2 D) 1++
= —YiLiesgH, — YiLyespH,,  (28)

YilsepH; ~17" @17 @ 17" D17F,  (29)

Y{liesgH, ~17" @ 1" " @1~ D17+, (30)

which written in matrix form, after EWSB, gives

ngz Y?vl _ngz
Md= _ngl _Y]d'U2 _ngl . (31)
0 Y3d'U3 Yf‘lv4

The analysis made for the quark sector extends directly to
the charged leptons. The mass matrix can then be written as
before (see Eq. (15)):

0 a 0
Ml =m;| —q 0 bl , (32)
0 d i

where again we have made the assumptions that Y§ = Y¢
and v, = 0.

Calling U, the matrix that diagonalizes M7, and using
the values for the charged lepton masses taken from [22],
we obtain

*We compute S, using the expressions in [21]

0.00363
0.973587 0.0403354), (24)
0.99918
+0.00016
0.97345000015 oosoim (25)
. —0.00016 . —0.0007 ’
0.040375:90190.999152+0:000030
[
0.997042 0.0624654 —0.0447713
U,—( 0.0768522  —0.813271  0.576787 )
—0.000382008 —0.578522 —0.815667
(33)

with vy = 0.9 and a; = Bl = 0.

For neutrinos the situation is different. We are assuming
that neutrinos are Majorana type and that their masses can
be induced by radiative corrections, thus making them light
naturally [23]. Following the description in Appendix C,
we write the symmetry allowed interactions of the fields 7,
and 7, with leptons and with the SU(2) scalars. For
leptons, the interaction terms are given by

L, = ke;LiyL iy + He, (34)

where i, j = 1,2 are SU(2) indices, €;; = —€;; = 1, and
denotes the antisymmetric matrix (in family space)

0 0 Kp
K= ( 0 0 KD> 35)
—Kp —Kp 0

with kp a free parameter that characterizes the size of the
interaction.

The gauge invariant—Lepton number violating—
interaction terms with the SU(2) scalars are given by (see
Eq. (C2))

Vi =M€;HpiHymp + Aye;;HpHyymp + Hee.
= Ay (€&;;H,;H3;m, — €;;Hy Hyjmy)
+A2(6in]iH4j77| +€in2[H4j7’2)+H.C.. (36)

We compute the neutrino mass matrix elements by
evaluating diagrams like the one in Fig. 3. Consider the
fermion line in such diagram. Its contribution is given by

Uy utugmiutu, kuf = v, yMikuf ~ v, m,Uf
=M, (37)

where
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U MU}, = diag(m,, my,, m.), (38)
Y, is the lepton Yukawa matrix
-Y Y Y
Y, = ( Yy -—-Y Yz), (39)
0 v, v,

and where the matrices M, and M, = Y,MITK correspond
to the neutrino mass matrices in the charged lepton mass
and weak bases, respectively, (up to factors from the scalar
loops). The neutrino mixing is then obtained by diagonal-
izing M!, using [24]

—C13€12
_ s
Vemns = | 23812 + 53813¢10€"0¢"
_ is
§23812 T €23513C12€ 7"
where ¢;; = cosf;;, s;;=sinf;;, and Scp is the

CP-violating phase (we assume that CP is conserved in
this sector and thus work with §cp = 0).

Using Eq. (37), we obtain the matrix elements for M,
(including now the scalar loop factors)

My, = —m,,,

= (YkpAom,,v4 — YakpAym, v3)F(my;, m3)

(42)
mvauﬂ = mV’uVe
= 2kpm,, A\ Yvy + 2kpAym,, Yovy)F(m3;, m3)
(43)
my, ., = My y,
= (—KkpAym, Y4vy — KpAym,, Youy)F(mg, m3)
(44)
mVﬂVT = mv,vu
= _(KDA]m’uTYZUg, + KD)\]mTMY:),U]
+ 2kpAyme, Yv3)F(mg, m3). (45)

Assuming that A; ~ mg+ ~ 500 GeV, and noting that
Y(H) must be at the same scale of m,, then if x, ~ O(1)
(O(107%)) then m, ~4 X 10° GeV (9 X 10° GeV) leads
to matrix elements of O(eV).

The Majorana neutrino mass matrix then has the texture

a c¢ d
M,,=(c —a e),
d e 0

where all entries are O(eV).
In order to perform the numerical analysis, we use the
following experimental results [22]:

(46)
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(40)

where V = KVPMstVl with VPMNS = UZ UV, .7< =
diag(e’®1, e'2, ¢*3), M = diag(e'?, e'?, 1), and MY repre-
senting the diagonal neutrino mass matrix with eigenvalues
m; = 0 (corresponding to the physical neutrino masses).
The phases «; are unphysical and in our analysis we set
them to zero. The phases o and p are Majorana phases that
are determined from the diagonalization. We use the stan-
dard parametrization for Vpyns, namely

M!, = V*MPvt

€13512 ' size”ocr
€23C12 — 523513S12€f6CP $23C13 ) (41)
s23€12 + C3813512€° —ep3cn
|
sin?(26,,) = 0.087 = 0.03 47)
sin%(26,3) > 0.92 (48)
sin?(26,3) < 0.15 (49)
and
Am, = 7.59753) X 1075 eV? (50)
Am3, =243 £ 0.13 X 1072 eV2. (1)

Since the absolute mass scale in the neutrino sector is not
known, we use the following ratio:

2
Amy | g 0088,

0.0338 < | (52)

Am3,

In order to determine whether the mass matrices in this
model can reproduce these results, we performed a scan of
the complete range in all three angles. Then for each case
where a solution consistent with all three angles was found,
we computed the ratio in Eq. (52) and selected those
solutions that fell within its allowed range. We found that
solutions exist with the following properties:

(1) Solutions exist only for an inverted hierarchy

(m3 K my = my),
(2) The mixing angles are bounded by

0.84 < sin?(26,,) < 0.9, (53)
0.96 < sin2(20,3) < 1, (54)
0.012 < sin?(26,3) < 0.15. (55)

(3) Note that while for 8, there are consistent solutions
for all the experimental range, the angles 63 and 0,3
have an inferior bound higher than the experimental.
It can be seen that the model always deviates from
exact tribimaximal mixing.
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FIG. 1 (color online). Angles that reproduce the experimental
mass differences ratio for the neutrino sector. Note that 6,5 > 0
throughout the range.

Figure 1 shows all the angles obtained from the model
consistent with the experimental ranges for angles and
mass squared differences.

Since neutrinos in the model are Majorana, neutrinoless
double beta decay (OvBB-decay) can take place. This
decay is characterized by the (1,1) element of the neutrino
mass matrix in the charged lepton mass basis which can be
written as (see for example [24]).

— 200002 2 2ip i 2
mgg = €-'7c0os"01,c08703m; + e“'Psin"60,cos°63m,

+ sin%6,3ms, (56)

where m; is the (real) mass of the j-th neutrino and o, p are
Majorana phases. These masses can be parametrized using
the mass squared differences and m5 as

my = \/m3 + |Am3,|.

(537

m, = \/m§ + |Amd,| — Am3,,

The present framework does not determine the absolute
scale of neutrino masses and it is not possible to make a
prediction for mgg. Instead, we only analyze the type of
contribution that our model gives under the assumptions

o
N Allowed range for Ovjf3 decay |
< O ote—|— — — L -~ ]
> A
o T b es Ll
) %l e
o 2 o e
2 ANy
At egbeeted tugdeg
N~ 0o, fel T oF
— = g .;‘1.62.#;7-. 1
2a, .
- © o \%?3&'
— - 1
. BEA
e et
° BT
A B
< o .
— T

FIG. 2 (color online).

jm j (ev)
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stated above that render the matrix elements in Eq. (46)
of O(eV).
The current direct measurement upper bounds on ||
are given by [25]
Imggl < (0.20-0.32) eV ("Ge),
< (0.30-0.71) eV (13°Te),
< (0.50-0.96) eV (**Mo),

(58)

and future experiments expect to reach the 1072 eV
scale [25].

Using the angles in Fig. 1, the results are represented in
the [mggl—ms plane in the left plot of Fig. 2. We note that
the texture in our model leads to the values 0 and 77/2 for o
and p, respectively.

Upper and lower bounds can also be established from
neutrino oscillation data [26,27]. The 3¢ allowed region
for an inverted hierarchy is displayed in the light blue band
on the right plot of Fig. 2, where we also show the small
(dark blue spot) region corresponding to the present model.

III. SCALAR POTENTIAL

In this section, we present the scalar potential and show
that the vacuum alignment needed to generate the textures
in Eq. (14) and (32) is consistent with its stability.

The gauge and flavor invariant potential is given by

V = V(Hp) + V(H;3) + V(H,) + V(np)

+ Viui(H3, Hy, Hp, mp), (59)
where
V(Hp) = M%)H):L)HD + €1{H£HD}2
+ GIALH - [HE A plye (60)
V(H3) = p3HIHs + €5(H] Hy)? (61)
Allowed range for Ovf decay e
| 78Ge _ _ _ _ o ________
g i
— ]
o. —_
o
8 I I I
© 0.001 0.01 0.1 1
ms (eV)

left: Allowed range for the Ov 88-decay in the Q, model. right: The light blue band corresponds to the allowed

range for |m Bﬁl from oscillation data at 3¢ [27], the dashed line represents the lower limit from direct observation in 7°Ge (|m Bﬁl <
0.20 [25]), and the small dark blue spot is the allowed range in the left figure obtained from our model.
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()
®
1
:
H -7 N
L g 4O .
4 \
/7
' m, \\
— I e & > -
a a a b
\D Iy I V.

FIG. 3. One loop diagram giving rise to neutrino Majorana
mass.

V(H,) = piH]Hy + C,(H]H,)? (62)
V(np) = wimpnp + Csinpmpl + LdnpnpHnpnp}

(63)

and where V,, (Hs, Hy, Hp, 11p) is given by the sum of the
following terms:

V(Hs, Hy) = €| HYHy? + €3(H] H3)(H] H,)
+ €9((H;H4)2 + HC) + el()l[:];Hétlz
+ €, (H H)(HIAY) (64)

V(Hp, H3) = €12|HZF)H3|2 + 613[H2L)HD]1++ (H;LHs)
+€14|H£H3|2 +€15(HI)H3)(H2L)FI3) (65)

V(Hp, Hy) = €6|HYHy > + €15[H  Hp i (HI H,)
+€18|HI)H4|2 + 619(1:12)1‘14)(1‘12;[:14) (66)
V(Hp, Hs, Hy)
= (xo(HLH3)(HI Hp) + € [HEHply— (HIH,)
+ Uy (H Y H3) (H Y Hy) oy (H L Hy)(HL H )
+ Oy (AL H)HEHY) + €5 (HYH3)(HLH,) + Hee.)
(67)
V(Hp, np) = €26{H1J5770}{77;HD} + €27{H£HD}{77;77D}
+ fzs{l‘ﬁ) npHnpHp}
+ CoofH mpHmpHp) (68)
V(H;, np) = Co(npynp)(HIHy) + €| HI np> (69)
V(Hy, mp) = Co(npmp)(HIHy) + €3 HInpl> (70)

V(H3Hymp) = 634(H§ np)(mpHy) + 4?35(77}’3770)(H§H4)
+ H.c. (71)

V(HHT]) = )\IHDH3’T]D + AZHDH47)D + H.c. (72)
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The terms inside the curly brackets correspond to the
product of two 2’s (and so they contain four different 1’s)
and we include all possible combinations that—after multi-
plication of the two curly brackets—yield 17", Note that
the last term V(HHm) is the one in Eq. (36) where we
included the SU(2) indexes explicitly.

The SU(2) doublet scalar fields H; (i = 1, 2, 3, 4) are
expressed as

_ H; (o
Hi=\ L+ by + iay) — (H;) = y ) a3

where we work under the assumption that the vevs v; are
real and thus the potential is CP-conserving.

The minimization of the potential gives the following
relations:

2 —

MD (=46, (v3 + v3) — (€1 + €13)v3

1
2
+ 2pv3vy — (U4 + £17)0), (74)

1
u3 = g(_({flz +€13) (v + v3)vs — 24303
3

+ €22(U% + U%)U4 - (67 + €8 + 2€9)U3U%), (75)

1
ui = 2—1}4(622(1)% +v))vy — (€1 + €17) (V] + v3)
+ (€7 + €8 + 269)U%)U4 + 2641&%), (76)

together with four massive scalar fields, three massive
pseudoscalar fields, five massive charged scalar fields,
and three massless Goldstone bosons.

The vacuum alignment we need is v, = 0 and all other
vevs nonzero. Furthermore, the vevs must also satisfy the
relation v} + v3 + v3 + vi = (246 GeV)>. Taking this
into consideration, we find that there are regions of pa-
rameter space where a stable minimum exist with masses
in phenomenological acceptable ranges. A complete analy-
sis of the scalar potential and its phenomenology is beyond
the purpose of this paper and will be presented in a future
publication.

IV. CONCLUSIONS

Renormalizable models of flavor provide an interesting
alternative for the study of fermion masses and mixing.
Furthermore, their scalar sector might involve interesting
collider phenomenology due to the fact that the SU(2)
Higgs doublets transform nontrivially under the flavor
symmetry.

Most constructions, however, require the introduction
of a large number of SU(2) scalar doublets that make the
phenomenological study cumbersome, except perhaps
under some strong assumptions such as small interaction
among the scalars and/or approximate diagonalizations
and/or additional discrete Abelian symmetries. The
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purpose of this paper is to investigate if, and under what
conditions, one can generate a renormalizable model with
Just a few SU(2) doublets.

The analysis is based on obtaining Fritzsch-like textures
for the quark mass matrices. Once this is accomplished, the
charged lepton mass matrix is in principle obtained by
mimicking the down-type quarks. However, by fixing the
transformation properties of the left-handed charged lep-
tons, the left-handed neutrinos also get fixed. It turns out
that in general it is not possible to obtain acceptable results
for the neutrino sector, and one must consider alternative
representations for the charged leptons that do not require
the introduction of additional SU(2) doublets. We note that
right-handed neutrinos are not present in the models and
neutrino masses get generated radiatively.

We find that it is possible to construct renormalizable
models of flavor with only four SU(2) doublet scalar fields
transforming nontrivially under the flavor symmetry. The
smallest group we found to work is Q4. This is accom-
plished provided the following assumptions are met:
i) there is an alignment between first and second generation
Yukawa couplings (this is our strongest assumption),
ii) there are no right-handed neutrinos and neutrino masses
are generated radiatively, which requires the introduction
of two SU(2) singlet scalar fields charged under both
hypercharge and Lepton number, and iii) a particular (vac-
uum stable) vacuum alignment for the scalar sector must be
imposed. We present a specific realization of such a model
including the analysis for the vacuum stability of the scalar
potential. The scalar phenomenology of the model is under
investigation.
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APPENDIX A: USEFUL FACTS ABOUT Q,

The quaternion group Q, sometimes also called Q4 or
Qg, has 8 elements and five irreducible representations
(irreps): 177, 177, 17%, 177, and 2 (following notation
in [28,29]) where the two-dimensional irrep is complex.

Let A and B be two two-dimensional irreducible repre-
sentations of Q, such that A = (a, @,) and B = (B, B,).
The following relations have been used in the paper (see
[28-30]):

A" = (a3, —a)), (A1)
17" ® A = (a), ay), 1" @A = (ay, ay), (A2)
1770 A = (a), —a), 17" ®A = (ay, —ay),
and
A®B=1""0l1""®1 "0l (A3)

PHYSICAL REVIEW D 84, 016009 (2011)
where
177 ~ (a8, — a2 81),
1" ~(a Byt arfBy), 177

177 ~(a, 81 — a2 8),

A4
~(a; B+ ay8,). (AD)
APPENDIX B: YUKAWA TEXTURES

The analysis in this paper is based on obtaining the
Fritzsch-like textures for the quark mass matrices M,, ;4

0 Ay O
M, .= (Au,d 0 Bu,d)-

0 Du,d Cu,d

(B1)

However, there are related textures that can also be used
in our scenario. To see this, we write the CKM-matrix as
Vekm = VLMVZ 4 Where V,, , are the unitary matrices
that diagonalize the squared quark mass matrices

VitaMaM! VI (B2)

— A 2 2 2
L(ud) ~— dlag(mu,d’ me,s, mt,h)'

Denoting by M7, = MM,dMI’d and using Eq. (B1), we
see that

Ai,d 0 Au,dDu,d
My,={ 0 Al +Bl, BuCu | (B3
Au,dDu,d Bu,dcu,d Cid + D%d

The relevant observation is that any matrices M, and M
whose squares give the matrices M% and M%), respectively,
will then lead to the same CKM-matrix (up to the phases
introduced in Eq. (21)). The following matrices have this

property:

0 0 A A0 0 A 0 0
A B 0] 0 A B 0 B Al
0 C D D 0 C D C 0
0 0 A 0 A 0
B A 0| B 0 Al (B4)
C 0 D C D O

and so it is conceivable that models with Q,—and other
symmetries—can be constructed that lead to some of these
quark mass matrices. For example, if the first and second
generation right-handed up-type quark assignments for the
model presented in the paper were reversed and put in the
normal order (see Eq. (1)), i.e. (ug ug,), then the mass
matrix M, would take the form of the first matrix in
Eq. (B4). Note that the matrices in Eq. (B4) correspond
to all possible column interchanges of the matrix in
Eq. (B1). Regarding the phase factorization Eq. (21), we
find that only the last matrix above gets factorized in
exactly the same way as the Fritzcsh-like textures, while
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the rest require additional assumptions such as A € R
and/or B € R. We stress that the minimum number of
SU(2) doublets needed to generate any of these matrices
(in both the up and down-type quark sectors) is four.

It is important to note that the matrices above do not
represent the only possibility for generating an acceptable
CKM-matrix. They are simply variations of the Fritzsch-
like matrix Eq. (B1) that satisfy Eq. (B3). Interesting
alternatives do exist. See, for example, the recent work in
[31] where it is shown that having M, similar to Eq. (B1)
and an M, given by

0 A, 0
Md= AZ Bd 0 ,

0 0 ¢,

(B5)

leads to an acceptable CKM-matrix. This type of texture,
although not of the form in Eq. (B3), can also be obtained
from Q, with a minimum of four SU(2) doublets.

APPENDIX C: RADIATIVE NEUTRINO MASSES

In absence of right-handed neutrinos, the only possible
mass terms for left-handed neutrinos are Majorana mass
terms. The simplest mass term in this case, without the in-
troduction of scalars with nontrivial SU(2) representations,
is the dimension five operator with form L o Z_EIL%.
Although this term is nonrenormalizable, it may be induced
by radiative corrections if we introduce a scalar field that
breaks lepton number (provided there are at least two SU(2)
Higgs doublets [16]). This is why we have introduced the
fields n; and 7, in our renormalizable model.

In order to see how this works, consider the following
example: A two Higgs doublet model with SM fermion
content and an additional scalar field 2 with charges
(1, —1) under SU(2) X U(1)y and lepton number L = 2
[16,32]. The Yukawa couplings of & are

Ly = ke (LHLER + Hee, (C1)

PHYSICAL REVIEW D 84, 016009 (2011)

where i, j are SU(2) indices, a, b are family indices,
k% = —kP? from Fermi statistics, and L; denotes the
SU(2) lepton doublets. If there are two (or more) Higgs
doublets, there will be a cubic coupling term like

L HHh = )\aﬁéllHlaH}Bl’l + H.c., (C2)
with A, = —Ag,, and @, B = 1,2. This term explicitly
violates lepton number and allows the generation of
Majorana masses for the neutrinos.

Notice that Egs. (C1) and (C2) (together with the usual
Yukawa term from the lepton sector) lead to the diagram
shown in Fig. 3 that contributes to a Majorana mass term as
Apvy 1 L my,
v, (4m)? m%_,] —m3 & mi’

My, = (= D)x*m (C3)

where mpy denotes the charged Higgs mass and m,, the
mass of the singlet field h.2 Thus, the total contribution,

including the diagram with v% and »¢ interchanged (which
has the same form as in Eq. (C3) but with a < b) is

Aoy 1 1 mj,

_ ,ab 2 2 12%2 H,

- - I

Map = 1 (mjy = mz) vy (47)?* my, — my o8 m;

A
= k% (m3 — m2) 12Y2 F(m3, m?), (C4)
vy
with [32]
1 1 X

Note that in this example the antisymmetry of « forbids
diagonal mass matrix elements. The nontrivial representa-
tions of neutrinos and scalars under the flavor symmetry
can alter this situation.

3We note that this is not yet in the scalar mass basis since the
HPH"h~ term induces mixing between H* and i~ . However,
we expect my <K my,, and work in the approximation that treats
my, and my, as the physical masses.
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