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We study the propagation of nonrelativistic bound states moving at constant velocity across a

homogeneous thermal bath and we develop the effective field theory which is relevant in various

dynamical regimes. We consider values of the velocity of the bound state ranging from moderate to

highly relativistic and temperatures at all relevant scales smaller than the mass of the particles that form

the bound state. In particular, we consider two distinct temperature regimes, corresponding to tempera-

tures smaller or higher than the typical momentum transfer in the bound state. For temperatures smaller or

of the order of the typical momentum transfer, we restrict our analysis to the simplest system, a

hydrogenlike atom. We build the effective theory for this system first considering moderate values of

the velocity and then the relativistic case. For large values of the velocity of the bound state, the separation

of scales is such that the corresponding effective theory resembles the soft collinear effective theory

(SCET). For temperatures larger than the typical momentum transfer we also consider muonic hydrogen

propagating in a plasma which contains photons and massless electrons and positrons, so that the system

resembles very much a heavy quarkonium in a thermal medium of deconfined quarks and gluons. We

study the behavior of the real and imaginary part of the static two-body potential, for various velocities of

the bound state, in the hard thermal loop approximation. We find that Landau damping ceases to be the

relevant mechanism for dissociation from a certain critical velocity on, in favor of screening. Our results

are relevant for understanding how the properties of heavy quarkonia states produced in the initial fusion

of partons in the relativistic collision of heavy ions are affected by the presence of an equilibrated

quark-gluon plasma.
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I. INTRODUCTION

When matter is immersed in a thermal medium many of
its properties change. In principle, no strictly stationary
bound state exists, because interactions with the particles
of the medium lead to a finite lifetime for all states
(including the ground state). This is equivalent to a broad-
ening of the energy levels, i.e. an imaginary part of the
energy eigenvalues, which depends on the density and on
the temperature of the medium.

Of particular interest is the case in which the bound state
moves with respect to the thermal medium. The first ex-
perimental investigations and theoretical developments of
this system were done in condensed matter physics [1].
From the analysis of atoms moving across a plasma, it has
been shown that a number of phenomena may take place.
First of all the Debye screening of the Coulomb potential
depends on the relative velocity between the bound state
and the plasma. Moreover, the propagation of a bound state
through the medium produces a fluctuation of the induced
potential which leads to a density trail. Finally, the moving

particle loses energy and is eventually stopped by the
plasma.
A renewed interest in the properties of bound states

moving in a thermal medium arose in recent years due to
the advent of high energy heavy-ion colliders. In particular,

one is interested in understanding whether some modifica-

tions of the properties of heavy quarkonia (HQ) states
produced in the early stage of the heavy-ion collision can

be a signature of the presence of a deconfined plasma of

quarks and gluons. In their pioneering work [2], Matsui

and Satz showed that the Debye screening of the color
interaction between two static heavy quarks may lead to

the dissociation of HQ in a thermal medium. This effect

should be experimentally detectable by the suppression of

the corresponding yields. The suppression of HQ states
means that the yield of HQ observed in heavy-ion colli-

sions is smaller than the yield of HQ one would obtain

multiplying HQ production rates in p-p collisions by the
number of nucleons participating in the collision and tak-

ing into account the normal nuclear absorption; see e.g. [3]
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for a brief review. The first study of moving HQ was then
performed in [4], in which the dependence of the Debye
mass on the velocity of propagation of the heavy quarks
with respect to the quark-gluon plasma (QGP) was deter-
mined. Subsequent analyses have confirmed the effect and
studied the formation of wakes in the QGP [5–10].

One may wonder whether the drift of bound states is
important, as it is the case for heavy flavors. Indeed, mea-
surements of heavy flavor production in PHENIX [11] via
single electron measurements results in a large v2, which
suggest that there is significant damping of heavy quarks
while they travel across the fireball. Therefore, in heavy-ion
collisions the thermal bath expansion may drift the heavy
quarks in a phenomenon similar to advection in normal
fluids. This picture has also received support from micro-
scopic calculations of heavy quark diffusion in the quark-
gluon plasma [12]. However, we expect that the drag of a
heavy quarkonium is less important than that of a heavy
quark. This is because an isolated heavy quark has a net
color charge while a heavy quarkonium at distances larger
than its radius is colorless. Hence, in general, we expect that
the HQ states produced in the early times of the collision
will not be comoving with the thermal medium and, there-
fore, our calculations will be relevant for them. On the other
hand HQ states produced through recombination are ex-
pected to roughly comove with the thermal bath. This is
because both heavy quarks have been drifted by the QGP
before recombining in a HQ.

Suppression of the J=� was first observed at the CERN
SPS [13]. However, in contrast with the naive Debye
screening scenario, further experimental investigation of
the J=� yields at PHENIX [11], led to the observation
of a strong suppression at forward rapidity rather than
at midrapidity. Recently, there have been efforts in study-
ing this problem with the use of nonrelativistic effective
field theories (EFTs) [14–16]. The EFT techniques are very
useful for problems that have different energy scales, as is
the case of HQ in a thermal medium. Using these tech-
niques it has been shown that, at least in perturbation
theory, the dissociation of bound states is due to the ap-
pearance of an imaginary part in the potential [14,15,17].

In the present paper we study how amoving thermal bath
affects the properties of bound states. One of the points is to
assess whether the results obtained in a static medium are
modified when considering the relative motion between the
bound state and the thermal medium. We consider the
simplest systems, hydrogenlike atoms moving at a constant
velocity v across a homogeneous thermal medium. We
study two different cases, the first one corresponds to tem-
peratures smaller or of the order of the typical momentum
transfer; the second one corresponds to temperatures larger
than the typical momentum transfer. We always assume
that the temperature is much smaller than the mass of the
particles forming the bound state.

In the first case we restrict ourselves to the hydrogen
atom. We consider separately temperatures smaller than

the typical momentum transfer and temperatures of the
order of the typical momentum transfer. In both tempera-
ture ranges we provide the matching procedure and evalu-
ate the energy shifts and decay widths for the stationary
states of the system. We build the effective theory for this
system first considering moderate values of the velocity
and then the relativistic case. We show that for large values
of the velocity, a new separation of scale occurs and a
different EFT must be constructed for dealing with bound
states. In this case the separation of scale is such that the
corresponding EFT resembles some aspects of the soft
collinear effective theory (SCET) [18].
In the second case, namely, for temperatures larger than

the typical momentum transfer, we also consider muonic
hydrogen. Since the mass of the particles forming the bound
state is much larger than the mass of the particles in the
thermal bath, this system resembles very much a heavy
quarkonium in a thermal medium of deconfined quarks
and gluons. As a consequence, this part of the present
work is of direct relevance for understanding how the prop-
erties of heavy quarkonia states produced in the initial fusion
of partons in the relativistic collision of heavy ions are
affected by the presence of an equilibrated quark-gluon
plasma. We study the behavior of the real and imaginary
part of the two-body potential for various values of the
velocity of the bound state with respect to the thermal bath
employing the hard thermal loop (HTL) approximation.
Regarding the real part of the potential we reproduce known
results and extend them to higher speeds. The imaginary part
of the potential is calculated for the first time. We demon-
strate that screening overtakes Landau damping as the domi-
nantmechanism for dissociation at a certain critical velocity.
This paper is organized as follows. In Sec. II we introduce

somegeneral remarks about the propagation of particles in a
thermal bath. In Sec. III and Sec. IV we study the hydrogen
atom moving at moderate velocities and ultrarelativistic
velocities with respect to the medium, respectively. In
Sec. V we study the real and imaginary part of the static
potential of muonic hydrogen in a moving thermal bath for
temperatures larger than the typical momentum transfer.
The results of this last section are directly applicable to the
HQ case. Finally, we present our conclusions in Sec. VI.

II. GENERAL FRAMEWORK

In our study we shall employ a reference frame in which
the bound state is at rest and the thermal medium moves
with a velocity v. We choose this frame because it facili-
tates the application of nonrelativistic effective field theo-
ries, in particular, nonrelativistic QED [19] (NRQED) and
potential NRQED [20] (pNRQED).1 These EFTs are ex-
tremely convenient to handle the three different scales of

1Although the Lagrangian of NRQED is known for an arbi-
trary reference frame, most of the developments have been
carried out in the rest frame of the bound states.
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nonrelativistic systems at vanishing temperature [21,22],
and have already proved useful to analyze these systems in
a static thermal bath, in which additional scales occur
[14,23]. They allow one to organize the calculations in
such a way that only one scale is taken into account at each
step, which, together with the use of dimensional regulari-
zation, makes computations much easier.

We shall assume that the plasma (or black-body radia-
tion) is in thermal equilibrium at a temperature T. Since we
are considering the reference frame in which the plasma is
moving with a velocity v the particle distribution functions
are given by

fð��k�Þ ¼ 1

ej��k�j � 1
; (1)

where the plus (minus) sign refers to fermions (bosons). In
the reference frame where the thermal bath is at rest

��k� ¼ k0
T , while in a frame where the plasma moves

with a velocity v, we have that

�� ¼ �

T
ð1; vÞ ¼ u�

T
; (2)

where � ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
, v ¼ jvj, is the Lorentz factor. This

frame has been successfully used in the past, for example,
in [24]. Studying a bound state in a moving thermal bath is
akin to studying a bound state in nonequilibrium field
theory [25]; in that case the Bose-Einstein or Fermi-
Dirac distribution functions are substituted by a general
distribution, which in our case will be the boosted Bose-
Einstein or Fermi-Dirac distribution functions reported in
Eq. (1).

The vector v brings in the problem a number of compli-
cations. First of all, it breaks rotational invariance. Second,
when v gets close to 1 new scales are induced, which has
serious implications for the use of EFTs. For instance, if we
are working with an EFT in which we have integrated out
all scales larger than �, we can no longer argue that
if � � T the Lagrangian of this EFT is not affected by
the temperature. This is because the Boltzmann suppres-
sion is not only controlled by T, but rather is a nontrivial
function of T and v. In order to illustrate this point, let us
analyze the distribution functions in Eq. (1) in more detail.

We begin with a thermal bath consisting of massless
particles. Taking into account that in nonequilibrium field
theory the collective behavior always enters through on-
shell particles or antiparticles, we have (in the case of
particles) that

��k� ¼ k
1� v cos�

T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p ; (3)

where k ¼ jkj and � is the angle between k and v. The
distribution functions in Eq. (1) can now be written as

fðk; T; �; vÞ ¼ 1

ek=Teff ð�;vÞ � 1
; (4)

where we have defined the effective temperature

Teffð�; vÞ ¼ T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p

1� v cos�
: (5)

Intuitively, the dependence of the effective temperature
on v and � can be understood as a Doppler effect. Indeed
Eq. (5) is analogous to the change in the frequency of light
caused by the relative motion of the source and the ob-
server. Consider a particle in a thermal bath of radiation
moving with velocity v. From the point of view of the
particle it will see in the forward direction blueshifted
radiation and in the backward direction redshifted radia-
tion. This corresponds, respectively, to an effective tem-
perature which is higher in the forward direction than in the
backward direction. Therefore, the effective temperature
corresponds to the temperature of the radiation as mea-
sured by the moving observer and by a minor abuse of
language we shall talk about blueshifted and redshifted
temperatures. Notice that analogously to the relativistic
Doppler effect, the effective temperature in the transverse
direction, i.e. in the direction corresponding to � ¼ �=2, is
redshifted.
For v � 1, one has that Teffð�; vÞ � T for any value of �

and one single scale T controls the Boltzmann factor in
Eq. (4). However, for v close to 1, the values of Teffð�; vÞ
strongly depend on �, which gives rise to an interesting
case for an EFT analysis. In order to proceed further, it is
convenient to use light-cone coordinates. We choose v in
the z direction and define

kþ ¼ k0 þ k3 and k� ¼ k0 � k3: (6)

Then, we have that

��k� ¼ 1

2

�
kþ
Tþ

þ k�
T�

�
; (7)

where

Tþ ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ v

1� v

s
and T� ¼ T

ffiffiffiffiffiffiffiffiffiffiffiffi
1� v

1þ v

s
: (8)

Therefore, in light-cone coordinates, it becomes explicit
that the distribution function actually depends on two
scales, Tþ and T�. For any value of v it is clear that Tþ �
T � T� and moreover Tþ correspond to the highest tem-
perature measurable by the observer, while T� corresponds
to the lowest temperature measurable by the observer.
For small values of v, Tþ ’ T� and the shift in the

temperature in the forward and backward directions are
negligible. In this case no further separation of scale is
needed and one has a single temperature scale, T, as men-
tioned before. For v ’ 1, we have Tþ � T�, namely, two
well-separated temperature scales, which must be properly
taken into account in our EFTs. Note that configurations
with light-cone momenta such that kþ � Tþ or k� � T�
are exponentially suppressed. Then we can separate the
remaining configurations in two regions (in light-cone
momenta):
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(i) a collinear region, corresponding to kþ � Tþ and
k� & T� and

(ii) an ultrasoft region, corresponding to kþ � Tþ and
k� & T�.

The existence of these two regions has to be taken into
account in the matching procedure between different EFTs.
In this paper we shall analyze two different situations in
which v is close to 1, the case me�Tþ�1=r�T��E
and the case Tþ �me � 1=r � T� � E.

We would like to remark that although in Eq. (3) we
have assumed for simplicity that the particles of the ther-
mal bath are massless, our approach applies to a plasma
that consists of both massless and massive particles. Note
that our discussion, from Eq. (6) on, holds independently of
what the dispersion relation of the particles in the thermal
bath is. If some particles in the plasma have mass M � T,
we know that they are exponentially suppressed in the
thermal bath, and this must be true in any reference frame.
We can easily verify it by substituting k�¼ðM2þk2

?Þ=kþ
in Eq. (7), and by noticing that its minimum is attained at
��k� ¼ M=T, which confirms that for M � T thermal

effects due to these particle can indeed be neglected.

III. HYDROGEN ATOM AT
MODERATE VELOCITIES

In the present section we shall assume that the velocity
is moderate, say v & 0:5, so that Tþ ’ T ’ T�, and

separately study the cases T � 1=r and T � 1=r
(r is the size of the bound state, and hence 1=r of
the order of the typical momentum transfer). For
simplicity, we also assume that the proton is infinitely
heavy.
As we have explained in the previous section, in a

thermal bath at a temperature T � M, particles with
mass M are exponentially suppressed independently of
the value of v. In particular, if M�me indicates the
mass of electrons and positrons in the plasma, then
these particles are irrelevant in our analysis. In this
range of temperature the hard thermal loop effects will
not appear and the doubling of degrees of freedom plays no
role [14]. This implies that only the transverse photons are
sensitive to thermal effects and, hence, the leading-order
interaction, namely, the Coulomb potential, will not be
modified.

A. The T � 1=r case

As a starting point we consider the pNRQED
Lagrangian at vanishing temperature (we use the form
given in Eq. (6) of [21]). We will be able to evaluate the
corrections to the binding energy En and to the decay
width �n due to the thermal bath up to the order me�

5.
There are two different diagrams that contribute at this
order. The first one is the tadpole diagram which is
given by

where the solid lines represent the atom propagator and the
wavy line corresponds to the photon propagator. In the
integral we set the number of dimensions D ¼ 4, because
the integral is convergent and k� corresponds to the loop
momentum. Notice that the contribution of this diagram is

independent of v because the loop integral has no indices
and no external momentum enters in it. This is in fact true
for any tadpole diagram of this kind. Therefore one can
read the result from the v ¼ 0 case [14].
Next we consider the ‘‘rainbow’’ diagram,

pi is the momentum operator of the electron, jri symbol-
izes an eigenstate of the Coulomb Hamiltonian of energy
Er, and IijðqÞ is defined as follows:

IijðqÞ ¼
Z dDk

ð2�ÞD�1

�ðk20 � k2Þ
ej��k�j � 1

i

q� k0 þ i�

�
�ij �

kikj

k2

�
:

(11)

Since the only two independent tensors are �ij and vivj,

one can use the decomposition

Iij ¼ APs
ij þ BPp

ij; (12)

where

Ps
ij ¼

1

2

�
�ij þ

vivj

v2

�
and Pp

ij ¼
1

2

�
�ij � 3

vivj

v2

�
; (13)

and then

A ¼ 1

2
Iii and B ¼ 1

2

�
Iii � 2

vivj

v2
Iij

�
: (14)
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Upon substituting Eq. (11) in the expressions above, we
find that

A ¼
Z dDk

ð2�ÞD
�ðk20 � k2Þ
ej��k�j � 1

i

q� k0 þ i�
and

B ¼
Z dDk

ð2�ÞD
�ðk20 � k2Þ
ej��k�j � 1

i

q� k0 þ i�

ðv � kÞ2
v2k2

:

(15)

The computations of these integrals is done in Appendix A.
The results for the imaginary and real part of A are,
respectively, given by

=AðqÞ ¼ q

4�2

�
log

�
2�T

jqj
�
þ 1� 1

2v
log

�
1þ v

1� v

�

þ �T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p

jqjv = log

��ð ijqj
2�Tþ

Þ
�ð ijqj

2�T�
Þ
��

(16)

and

<AðqÞ ¼ �T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p

8�v
log

�
1� e�ðjqj=TþÞ

1� e�ðjqj=T�Þ

�
: (17)

The imaginary part of B turns out to be given by

=BðqÞ¼ q

12�2

�
log

�
2�T

jqj
�
þ 1

3v2
ð3þv2Þ� 1

2v3
log

�
1þv

1�v

�

þ3

2

Z 1

�1
d		2<�

�
ijqjð1�v	Þ
2�T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2

p
��

; (18)

while for the real part of B we have

<BðqÞ¼�T
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2

p

8�v3

Z jqj=Tþ

jqj=T�
dt

�
1�T

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2

p
t

jqj
�
2 1

et�1
:

(19)

The expressions above can be computed numerically for
any value of the parameters. The thermal corrections to the
energy and the decay width (for arbitrary angular momen-
tum) are given by the following expressions:

�Enlm¼��T2

3m
þ e2

m2
e

lim
p0!En

X
r

hnjpijri=Iijðp0�ErÞhrjpjjni;

(20)

and

��nlm ¼ 2e2

m2
e

lim
p0!En

X
r

hnjpijri<Iijðp0 � ErÞhrjpjjni; (21)

which in general will depend on the relative velocity v.
Analytical expressions for T � E and for T � E, where
E� En, the binding energy scale, are derived below.

1. The T � E case

For T � E the leading contribution to the integrals in
Eqs. (16)–(19) can be analytically determined and upon
substituting the corresponding expressions in Iij we find

that

<Iij ¼ T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p

8�v

�
Ps
ij log

�
1þ v

1� v

�
þ Pp

ij

logð1þv
1�vÞ � 2v

v2

�

þOðEÞ; (22)

for the real part of Iij, and

=Iij¼ q

4�2

�
Ps
ij

�
log

2�T

jqj � 1

2v
log

�
1þv

1�v

�
þ1��

�

þPp
ij

1

3

�
log

2�T

jqj þ 1

v2
þ1

3
� 1

2v3
log

�
1þv

1�v

�
��

��

þO
�
E2

T

�
; (23)

for the imaginary part of Iij.

It is interesting to observe that, in this limit, the terms
nonlocal in q (Bethe-log type) coincide with those obtained
for vanishing velocity. Hence, all dependence on v is
encoded in an anisotropic potential and kinetic term. This
result will also serve as a cross-check of the 1=r� T
computation that will be carried out in the next section.
In order to obtain the energy shift and the decay width

from Eqs. (22) and (23) we consider separately the S-wave
states and states with nonvanishing angular momentum.
We display below slightly more general results, which hold
for an ion of charge Z as well.
In the S-wave states the expected value of any tensor

operator hnjOijjni / �ij, therefore terms proportional to

Pp
ij, can be ignored (because Pp

ij is traceless) and we find

that

�En¼��T2

3me

�4Z�2

3

j
nð0Þj2
m2

e

�
� 1

2v
log

�
1þv

1�v

�
þ1��

�

þ 2�

3�m2
e

X
r

jhnjpjrij2ðEn�ErÞ log
�

2�T

jEn�Erj
�
; (24)

where 
nð0Þ is the wave function at the origin. The corre-
sponding change in the width turns out to be given by

��n ¼ 2Z2�3T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p

3n2v
log

�
1þ v

1� v

�
: (25)

States with nonvanishing angular momentum are more
difficult to deal with. It is convenient to decompose Iij by

the tensors �ij and
vivj

v2 instead of Ps
ij and Pp

ij. For the real

and imaginary parts of Iij we find respectively
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<Iij ¼ T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p

16�v

�
�ij

��
1þ 1

v2

�
log

�
1þ v

1� v

�
� 2

v

�

þ vivj

v2

��
1� 3

v2

�
log

�
1þ v

1� v

�
þ 6

v

��
; (26)

and

=Iij ¼ q

4�

�
2�ij

3

�
log

�
2�T

jqj
�
� �þ 5

6
þ 1

4v2

� 3

8v

�
1þ 1

3v2

�
log

�
1þ v

1� v

��
� vivj

2v2
�ðvÞ

�
; (27)

where

�ðvÞ ¼ 1

2v

�
1� 1

v2

�
log

�
1þ v

1� v

�
� 2

3
þ 1

v2
: (28)

To determine the energy shifts and the decay widths we
fix v in the z-direction, and make use of the following
identities:�
n

��������
ðv � pÞ2
v2

��������n

�

¼ hnjp2jni
ffiffiffiffiffiffiffi
4�

p
3

�
Ylm

��������
�
Y00 þ

ffiffiffi
4

5

s
Y20

���������Ylm

�
; (29)

and

hnj½½H;v �p�;v �p�jni ¼
ffiffiffiffiffiffiffi
4�

5

s
Z�

�
n

��������
1

r3

��������n

�
hYlmjY20jYlmi;

(30)

where Ylm are the spherical harmonics. Note that jni
is used as a shorthand notation for jnlmi, where n
is the principal quantum number, l the orbital angular
momentum, and m its z-component. With these expres-
sions we obtain the general forms of the shifts of the energy
levels

�Enlm¼��T2

3me

þ 2�

3�m2
e

X
r

jhnjpjrij2ðEn�ErÞ

	 log

� �E1

jEn�Erj
�
�Z3�2h2l00jl0ih2l0mjlmi

2�m2
ea

3
0n

3lðlþ 1
2Þðlþ1Þ �ðvÞ;

(31)

and the corresponding widths are given by

��nlm ¼ Z2�3T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p

3n2v

�
2 log

�
1þ v

1� v

�
þ

��
1� 3

v2

�

	 log

�
1þ v

1� v

�
þ 6

v

�
h2l00jl0ih2l0mjlmi

�
; (32)

where hlml0m0jl00m00i are the Glebsch-Gordan coefficients
(normalization and sign conventions are as in [26]).
It is interesting to observe that the decay widths (25) and

(32) decrease as the velocity increases.

2. The T � E case

For temperatures T � E the coefficients A and B sim-
plify and upon replacing their expressions in Eq. (12) we
obtain that

IijðqÞ¼ iT2ð1�v2Þ
32q

Z 1

�1

d	

ð1�v	Þ2 ðP
s
ijþ	2Pp

ijÞþO
�
T4

q3

�
:

(33)

When this expression is used in the evaluation of
the energy shift in Eq. (20) and of the decay width in
Eq. (21), we need to calculate

Px
ij

X
r

hnjpijri 1

En � Er

hrjpjjni ¼ �me

2
Px
ii; (34)

for x ¼ s; p. Note that only the term proportional
to Ps

ij contributes because Pp
ij is traceless. Thus, the

contribution from the rainbow diagram in the limit
T � E for states with vanishing angular momentum is
given by

and is independent of the velocity v. Hence, the dominant

contribution of the rainbow diagram above cancels the

contribution of the tadpole diagram, which we have

seen to be independent of v as well. Then the thermal

corrections in this case are very suppressed, of the order

Oð�3T4=E3Þ, like in the case of the thermal bath at rest.

B. The T� 1=r case

In the temperature regime T � 1=r, the temperature is
high enough so that its effects must be taken into account
already in the matching between NRQED and pNRQED,
namely, it affects the potential. Therefore, several diagrams
are modified by the presence of the temperature. However,
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like in the calculations for the thermal bath at rest, there are
only four diagrams that give a relevant contribution. All
other diagrams give contributions that either vanish or can
be shown to cancel out by local field redefinitions. We
schematically analyze the relevant diagrams below. Then,
as a cross-check, we compare the calculations for T � 1=r
in the limit of low temperature, with the results that we
derived in the previous section for E� T in the limit of
high temperature, and we find agreement.

The four diagrams that must be taken into account in the
matching procedure between NRQED and pNRQED are
the following:

(i) The tadpole diagram which comes from the D2

2me

term in the NRQED Lagrangian and gives the
contribution

This diagram is quite similar to the diagram we evaluated in the previous section, but now the solid line corresponds to the
electron field instead of the hydrogen atom. As already discussed, this diagram is independent of the velocity v.

(ii) The rainbow diagram is given by

where the solid line corresponds to the electron field and the wavy line corresponds to the photon. In order to have a
consistent EFT we have to expand

1

p0�k�ðp�kÞ2
2me

þ 1

p0þk�ðpþkÞ2
2me

!�2
p0� p2

2me

k2
� 1

me

; (38)

and therefore the contribution of the rainbow diagram can be written as

where

Tij ¼
Z dD�1k

ð2�ÞD�1k3
1

eðk=T
ffiffiffiffiffiffiffiffiffi
1�v2

p
Þð1�v�k

k Þ � 1

�
�ij �

kikj

k2

�
; (40)

and

Rij ¼
Z dD�1k

ð2�ÞD�1k

1

eðk=T
ffiffiffiffiffiffiffiffiffi
1�v2

p
Þð1�v�k

k Þ � 1

�
�ij �

kikj

k2

�
: (41)

For the time being we do not evaluate these integrals; as we shall clarify soon we only need to evaluate Tij.
(iii) The thermal correction of the Coulomb potential corresponds to the diagram

where the tensor Tij is the same as in Eq. (40) and p and p0 are the momenta of the incoming and outgoing electrons,
respectively. The solid thick line here corresponds to the ion propagator and the solid thin line is the electron propagator.
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(iv) The last diagram to consider is the relativistic tadpole, that is the same as the previous tadpole diagram, but now the

vertex comes from the D4

8m3
e
term in the NRQED Lagrangian. The contribution of this diagram is given by

where the tensor Rij is defined in Eq. (41). Notice that the
term on the right-hand side of Eq. (39) cancels the corre-
sponding contribution of this diagram. Therefore, the sum
of the rainbow diagram and of the relativistic tadpole
diagram is independent of Rij.

(v) The remaining nonvanishing diagrams give contri-
butions analogous to the ones of Eqs. (36), (37) and
(42) of [14]. Their net effect can be shown to be zero
by local field redefinitions, like in the case of the
thermal bath at rest.

Now, let us consider how these diagrams combine. In
particular, we would like to obtain the pNRQED
Lagrangian that matches all these terms. By inspection
we find that the pNRQED Lagrangian is given by

�LpNRQED¼
Z
d3x

�
4��

m2
e

Tij

�@2ikc y@2jkc
2me

þ@2ijc
y@0c

�

þ��T2

3me

c yc ���T2

6m3
e

rc yrc

�

þ
Z
d3x1d

3x2N
yðt;x2ÞNðt;x2Þ4��

m2
e

	 Z�

jx1�x2jTijric yðt;x1Þrjc ðt;x1Þ; (44)

which as already noted does not depend on Rij. We evalu-

ate Tij in a similar way as was done for Iij in the T � E

case. The result in the MS subtraction scheme is

Tij¼ 1

6�2

�
log

�
�

T

�
� log2� logð2�Þþ�þ 3

8v

�
1þ 1

3v2

�

	 log

�
1þv

1�v

�
� 1

4v2

�
�ijþ�ðvÞ

8�2

vivj

v2
; (45)

where we have decomposed Tij in terms of �ij and

vivj=v
2, and �ðvÞ is defined in Eq. (28). Upon making a

local field redefinition to remove the term with a time
derivative in (44), one can identify the corrections to the
potential, in a similar way as it was done in Eq. (45) of
[14]. The final form of the thermal correction to the
pNRQED Lagrangian reads

�LpNRQED ¼
Z

d3x

�
��T2

3me

c yc � ��T2

6m3
e

rc yrc

�

þ
Z

d3x1d
3x2N

yðt;x2ÞNðt;x2Þ

	
�
� 4Z�

3m2
e

�
log

�
�

2�T

�
� log2þ �

þ 3

8v

�
1þ 1

3v2

�
log

�
1þ v

1� v

�
� 1

4v2

�

	 �3ðx1 � x2Þ þ
��ðvÞvivj@2ijVcðrÞ

4�m2
ev

2

�

	 c yðt;x1Þc ðt;x1Þ; (46)

where VcðrÞ is the Coulomb potential at vanishing tem-
perature. With simple modifications this Lagrangian can be
put in a form so that we have an atom field instead of an
electron and a nucleus field (see [14] for more details).
Now that we have computed the corrections to the

pNRQED Lagrangian for the case T � 1=r we also need
to compute the contribution from the ultrasoft scale with
this Lagrangian. These contributions can be computed
from the tadpole and the rainbow diagrams as in Eqs. (9)
and (10), where the Bose-Einstein distribution function can
be expanded because we are now in the case T � E, and
therefore

1

ej��k�j � 1
! 1

j��k�j �
1

2
þ � � � : (47)

Upon substituting the expansion above in Eq. (9) we find
that the contribution of the tadpole diagram vanishes in
dimensional regularization, because it has no scales (it is
independent of the external momentum). The rainbow
diagram gives a contribution similar to the one in
Eq. (10), with the replacement Iij ! Jij, where

<Jij ¼ T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p

8�v

�
Ps
ij log

�
1þ v

1� v

�
þ Pp

ij

logð1þv
1�vÞ � 2v

v2

�
;

(48)

and

=JijðqÞ ¼ q

6�2
�ij

�
log

�
�

jqj
�
þ 5

6
� log2

�
: (49)

In order to be consistent with (45), theMS scheme has also
been used here to remove the UV divergences. The thermal
corrections to the energy levels and to the decay width
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coming from the soft and the ultrasoft scales in the case
T � 1=r are, respectively, given by

�Enlm¼��T2

3me

���3T2

6men
2
þ4Z�2

3m2
e

�
log

�
�

4�T

�
þ�

þ 3

8v

�
1þ 1

3v2

�
� 1

4v2

�
j
nð0Þj2

���ðvÞvivj

4�m2
ev

2
hnj@2ijVcðrÞjni

þ e2

m2
e

lim
p0!Er

X
r

hnjpijri=Jijðp0�ErÞhrjpjjni; (50)

and

��nlm ¼ 2e2

m2
e

lim
p0!En

X
r

hnjpijri<Jijðp0 � ErÞhrjpjjni: (51)

Note that the� dependence in the correction to the Darwin
term in (50) is canceled out by the � dependency of JijðqÞ
in Eq. (49). Note also that, upon substituting (48) in (51),
the expression for the decay width reduces to that of (32).
Furthermore, the thermal corrections to the binding energy
above in the limit of low temperature coincide with (24)
and (31). Therefore, the limit of low temperature in the
case T � 1=r agrees with the limit of high temperature in
the T � E case.

IV. HYDROGEN ATOM AT RELATIVISTIC
VELOCITIES

When the bound state moves at high speed with respect
to the thermal bath one has to take into account that the
effective temperature measured by the bound state in the
forward direction is blueshifted and that the effective tem-
perature in the backward direction is redshifted. In particu-
lar one has that Tþ � T�, and therefore Tþ and T�, which
we have defined in Eq. (8), are two well-separated energy
scales that must be properly taken into account in the EFT.
In particular it is possible that Tþ and T� are in two distinct
energy ranges. In this case the analysis of the system differs
considerably with respect to the case of the thermal bath at
rest. We shall study two different situations of this sort; the
first one corresponds to the case Tþ � 1=r � T� � E and
the second one to the case Tþ �me � 1=r � T� � E.
Recall that we are assuming that T � me and hence, as we
have already stressed in Sec. II, we can neglect positrons
and electrons in the thermal bath.

A. The Tþ � 1=r � T� � E case

Since Tþ � me we can use NRQED at vanishing tem-
perature as the starting point, but we would like to integrate
out also the 1=r scale in order to construct the pNRQED for
this situation. As in the soft collinear effective theory, it is
convenient to split the photon field A� into two different

components, a collinear one Acol
� that takes into account

photons with kþ � Tþ and k� � T� and a ultrasoft one Aus
�

that takes into account photons with kþ � k� � T� (or
smaller). Notice that both types of photons have virtualities
	 that fulfill ð1=rÞ2 � 	; this means that neither of these
two types of photons have to be integrated out in the
matching between NRQED and pNRQED. We carry out
the matching below using an electron field and a nucleus
field in pNRQED (rather than an atom field), as it was done
in [21].

1. Matching between NRQED and pNRQED for
collinear photons

In the matching procedure between NRQED and
pNRQED we have to determine the effective vertex be-
tween nonrelativistic electrons and collinear photons. In
pNRQED the interaction of nonrelativistic electrons with
collinear photons cannot be given by the minimal coupling
diagram shown in Fig. 1 for kinematical reasons, as we
argue next. Let us call p the momentum of the incoming
electron and k the momentum of the incoming collinear
photon. The nonrelativistic electron in pNRQED must

have p0 � p2

2me
� 1=r, because me=r is precisely the typi-

cal virtuality of the electrons that have been integrated out
in the matching between NRQED and pNRQED. However,
if the photon is collinear, namely k0 � 1=r, then the vir-
tuality of the outgoing electron is of order me=r, in contra-
diction with the fact that electrons with such a virtuality do
not appear in pNRQED.
Therefore, the interaction between electrons and col-

linear photons in pNRQED is given at leading order by
4-point processes as the one presented in Fig. 2. The
matching procedure is outlined in the following equation:

FIG. 1. Minimal coupling in pNRQED between an electron
and a collinear photon. The solid lines represent the electron
propagators, the zigzag line represents the collinear photon. This
diagram is not kinematically allowed because when a nonrela-
tivistic electron interacts with an ultrasoft photon its virtuality
changes by a quantity of orderme=r. Then, the outgoing electron
cannot be described within pNRQED.

FIG. 2. Leading-order term for the interaction of electrons
with collinear photons in pNRQED.
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The NRQED diagrams on the left-hand side have to match
the pNRQED diagram on the right-hand side. This part
of the pNRQED Lagrangian involving collinear photons is
given at the required order in Appendix C 1. The part of the
pNRQED Lagrangian involving ultrasoft photons only is
the same as in the case with the thermal bath at rest.

2. Computation using pNRQED

Since we have determined the pNRQED Lagrangian,
we can now calculate the contribution of thermal

collinear photons to the self-energy of the hydrogen
atom [from the part of the Lagrangian reported
in Eq. (C1)]. We shall use the Coulomb gauge and
therefore only spatial components contribute. Moreover,
the condition r �A ¼ 0 for collinear photons means
that A3ðxÞ � A?ðxÞ and we only need the first and
second terms of Eq. (C1). The contribution of collinear
photons to the self-energy of the hydrogen atom is
given by

where the zigzag line corresponds to a collinear photon and
the solid line represents the hydrogen atom. As already
noticed in the discussion of Eq. (9), the tadpole diagram is
not sensitive to the relative motion between the bound state
and the thermal bath, because no external momenta enter
into the loop. The corresponding shift to the energy levels
is given by

�Ecol ¼ ��T2

3me

: (54)

As we shall see soon, the contribution coming from
thermal collinear photons is the dominant one,
however, it does not depend on the quantum numbers of
the state and therefore it cannot be seen in the emission
spectra.
There are two one-loop contributions of ultrasoft pho-

tons to the self-energy of the hydrogen atom. The tadpole
contribution is given by

and we find that in dimensional regularization this integral vanishes. The second contribution is due to the rainbow diagram

where

Kij ¼
Z dDk

ð2�ÞD�1

�ðkþk� � k2?Þ
e1=2jkþ=Tþþk�=T�j � 1

�
�ij �

kikj

k2

�
i

q� 1
2 ðkþ þ k�Þ þ i�

: (57)

There are three different integration regions that contribute
to this integral

(i) the region with kþ; k� � T�,
(ii) the region with kþ; k� � q, and
(iii) the region with kþ � q and k� � qðT�=TþÞ.

Note that kþ=Tþ � 1 in all the regions. Evaluating the
contributions of each region (see Appendix B) and putting
them together we find that

Kij ¼ aPs
ij þ bPp

ij; (58)
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where Ps
ij and Pp

ij are defined in Eq. (13) and

<a ¼ T

4�

ffiffiffiffiffiffiffiffiffiffiffiffi
1� v

1þ v

s
log

�
1þ v

1� v

�
; (59)

=a ¼ q

4�2

�
1� �þ log

�
2�T

q

�
þ 1

2
log

�
1� v

1þ v

��
; (60)

and

<b ¼ T

4�

ffiffiffiffiffiffiffiffiffiffiffiffi
1� v

1þ v

s �
log

�
1þ v

1� v

�
� 2

�
; (61)

=b ¼ q

12�2

�
4

3
� �þ log

�
2�T

q

�
þ 1

2
log

�
1� v

1þ v

��
: (62)

Note that in the v ! 1 limit, the coefficients a and b are
equal to the coefficients A and B reported, respectively, in
Eqs. (16)–(19) in the limit q � T�. Therefore, in the same
limit, we have that Kij ! Iij. The thermal corrections to

the energy and decay widths due to the ultrasoft photons
can be written as

�Eus
nlm ¼ e2

m2
e

lim
p0!En

X
r

hnjpijri=Kijðp0 � ErÞhrjpjjni; (63)

and

��us
nlm¼2e2

m2
e

lim
p0!En

X
r

hnjpijri<Kijðp0�ErÞhrjpjjni: (64)

For S-wave states we obtain the following expressions for
the energy shifts:

�Eus
n0¼�4Z�2

3

�
1��þ1

2
log

�
1�v

1þv

��j
nð0Þj2
m2

e

� 2�

3�m2
e

X
r

jhnjpjrij2ðEn�ErÞlog
�jEn�Erj

2�T

�
; (65)

and decay widths

��us
n0 ¼

4Z2�3T

3n2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� v

1þ v

s
log

�
1þ v

1� v

�
: (66)

For states with nonvanishing angular momentum l we find
that

�Eus
nlm¼ 2�

3�m2
e

X
r

jhnjpjrij2ðEn�ErÞlog
� �E1

jEn�Erj
�

�Z3�2h2l00jl0ih2l0mjlmi
6�m2

ea
3
0lðlþ 1

2Þðlþ1Þ ; (67)

and

��us
nlm ¼ 4Z2�3T

3n2

ffiffiffiffiffiffiffiffiffiffiffiffi
1� v

1þ v

s �
log

�
1þ v

1� v

�

�
�
log

�
1þ v

1� v

�
� 3

�
h2l00jl0ih2l0mjlmi

�
: (68)

The total thermal width is given by the ultrasoft contribu-
tion reported in Eq. (66), for S-wave states, or in Eq. (68)
for states with nonvanishing angular momentum. In order
to obtain the total thermal energy shift, the collinear con-
tribution given in Eq. (54) must be added to the ultrasoft
contributions given in Eq. (65) for S-wave states, or in
Eq. (67) for states with nonvanishing angular momentum.
Note that the latter turns out to be totally independent of
the velocity.
Note that the decay widths (66) and (68) are decreasing

functions of the velocity, like in the moderate velocity case.
Furthermore, the results above agree with those of
Sec. III A in the v ! 1 limit.

B. The Tþ �me � 1=r � T� � E case

We shall now consider a highly relativistic hydrogen
atom immersed in a thermal bath at a temperature
T � 1=r. We shall assume that the relative velocity
between the hydrogen atom and the thermal bath is
such that the temperature in the forward direction is
blueshifted to the electron mass, that is Tþ �me, while
in the backward direction the effective temperature
is redshifted to 1=r � T� � E. The effective tempera-
tures Tþ and T� are now very well-separated scales,
therefore this situation is specially suitable for the use of
EFT.
In the construction of the effective theory we start with

QED at vanishing temperature, because me � T.
However, the existence of collinear photons must be taken
into account in the matching between QED and NRQED.
On this aspect the matching procedure is akin to the one in
SCET. We shall schematically describe this matching pro-
cedure below. Regarding collinear photons, they have a
virtuality of order ð1=rÞ2, and they must be integrated out
when matching from NRQED to pNRQED. Finally, the
contributions of ultrasoft photons are calculated in
pNRQED. In this case pNRQED does not include collinear
photons, which already have been integrated out. The
interaction with ultrasoft photons is exactly the same as
in the previous case. Their contribution is given by exactly
the same diagram as in Eq. (56) and therefore one
obtains the energy shifts reported in Eq. (65), for
S-wave states, and in Eq. (67), for states with nonvanishing
angular momentum, and the widths are given by the
same expressions reported in Eq. (66), for S-wave states,
and in Eq. (68), for states with nonvanishing angular
momentum.
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Matching between QED and NRQED for
collinear photons

In QED, when a nonrelativistic electron absorbs a col-
linear photon, it turns into a relativistic electron. This
means that the NRQED Lagrangian cannot have this kind
of three-body interaction (a similar argument was used in

Sec. IVA1). Hence, in NRQED the interaction with non-
relativistic electrons has to be a four-body interaction.
In this case, there is the additional complication that on

the QED side we have bispinors, while in NRQED we have
only spinors. This can be solved using the nonrelativistic
projector. The matching equation takes the form

where Z is the wave function renormalization of NRQED that depends quadratically of the momentum. The result for this
matching is given in Appendix C 2.

To match NRQED with pNRQED we have to integrate out collinear photons. The contribution of collinear photons to
the self-energy is given by

where we have used the Lagrangian of Eq. (C3) in the
Coulomb gauge. Note that in this gauge thermal effects are
only due to the spatial components of A� and A3 � A?,
and we only need the terms proportional to c1, c2, c11, and
c13 reported in Appendix C 2. This diagram was already
evaluated in the case of the thermal bath at rest. Since
tadpole diagrams are unaffected by the motion of the
thermal bath, the result remains the same, and the only
effect is a constant energy shift in the pNRQED
Lagrangian, which amounts to the following shift of the
effective mass of the electron:

�me ¼ ��T2

3me

: (71)

Regarding heavy quarks, the net effect of collinear gluons
is a very tiny shift of the heavy quark mass by an amount of
�mQ � �sT

2=mQ, which is irrelevant for the stability
analysis of heavy quarkonia. Much more important for
the stability analysis is how the Coulomb potential changes
at high temperatures and this will be studied in the follow-
ing section.

V. THE STATIC POTENTIAL OF MUONIC
HYDROGEN IN THE RANGE T � 1=r

In muonic hydrogen the proton is orbited by a muon and
the bound state consists of two heavy particles. Since the
muon is about 207 times heavier than the electron, muonic
hydrogen is much more compact than standard hydrogen
and the energy levels of the system have about 207 times
the energy of standard hydrogen. Muonic hydrogen is
investigated in order to have high precision measurements
of the proton properties [27], mainly by Lamb shift
measurements [28]. The study of muonic atoms is also

important for muon-catalyzed fusion processes [29], which
are under experimental investigation at RIKEN [30] and
Star Scientific [31].
The study of muonic hydrogen in a thermal bath with

m� � T � me is akin to the study of HQ states in the

quark-gluon plasma withmQ � T � �QCD � mq, where

mQ is the mass of the heavy quark and mq (q ¼ u, d, s) is

the mass of light quarks [23]. The reason is that in both
cases the temperature is on the one hand much smaller than
the masses of the particles that form the bound state and on
the other hand much larger than the mass of the particles in
the thermal bath. There are thermally excited electrons and
positrons in the QED plasma and thermally excited light
quarks in the QGP which can modify the Coulomb inter-
action between the two heavy particles. Actually, we shall
assume that the temperature is high enough so that we can
neglect the masses of the light particles of the plasma.
Apart from the modification of the static Coulomb po-

tential, the propagation of a particle in the medium pro-
duces a fluctuation of the induced potential which leads to
a variation in the density of the plasma. If the plasma
behaves as a liquid the moving bound state can produce a
wake. These effects were first analyzed in condensed mat-
ter physics (see e.g. [1]) and then studied in the context of
heavy-ion collisions [4–10] and in strongly coupled N ¼ 4
supersymmetric Yang-Mills plasmas [32–35].
In the present section we study the modifications to the

leading-order potential between two heavy sources in rela-
tive motion with respect to the thermal bath at a velocity v.
We evaluate the potential in the HTL approximation as-
suming that the temperature of the plasma is T � 1=r. The
real part of the potential is screened by massless particles
loops, both in QED and QCD (the only difference between
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QED and QCD in our results is, apart from trivial color
factors, the value of the Debye mass mD). The real part of
the potential between a quark and an antiquark moving in a
thermal bath was first computed in the HTL approximation
in [4] and then more recently in [8]. Recent perturbative
calculations [17] at vanishing velocity have pointed out the
importance of the imaginary part of the potential. So far its
effect has not been taken into account in a moving thermal
bath.

In the Coulomb gauge the potential is obtained by the
Fourier transform of the longitudinal photon propagator,

�11ðkÞ ¼ 1

2
½�RðkÞ þ�AðkÞ þ �SðkÞ�; (72)

for k0 � jkj, where �RðkÞ and �AðkÞ are, respectively, the
retarded and the advanced propagators and �SðkÞ is the
symmetric propagator. For a bound state comoving with
the thermal bath, it is enough to compute the retarded self-
energy in the rest frame of the thermal bath and then using

�

RðkÞ ¼ �AðkÞ; (73)

and

�SðkÞ ¼ ½1þ 2fðjk0j; TÞ�sgnðk0Þ½�RðkÞ � �AðkÞ�; (74)

one can determine the potential. In the expression above,
fðk0; TÞ is the distribution function of the longitudinal
photons in the thermal bath. However, the last relation
does not hold for a bound state moving through a thermal
bath [25], and must be substituted by the following one:

�Sðk; uÞ ¼ �Sðk; uÞ
2i=�Rðk; uÞ ð�Rðk; uÞ � �Aðk; uÞÞ; (75)

where u� ¼ �ð1; vÞ is the 4-velocity. Thus, in order to
determine the propagator one has to evaluate the self-
energies �Rðk; uÞ and �Sðk; uÞ.

The retarded self-energy �Rðk; uÞ was computed in [4]
and here we only show the result in the reference frame
where the bound state is at rest2

�Rðk; uÞ ¼ aðzÞ þ bðzÞ
1� v2

; (76)

where z ¼ v cos�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v2sin2�

p , � is the angle between k and v, and

aðzÞ ¼ m2
D

2

�
z2 � ðz2 � 1Þ z

2
ln

�
zþ 1þ i�

z� 1þ i�

��
; (77)

bðzÞ¼ ðz2�1ÞðaðzÞ�m2
Dð1�z2Þ

�
1� z

2
ln

�
zþ1þ i�

z�1þ i�

���
:

(78)

Regarding the symmetric self-energy of the longitudinal
photons �Sðk; uÞ, the computation is similar to the one

done for the retarded self-energy in [4]. Consider the full
symmetric self-energy tensor �s

��. It obeys the Ward

identity

k��s
�� ¼ 0; (79)

and is symmetric,

�s
�� ¼ �s

��: (80)

Then, it must have the following structure:

�s�� ¼ �1

�
g�� � k�k�

k2

�
þ�2u

�
?u

�
?; (81)

where �1 and �2 are two scalars and

u�? ¼
�
u� � ðk � uÞk�

k2

�
; (82)

is the component of u� orthogonal to k�. Since �s
�� is a

tensor, we can determine the values of �1 and �2 in any
reference frame, and it is convenient to consider the co-
moving frame, i.e. the frame in which the thermal bath is at
rest. It is useful to define the tensor

P�� ¼ 1

2

�
u�u� � g�� þ k�?k

�
?

k2 � ðk � uÞ2
�
; (83)

where

k
�
? ¼ k� � ðk � uÞu� (84)

is the component of k� orthogonal to u�, and k2? ¼ k2 �
ðk � uÞ2. It is clear that P��u� ¼ P��k� ¼ 0, and therefore
P�� projects four-vectors in the direction orthogonal to u�

and k�. By means of Eqs. (82) and (84) it is easy to show
that P��u

�
? ¼ P��k

�
? ¼ 0, as well. Then we have that

P���s
�� ¼ P��g���1 ¼ ��1; (85)

and in the comoving frame one has that the only non-
vanishing components of P�� are

Pij ¼ 1

2

�
�ij � kikj

k2

�
; (86)

and then in this frame

P���s
�� ¼ 1

2

�
�ij � kikj

k2

�
�s

ij; (87)

which is precisely the transverse component of the photon
(gluon) self-energy �S

T in the Coulomb gauge. This quan-
tity has been computed for vanishing velocity in [25] and
we find that

�1¼�i�m2
D

Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk�uÞ2�k2
p

�
1� ðk�uÞ2

ðk�uÞ2�k2

�
�ð�k2Þ: (88)

The scalar quantity u�u��s
�� has a simple interpretation in

the comoving frame, where it turns out to be given by�s
00.

Then we have that

2In [4] there is a misprint in the first line of Eq. (8), in which
the global sign must be the opposite.
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�2 ¼
� ðk � uÞ2
ðk � uÞ2 � k2

� 1

��
�1 �

�
1� ðk � uÞ2

ðk � uÞ2 � k2

�

	 2i�m2
DT

�ð�k2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk � uÞ2 � k2
p

�
; (89)

and we can now compute the symmetric self-energy in the
frame where the muonic hydrogen is at rest and the thermal
bath is moving with a velocity v. In this frame we have that

�Sðk; uÞ ¼ �s
00 ¼ �1 þ �2

1� v2

¼ i2�m2
DTð1� v2Þ3=2ð1þ v2

2 cos
2�Þ

jkjð1� v2sin2�Þ5=2 : (90)

We have all the necessary quantities to construct �S using
Eq. (75) and then the propagator in Eq. (72). When the
limit v ! 0 is taken, we obtain for�S the same result as in
Refs. [14,15,17].

In the previous discussion we have not distinguished
between the case of moderate velocities and the case of
relativistic velocities, as we did in the hydrogen atom
calculations. This is motivated by the fact that the results
found in Sec. IV are identical to the ones that can be
deduced by taking the v ! 1 limit of the results of

Sec. III. However, it is interesting to sketch how the
computation of �11 would be carried out in light-cone
coordinates for v� 1. One would start with the NRQED
Lagrangian that includes the interaction with collinear
photons of Eq. (C6). Since the virtuality of the collinear
photons is of order T2, and T � 1=r, they can be inte-
grated out before evaluating the potential. At leading order,
this gives rise to an energy shift similar to the one reported
in Eq. (71). In the light sector of the NRQED Lagrangian
there are also interactions between soft photons and col-
linear electrons and integrating out collinear electrons one
obtains the HTL Lagrangian. If the scale T� is much
smaller than 1=r one should consider its effects in the
ultrasoft photons. However, these photons can only give
subleading contributions by means of loop corrections.
From now on we consider that the distinction between
moderate and relativistic velocities is not essential and
will not be done.
From the Fourier transform of the �11 propagator we

have determined the real and imaginary parts of the poten-
tial in the HTL approximation. The potential is anisotropic,
and in Fig. 3 we display the plots of the real (upper panels)
and imaginary (lower panels) part of the potential for
v ¼ 0, v ¼ 0:55, and v ¼ 0:99 respectively. We consider
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FIG. 3 (color online). Real (upper panels) and imaginary (lower panels) parts of the potential between a quark and an antiquark
moving with velocities v ¼ 0; 0:55; 0:99 with respect to the thermal bath. Right (left) panels correspond to the direction parallel
(perpendicular) to the velocity of the thermal medium.
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two directions: the first is along the direction of movement
of the thermal bath (right panels) and the second one is
along the direction orthogonal to the thermal bath (left
panels). We plot only positive values of r because
the potential is symmetric for r ! �r. We normalize
the real part of the potential to �mD, which describes the
typical strength of the potential in the v ¼ 0 case. The
imaginary part of the potential is normalized to �T. With
these normalizations the displayed shapes hold both for
muonic hydrogen and for heavy quarkonium.

Regarding the real part, we observe that for v� 0:55 it
is very similar (in fact, the curves overlap to a large extent)
to the real part in the v ¼ 0 case, being Debye screened at a
distance of order mD and not very asymmetric. For v� 1,
however, although the real part of the potential remains
Debye screened at roughly the same distance, it develops a
rather large anisotropy. Indeed, an oscillation is observed
in the direction of motion, which leads to the formation of a
wake in the plasma.

Concerning the imaginary part of the potential for
v� 0:55, it is not very asymmetric and remains very
similar to the v ¼ 0 case. It monotonically increases and
keeps the same pattern until v� 0:9. From that velocity
on, the imaginary part decreases and the anisotropy grows
(see the v ¼ 0:99 curve). In the direction parallel to v one
has that there is a mild increase with respect to the v ¼ 0
case for r ’ 4mD, and an oscillatory behavior at larger r is
also displayed. In the direction orthogonal to v there is an
enhancement of the potential at short range and a decrease
at large distances. Note that the imaginary part of the
potential vanishes in the origin for any value of v and in
any direction.

In Fig. 4 we plot the contour lines for the real and
imaginary parts of the two-body potentials between two
heavy particles with opposite charges, for various values of
the velocity. We focus on the short distance regime (the
normalization for the real part is slightly different from the
one in Fig. 3 because we have inverted the sign in order to
match the normalization of [4]), because the distances
relevant for dissociation are in the range rmD & 1 [14].
Various plots of the contour lines of the real part of the two-
body potential were also shown in [4] (see also [8]) and it
can be seen that we obtained exactly the same results. The
contour lines for the imaginary part of the two-body po-
tential are reported for the first time here, and we observe
that an important anisotropy exists even at short distances.

Let us next estimate the dissociation temperature in a
way similar to Refs. [14,23]. If we assume that the typical
momentum transfer k is larger than the velocity dependent
screening mass m2

Dðv; �Þ � j�Rðk; uÞj, we obtain that at

k� e2=3T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
the real and the imaginary parts of the

potential have the same size.3 For moderate velocities no

qualitative change is expected with respect to the v ¼ 0
case. However, for v close to 1, k becomes small and it is
not guaranteed that the screening mass can be neglected in
front of it. Indeed, we find that the screening mass remains
finite for v close to 1.4 This means that the typical k for
which the real and imaginary parts of the potential have
the same size is smaller than the screening mass. Since a
screened potential only supports bound states of a typical k
larger than mDðv; �Þ, we conclude that at relativistic
velocities, unlike the case of moderate velocities, the
dissociation occurs due to screening (i.e. at the scale
Td �mee), as originally proposed by Matsui and Satz
[2], rather than due to Landau damping [14,15,17]. This
can also be qualitatively understood from our plots. For v
large and increasing, we see from Fig. 3 that the real part
of the potential increases whereas the imaginary part
decreases. Therefore, from some v on, the real part of
the potential dominates over the imaginary part and one
can find the approximate wave functions of the system by
solving a standard Schrödinger equation with a real po-
tential. The decay width may be then calculated in pertur-
bation theory by sandwiching the imaginary part of the
potential between those wave functions. The wave func-
tions of bound states go to a vanishing value at the distance
where the real part of the potential becomes flat. From
Fig. 4 it is also clear that the real part of the potential at
short distances becomes steeper at increasing v. On the
one hand this implies that no bound state exists from a
certain velocity on. On the other hand it implies that when
bound states still exist their wave functions are increas-
ingly localized close to the origin. Since the imaginary
part of the potential goes to zero at the origin, it follows
that the decay width of such states is also going to zero at
increasing v. We can also estimate the critical velocity vc

at which screening overtakes Landau damping as the
dominant mechanism for dissociation, by equating eT

to e2=3Tð1� v2Þ1=2 above. We obtain vc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ae2=3

p
,

where a is a numerical factor of order one.5 A quantitative
study of all these issues may be carried out by numerically
solving the Schrödinger equation with the full (complex)
potential, for instance along the lines [36–38]. This is
however beyond the scope of this paper.
Regarding the real part of the potential, we find it

interesting to compare the results reported in Fig. 3
with the recent results obtained for super Yang-Mills
theory using AdS/CFT [34]. For this theory it was
stated that the potential could be approximated with a
Yukawa potential and the dependence on the velocity
encoded in a screening length that depends on v and � as
follows:

3This is so for generic �, meaning �≁�=2. For �� �=2, we
obtain k� e2=3T=ð1� v2Þ1=3.

4This is so for generic �, meaning �≁�=2. For �� �=2, we
obtain m2

Dðv; �Þ �m2
D=ð1� v2Þ.

5This is so for generic �, meaning �≁�=2. For �� �=2, we

obtain vc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ae2

p
.
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FIG. 4 (color online). Contour lines of the two-body potential between a quark and antiquark moving with respect to the thermal bath
with four different values of the velocity: v ¼ 0; 0:5; 0:9; 0:99. The left panels correspond to the real part of the potential, while the
right panels correspond to the imaginary part of the potential. The real part of the potential has been normalized to �mD, while the
imaginary part of the potential has been normalized to �T.
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mDðv; �Þ ¼ mDð0; 0Þ hðv; �Þ
ð1� v2Þ1=4 ; (91)

where hðv; �Þ is a function that is almost constant for any v
and �. The expression above does not give a good approxi-
mation of the potential in the HTL approximation. In
particular the Debye screening for v ¼ 0:99 is strongly
dependent on the angle �. If we try to fit the exponential
behavior of the longitudinal and transverse directions, we
find a screening length which is about a factor 2 larger in
the longitudinal direction with respect to the transverse
direction. This can also be inferred from the fact that the
scale of m2

Dðv; �Þ must be given by j�Rðk; uÞj. We obtain
in the case v ! 1

mDðv; �Þ �
	
mDj tan�j if �≁ �

2
mDffiffiffiffiffiffiffiffiffi
1�v2

p if �� �
2
: (92)

Be aware that the � above is the angle between the velocity
and the momentum transfer, whereas the � in (91) is the
angle between the velocity and the relative position. In any
case, the expression (92) shows that at ultrarelativistic
velocities a strong anisotropy for real space potential is
expected, as confirmed by our figures and discussed
above.

Regarding the oscillatory part of the potential one
might wonder whether it is due to the weak coupling
approximation. However, as shown in [10] for the
potential produced by a single charge, in the HTL resum-
mation approach, the oscillations of the potential are
larger than in the HTL approximation. Moreover, one
would naively expect that with increasing coupling the
wakes should be larger than in the weak coupling
approximation.

VI. CONCLUSIONS

The EFT theory for the description of bound states in a
thermal medium has several interesting aspects. When the
bound state moves with a moderate speed with respect to
the medium the resulting EFT is quite similar to the one
developed for the bound state at rest. We have taken into
account the suitable modifications in Sec. III, for the
hydrogen atom in the cases T � 1=r and T � 1=r.
However, when the speed is close to 1, one has to consider
two well-separated scales, Tþ and T�, defined in Eq. (8),
and in the corresponding EFT one has collinear as well as
soft degrees of freedom. The effective temperatures Tþ
and T� can be in two different energy ranges and in
Sec. IV we have considered two specific cases: the first
one corresponds to Tþ � 1=r � T� � E and the second
one corresponds to Tþ �me � 1=r � T� � E. Note
that in this case large logarithms of T�=Tþ appear in the
calculation. The factorized results displayed in
Appendix B may be useful for a resummation of
these large logarithms. It is reassuring that our results

for moderate velocities are able to reproduce the ones
obtained for the v� 1 case. For all the cases above we
observe that the thermal decay width monotonically de-
creases with the velocity. This means that the faster the
bound state moves across the thermal bath the more stable
it becomes.
Finally, in Sec. V we have considered the case T � 1=r

allowing for light fermion pairs in the thermal bath. In
atomic physics this state could be the muonic hydrogen in
a thermal bath of electrons and positrons, while in heavy-
ion collisions it may represent heavy quarkonia in the
quark-gluon plasma at very high temperatures. We have
determined how the imaginary and real component of the
two-body potential are modified for nonvanishing veloc-
ities of the bound state with respect to the medium.
Regarding the real part of the potential we have repro-
duced known results and extended them to higher speeds.
The imaginary part has been calculated for the first time.
Its behavior is similar to the one determined for the
thermal bath at rest for moderate velocities, but it tends
to zero at velocities close to 1. This implies that Landau
damping [14,15,17] is not the relevant mechanism for
dissociation of bound states from a certain critical velocity
vc on, which has been estimated in the previous section.
Screening, as originally proposed by Matsui and Satz [2],
becomes then the relevant mechanism. Our results for the
thermal decay width disagree with the qualitative estimate
of Ref. [39], and with the more quantitative one of
Ref. [40]. We believe that the main reason for the discrep-
ancy is due to the fact that the velocity dependence of the
interaction is not properly taken into account in those
works. Note that our results for the imaginary part depend
crucially on the use of the correct nonequilibrium expres-
sion in Eq. (75), which leads to Eq. (90).
In the present paper we have paved the way for a more

detailed study of the propagation of bound states in a
thermal medium. We have assumed that the medium is a
weakly coupled plasma, moving homogeneously and at
a constant temperature, therefore our study needs a num-
ber of refinements to be realistically applied to HQ states
in heavy-ion collisions. In that case, one should consider
the expansion and cooling of the thermal medium, as well
as possible anisotropies [41–44]. In any case, we expect
that the qualitative features we observe, namely, that the
decay width decreases with increasing velocity, and hence
that Landau damping ceases to be the relevant mechanism
for dissociation at a certain critical velocity, will remain
true.
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APPENDIX A: COMPUTATION OF AAND B
FROM SECTION III

As a starting point one can use Eqs. (16) and (17) from
[14], which for a bound state in a static thermal bath give

IiiðqÞ ¼ q

2�2

�
log

�
2�T

jqj
�
þ<�

�
ijqj
2�T

��
: (A1)

This equation is obtained by a trivial angular integration
because the system is symmetric under space rotations.
When the bound state moves with respect to the thermal
bath, the distribution function depends on the effective
temperature defined in Eq. (5) and has a nontrivial depen-
dence of the angle between k and v. Now if we take into
account the structure that was shown in Eq. (15) and define
x ¼ cos�, we have that

=AðqÞ ¼ q

8�2

Z 1

�1
dx

�
log

�
2�T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p

jqjð1� vxÞ
�

þ<�

�
ijqjð1� vxÞ
2�T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
��
; (A2)

and for the real part

<AðqÞ ¼ 1

8�

Z 1

�1
dx

jqj
ejqjð1�vxÞ=T

ffiffiffiffiffiffiffiffiffi
1�v2

p
� 1

: (A3)

Using Eq. (15) and the above equations we obtain that the
imaginary and real part of the coefficient B are, respec-
tively, given by

=BðqÞ ¼ q

8�2

Z 1

�1
dxx2

�
log

�
2�T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p

jqjð1� vxÞ
�

þ<�

�
ijqjð1� vxÞ
2�T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
��
; (A4)

and

<BðqÞ ¼ 1

8�

Z 1

�1
dxx2

jqj
ejqjð1�vxÞ=2�T

ffiffiffiffiffiffiffiffiffi
1�v2

p
� 1

: (A5)

As a cross-check, in the v ¼ 0 limit we find that the
relation B ¼ A

D�1 is fulfilled and combining this with the

identity

�ij ¼ 3

2
Ps
ij þ

1

2
Pp
ij; (A6)

one recovers the results reported in [14].

APPENDIX B: COMPUTATION OF THE
CONTRIBUTION FROM ULTRASOFT

PHOTONS IN SECTION IV

In this appendix we compute the matrix elements of Kij

defined in Eq. (56) in the various integration regions iden-
tified in Sec. IV.

1. The kþ; k� � T� region

The quantities a and b defined in Eq. (58) can be
computed from Kij as follows:

a ¼ 2

2D� 4
Kii þ D� 4

2D� 4

vivj

v2
Kij; (B1)

b ¼ 2

2D� 4
Kii � D

2D� 4

vivi

v2
Kij; (B2)

and for kþ; k� � T� we find that

KijðqÞ ¼ �2i
Z dDk

ð2�ÞD�1

�ðkþk� � k2?Þ
ejk�j=2T� � 1

�
�ij �

kikj

k2

�

	
�

1

kþ þ k� � i�
þ 2q

ðkþ þ k� � i�Þ2 þ . . .

�
:

(B3)

The first term in the square brackets vanishes by symmetry
considerations and we find that

<KiiðqÞ ¼ 0; (B4)

=KiiðqÞ ¼ q

2�2

�
1

D� 4
þ 1

2
� �

2
þ 1

2
log�þ log

�
2T�
�

��
;

(B5)

and

<vivj

v2
KijðqÞ ¼ 0; (B6)

=vivj

v2
KijðqÞ ¼ q

6�2

�
1

D� 4
��

2
þ 1

2
log�þ log

�
2T�
�

��
:

(B7)
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2. The case with kþ; k� � q

In this region we have that

KijðqÞ ¼ i
Z dDk

ð2�ÞD�1
�ðkþk� � k2?Þ

�
2T�
jk�j �

1

2
þ � � �

�

	 1

q� 1
2 ðkþ þ k�Þ þ i�

; (B8)

and it is useful to calculate separately the imaginary
part of the integrals with the first and the second
terms in the brackets. The reason is that the compu-
tation of the first term in dimensional regularization is
technically difficult, while the second one is quite
straightforward.

We first compute the imaginary part of the term
lineal in T� with a cutoff to separate the region
kþ � q from the region with k� � qðT�=TþÞ. Thus we
consider a cutoff� such that q � � � qðT�=TþÞ and we
obtain

=KiiðqÞ ¼ 2T�
Z 1

0
dkþ

� logð �
kþþ2qþi�Þ

kþ þ 2qþ i�
þ logð �

kþþ2q�i�Þ
kþ þ 2q� i�

� logð �
kþ�2qþi�Þ

kþ � 2qþ i�
� logð �

kþ�2q�i�Þ
kþ � 2q� i�

�
; (B9)

and

=vivj

v2
KijðqÞ ¼ 0: (B10)

Then, the remaining terms are computed in dimensional
regularization. Summing all the terms we obtain that

<KiiðqÞ¼T�
�

�
1

D�4
þ1

2
þ�

2
�1

2
log�þ log

�jqj
�

��
� jqj
4�

;

(B11)

=KiiðqÞ¼� q

2�2

�
1

D�4
�1

2
log�þ log

�jqj
�

�
�1

2
þ�

2

�

þ2T�
Z 1

0
dkþ

�logð �
kþþ2qþi�Þ

kþþ2qþ i�
þ logð �

kþþ2q�i�Þ
kþþ2q� i�

� logð �
kþ�2qþi�Þ

kþ�2qþ i�
� logð �

kþ�2q�i�Þ
kþ�2q� i�

�
; (B12)

and

vivj

v2
<KijðqÞ ¼ T�

2�
� jqj

6�
; (B13)

vivj

v2
=KijðqÞ¼� q

6�2

�
1

D�4
�5

6
þ�

2
�1

2
log�þ log

�jqj
�

��
:

(B4)

3. The case with kþ � q, k� � qðT�=TþÞ
In this region we have that

KijðqÞ ¼ 2i
Z dDk

ð2�ÞD�1

�ðkþk� � k2?Þ
j kþTþ

þ k�
T�

j
�
�ij �

kikj

k2

�

	 1

q� kþ
2 þ i�

: (B15)

For simplicity, we compute the imaginary part using a
cutoff (as we did in the previous subsection) and the real
part using dimensional regularization. We obtain that the
real and imaginary parts of the trace of Kij are, respec-

tively, given by

<KiiðqÞ ¼ �T�
�

�
1

D� 4
þ 1

2
þ �

2
� 1

2
log�þ log

�jqj
�

�

þ 1

2
log

�
T�
Tþ

��
; (B16)

=KiiðqÞ¼ T�
2�2

Z 1

0
dkþ

�
P

kþþ2q
� P

kþ�2q

�

	 log

�
�Tþ
kþT�

�
; (B17)

where P stands for principal value. Moreover, we find
that

vivj

v2
<KijðqÞ ¼ 0; (B18)

vivj

v2
=KijðqÞ ¼ 0: (B19)

APPENDIX C: INTERACTION WITH
COLLINEAR PHOTONS

In this appendix we give the detailed form of the
part of the EFT’s Lagrangians that describes the interac-
tion of electrons with collinear photons. General remarks
about the matching are given in the corresponding
subsections.

NONRELATIVISTIC BOUND STATES IN A MOVING . . . PHYSICAL REVIEW D 84, 016008 (2011)

016008-19



1. pNRQED Lagrangian for Tþ � 1=r and 1=r � T� � E

In this case the pNRQED Lagrangian has the form

�LpNRQED ¼ c1
c yc
me

�n�F�i

ð �n@Þ
�n�F�i

ð �n@Þ þ c2
c yc
me

�n�n�F��

ð �n@Þ
�n�n�F��

ð �n@Þ
þ c3

c yc
me

�
n�Fi�

ð �n@Þ
�n�F�i

ð �n@Þ þ �n�Fi�

ð �n@Þ
n�F�i

ð �n@Þ
�
þ c4

c yc
me

n�Fi�

ð �n@Þ
n�Fi�

ð �n@Þ
þ c5

c yc
me

�
�n�n@F�i

ð �n@Þ2
�n�F�i

ð �n@Þ þ �n�F�i

ð �n@Þ
�n�n@F�i

ð �n@Þ2
�

þ c6
c yc
me

�
�n�n�n@F��

ð �n@Þ2
�n�n�F��

ð �n@Þ þ �n�n�F��

ð �n@Þ
�n�n�n@F��

ð �n@Þ2
�

þ ic7
m2

e

�
c y �n�n�F��

ð �n@Þ
�n�n�F��

ð �n@Þ D3c �D3c
y �n�n�F��

ð �n@Þ
�n�n�F��

ð �n@Þ c

�

þ ic8
m2

e

�
c y

�
�n�n�F��

ð �n@Þ
�n�F�i

ð �n@Þ þ �n�F�i

ð �n@Þ
�n�n�F��

ð �n@Þ
�
Dic

�Dic
y
�
�n�n�F��

ð �n@Þ
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�
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�
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e
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�
Dic

�
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e
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y
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�
c

� c y
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�
: (C1)

The c field is the field of the electron in pNRQED
(we are using the form of pNRQED shown in
Eq. (3) of [21]), Di is the covariant derivative
(containing ultrasoft photons only) that acts on the field
of the electron and Latin indices stand always for trans-
verse components.

The power counting for this Lagrangian works as
follows. The leading-order terms are the ones proportional
to c1 and c2; note that the two terms in �n�F�i are not

of the same order of magnitude as �n@Ai � @i �nA. Taking
only the leading term of F�� in this two terms they have

the form

c1
c ycA2

?
me

þ c2
c yc ðnAÞ2

me

; (C2)

we consider that all the components of A� are of the same

approximate size (this may not be true in some specific
gauges). Starting from (C2) each term that has an addi-
tional covariant derivative acting on an electron field is
suppressed by an order �, each transverse derivative acting

on A� suppresses this term by an order
ffiffiffiffiffiffiffi
1�v
1þv

q
, and each ðn@Þ

acting on a A� field suppresses the term by an order 1�v
1þv .

If we consider that 1�v
1þv � � � ð1�v

1þvÞ3=2 the terms shown

in Eq. (C1) provide the complete list of operators at the
order me�

5. In practice only the two first terms contribute
to our calculation. The Wilson coefficients are fixed by the
matching calculation schematically shown in (52). We
obtain

c1 ¼ c2 ¼ c4 ¼ c9 ¼ e2

2
; (C3)

c3 ¼ c7 ¼ c6 ¼ c10 ¼ � e2

2
; (C4)

c8 ¼ c5 ¼ e2

4
: (C5)

2. NRQED Lagrangian for Tþ �me and
1=r � T� � E

The full expression for the part of the NRQED
Lagrangian that deals with the interaction of electrons
with collinear photons is
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�LNRQED¼c1
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The power counting for this expression is the same as in
Eq. (C1). However, we are considering now higher veloc-
ities, and hence the relative size of 1�v

1þv and � differs from
the previous case. For 1�v

1þv � �2 � ð1�v
1þvÞ3=2 we have listed

above all the operators up to the order ofme�
5. In practice,

only the operators proportional to c1, c2, c11, and c13
contribute to our calculation. The Wilson coefficients are
fixed by the matching calculation sketched in (69). We
obtain

c1 ¼ c2 ¼ c6 ¼ c9 ¼ e2

2
; (C7)

c3 ¼ c4 ¼ c10 ¼ c8 ¼ � e2

2
; (C8)

c5 ¼ c7 ¼ c16 ¼ e2

4
; (C9)

c11 ¼ c12 ¼ 3e2

16
; (C10)

c13 ¼ c14 ¼ c17 ¼ e2

8
; (C11)

c15 ¼ � 3e2

8
: (C12)
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