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Amplitudes for the = 3 moment of the Wilson operator at two loops in the RI'/SMOM scheme
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The renormalization of the third moment of the twist-2 flavor nonsinglet Wilson operator is given to two
loops in the RI’/SMOM renormalization scheme. This involves renormalizing the operator itself and the
two total derivative operators into which it mixes by inserting it into a quark 2-point function and
evaluating the amplitudes at the symmetric subtraction point. The corresponding two loop conversion
functions are derived from which the three loop Landau gauge anomalous dimension is deduced. The full
set of amplitudes for the two loop Green’s function for each of the operators are given in both the MS and

RI'’/SMOM schemes.
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L. INTRODUCTION

Recently a renormalization scheme has been introduced
which aids the extraction of accurate measurements of
matrix elements or Green’s functions from the lattice for
strongly interacting fields, [1-3]. The scheme is named
RI'’/SMOM which stands for the modified regularization
invariant (RI') scheme at the symmetric subtraction point
where the infinities are removed in a fashion akin to the
momentum subtraction scheme, [4]. The shorthand for the
latter is MOM. While this is a précis of the syntax it in
effect precisely defines the method for performing the
renormalization. The RI'/SMOM scheme is an extension
of the original regularization invariant (RI) scheme and its
modification (RI'), [5,6]. These were developed earlier to
aid the matching of lattice computations with the high
energy behavior determined in conventional perturbation
theory. In essence those schemes are such that 2-point
functions are rendered finite by choosing the renormaliza-
tion constant so that at the subtraction point there are no
O(a) corrections where a = g?>/(167%) and g is the cou-
pling constant in QCD. By contrast the renormalization
of 3-point functions such as vertices or operators inserted
into 2-point functions is carried out using the standard MS
scheme, [5,6]. The technical difference between RI and RT
resides in the way the quark 2-point function is treated
prior to applying the renormalization condition. More spe-
cifically this is how to project out the contribution associ-
ated with p where p is the external momentum of the
2-point function. The scheme which is more widely used
of the two is RI’ as it minimizes the number of derivatives
required to be taken. This reduces the financial penalty in
respect of defining the scheme when lattice regularization
is used. By contrast using dimensional regularization in the
continuum there is no such cost, only the limitation in the
range of validity of the coupling constant, due to its small-
ness, which is not an issue on the lattice. There the non-
perturbative structure can be fully explored. Further, there
have been several continuum computations performed in
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perturbation theory in QCD, [7,8]. For instance, the three
and four loop renormalization of QCD in RI' was carried
out in the Landau gauge in [7] and for an arbitrary linear
covariant gauge at three loops in [8]. In [8] all 2-point
functions were made finite in the same way as the quark
2-point function was in the original article, [5,6]. Though it
should be noted that in the Landau gauge the coupling
constant and gauge parameter variables are the same in
MS and RI'.

We have given a resumé of the RI' scheme partly to
contrast with that of RI'’/SMOM which is the main focus
here, but also since it is retained as part of the latter
scheme. This is because RI'’/SMOM differs from RI’ in
the way 3-point and higher functions are treated. For
instance, it was pointed out in [1] that RI’ is sensitive to
infrared effects. This stems from the fact that there is
an exceptional momentum configuration for 3-point func-
tions and the nullified momentum flowing through an
inserted operator leads to unwanted infrared singularities.
Examples of where one has to be careful in the treatment
are the quark current operators and the Wilson operators
used in deep inelastic scattering. Therefore, there is a
potential problem with making accurate measurements of
matrix elements involving such operator insertions on the
lattice which is the reason why RI'/SMOM was developed,
[1]. In this scheme there is a momentum flowing through
each of the external legs and inserted operators of the
Green’s function in a way which is consistent with
energy-momentum conservation. Therefore in the absence
of an exceptional momentum configuration there ought to
be no infrared problems. Indeed it was shown in [2,3] that
there was an improvement in the convergence of the con-
version function associated with the renormalization at two
loops when the RI'’/SMOM scheme was used instead of RI'
for the case of the scalar and tensor quark currents. More
recently the second moment of the twist-2 flavor nonsinglet
Wilson operator was studied in [9] at two loops. This built
on the initial one loop calculation of [10] and the two loop
computations for the quark currents, [2,3,11]. The Wilson
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operator was a more involved computation than the quark
currents due to the mixing of the operator with a total
derivative operator. The latter is completely passive in
the RI' scheme renormalization as the operator insertion
is at zero momentum by definition. For RI'’/SMOM it
cannot be neglected and the mixing, which has been
studied at three loops in MS in [12], is crucial. Though
comparing similar conversion functions for this operator
moment suggested that, if anything, in the RI' case the
perturbative convergence of the series was marginally
quicker, [9]. Though it was noted in [9] that as the RI’
scheme does not access the off-diagonal part of the mixing
matrix, due to the form of the Green’s function momentum
configuration, it is in some sense not a full scheme for
operators with mixing, in contrast to multiplicatively
renormalizable operators such as the quark currents.
While we have concentrated on the renormalization, one
ingredient which is crucial for lattice computations is the
actual structure of the Green’s function with the operator
inserted in the quark 2-point function. This is used to
measure nonperturbative matrix elements. However, in
order to assist matching the lattice results accurately with
the continuum, the provision of the same quantity in per-
turbation theory to as high a loop order as is computation-
ally possible is important. Indeed the RI'/SMOM lends
itself naturally to this problem of measuring forward ma-
trix elements and hence generalized parton distribution
functions. For instance, there has been significant lattice
work in this general area represented by [13-29]. As the
second moment of the flavor nonsinglet Wilson operator
has been treated in [9], it is the purpose of this article to
extend that work to the case of the third moment building
on the one loop result of [10]. This is a larger computation
as the extra covariant derivative means that there is mixing
into two total derivative operators, [12]. However, as dis-
cussed there these operators are actually related to the total
derivative of both second moment operators. In practice
this means that the anomalous dimensions should be the
same but only some of the amplitudes of the Green’s
functions will be related. This latter property is due to
the Lorentz index imbalance between operators of different
moments. In addition to focusing on the RI’/SMOM
scheme structure of the Green’s function we will also
provide the full set of MS results at the symmetric sub-
traction point. Aside from being the reference renormal-
ization scheme we record these because some lattice
groups choose to devise their own RI'’/SMOM type
scheme and then convert their results to the MS scheme.
Therefore, they would perform the high energy matching
to perturbation theory in the continuum in MS. While all
the lattice computations are performed in the Landau
gauge, our results will be in an arbitrary linear covariant
gauge. This is because the presence of the gauge parameter
is partly used as a checking procedure within the symbolic
manipulation programs we have used. In addition as was
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noted in [9,10] when one has two or more free Lorentz
indices on the inserted operator, then there is not a unique
way of defining RI'’/SMOM. This is mainly to do with
what combination of basis tensors one uses to write the
Green’s function itself in. Different basis choices could
lead to different RI'/SMOM schemes. Indeed it might be
possible to choose one in such a way that the associated
conversion functions have a better convergence than the
analogous RI’ one. One final point concerning the third
moment of the Wilson operator and that is that the vector
current is present in the set of operators at this level
through one of the total derivative operators, [12]. As this
current is physical then its renormalization is determined
by general properties of renormalization theory and the
Slavnov-Taylor identities. Therefore, we will pay special
attention to that to ensure there is consistency.

The article is organized as follows. We devote the next
section to the background to the set of operators we will
renormalize and the structure of the Green’s function we
will evaluate to two loops in both schemes as well as a
summary of the technical machinery we employed to
perform the computation. The details of the two loop
renormalization as well as the RI’/SMOM anomalous
dimension mixing matrix are given in Sec. III. The explicit
forms of all the two loop conversion functions are given in
the subsequent section. These are then used in Sec. Vto
determine the Landau gauge anomalous dimensions for
the diagonal and some off-diagonal entries of the mixing
matrix at three loops. The expressions for the amplitudes of
the Green’s function we compute are given in Sec. VI for
both the MS and RI'/SMOM schemes with conclusions
provided in Sec. VII. An appendix gives the explicit form
of the tensor basis used for the Green’s function as well as
the projection matrix used to extract the amplitudes.

II. BACKGROUND

We begin by recalling the formalism and properties of
the operators which we will consider here. The notation we
use is the same as in previous articles, [9-12], and we will
denote our three operators with the shorthand notation,

W5 = Sy*D"D7 s,
aW; = So#(y"D? ),
OW; = Sa* " (Py” )

2.1

where all derivatives act to the right and S denotes both
symmetrization and tracelessness, in d spacetime dimen-
sions, in all Lorentz indices. In particular

. . 1 . )
S@MV’T = Spvo - m[nﬂy S(Tpp + Nvo S,upp
+ 05, 05,7,] (2.2)

with
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fs‘;,wo' = E[Ofuvo- + (Olva'p. + (951',1,”/ + @fu(rv
+0;,,,+0,,,] (2.3)
where the basic operators, (9;“,0_, are
Oubo = $yuD,Dyth,
O = 3,(Fy, Dy ), 2.4)
(thavvg} = 3#3;/(12")’0‘//)

As in previous articles the symbol W3 at times will be
referred to as the level and in those instances, which will be
clear from the context, indicates the set of the three opera-
tors. For example, it appears here in the superscript. The
specific choice of level W3 operators is dictated by the
need to have three independent operators. One could have
excluded one of the total derivative operators in favor of
one with the covariant derivative acting on the antiquark
field but we retain consistency with lower moment opera-
tors here, [9,10,12]. In (2.1) we have suppressed the flavor
indices and emphasize that we are using flavor nonsinglet
operators. If the operators were flavor singlet then one
would require gluonic and ghost operators to have a closed
set under renormalization. In the flavor nonsinglet case
there is mixing but only within the set (2.1) which is also
closed under renormalization. However, the mixing is only
relevant when the parent operator of Wj is inserted in a
Green’s function with a momentum flowing through the
operator itself, [12]. With the way we have chosen the set
of operators then if no momentum flows through the in-
serted operator there is no contribution to the Green’s
function from the total derivative operators. For the
RI'’/SMOM scheme renormalization, [1], where there are
two external momentum, p and ¢, flowing in through the
quark legs then there is a net momentum flow of (p + ¢q)
out of the operator, as illustrated in Fig. 1 where the form of
the Green’s function, (¢ (p)Ol,,,(—p — q)(g)), we con-
sider is given. Since we work at the symmetric subtraction
point, [1-3], then

2:q2=(p+q)2:—M2 (25)

P

which imply

FIG. 1. The Green’s function (i (p)0.,,,(—p — q)(q)).
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pq =31’ (2.6)

where w is the common mass scale which in this case is
equivalent to the mass scale introduced to ensure that the
coupling constant is dimensionless in dimensional regu-
larization which we use throughout.

The renormalization of the operators of (2.1) is accom-
modated by the mixing matrix of renormalization constants
defined by

W W W

W Zl 13 2123 2133
Zi =\ 0 zy Zy 2.7)

0o 0 zy

where the subscripts label the operators in the order W3,
dW; and 99W;. The upper triangularity of the matrix
follows from the choice of our operators in (2.1) and
simplifies the computation when compared to the extrac-
tion of all nine elements for another choice. Associated
with the renormalization constants are the anomalous di-
mensions which are encoded in a parallel matrix with the
formal definition

W N d W
'yl-j3(a, a) = _M@ anl-j3 (28)
with
d J J
L =B+ @)= 2.9
M Bla) -+ ayela a)— 2.9

Here a is the shorthand for the coupling constant via
a = g?/(167) and « is the canonical gauge parameter
associated with a linear covariant gauge fixing with a = 0
corresponding to the Landau gauge. Further, B(a) is the 8
function and 7y, (a, @) is the anomalous dimension of the
gauge parameter where we retain the conventions of [8].
While the anomalous dimensions for gauge invariant op-
erators are independent of the gauge parameter in massless
renormalization schemes, such as MS, we have retained it
here since the RI’/SMOM scheme is a mass dependent
scheme and therefore the anomalous dimensions will de-
pend on the choice of gauge as will be evident later and
hence is indicated in (2.8). The explicit values for the MS
anomalous dimensions have already been determined in
the MS scheme and we record them as they are required for
constructing the RI'’/SMOM three loop anomalous dimen-
sions later. From [12]
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2035C% — 3320C;TpN,Ja* +
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[(285120£(3) + 1778 866)C3Cr

15 552

— (855360£(3) + 311213)C4C% — (1036800 (3) + 497 992)CoCpTrNy + (5702404 (3) — 244 505)C3.

TeNsla> + 0(a?),

25 1
Vi (@) = 5 Crat 43—2[8560CACF -
+ (1036 800£(3) — 814508)C3 TN, — 82208CT3N3]a® + O(a®),
3
Y13 (@ls = S Cra+ m[81c2 — 848C,Cr + 424C,TrNsla? + 0(a?),
1
Y5 (@ls = 5 Cra+ m[mc2 — 388C,Cy + 104Cy
_8
Yoo (@) s 3Crat 5 [376CACF -

1
112C% — 128CxTrNyla* + m[(5184§(3) +20920)C3Cr

— (15 552g(3) +8528)C4C% — (10368Z(3) + 6256)C4Cr TN, + (103684 (3) — 560)C3,
+ (10368¢(3) — 6824)C3TpN; — 896C,T3N2la® + O(a®),

4
35 (@)lys = — 3Crat

— (2592¢(3) + 10460)C3Cy: + (5184£(3) + 3128)C4CpTpN; —

1 1
57[56CE — 188C4Cr + 6AC, TNy Ja? + 5 2 [(T7764(3) + 4264)C4 C

(5184£(3) — 280)C5.

— (5184£(3) — 3412)C3TpN; + 448C,T3N?1a® + O(a®),

735 (@)l = O(a”)

where /(z) is the Riemann zeta function and the color
group Casimirs are defined as

TaTe = CF’ facdfbcd — CA(Sab, Tr(TaTb) — 5abTF

2.11)

where 1 = a = N4, N, is the dimension of the adjoint
representation and Ny is the number of massless quarks.
However, only the diagonal elements and the 23 elements
are known to three loops. The off-diagonal elements for the
first row were only determined to two loops. The reason for
this is that to extract the mixing matrix renormalization
constants, [12], one has to consider various momentum
routings of the operator inserted in the Green’s function of
Fig. 1 as well as exploit the fact that there must be no terms
such as (In(p?/u?))/ €, where d = 4 — 2€ and p is the sole
momentum flowing through external legs. This latter cri-
terion establishes relations between the off-diagonal coun-
terterms. For the n = 2 moment operator one had sufficient
linear equations in order to determine the three loop mix-
ing matrix, [12]. With the increase in moment one requires
a further linear relation in order to resolve the counterterms
at three loops. This can only be achieved by a four loop
renormalization for W5 which was not considered in [12].

Throughout we will use the convention that the results
will be expressed in the RI'’/SMOM scheme, using
RI'/SMOM variables, unless otherwise specified as shown
in (2.10). As we will be mapping between the MS and
RI'’/SMOM schemes we recall that the variables are not
necessarily the same in each scheme. However, the rela-
tions are known to three loops, [8], and are

agy = ayg + 0(a2) (2.12)

(2.10)

and
gy = [1 + (=902 — 18ags —97)C, + 80TFNf)%

4 2 —
+((18af 18aM_S + 19002 — 5764 (3) ey
+463 o + 864(3) — 7143)C3

+ (—320a§/l_S — 320055 +23044(3) +4248)C, TNy
2

+(~4608£(3) +S280)C, TN S5 ]aMS

+ O(aiTS) (2.13)
which implies that the Landau gauge is preserved under
mappings between schemes. These relations derive from
[8] where the full three loop renormalization of QCD in a
linear covariant gauge in the RI’ scheme was recorded.
That scheme was defined by ensuring that all the 2-point
function renormalizations were performed in such a way
that there were no O(a) corrections at the subtraction point.
So included within this is the gluon 2-point function which
determines the renormalization of «. The coupling con-
stant renormalization was performed using 3-point func-
tion renormalization but those functions and higher are
renormalized in the MS fashion whence the trivial mapping
of (2.12). The RI'’/SMOM scheme differs from RI’ in that
the 3-point and higher functions are rendered finite by
ensuring there are no O(a) corrections at the symmetric
subtraction point. We should note that in [2,3] the renor-
malization of a was assumed to have been carried out in
the MS scheme. While this means that Landau gauge
expressions will be similar, if one was comparing the «
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dependent parts for the same quantities in the definition of
[1-3] and that used here, then they would not be in agree-
ment for nonzero «.

The Green’s function we will compute with the level Wy
operators inserted is illustrated in Fig. 1 where there
are three Lorentz indices associated with the operator
insertion which is denoted by the circle containing the
cross. Therefore, at the symmetric subtraction point the
Green’s function has to be decomposed into a basis of
Lorentz tensors which obey the same tracelessness and
total symmetry as the original operator. The choice of basis
tensors was given in [10] for the one loop computation
and we retain the same basis here. More explicitly at the
subtraction point we formally write

W (P)OYLso (=P = PP (@) omgpe 2

14 ‘

where Pfk)/mr

14 of these and as they are cumbersome we have provided
the explicit forms in the Appendix. It should be noted that
the tensor basis we use is defined at the symmetric sub-
traction point and is the same basis for each of the opera-
tors of level W5. When the squares of the external momenta
of the Green’s function are not all equal then the basis of
tensors will be much larger. The objects which we will
concentrate on computing are the amplitudes associated
with each tensor for each W; operator insertion. These are
E(Ok;(p, q) and defined by the projection method, [10],

39 (p.q) = M PE" (p, 9 (p)
X @ix,va(_p - Q)Q_b(CI)>|p2:q2:_,Lz.

Here M, is a dimension 14 matrix of rational polynomials
in d. It is computed by inverting the matrix N'{, which is
defined by

(p, q) are the basis tensors. For W there are

(2.15)

N = Plyue 2 PG (P @) e pe o (2.16)

Because of the large number of basis tensors this matrix is
equally cumbersome and is also recorded explicitly in the
Appendix.

In the choice of basis tensors we used the generalized y
matrices Ffj,i)'"” " [30-34], which are defined by

DAt = oyl bl

“ (2.17)

where the notation includes an overall factor 1/n!. These
are totally antisymmetric and form the generalization of
the y matrices in d-dimensional spacetime. Although we
are ultimately interested in four dimensions they are a more
appropriate object to use to build the tensor basis as the
generalized y space naturally partitions into regions de-
fined by the number of free Lorentz indices. The justifica-
tion for this lies in the observation, [30-32],
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tr (FMI"‘ILLIW I‘(Vri)vn) o 6mnI/-L1»-~MmV1 eV (2 1 8)

(m)

where [#1--#n?1--Vn ig the unit matrix in this I" space. Indeed
this is why (A.2) has a I'{j, and I'{;]” subspace. Though we
will always use y* as the object rather than the generalized
object. Hence, when constructing the tensor basis one can
be confident that a complete set has been used. For in-
stance, the antisymmetry means that at most two external

momenta can be contracted with Fffl ‘)“ " for n = 2. So the

Lorentz aspect of the basis is built from combinations of
tensors from the set {n*”, p*, g*, Ff;‘)'"“”}. The choice of

the 14 given in the Appendix were also derived from the
explicit one loop computation, [10]. In other words the one
loop Feynman diagrams were expressed in terms of the
basis Lorentz tensor Feynman integrals which were eval-
uated directly. The expressions for these were substituted
back into the original computation and the Lorentz indices
contracted producing the 14 basis tensors, [10]. Therefore,
given that we use the basis here but do not construct all
possible two loop basis Lorentz tensor master integrals.
Instead we use the projection method.

The machinery used to perform the computations are the
symbolic manipulation language FORM, [35]. The 3 one
loop and 37 two loop Feynman diagrams are generated in
electronic format using the QGRAF package, [36], and then
Lorentz and color group indices appended. As the Green’s
function contains two external momenta then packages
such as MINCER, [37], are not applicable. Instead we first
rewrite all the diagrams as scalar integrals where the
numerator tensor structure is rewritten in terms of the
denominator propagators in as far as this is possible. In
this form we then used the Laporta algorithm, [38]. This
creates a set of linear relations between all integrals with a
certain specification for each appropriate momentum to-
pology. The relations are established by integration by
parts and Lorentz identities and the integrals of interest
are rewritten in terms of a relatively small set of basic
scalar master Feynman integrals. For the two loop Green’s
function these have already been established to the order in
€ we need in order to find the finite part. This is not an
empty statement because in the huge set of linear equations
spurious poles in € can emerge in the factor multiplying the
master integrals. To handle such an enormous set of equa-
tions requires computer technology. Several packages are
available but we used the REDUZE program, [39], based on
GINAC, [40], which is written in C++ . It turns out that for
the 37 two loop diagrams there are only two basic momen-
tum topologies. In other words the momentum routing
of all the diagrams could be expressed in terms of one or
other of these configurations. Also given that we had
constructed the algorithm for the lower moment operators,
W,, it was straightforward to lift the extra integral relations
needed for W; out of the earlier database created for W,.
Therefore, we are reasonably confident that our procedure
is consistent as the same routines were used for the quark
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current operator renormalization which agreed with the
two loop results of [2,3] for the scalar and tensor operators.

III. RENORMALIZATION

The renormalization of the W5 operators has been out-
lined in [12] and we briefly recall the procedure. First,
we compute the Green’s function with all the parameters
being regarded as bare. This is the simplest way to proceed
when dealing with automatic symbolic manipulation com-
puter programs. The renormalized variables are then intro-
duced via the associated renormalization constant in the
canonical way, [41]. This ensures that the counterterms are
correctly embedded within the Feynman diagrams auto-
matically. For the operators themselves the renormalized
versions are also introduced by a similar rescaling involv-
ing their renormalization constant. However, unlike the
fields and parameters this renormalization is not multi-
plicative due to the mixing, [12]. Therefore, when the
renormalized operators are introduced we include the op-
erators into which it mixes. Consequently poles in € will
appear in various channels of the tensor basis but not all.
They have to be removed by the criterion of the scheme in
question. For MS this is achieved in the standard way.
However, for the RI'’/SMOM scheme it is more involved.
If, for the moment we concentrate on a generic tensor
channel which contains divergences, and denote that chan-
nel by 0, then the renormalization condition is, [1],

ZRI' RY/ /SMOME

(3.1

hm[ 0P D ey = 1.
The quark wave function renormalization is performed in
the RI' scheme but as we are now dealing with a 3-point
function then the operator renormalization constant obeys
the same condition. The ethos for the regularization invari-
ant schemes is that after renormalization there are no O(a)
corrections at the subtraction point which here is the
symmetric point, [1]. So both the quark 2-point function
and the Green’s function we are considering have no O(a)
corrections. For W3 we need to qualify (3.1) by saying that
the generic renormalization constant could represent a
combination of counterterms which appear in the mixing
matrix. Therefore to determine all the information to com-
pute the anomalous dimension mixing matrix requires the
solution of a set of linear equations. This was also a feature
of the original MS renormalization of the operators in [12].
While (3.1) is the condition which determines the operator
renormalization constant to avoid confusion it is important
to note that the full Green’s function is multiplied by the
mixing matrix of renormalization constants. So after the
renormalization constants have been fixed the finite parts
of all the amplitudes are affected by the renormalization.
Having outlined the general aspects of the renormaliza-
tion we have to discuss the specific renormalization of
ddW; which requires special attention. This is because
that operator is related to the divergence of the vector
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current. The vector current is a special operator in that it
is physical. Therefore, not only does it not get renormal-
ized to all orders in perturbation theory but the renormal-
ization constant is the same in all schemes. See, for
example, [42] for a summary of this. This is a consequence
of gauge symmetry and effected by the Slavnov-Taylor
identities. Therefore, our RI’ scheme renormalization of
dd W5 must be consistent with these general principles. So
from the definition of ddW; we have to project out that
piece which corresponds to the total derivative of the
divergence of the vector current. Contracting the Green’s
function containing the 99 W; operator with (p + q), 1,
does not produce anything nontrivial due to the traceless
condition. Instead we contract with (p + ¢),(p + ¢q), X
(p + ¢q), and this combination of vectors is chosen since
that is the momentum flow through the operator itself. This
produces a nontrivial combination of the amplitudes.
Ordinarily this would produce an expression where there
are poles in €. Indeed the individual amplitudes have
divergences. However, as the underlying operator is finite
there are no divergences in €. While this is consistent with
earlier remarks one has also to ensure that the Slavnov-
Taylor identity is actually satisfied and this relates to the
finite part of this projection. Computing in the MS scheme,
where the scheme dependence is in effect the quark wave
function renormalization from (3.1), we find that the com-
bination of amplitudes of the contraction proportional to p
is, [10],

3[d — 6] 3 09Ws OW.
4[d+2] (1) (p’q)lMs+ E(2) 3(P,f])|M—s
3[d_4] 93W@( )l [d_ 10] 38W3( )l
a0 PO g re s POl
3
?SB)W3 (p’ Q)lMS ?68)W3 (p! C])lMS
[d 10] (. saw,
8[a’+2]2(7) (p"J)lMs
1 3 41 3
= +1|={3)——+=£(3
—3—3aCra+[[3¢0)-F+3¢0a
13 9 7 5
_Za_ﬁaz]CFCA +ZCFTFNf+16C2]a +0(Cl3)

(3.2)

A similar expression for the piece involving g produces the
same outcome. Clearly it is proportional to the finite part of
the quark 2-point function after renormalization in the MS
scheme. Indeed the equality of the p and g parts with the
unit renormalization constant required for d9Wj;, due to
the absence of poles in €, as well as the explicit values for
the MS amplitudes means that our renormalization is con-
sistent with the Slavnov-Taylor identities. Repeating the
process for the RI'/SMOM scheme with the RT' scheme
quark wave function renormalization constant produces a
similar result which is
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3ld—6
s 33 )
3[d — 4] S 99W; [d — 10] S 99W;
+4[d+2] o (Pd)- 8[d + 2] @ (P a)
3 d—10
S0~ 330" (0 0) — (S (0 g)
- % +0(). (33)

Clearly there are no O(a) corrections which is in agree-
ment with the RI' scheme quark 2-point function after
renormalization. The fact that when this combination is
computed that there were no poles in € means the renor-
malization of d0W; also has a unit renormalization con-
stant in this scheme consistent with the physicality of the
operator itself.

The procedure to determine the remaining renormaliza-
tion constants of the mixing matrix is to identify a set of
amplitudes or their combinations to which one can apply

|
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the condition (3.1). As noted in [9,10] for the RI'/SMOM
scheme there is not a unique way of doing this. One could
use the same combinations for W5 and dW5 as doWs.
However, as there are five renormalization constants to
determine one would require four other conditions.
Instead we extend to two loops the RI'’/SMOM scheme
definition given in [10]. Here the first three channels are
rendered finite by the generic condition (3.1). In addition to
the lack of uniqueness in defining the scheme because of
the choice of amplitudes there is also the issue that our
basis choice of tensors defining the amplitude channels is
not unique. One could have defined a different set of basis
tensors, though with the same symmetries as the operators
themselves. Then one would have another definition of
RI'’/SMOM. The choice we make here is in some sense a
minimal choice and one could readily make other more
exotic ones. However, following this particular path we
have determined the renormalization constants and have
encoded them in the mixing matrix of anomalous dimen-
sions. We have

2 1
yii(a, @)lry/smom = FSCFa + [[(384a2 + 1152 — 3168)(#’(5) — (2560 + 786 — 2112) 7% — 288a?

1 Cra
— 864a + 66204]CA —6105C; + [1152¢'<§) — 7687 — 24696]Tpr:|

3 1
Y2 (@, @)y /smom = — SCra+ [[(2112 — 864a — 288a2)z//’<§) + (19202 + 5760 — 1408) 7 + 216a>

1
+ 648a — 63 684]CA +2187Cy + [26280 + 51272 — 768¢’(§)]TFNf:|

3
1296 )
Cra®
+ 3
3888~ 0@

1 1
YV (a, @)lrysmom = — 5Cra+ [[(288a2 + 864a — 1056)1//’<§) — (19202 + 576a — 704)7* — 1188a?

1
—3564a — 10872]CA + [(2592 - 278401)11/’(5) + (1856 — 1728) 7 + 8244a — 9207]Cp

1
+ [384¢’(§) — 2567 + 2952]TFNf]

CFCl2

+ 3
3888~ 0@

8 1
vy (a, @)|rr /smom = nga + |i|i(108a2 + 324a — 924)1,0’(5) —(72a” + 216a — 616)7*> — 81a* — 243a + 16866]CA

1
—2016C; + [336¢’(§) — 22477 — 5976]TFNf]

%
7233 (a, a) |RI’ /SMOM —

1
— 288 + 648a — 9672 + 1927r2a2]cF + [64772 +2340 — 96¢’<§)]TFNf]

7?/33 (a, a)lRI’/SMOM = O(GS)y

Cpa2

+ 3
286 0@

4 1 1 1
—3Cra+ [[264¢’<§) — 17672 — 81a2 — 243a — 6651]CA + [144¢/(§) -~ 288¢’<§>a

Cpa2

+ 3
286 T 0@)

(3.4)

where /(z) is the derivative of the logarithm of the Euler I" function. As a check on our procedures we first verified that the
two loop MS mixing matrix of anomalous dimensions emerged and agreed with [12]. While [12] was a three loop
computation it used the MINCER algorithm, [37], designed for massless 2-point function renormalization in dimensional
regularization. The one loop terms are clearly gauge parameter independent but the two and higher loop corrections will
depend on the gauge parameter «. This is because in mass dependent renormalization schemes, such as RI'’/SMOM, the
anomalous dimensions of gauge invariant operators are not gauge independent in contrast to mass independent schemes
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such as MS. A final observation on the calculation is that the renormalization of dWj is the same as that for W, which was
considered in [9]. This is a nontrivial check since one has a different set of tensors for the basis due to the imbalance of
Lorentz indices between the operators. That the same renormalization emerges is partly due to a similar renormalization
scheme choice but also because the set of operators W, are all connected via the tower of operators involving the associated
total derivative operators.

IV. CONVERSION FUNCTIONS

Having constructed the RI'’/SMOM mixing matrix of anomalous dimensions at two loops we can construct the
associated conversion functions. These allow one to translate between renormalization schemes. For us the two schemes
will be RI'’/SMOM and MS and general background can be found in, for example, [42]. However, as the renormalization of
the operators is via a mixing matrix one has to extend the theory to allow for this. So the natural extension is to a matrix of
conversion functions which is formally defined by

W W —1
ik?RI’/SMOM[Zk ;M—S] . 4.1)

C iv;_@ (a, ) = Z
As the parameters a and « are tied to a renormalization scheme we have to make a choice and note that in the argument of
the conversion functions the parameters will be in the MS scheme. So in this definition those parameters in the RI'/SMOM
renormalization constants have to be converted to the corresponding MS parameters via (2.12) and (2.13). Otherwise aside
from being inconsistent one would have a nonfinite expression due to poles in €. For practical purposes, the definition
translates into

zn
Ws _ “iiRI'/SMOM
C[i (a, a) = — W,
i, MS
W3 W3 W3
Vola, @) = Zigrr/svom _ Z11Rr/svoMZ 12
2 \a, W, W, W, ’
22,MS 11,MS " 22,MS 4.2)
Ws Wi W W W Ws Ws Ws
CW3( ) = Zl3,Rl’/SMOM i le,RI’/SMOMZn,m 23MS le,RI’/SMOMZm,m . ZIZ,RI’/SMOMZB,W
134 a W, P A AL W, W W, W, ’
33,MS 11,MS22,MS 33, MS 11,MS33,MS 22,MS33,MS
W3 W3 W3
CW3( ) = ZZS,RI’/SMOM . Z22,RI’/SMOM223,W
34 a Ws (72—
33,MS 22,MS33,MS

for individual entries of the conversion function matrix where the first term corresponds to the diagonal and there is no sum
over i and i = 1, 2 or 3. Equipped with these the explicit values of the matrix elements to two loops are

1
C¥(aa) =1+ [(19201 = 216)¢/(§) + (144 — 128e)77* — 144 + 2763]%

1\\2 1
+ |:|:(294912012 — 663552 + 248 832)(1#’(5)) + (884 736 — 393216 — 331 776)¢’<§)772
1 1
+ (13360896« — 857088a> — 16 819488)1,0’(5) — (5184 + 82 944a)¢”’<§)
+ (40310784a — 94058 496)s2<%) + (188116992 — 80621 568a)s2<g)

+ (156764 160 — 67 184 640a)s3<g) + (53747712a — 125411 328)s3<g)

+ (131072a?% — 73728« + 124416)7* + (571392a2 — 8907264« + 11212992)72 + 616 896a>
—3348864a + 20576997 + (1492992a — 1679616)2, + (3359232 + 3919 104)Z(3)
In>(3)7r

A

+ (279936 — 653 184)
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Cly(a,a) =

(3)77
A

1\\2 1 1
+ [62 208<¢’<§)) - 82 944¢’(§)72 + (580608 — 1111968a + 974 592)¢’(§)

3
+ (7838208 — 3359232a) —=— + (701 568 — 300 672«) %]CF

1
+ (145152 — 46 656a)¢p”’(§) + (65505024 — 25194 240a)s2<g)(50 388480a — 131010 048)52<g)

+ (41990400 — 109 175 040)53(g)

+ (50388480 — 131 010048)s2( ) + (41990400 — 109 175 04O)s3<6)

+ (87340032 — 33592 3200{)5";( ) + (124416 — 359 424)7* — (387072a* — 741312« + 649 728) 7

— 50544002 — 1714608a + 79 566 624 + (746496 — 1213 056)%, + (1679616 — 24 354432)((3)

In2(3 In(3 3
T (454896 — 1749600) 27 4 (20995200 — 5458752) )7 4+ (187920 — 488 592)1]@
V3 V3 V3
1 Cr a?
+120528640/(=) — 1 ~321 T 3 4.
[ 05286 ¢(3) 36857672 — 3 60888] FNf:|839808 o(a?), 4.3)

1 C
[(48 - 48a)¢/’(§) + (32a — 32)7* + 36a — 927]3TFZ + [[(276480a —129024a% — 396288)

1\\2 1 1
X (W(g)) + (172032a? — 368 640 + 528 384)1//’(—)77'2 + (42163202 — 2847 744 — 2817 504)(//’(5)
1
— (155520 — 20736a)¢”’< ) 73903 10452(6) + 147 806208s2<2) + 123171 840s;<6>

— 98537 472s3(§) — (57344a% — 67584a — 238592)7* — (281088 — 1898496 — 1878 336) 7>

In*(3) 7

— 3836160 + 440640 — 17134821 — (373248 — 373248)% + 13996800 (3) — 513216 7

O s Do+ [aaie(w(3)) &)
+ 6158592 +551232— |Cp + | 124416 /(<)) — 165888¢/'( =)=

1 1
—(207360a? + 147 7T44a — 2208 384)¢'<§> + (18144 + 15 552a)¢’”(§)
+ (15116544 + 5038 848a)s2(%> — (10077 696« + 30233 088)s2<g)

— (8398 080c + 25194 24O)s3< ) + (20155392 + 6718464a)s3< ) + (6912 — 41472a)7*

+ (138240a + 98496a — 1472256)7* + 2255040 + 594 864 — 23258016 + (93312 — 186 624a)%

In*(3)7r In(3)7

+ (839808 — 839 808a){(3) + (34992 + 104 976) — (1259712 + 419904 )

V3 V3
(112752 + 37584 )WS]C + [373248 2 559872¢/(1) + 11611512]T N ] Cra® | 0(a%)
- A)—F—= - — - a ),
Nl s 3 P77 1839808

(4.4)

1 Cra
CY(a, a) = [(48a - 24):,1/(3) + (16 — 32a)7* — 198a — 9]— + [[(129024a2 — 193 536a + 322 560)

324
1\\2
X (wf(g)) — (172032a2% — 258 048 + 43008O)¢’<§)772
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C;V;(a, a) =

1 1
— (743040a% — 1156032a + 9328 608)1!/’(5) — (134784 + 20736a)¢/’”<—> — 80621 568s2(g)

+ 161243 136s2<2) + 13436928Os3<6) - 107495424s;(2) + (57344a% — 30720a + 502 784) 7

+ (495360a®> — 770688a + 6219072) 7> + 9745920 + 629856 — 2984931 + (373248 — 186 624)3

2 3
+1175731220) — 559872 D7 671846437 4 6013447 ]CF

V3 V3 V3
[165 8884 ( )77 - 124416(1# (%))2 + (12960002 + 1314 144 + 1428 192)¢’(%)

1
+ (20736 + 15 552a)¢”’<§) + (12597 120 + 10077 696a)s2<g) — (20155392a + 25 194 24O)s2<§)

— (16796 160a + 20995 200)s3( ) + (16796190 + 13436928a)s3< ) — (110592 + 41472a)7*

— (86400a? + 876096a + 952128) 7> — 517 104a® — 1662 120a — 1840968 — (93312 — 186624a)3,

In? 1
+ (629856 — 1679616a){(3) + (69984a + 87480) LS (1049760 + 839808«) n3m
V3 V3
7TS 1 o CFCZZ 3
— (93960 + 75168«) ﬁ]CA + [3110401,[//<§> — 2073607 + 390744]TFNf] + O(a”), (4.5)

839808

1
1+ [(36a - 42)¢'(§) + (28 — 24@) 7 — 27a + 459]% + [[(5184a2 — 120960 — 4608)
1\\2 1 1
X (lp/(g)) + (16 128a — 691242 + 6144)¢/<§)7T2 + (328 536@ — 13608a% — 613 656)¢’(§)
1
— (5022 + 1944a)¢”’(§) + (1259712 — 5248 800)s2(z) + (10497600 — 2519 424a)s2(3)

+ (8748000 — 2099 520a)s3<6) +(1679616a — 6998 400)s3(2) + (23040 — 192a + 11 344)7*

+ (9072 — 219024« + 409 104)7> + 7290a* — 90 882a + 107568 + (34992« — 40824)%

In? 1
T (104976a + 559872)23) + (87484 — 36450) -2V 4 (437400 — 104976a) "7
V3 V3
3 1\\2 1 1
+ (39150 — 9396a) %]CF + [5832(¢’(§)) - 7776¢’(§)772 + (1166402 — 39366 + 99 468)¢’<§)

1
+ (5103 — 972a)¢”’<3) + (2519424 — 629 856a)s2( ) + (1259712 — 5038 848)s2< )

+ (1049760 — 41 99040)?;(6) + (3359232 — 839 808a)s3(2) + (2592a — 11016)7*

— (77760 — 26 244a + 66312)7* — 8748a” — 34992« + 1759644 + (17496« — 34992)3,

(3 In(3
+ (26244a — T34832)(3) + (17496 — 4374a) — G (52488 — 209952) n@®)m
V3 V3
+ (4698 18792)—773]C + [46656«//’(1> 3110472 642168]T N ] Cra® | 0(d%) (4.6)
a— - - Tt = - a’), .
N 3 F 126244
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1

C§V33(a, a)= [24¢’<—> — 167 —54a — 297]@ + [[(13 824a +35 136)(¢’<§))2 — (18432 + 46848)1,0’(%)77’2

— (342144 + 19440a° — 824904) ' ( ) + 187921,[/”’( )+ (10917504 — 1679616a)52<6)

+(3359232—21835008a)s2< ) (2799360—1819584Oa)s3<6)+(14556672 22394880{)6";( )

+ (6144 — 34496)7* + (12960a> + 228096 — 549936) 7> + 37908 > + 76788 — 188892

+466563 — (139968a + 1609632)(3) + (75816 — 11664)

In2(3)7r

3

In(3) 7

V3

+ (139968 —909792)

+(12528a — 81 432)3—;] [31 1044 ( )77 - 23328(1// (%))2 + (107892 — 5832a® — 122472)1//’(%)

+(972a — 9720)¢”’< ) (9447840 — 4513968)s2(6) +(9027936 — 1 889568a)s2(2>

+(7523280—1574640a)s3< )+(1259712a 6018624)s3< )+(15552 2592a) 7t

+ (3888a® — 71928 + 81648) 7> —21870a* — 113724 — 2488482 + 349923,

+ (1277208 —52488a){(3) + (6561 — 31347)

o3

+ (33669 — 7047cu)\/§

and

CY(a, a) =1+ 0(d?). (4.8)

The final expression merely reflects the fact that d9W; is
related to the vector current which is a physical operator.
The values for row 2 and 3 correspond to the values of the
conversion function matrix for W, given in [9]." This is
consistent with the Wilson operator renormalization being
part of a tower of operators. These expressions include the
usual transcendental type of numbers such as powers of 7
and the Riemann zeta function of odd argument as well as
rationals. However, given the nature of the subtraction
point other classes of basic numbers arise. These include
derivatives of the Euler ¢ function and the natural loga-
rithm as well as the polylogarithm functions through the
specific function

£(3) = 1.202056 90, 3 = 6.345173 34,

S2<§) — 0.32225882, sz(%) — 0.22459602,

In*(3) 7

]CA [2937677 —44064¢( )+946080]TFNf]

1
W<§) = 10.095597 13,

s3(g) — 0.32948320,

In(3)7

V3

2

+ (376164 —78732«)

V3

CFa

+0(d® .
104976 T 9@) “.7)

1 e’
sp(2) = —S[Li (—)] (4.9)
n \/g n \/g

In addition a combination of various harmonic polylogar-
ithms also appears which is

— (2) 2

S =H5 + H; (4.10)

using the notation of [2]. These particular basic numbers

derive from the explicit expressions for the scalar master

integrals which the Laporta algorithm produces as a result

of the reduction of integrals. They have been evaluated by

various authors in [43—46].
For the conversion to all the numerical forms we present

here we have used the following numerical values for the
various polygamma and polylogarithm functions which are

1
¢/1/<§) — 488.1838167,

_ @.11)
s3<g) =0.19259341.

Expressing the conversion matrix in numerical form for the color group SU(3) produces

"The expression for C23 (a @) corrects a typographical error in the presentation of the two loop term involving C% of the
corresponding equation for C - (a, a) recorded in [9] but which was correct in the attached data file of that article.
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CV(a, @) = 1 +[2.185371 5a + 8.2451607]a + [9.959421 60> + 38.424 142 4a + 224.426 596 3

— 19.800798 8N/ Ja* + 0(a®)

C‘f‘;(a, a) = —[0.5463429a + 3.120323 8]a — [3.448 606 4a* + 15.245969 4 + 91.803 747 8 — 7.654 987 8Nf:|a2

+ 0(a?),

C‘f‘g’(a, a) = —[0.120323 8a + 0.384 282 6]a — [0.383 560 1a? + 1.233209 3 + 9.054 3723 — 1.178 299 ONf]a2

+ 0(a?),

CY¥3(a, @) = 1 +[1.639028 7a + 5.1248369]a + [6.510815 102 + 23.178 173 0ar + 132.622 848 6

—12.145 8110Nf]a2 + 0(a?),

C;V;(a, a) = —[0.4444444a + 1.7499534]a — [2.130 145 5a% + 7.277240 5« + 49.196 706 3 — 5.024 368 2Nf:|a2

+ 0(a?),
C¥(a, a) =1+ 0(dd).

Clearly there is a large correction at two loops for Wj itself
compared with dW; or W,. As one of the motivations for
developing the RI'/SMOM scheme was the hope that the
convergence of the conversion function would improve we
recall the numerical values for the conversion functions
from RI' to MS. From [47] we have the numerical values in
the Landau gauge

CV(a,0) = 1 +7.9259259a + [215.085359 3
— 18.9809671N,]a> + O(a?),

C¥:(a,0) = 1 + 4.592592 6a + [119.826 8158
— 10.9794239N,]a® + 0(®),

Cyi(a,0) =1+ 0(a?). (4.13)

Given the fact the top entry is the key one it appears that
the RI’/SMOM scheme has a slightly larger two loop
correction compared to the RI' conversion function. A
similar observation was made for W,, [10]. However, as
noted in that article it is not entirely clear whether one can
truly compare these conversion functions. This is because
the nature of the RI' scheme is such that it cannot access
the off-diagonal elements of the mixing matrix. This stems
from the momentum configuration of the underlying
Green’s function. Indeed in this respect it is not entirely

W

— a5 YN (ay 5)

w
’yii,iil’/SMOM(aRI” agy) = Yl.ijv[—s(aM—S)

(4.12)

clear whether one can regard RI as a full renormalization
scheme for the Wilson operators as a result of the mixing
with total derivative operators. For operators where
there is no mixing such as the quark currents then a
comparison of conversion functions would appear more
appropriate, [1-3].

5. THREE LOOP ANOMALOUS DIMENSIONS

One aspect of the conversion functions is that they can
be used to determine the anomalous dimensions given
knowledge of the anomalous dimensions in one scheme.
Although we are working with mixing matrices here it is
straightforward to extend the formalism to show that in our
case

W3
yij,RI’/SMOM (aRI/, aRI’)
Ws

_ AW W3 -1
= C’ (ayrs aM_s)Vkl,m(aM_s’ ays)(C); (aggs, ayg))

d
_ [Mac%(am, am)](cl‘:‘;s(am’ )| 5

where we now have to explicitly label the scheme the
variables correspond to by the subscript. More explicitly
for the three diagonal elements of the anomalous dimen-
sion mixing matrix we have

d
aaM—s
d

aam

— Blayg) —— 1"C¥3(QM_S’ a57s)

(5.2)

w
lnCiﬁ(am, am)

where again there is no sum over i and i = 1, 2 or 3. The off-diagonal elements are more involved since
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Jd
W, w. W,
YlfRIr/SMOM(GRI/, agy) = [Yuﬁm(dm)clf(am, ays) — Blayg) —— darrs (ams’ ays) — amsyas(“ms’ a5s)
XLC%(a— ) — ¥ (aee )C N, o) + (a<)C12 (e, Qtig)
b 12 Unis> Anis) T Y s Vs Ms® AMS 722Ms ms/ G2 Uaysr Ayg
M

0

W W

+ C5 (ayg ag) Blagg) —— da— InC} (agg ay) + C > (axgs: aMs)aMSYa (a5, oygs)
MS

X

— InC\7 (a5, a5)[Ca (agzs: ag) ] (5.3)
MS

W _ W; W
Y13k smom (GR1> QRY) = [713 MS(aMS)Cll (aygs azgg) + Va3, MS(aMS)CIZ (ayzs aygg) — Vllz,m(“m)clf (ayzs o)

v
T3y MS(aMS)C (arss: ) — ﬁ(aMs) C15 (agps ay5)
ayrs

0
- O‘MsYa (aMS’ ays) —— C13 (a3zs o) + C 3 (aggs: o) Blayg) —— da— 1nC113(aMS’ ags)

MS MS

lnC“‘ (355 aMS)][C3 3 (axs a5)]” !

Jdag

W -
+ C5 (aygs o) s Y (aggs o) —— Fy—

MS
+ [711 Ms(aMs)Clz (ags axgs) — Y, Ms(aMS)Cll (ayzs: ags) — Yo, Ms(aMS)Clz (ayzs: o)
cW: MS ;
+ ,B(GMS) C) (ays ays) T oy Yo (ays: dy) o 15 (aygsr Ayg)
ans MS

a J—

% W W-

C1; (axzs: angs)Blangs) 75— InCy (aygs angs) — €3 (as: i) s Ve (g i)
MS

9
X ——— InCy (a5, am)]cgvf (agzs, a5)[Cay (a5, aygs) Gy (asgs, evgs)] ™, (5.4)
MS

and

w. w W W
’)/233,RI’/SMOM (aRI’, CYRI/) = [ Vz;,m(am) C‘223 (Clm, aMS) B(aMS) S 233 (amx am) CyMS 701 S (aMS’ aMS)
M

I w
X aa—C233 (ays: afs) — Yo, MS(aMS)C23 (ays, ) + Y33, MS(aMS)C% (aygs, agrs)
MS

+ C23 (35, o) Blagg) —— a“Ms InC; S(C’Ms’ ays) + G, 1(“Ms’ aygs) s 024 (aMS’ a5)

Jd
X Ey— lnC;Vz3 (angs: aMS)][C Y asgs o) ] (5.5)
aNs

Using these we have first verified that the two loop arbitrary gauge anomalous dimensions, (3.4), are reproduced. However,
equipped with the explicit values of the two loop conversion functions as well as various three loop MS anomalous
dimensions we have the Landau gauge expressions
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25
Y17 (@, 0)|ry smom = S Crat [[70477 — 10564 ( ) + 22068]C —2035C;

Cra®
+ [384¢/(§) — 25672 — 8232]TFNf] FED

+ [[25344(@0’(%))2 —33 792¢’<1)772 + 44544(,0’(—) +59 136(#’”(%) +26687 232s2(g)

—53 374464s2<2) 44478 720s3<6> + 35582 976s3(2) — 1464327* — 296967 — 494208,

+ 0(a?)

(3 In(3 3
— 9066816£(3) + 42261846 + 185328 -7 _ 2223936137 _ 1990561]C§

V3 V3 V3

+ [25 344(¢'<%)) — 337924 ( )77 — 49072324 ( ) 2112¢"'<1) = 38320128s2(g)

+ 76640256s2(2) + 63866 880s3<6> 51093 504s3<2) + 168967* + 327148872

In? 1 3
OT | 3193344037 L g5 8241]CACF

V3 V3 V3

[122881// ( )7r - 9216(1,& (%))2 + 899328 WG) —21 5041,0’”(1) - 9704448s2<g)

+ 19408 896s2<2) + 16 174080s;<6> - 12939264s3<2) +532487* — 59955272 + 1797123,

— 6842882 —969408(3) — 4991286 — 266112

n2(3 In(3 3
T 497664£(3) — 29036688 — 673927 4 80870437 723841:ICATFNf
7 N BCATeN

1

[12288¢ ( )77' - 9216<¢/ (5))2 + 1908 864@[/’(1) + 7681&”’(%) + 13934592s2<g)

—27 869184s2(2> 23 224320s3<6> + 18579456s3<2) 61447* — 12725767* + 2488323

In>(3) 7 In(3)7r 3 ]
+25297927(3) — 2559504 + 96768 — 1161216 —103936—= |CrTrN
£(3) 7 NG Nl B
1 3
+ [202752772 —304 1281,//( )+ 4517952]T2Nf +[17107204(3) — 733515]C% ]46656 + O(a%),
(5.6)

8 1
7;‘/23(61, 0)|RI’/SMOM = gCFa + [[308772 - 462¢/(§) + 8433]CA - 1008CF

1 Cra? 1\\2 1
+ 1168y’ — 1127° — 2988 |T~-N 64 152( ¥'| = — 85536y = )72
[ v (3) ™2 ] F f] 243 [[ (‘” (3)) v (3)”
1 1 T T T
+ 862 812¢’<§) + 56133 lp"/(g) +27713 664s2(g) — 55427 32852(§> — 46189 44Os3<g>

+ 36951 552s3(§) — 121 1767* — 57520872 — 3849123 — 7243 344£(3) + 25273296

In?(3)7r

3

+ 192456
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_ 23094721“%)”— 2067123—%]@% + [11932&,& ( )77 —~ 89496(1,0 (%))2 — 5901984¢’(%>

—55242 tp”’( ) 57736800s2<6> + 115473 60052(2) + 96228000s3<6) 76982400s3<g)

In2(3)r

3

In(3)7 3 1\\2 1 1
+ 4811400 +430650— |C,Cr+| 31104( 4'( = —23328y'( = )72 + 251424 ’(—)
3 J’s'] ATE [ (‘” <3>) ‘/’(3)” V3

- 204121//”’( ) - 10077696s2<6) +20155 392s2(2) + 16796 160s3<6> - 13436928s3(g)

+1075367* +39346567* — 4490643 + 3639168{(3) — 4833270 — 400950

In(3)7r

+440647* — 1676167r> + 1399683, + 1259712£(3) — 16603056 — 69984 Ne

In(3)7 3 1

2 1

+839808- 27 + 751687 |C, TN, + | 32544 ¢'(=)) — 433924/( = )2
ity +[s2su( v (5)) - 03020 (3)

+2227824¢p( )+20088¢”’< )+20995200s2(g>—41990400s2<g)—34992000s3<g)

+27993 600s3<§) —391047* — 14852167 + 1632963, — 559872/ (3) — 742608

2
In°(3)7 17496001n(3)77

V3 V3

+2423 520]T%Nf +[1679616£(3) —90720]C2 ]

+ 145800

’ 1
~ 156600\7—_]CFTFNf + [124416772 - 186624¢’<§)

+ 0(a%), 5.7

39366

4 1 1
35 (@, 0)ry jsmom = —gcpa + [[264¢'(§) —1767* — 6651]CA + [144¢’(§) —967* — 288]CF

1 Cra? 1
[647T 96 s <3> 2340]TFNf:| 456 342 144y 3 i
1\\2 1 1
- 256608((#’(3)) - 1082808¢’(—) - 106920¢”’< ) 49653 648s2(6) + 99307 29652(2)

+ 82756080s3<6> 66204 864s3<2> +1710727* + 7218727% + 384 9123, + 12369672 (3)

— 37423134 — 344817 + 4137804 + 370359 —=

3 V3 V3
2
+ [477 504<¢;'(%)> — 636672 1,[/’(1)#2 +7978176 l///(i) +204768 W”(%) + 117993 024s2<g)

In2(3)7r In(3)7 w3 ]C2

—235 986048s2<2) — 196655 04Os3<6) + 157 324032s3<2> 3338247* — 531878472

In? 1 3
T _ 3575037 _ g 0921]CACF
V3 V3 V3

+ [93 312(1/1’(%))2 — 1244164 ( )77 — 150336y’ ( ) + 38880;[/”’(%) + 18055 872s2(g)

+ 6531843 — 11897280{(3) + 367416 + 819396

- 36111744s2(2> — 30093 120s3(6> + 24074496s;<2) 622087* + 100224 7> — 1399683,

— 1749600£(3) + 24312312
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In>(3)7r In(3)7r ] [ 1
— 1504656 — 134676 —= [C4,TgN 208 896 ’(—) 2
N i el M rG)T

1\\2
— 156 672<¢’<§>) — 3297 024¢’<§) — 75 168¢”’<3) 43 670016s2<6> + 87 34003252<2>

+ 125388

+ 72783 360s3(g) — 58226 688s3<g) + 1308167 + 21980167 — 1866243, + 30792967 (3)

In? 1 3
AT 363016807 4 325708 l]CFTFNf

N N N
[176 256 ( ) — 1175047* — 3494016]T%NJ% + [138 2404 ( )7T — 103 680((!/ (é))z
(

+ 15370564

+ 4039632 — 303264

1
) — 34 992¢"'<3) ~ 1679 616s2<6) +3359 232s2(2) +2799 360s3<767)

— 2239 488s;(§) + 472327* — 10247047 + 1399683 — 1399 680(3) + 729 648
)

In2(3)7r In(3)7r s Cra’
— 11664 + 139968 + 12528 — CZ:I + O(a* 5.8
5 987 ﬁ] 57462+ 0@ 6.8)
and
35 (@, 0)lry smom = Ola*). (5.9)

Again the final expression is the same as that for the vector operator. We note that we have not given the complete matrix at
three loops. This is because the complete three loop MS matrix is not known. The 12 and 13 elements were not determined
in [12] as there was not sufficient information to disentangle the relation between the two counterterms. As was noted in
[12] only a four loop computation could resolve this. However, the diagonal elements as well as the 23 element are now
available in the RI'’/SMOM scheme for comparison with the MS expressions. In numerical form these anomalous
dimensions are

Y17 (@, 0)lgy/smom = 5.555 555 6a + [161.581 5415 — 10.620 230 6N, Ja> + [6275.495 687 5 — 993.607 231 7N,
+24.6390623N7]a’ + O(a*),

35 (a, 0)lrr/smom = 3.555555 6a + [104.702424 4 — 6.577051 8N, Ja? + [4010.980 3829 — 624.881767 IN,
+ 14.9653337N2]a® + O(a*),

y37 (@, 0)|ry/smom = —1.777777 8a — [46.302861 2 — 2.746 882 5N, Ja® — [1692.014 3513 — 265.333971 5N,
+ 6.084617 IN3]a® + O(a®),

Y35 (@, 0)lry/smom = Ola*) (5.10)
for SU(3). For comparison the corresponding MS values are

Y17 (a 0)lgs = 5.5555556a + [70.884 7737 — 5.123456 8N Ja> + [1244.913 6024 — 199.637 388 3N
— 1.7620027N?]a® + O(a*),

35 (@, 0)lys = 3.555555 6a + [48.329218 1 — 3.160493 8N Ja> + [859.447 8372 — 133.438 161 TN,
— 1.2290809N3]a® + O(a*),

Y37 (a, 0)lzs = —1.777777 8a — [24.164 609 1 — 1.580246 9N, Ja? — [429.723918 6 — 66.719 080 9N,
— 0.6145405N3]a® + O(a*),

35 (@, 0)l5 = O(a*) (5.11)

which illustrates that the higher loop corrections are numerically smaller in the MS scheme.
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VI. AMPLITUDES

We devote this section to the main results which are the explicit forms of the two loop amplitudes in both the MS and
RI'’/SMOM schemes. Given the large number of amplitudes which have to be recorded we have chosen to do this in
numerical form for an arbitrary color group. In [9,11] we also recorded the exact two loop expressions in the form of tables
using the notation

0! — o.(1) (1) (@] (21) (21) 0 (22) (22
20 ) = (Zc(m an )Cpa + (Zc(m )C TpNpa® + (ch )CFC a?

+< ((Z)fn(zs) (23))C%a2 + 0(dd). (6.1)

Here a( ) correspond to a basis set of numbers which naturally arise in the computation. These include the transcendental

type of numbers which have appeared in the conversion functions and anomalous dimensions earlier. In addition the set a(l)
also included the gauge parameter dependence. The labelling is chosen in such a way that / indicates the loop order and in
addition at two loops a second digit is appended to reference the color group Casimir associated with that set. The other
quantities, ¢ ; )( ), are the actual rational coefficients of interest. The main reason for recalling this notation here is that

attached to this article is an electronic file containing all the coefficients for all the amplitudes in both schemes in their
exact forms in terms of the basis of numbers a\’. Therefore this is intended to allow for comparison with other results such
as the relation of W5 and ddW; with W, and dW, respectively.

Therefore we now carry out the mundane task of recording the results. First, in the MS scheme we have [48]

(1)(p, q)|MS —[0.128 0942 + 0.040 107 9« Ja — [3.573 963 3 + 0.5909329« + 0.144 533 0a? — 0.392766 3Nf]a2
+ 0(a%),

S0 (P @)lgs = —[0.648 148 1 + 0131165 1aJa — [11.9214676 + 0.6190048a + 0.492471 30> — 1.668 597 6N Ja>

+ 0(a?),

S5 (P @)lygs = —0.3333333 +[1.580 1848 + 0.061 790 5a]a + [23.3909330 — 0.0454 4540 + 0.358 724 20>
— 2.8780596N,]a> + 0(a?),

S0 (P, @)lizs = [0.342546 0 + 0.048 421 2a]a + [4.5342388 + 1.129214 7a + 0.170327 7a® — 0.236 191 IN o>
+ 0(a?),

s B (p, @)y = [0.4238476 + 0.075 159 8a]a + [4.593 5423 + 1.275975 la + 0.261 965 5a> — 0.366 053 SN ]’
+ 0(a?),

36 (P, @)lgs = [0.5842793 + 0.150319 6a]a + [4.8574744 + 1.708 1275« + 0.523 72040 — 0.684 187 2N, ]a?
+ 0(a?),
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S, ls
S (P @)y
30 (P, @l
Y (5, Dliss
E(uﬁ)(l?, (1)|M—s
DHER PRIV
" (0 Dlyss
SV (0, Dliss

E(?W3

1) (P, Q)lm

26W3

) (p, Q)lm

2%, 9)lys
W
S0 (P Dl

28W3

) (p, Q)lm

W
© (P Dl
W-
257) (P Dz

S (p. @)lsgs

PHYSICAL REVIEW D 84, 016002 (2011)

= [1.067 7459 + 0.664 867 9a]a + [23.377 6082 + 5.551 7350 + 2.4108591a> — 2.126 1604Nf]a2

+ 0(a®),

[0.2222222 + 0.1553757a]a + [7.102707 6 + 2.480654 5a + 0.5427210a> — 0.163 383 8Nf]a2
+ 0(a®),

[0.2829270 + 0.208 8529a]a + [9.254 603 7 + 3.030048 3ar + 0.738 342 4a> — 0.264 558 4Nf:|a2
+ 0(a?),

[0.477324 8 + 0.3374900a]a + [15.4402123 + 3.837351 9« + 1.2238427a” — 0.724016 le]a2
+ 0(a®),

[0.5615110 + 0.150319 6a]a + [7.6079600 + 1.776 502 3a + 0.543 955 3a> — 0.606 188 8Nf]a2
+ 0(a®),

—0.060704 8a — [1.2759196 + 0.244 317 9a + 0.005 058 7a> — 0.049 904 9Nf]a2

+ 0(a?),

—0.121409 5a —[2.5537039 + 0.3188150a + 0.010 117 5% — 0.127 070 6Nf:|a2

+ 0(a?),

—0.458 899 5a — [8.6460262 — 0.523998 7a + 0.038 241 6a> — 0.757 806 6Nf]a2

+ 0(a®), (6.2)

—[0.5833178 + 0.148 141 SaJa — [12.461 642 8 + 0.809 893 9« + 0.553 628 50

— 1.6747894N,]a* + O(d¥),

—0.166 6667 + [0.270821 7 — 0.097 198 9a]a + [1.020805 3 — 0.537 150 2 — 0.301 999 9>
+0.0393 764N ]a? + O(a?),

—0.3333333 +[1.1249617 — 0.046 249 7 + [14.503253 5 — 0.264 406 4> — 1.596 036 5Nf]a2

+ 0(a),

=[0.6265587 + 0.101 898 4a + [7.861 8848 + 1.97422571a + 0.360 890 3a> — 0.479977 le]az
+ 0(a®),

=1[0.7602518 + 1698307a]a + [8.2392595 + 2.269413 9« + 0.597 629 7a*> — 0.741702 3Nf]a2
+ 0(a®),

=1[0.9886158 + 0.4198773a]a + [15.7278789 + 4.141 353 4a + 1.502 121 5a> — 1.386 205 6Nf:|a2
+ 0(a?),

=[1.3116507 + 0.852038 2a/]a + [30.327 7430 + 7.590 065 5a + 3.074 365 8a?> — 2.413 487 le]az
+ 0(a?),

=1[0.466 1270 + 0.342 546 0a]a + [14.0528425 + 4.5189850a + 1.206227 Ta® — 0.45071051\7f]a2

+0(a),
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8W
(9) ;(p Q)lMS

+ 0(a?),

8W
200 (P Dlys =

+ 0(d?),
%, 9)lgrs =
+ 0(ad),

W
2(12; (p’ q)lm =

W-
S0 (@l =

BW
S0 (p, )y =

and

aaWz 90W;

_ d0W;
0 Dl = ‘

(P Dlis = 25 (P, Dlys

—0.5463429a — [10.3162815 — 0.326 080 6a + 0.045 528 6a> — 0.855527 7Nf:|a2 + 0(a?)

PHYSICAL REVIEW D 84, 016002 (2011)

[0.6872635 + 0.4784106a]a + [20.125008 3 + 5.463 274 2a + 1.716 743 5a* — 0.966 576 TN ]a*

[0.8137291 + 0.4321609a]a + [19.085929 5 + 4.830790 7a + 1.559 506 9> — 1.099 664 8Nf]a2

[0.8455237 + 0.2037969a]a + [10.9356060 + 2.621534 7a + 0.734 517 9a* — 0.849974 7Nf]a2

—0.148 148 1a — [2.946 1750 + 0.442236 0 + 0.0123457a* — 0.1476260Nf:|a2 + 0(a?),
—0.3472455a — [6.631228 3 + 0.058077 7ar + 0.0289 371 — 0.501 576 9N ]a* + O(a?),

(6.3)

= —0.3333333 + [0.541 6434 — 0.1943979a]a + [2.041 6107 — 1.074 300 3a — 0.603 999 7a’*

+0.0787529N]a* + O(a),

Ww. oW,
Zf) Z(P; Q)lMS 2(11) 3(]7, Q)IM_S

= [1.4720825 + 0.3056953a]a + [18.797490 8 + 4.595781 8« + 1.095408 3> — 1.329951 8Nf]a2

+ 0(a?),

E?S%WE(p’ q)lm Eflao?/x(p’ q)lm

= [1.5739809 + 0.601 991 6ar]a + [27.3251890 + 7.100204 7 + 2.157 136 6> — 1.841 367 le]az

+ 0(a?),

Eaawg EédWx

o Pl =20 (P 9l

=[1.6758793 + 0.898 287 9ar]a + [35.852 8872 + 9.604 627 6a + 3.218 865 0a> — 2.352782 3Nf]a2

+ 0(a?),

Eadw3 aaW;

7) (P, q)lM_s (8) (P, Q)|MS

= [1.7777778 + 1.194584 2aJa + [44.380 585 5 + 12.109050 4 + 4.280 593 4a> — 2.864 197 5N ]a>

+ 0(ad?),
BHW 86W HBW
2 (P Dl = 25 (P Dlis = 20 (P Dl

= —0.6944910a — [13.2624565 + 0.116 1554« + 0.057 874 3a> — 1.003 153 7Nf]a2 + 0(a?).

With the two loop corrections computed we note that the
results for some of the W3 and 99W; amplitudes are
proportional to those of lower moment operators. These
relations were noted at one loop in [10] and extend to two
loops now. For instance, channels 4 and 7 of doW; are
related to channels 3 and 5, respectively, of dW,, [9,10], or
equally channels 2 and 3 of the vector current, [10,11].
Also channels 4 and 7 of 9 W3 are proportional to channels
5 and 7, respectively, of W,. That not all channels have a

(6.4)

similar relation is due to the imbalance of indices of the
operator inserted in the Green’s function. Also the absence
of direct equality stems from the difference in the two
bases used for each operator moment. Though this under-
lying agreement is a partial check on our computation.
Equally the equality of several of the ddWj; channels
with themselves reflects the symmetric nature of this
particular operator and is another minor calculational
check.
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The expressions for the RI'/SMOM scheme amplitudes have a similar structure to the MS ones. However, given the
nature of the scheme definition which we have used then there are no corrections to channels 1 and 2 of W3 as well as 1 of
dWj5. For channels 3 of W5 and 2 and 3 of d W5 only the tree term is present which we record with the rest of the amplitudes.
We have

S (pq) = —0.3333333 + 0(a%),

S (p. q) = [0.342546 0 + 0.048 421 2a]a + [4.8378239 + 1.256850 4 + 0.191762 30> + 0.036 315 90>
— (0.236 1911 + 0.053 801 32)N,Ja* + 0(d?),

345(p.q) = [0.4238476 + 0.0751598ala + [5.111 1487 + 1.498349 0 + 0.273 524 67 + 0.056 369 7a®
— (03660535 + 0.083 510 9)N,Ja* + 0(d?),

30 (p, q) = [0.5842793 + 0.150319 6a)a + [5.946 138 5 + 2.263328 3ar + 0.539 795 6a> + 0.112739 74
— (0.684 1872 + 0.167 021 8a)N,Ja2 + O(d®),

S 00(p. q) = [1.0677459 + 0.664 867 9ala + [27.4054010 + 13.296 573 7a + 3.3654119a? + 0.498 650 9a’
— (2126 1604 + 0.738 742 1a)NJa2 + O(d®),

S (P, q) = [02222222 + 0155375 7ala + [6.7973293 + 3.210560 7ar + 0.577286 1> + 0.116 531 8a>
— (01633838 + 0.172639 6a)N,Ja* + 0(d?),

3o} (P, q) = [0.2829270 + 0.2088529a]a + [8.798 886 4 + 4.266 244 4 + 0.860 11082 + 0.156 639 7ar®
— (0.264558 4 + 0.232058 8a)NJa2 + O(d®),

300, (p. @) = [0.4773248 + 0.337490 0a)a + [16.231 8808 + 7.5409748a + 1709090 1* + 0.253 117 5a
— (0.724016 1 + 0.3749886a)NJa + O(a?),

301 (p, @) = [0.5615110 + 0.150319 6a)a + [9.0337049 + 3.316966 Sar + 0.749 387 5> + 0.112739 7
— (0.606 1888 + 0.167 021 8a)N,Ja* + O(d?),

313, (p. ) = —0.060704 8a — [1.0472892 + 0.131 5372 + 0.005058 7a> — 0.049904 9N, ]a* + O(a”),

305(p. @) = —0.121409 5a — [2.2043458 + 0.148 981 6 + 0.010 117 S — 0.127070 6N Ja> + O(d?),

30 (P, q) = —0.458899 50 — [10.458 0788 — 0.515053 1 + 0.038 241 6 — 0.757806 6N Ja* + O(a”), (6.5)

307 (p, q) = —0.166 6667 + O(a?),

30 (pq) = —0.3333333 + 0(a),

200 (p, @) = [0.626 5587 + 0.101 898 4ar]a + [8.496 8205 + 2.322463 Ta + 0.409023 3a? + 0.076 423 8a’
— (0.479977 1 + 0.113220 52)N,Ja* + O(a?),

3007 (p, q) = [0.7602518 + 0.169830 7aa + [9.381 0330 + 2.991 968 3a + 0.636 740 50> + 0.127373 1o
— (0.7417023 + 0.188 700 8a)N ]a® + O(a?),

00 (p. q) =[0.9886158 + 0.419877 3ala + [17.861 663 1 + 7.6725826a + 1.861 053 0a? + 0.314908 0a’

— (1.386205 6 + 0.466 5304 )N ]a* + O(a?),
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?;)V‘(p q) =[1.3116507 + 0.852038 2aJa + [33.938 7109 + 16.364 306 6 + 4.0819609a> + 0.639 028 7a’

—(2.4134871 + 0.946 709 1a)N]a* + O(a?),
?8‘;/3(1), q) = [0.4661270 + 0.342 546 0a]a + [13.3306392 + 6.305293 6a + 1.293 835 1a? + 0.256909 5a°
—(0.4507105 + 0.380 606 7a)Nf]a2 + 0(a®),
E?J)V"(p, q) = [0.6872635 + 0.4784106a]a + [20.7144109 + 9.675498 T + 2.181368 2a + 0.358 807 9a®
—(0.9665767 + 0.531 567 Sa)Nf]a2 + 0(a?),
Eﬁlvg;(p, q) =[0.8137291 + 0.4321609«a]a + [20.501 7650 + 9.034 594 1a + 2.072306 0a? + 0.324 120 7a?
— (1.099 664 8 + 0.480 178 8a)N ¢ Ja* + O(a?),
?1‘41/)3([) q) = [0.8455237 + 0.2037969a]a + [12.692 7015 + 4.382579 8a + 0.966 648 4> + 0.152 847 7
—(0.8499747 + 0.226 441 Oa)Nf]a2 + 0(a®),
E?gf(p, q) = —0.148 148 1a — [2.490083 1 + 0.178 861 5a + 0.0123457a? — 0.147 626 ONf]a2 + 0(a?),
?lv;/)‘(p q) = —0.3472455a — [7.195478 0 — 0.144 433 6 + 0.028 937 1> — 0.501 576 9Nf:|a2 + 0(a?),
2?]%3(19, q) = —0.5463429a — [11.900872 8 — 0.467 728 8a + 0.045 528 6a*> — 0.855 527 71\/f:|a2 + 0(a®) (6.6)
and

S0 () = 25" g) = 25" (p, @)

= —0.3333333 + [0.541 6433 — 0.250 046 6aJa + [10.529 679 4 + 4.083 157 S5a + 0.937 674 7
+0.1875349a® — (0.699 0249 + 0.277 829 5a)Nla* + O(a?),

S ) =20 (pq)
= [1.4720825 + 0.305 695 3a]a + [18.7974908 + 5.104 042 4a + 1.146 357 502 + 0.229271 50°
~ (13299518 + 0.339661 5a)N;Ja? + 0(a®),
S pa) =250 (P, q)

= [1.5739809 + 0.601 991 6ar]a + [27.325 1890 + 9.867 662 4 + 2.257 468 6> + 0.451493 7

—(1.841367 1 + 0.668 879 6a)Nf]a2 + 0(a®),

W W
S (pa) =24 (p,q)

=[1.6758793 + 0.898 287 9a]a + [35.852887 3 + 14.6312824a + 3.368 579 7a* + 0.673 71594

—(2.3527823 + 0.998 097 7a)Nf]a2 + 0(a®),

W W
S0 a) =2 (pq)

=[1.7777778 + 1.194 584 2a]a + [44.380585 5 + 19.394902 5 + 4.479 690 8a*> + 0.895938 2a*

—(2.864 1975 + 1.327231 8a)Nf]a2 + 0(a®),

W W W
S (@) =25y (p@) = 2 (p. @)

= —0.6944910a — [13.2624565 — 0.809 832 6a + 0.057 874 3a> — 1.003 153 7Nf:|a2 + 0(a?). (6.7)

The same relations between the various channels noted earlier for the MS scheme apply to the corresponding amplitudes in
the RI'’/SMOM scheme.

VII. DISCUSSION

We conclude our discussions with brief remarks. Clearly we have provided the full two loop structure of the Green’s
function with level W5 operators inserted in a quark 2-point function in two renormalization schemes. The underlying
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renormalization allowed for the computation of the conversion functions from the RI'/SMOM scheme to MS and we have
come to the same conclusion as [9,10] that the series convergence is marginally worse than the conversion functions of the
RI' scheme which has potential infrared issues. Though as we have argued that in some sense RI' is not as full a scheme as
RI'’/SMOM as there is no access to off-diagonal elements of the mixing matrix. Although one possibility of improving the
convergence rests in the redefinition of the RI'/SMOM scheme to take account of the structure of more amplitudes. This
could be achieved by a different choice of tensor basis for the Green’s function. However, in providing the full structure of
the Green’s function at the symmetric point in MS one is free to perform the renormalization in any scheme of their
choosing before converting to MS as the reference scheme. Therefore, our results are reasonably comprehensive so as to
allow others to be flexible in how they choose to define their own version of RI'/SMOM.
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APPENDIX: BASIS TENSORS AND PROJECTION MATRIX

The explicit forms of the 14 basis tensors in d dimensions are

(Yoo + Yollop T Yol uwl

1 1
W3 _
Piuve P @) = P[mpypa + YuPoPu T YoPupyl + 73]

2p
RIS [MuPe + MoPp + Noupyl

1
W
Pine P @) = F[vﬂpng T YPoldu T YoPuds T YudoPo ¥ YildoPu T YoduPs]

1 2p

N 2][7an T Yolop T Yolun) — i 5[ Mo + Moy + Monds)

[d+2]u

24
- [d + 2]u? [P + MgPp + Mopp)

1
w.
P pr @) = ?[mqvqa +Y0l0qu + Vodudy] + [YuTloo T Volow + YoNluwl

1
[d+2]

2q
- m[nuvqo‘ + MNvod u + 770';1,‘11/]’

114 4 4
Pluve P @) = L PuPvPo + T2 [(PuvPo + NooPu + NouPs)

[d+ 2]

W 4 4
?(5;,“,,0.(17’ Q) = F[p,t/,pvqg + PudvPo + Q,u,pvpa'] - ] ) ["7,“/170 — Nuvdo + MNvoPu

[d+2]u
- nmqu + NowPv — nnﬂqu]’

5[ MuvPo = Nuvlo + Mool = Nvody

P
(G)M,,U(P, Q) 4 [p,U,QVQ(r + Q/.vaq(r + Q}LQVPU'] + m

+ NouPy — Nopds)

4 4
P o @) = L3 Andvdo + [+ 202 (7o + Mo + Nopds)
P (pg) =L TR S + + ,
(X)Mva(p q) ,LL4 p,upvpa' [d + 2]/1/2 [T];vau’ nva'pp, na',u,pv]

q
Plos e (P> @) = o [pﬂpng + PudvPo ¥ 4uPrPol — m[nwpfr = Nuldo + MooPu = Mooy

+ NouPy — MNopds)
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(10)#,,0(17’ Q)

(“)W,(p, q) =

W
T(]E)MW(P» CI)

W _
,-P(lg)/“,(,(p, 5]) =

W
T(li),uvo’(p’ Q) -

+
[d+2]u

[+ 20

4
/L4 [P;ququ + q,upqur + q/.Lquo'] + m[nﬂvpa’ - 77,U,qur + nvtrp,u, - 771/0‘1#
+ ”Ozr;LPv - TI(T,LLqV]’

q
M4 q;l.qutr W[nuvqa + T]Vtrq,u, + T’U’,MqV]

1
= F[F(?a),u,pqpvpo' + I‘(3)qupp,p0' + r(3)o’pqpp,pv]

1
T2 (L&)pg Moo + T3opgMuo + T3opgMus)

1
F[FG)ﬂquVQU + F(S)qup,uqa + F(3)a’pqp,u,q1/ + F(S),u,quvpa' + F(3)V}7qq,u,p0' + F(3)(quQ/.LpV]

1
5L Gupg Mo + LeyopgMuo + Le)opg Muv

1 1
F[F(?)),u,pquQ(f + F(3)quQ,u‘10’ + F(3)U’qu;LQV] + W[F(S)Mpqnmr + I1(3)1/17[177#0' + F(3)zrpq77ﬂu]‘

(A1)

We use the convention that when a Lorentz index of I'\**" is contracted with an external momentum then that momentum
appears in place of the associated Lorentz index. The designation of Wj in the superscript here indicates level. For d W5 and
99 W5 the same basis is used. Given this choice we explicitly record the associated 14 X 14 matrix M"s, [10]. To save

Space we set

My MYy oML 0

1 MY My MY 0
2106d(d —2) | MY My My 0
0 0 0 My

MW =

and emphasize that the I'3) sector corresponds to the lower outer corner submatrix or subspace. The clear partition is a
reflection of the trace, (2.18). The explicit elements of each submatrix are

312(d+ 1) 156(d + 1) 78(d + 4) 1248(d + 1)
MW ( 156(d + 1) 39(5d +2) 156(d + 1) 624(d + 1)
1 78(d+4) 156(d+1) 312(d+ 1) 312(d + 4) ’
1248(d + 1) 624(d+ 1) 312(d+4) 1664(d +3)(d + 1)
( 624(d + 1) 312(d + 2) 156(d + 4) 624(d + 1)
M 312(2d + 1) 156(3d + 2) 312(d + 1) 312(d + 1)
12 156(3d + 4) 624(d + 1) 624(d + 1) 156(d + 4) ’
\832(51 +3)d+1) 416(d+6)d+1) 208(d+ 12)(d+ 1) 832(d+3)(d+ 1)
( 624(d + 1) 156(3d + 4) 312(d + 4)
M 156(3d + 2) 312(2d + 1) 624(d + 1)
13 312(d + 2) 624(d + 1) 1248(d + 1) ’
\416(51 +6)(d+1) 208(d+ 12)(d+ 1) 104(d? + 22d + 48)
(624((1’ +1) 312Qd+1) 156(3d+4) 832(d+3)(d + 1)
M _ | 3120 +2) 156Bd+2) 624(d+1)  416(d +6)(d + 1)
207 | 156(d+4) 312(d+ 1) 624(d+ 1) 208(d + 12)(d + 1)

624(d+1) 312(d+1) 156(d +4) 832(d +3)(d + 1)
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416Q2d +3)  624(d +2) 10484 416(4 + 3)
(4d?+7d+6)
MY =@+ 1) 624(2d +2) 20889 416(2d +3)  208(d +6)
104% 416(2d +3)  416(4d +3)  104(d + 12)
416(d + 3) 208(d +6)  104(d + 12)  416(4d + 3)
416(d + 3)(d + 1) 312(d> + 7d +4)  208(d + 12)(d + 1)
MY — 312(d + 2)? 416(d +3)(d + 1)  416(d + 6)(d + 1)
23 208(d +6)(d+1) 416(d +3)d+1) 832d+3)d+1) |
416(2d + 3)(d + 1) 104(4d? + 25d + 12) 208(d + 12)(d + 1)
624(d + 1) 156(3d +2) 312(d+2)  416(d + 6)(d + 1)
MY = ( 156(3d +4) 312Q2d +1) 624(d+1) 208(d + 12)(d + 1) )
312(d +4)  624(d + 1) 1248(d + 1) 104(d* + 22d + 43)
416(d + 3)(d + 1) 312(d + 2)? 208(d +6)(d+1) 416(2d +3)(d + 1)
MP = 3122 +7d+4) 416(d+3)(d+ 1) 416(d +3)(d+ 1) 104(4d> +25d + 12) |,

208(d +12)(d + 1) 416(d + 6)(d + 1) 832(d + 3)(d + 1)

208(4d> + 7d + 6)

My =| 624(d +2)(d + 1)
416(d + 6)(d + 1)
—416(d + 1) —208(d + 1)
My =| —208(d+1) —52(5d +2)
—104(d +4) —208(d + 1)

624(d + 2)(d + 1)
416(2d + 3)(d + 1)
832(d + 3)(d + 1)

208(d + 12)(d + 1)

416(d + 6)(d + 1)
832(d+3)d+1) |
1664(d + 3)(d + 1)

—104(d + 4)

—208(d + 1)

(A.2)

—416(d + 1)

These have been given in d dimensions because we used dimensional regularization in our two loop computation.
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