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We study the possibility of relaxing the indirect limits on extra neutral vector bosons by their interplay

with additional new particles. They can be systematically weakened, even below present direct bounds at

colliders, by the addition of more vector bosons and/or scalars designed for this purpose. Otherwise, they

appear to be robust.
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I. INTRODUCTION

In the coming years, the Large Hadron Collider (LHC)
will explore energy scales up to a few TeV. New physics
beyond the standard model (SM) at these scales could be
unveiled, mainly in the form of new particles that give rise
to resonances in the s channel. One appealing possibility is
the production of extra neutral vector bosons Z01 (for a
recent review, see [1]). These particles appear in many
extensions of the SM, such as grand unified theories
(GUT), scenarios with strong electroweak symmetry
breaking, theories in extra dimensions, and little Higgs
models. Z0 bosons stand among the best candidates for an
early discovery at the LHC. If coupled to quarks and
leptons, they can be easily observed as dilepton peaks in
the Drell-Yan process q �q ! Z0 ! ‘þ‘�ð‘ ¼ e;�Þ. On the
other hand, the existence of Z0 bosons with adequate
couplings could explain the possible discrepancies with
the SM predictions at large colliders, such as the anomalies
recently found at the Tevatron: a 3:4� discrepancy in the
top forward-backward asymmetry for large invariant
masses [2] (see [3]), or the 3:2� excess in the W þ jj
distribution around Mjj � 150 GeV [4] (see [5]).

However, other experiments have already placed strin-
gent bounds on Z0 masses and couplings. They narrow
significantly the parameter space available for LHC
searches, especially in the early stages of the LHC at
7 TeV center of mass energy and low luminosity. These
bounds are of two kinds: direct and indirect. Until recently,
the best direct limits on Z0 bosons came from searches at
the Tevatron. The same processes and couplings that are
being studied at the LHC are relevant in this case. For sizes

of couplings as in GUT (SM), the Tevatron typically puts a
lower bound of�800 GeV (1 TeV) on the Z0 masses [6,7].
In this regard, it is noteworthy that, with only�40 pb�1 of
luminosity, the first LHC data allow one to derive limits
comparable to those from the Tevatron [8,9]. Moreover, in
some cases LHC bounds are already slightly stronger than
the Tevatron ones. On the other hand, there are strong
indirect limits from electroweak precision data (EWPD)
obtained from measurements at the Z pole (LEP and SLC),
at low energies (experiments on parity violation and
neutrino scattering), and above the Z pole (LEP 2 and
Tevatron) [10] (see also [11,12]).
The usually quoted Z0 limits depend on the implicit

assumption that there are no other new particles that could
change the analysis. However, in most models with extra
neutral vector bosons, the Z0 is accompanied by other
particles, such as additional neutral vectors, extra charged
vector bosons, exotic fermions (sometimes required for
anomaly cancellation), scalars (which may get a vacuum
expectation value [VEV]), etc. In many instances, these
additional particles do have an impact on the bounds.
Direct limits are relaxed if the Z0 can decay into other
particles beyond the SM, thus increasing its width. This
happens, for instance, in some Z0 supersymmetric models
[13]. Additional new particles contributing to EWPD will
also modify the indirect bounds. Typically, the inclusion of
more particles just makes the limits more stringent; in this
case, the limits obtained from the analysis of a Z0 alone are
valid as conservative limits. But it is also possible that their
contributions cancel some effects of the Z0, in such a way
that the limits are relaxed. In this paper we explore this
possibility. By looking at the systematics of the cancella-
tions and studying particular examples, we shall be able to
judge the robustness of the standard Z0 limits.
The observable Z0 effects involving the SM matter fer-

mions c can be parametrized by the Z0 physical massMZ0 ,
width �Z0 , mixing sZZ0 with the Z, and couplings gc to the
5� 3 SM fermion multiplets. For simplicity, we shall
assume family universality of the Z0 couplings (although
similar arguments would apply to nonuniversal scenarios),
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1Neutral vector bosons can appear as components of different

irreducible representations of SUð2ÞL �Uð1ÞY . We will concen-
trate on SUð2ÞL �Uð1ÞY (and color) singlets. This is what is
commonly called a Z0 boson.
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yielding eight parameters. Particular models or classes of
models impose relations on the couplings, thus reducing
the number of independent parameters. For example, if
there is only one Higgs doublet� (as in the SM), and there
are no additional particles light enough to affect �Z0 , then
�Z0 and sZZ0 can be computed in terms of the coupling to
the Higgs, g�, and the other parameters,2 for a total of
seven. For example, the mixing is given by

sZZ0 � g�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p

2

v2

M2
Z0
:

The fermion and Higgs couplings may also be related by
additional assumptions, such as that the standard Yukawa
couplings are allowed. Similarly, in specific GUT models
the couplings to fermions are given by products of fixed
charges times a coupling constant gZ0 , which is determined
by the unification condition. The coupling to the scalar
doublet or doublets may be fixed as well. In some cases this
suffices to determine the mixing, while in others it depends
on the ratios of unknown VEVs. In the latter case, the GUT
Z0 model has two free parameters: MZ0 and sZZ0 .

EWPD are sensitive to the ratios gF=MZ0 � GF, where
F represents any SM fermion or Higgs field. They also
depend on the Higgs mass MH through the oblique radia-
tive corrections. Including it, the model-independent fits
with one Z0 and a single Higgs have basically eight free
parameters,3 whereas fits for GUTmodels with free mixing
have three. The leading corrections to Z-pole observables
depend linearly on the products GFG�. When the fermion
couplings are fixed, this requires either large MZ0 or small
mixing sZZ0 . On the other hand, the corrections to observ-
ables off the Z pole depend also on the combinations
Gc 1Gc 2 , with c i any fermion multiplet. Therefore, these
observables constrain the ratios Gc even for vanishing
mixing. For fixed fermion couplings, they put lower
bounds on the Z0 mass. It is important to observe that the
Tevatron and LHC searches and constraints depend on the
fermion couplings and the mass, but not significantly on
the mixing. Therefore, a vanishing mixing does not dimin-
ish the chances of observation at LHC.

The indirect limits on physics beyond the SM are in
general rather stringent [14,15], in particular, on extra
neutral vector bosons as already mentioned. This reflects
two facts: the SM provides a quite good description of
EWPD, and the largest deviations from the SM cannot be
significantly accounted by such (simple) SM extensions.
Hence, new particles, and in particular Z0s, are typically
banished to high scales near a TeV. In the following we
discuss more complex scenarios, where the new physics

conspires to have little effect on EWPD, except maybe to
accommodate a relatively heavy Higgs.4

In particular, we study the possibility of lowering the
most stringent indirect limits on popular Z0 models by
adding a second Z0 or/and extra scalars. In general, we
can always lower those limits with specific additions de-
signed for that purpose. Otherwise, the EWPD limits are
robust. In Sec. II we introduce the effective dimension-six
operators describing the Z0 contributions to EWPD observ-
ables. The effective Lagrangian approach is especially
well-suited for the comparison of the contributions of
any new heavy physics addition because it provides a basis
of operators parametrizing any weakly coupled SM exten-
sion. Then, after discussing the different Z0 effects, we
present the numerical analysis in Sec. III. We update the
present indirect limits on popular Z0s with masses banished
above a TeV, and characterize for each case the Z0 addition
which may largely cancel the popular Z0 contributions to
electroweak observables. In all cases we can lower those
limits below the present Tevatron and LHC limits with
properly chosen Z0s and scalars. For comparison, we also
study the case of the minimal models discussed in [12],
where the Z-Z0 mixing is not a free parameter. The corre-
sponding constraints on the mixing can be somewhat re-
laxed by adding extra neutral and charged vector singlets.
Our conclusions are collected in Sec. IV.

II. EVADING ELECTROWEAK CONSTRAINTS

We want to examine which kind of additional new
physics can relax the limits on Z0 bosons from EWPD.
This is not straightforward, because the new particles
that can neutralize the corrections of the Z0 to certain
electroweak observables may simultaneously increase the
discrepancy in others. A convenient way of analyzing the
collective effect of several different particles is thro-
ugh their contribution to the gauge-invariant effective
Lagrangian that describes arbitrary extensions of the SM
at energies below the masses of the new particles. This
procedure is more efficient than examining each of the
many observables.
To analyze current EWPD it is sufficient to include

dimension-four and dimension-six operators: Leff �
LSM þL6. Here, LSM is the SM Lagrangian and

L 6 ¼ 1

�2

X
i

�iOi; (1)

where Oi are gauge-invariant dimension-six operators,
� a scale of the order of the mass of the lightest extra
particle, and �i dimensionless coefficients. We will use the

2The Higgs mass MH affects the partial width for Z0 ! ZH,
but this effect is small for MZ0 � MH. The effect of MH on the
radiative corrections to EWPD are more important, as discussed
below.

3Because the uncertainties for the other SM parameters are
small, we fix them to their values at the SM minimum.

4As emphasized in Ref. [10] the main corrections to electro-
weak observables due to a relatively heavy Higgs can be can-
celed out by the addition of new vector bosons. Thus, as shown
in Fig. 9 of that reference an extra vector boson tripletW 1 or an
adapted singlet B do balance the heavy Higgs contribution.
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complete set of operators in [16] (see also [17]). In a given
extension of the SM, the coefficients �i can be written in
terms of the couplings and ratios of masses of the new
particles. The operators that contribute to EWPD can be
classified into three groups.

(i) Oblique operators, which modify the Z and W
propagators.

(ii) Operators made of scalars, gauge vector bosons (or
derivatives), and fermionfields (scalar-vector-fermion
[SVF] operators). They contribute to the trilinear
couplings of two fermions and the Z andW bosons.

(iii) Four-fermion operators. Only the operators with at
least two leptons contribute to EWPD.

At the Z pole, only the oblique and SVF operators give
significant contributions. The oblique operators also
change the SM prediction for MW . The high precision of
these measurements strongly constrains the values of the
oblique and SVF operator coefficients. Therefore, in prac-
tice only the four-fermion operators can give important
contributions to observables off the Z pole.

A sufficient condition for the new physics to be invisible
to EWPD is that �i vanishes (or is small enough) for all the
operators contributing to electroweak observables. This
condition is in practice also necessary, since different
combinations of operators appear in the different observ-
ables. So, our strategy is simply to look for cancellations
that make the relevant �i vanish:

�i ¼ �Z0
i þ �extra

i ¼ 0: (2)

To start with, we need to know which of the operators
that contribute to EWPD are induced by the Z0, and the

values of their coefficients �Z0
i in terms of the Z0 parame-

ters. The following operators contributing to EWPD are
generated in a generic Z0 model at tree level (see [10]5):

(i) One oblique operator Oð3Þ
� ¼ ð�yD��ÞððD��Þy�Þ.

After electroweak symmetry breaking this operator,
induced by the Z-Z0 mixing, contributes to the �
parameter. Its coefficient is proportional to the T
parameter. No other oblique parameter appears in
our operator basis at this order.

(ii) Five SVF operators, Oð1Þ
�c ¼ ð�yiD��Þð �c��c Þ.

(iii) Nine four-fermion operators, Oð1Þ
lc ¼ 1

1þ�c l
�

ð�lL��lLÞð �c L��c LÞ, Olc ¼ð�lLc RÞð �c RlLÞ, Oec ¼
1

1þ�c e
ð �eR��eRÞð �c R��c RÞ, and Oqe ¼ ð �qLeRÞ�

ð �eRqLÞ.

Our notation is as follows: c stands for any fermion
multiplet; c L;R denote the left-handed (LH) doublets and

right-handed (RH) singlets, respectively; lL; qL represent
the lepton and quark LH doublets; and eR; uR; dR the RH
lepton and quark singlets. The SVF and four-fermion
operators have two and four flavor indices, respectively,
which we have not displayed. We have obtained the co-
efficients of these operators in [10]. The explicit expres-
sions are collected in Appendix B of that reference (the Z0
is called B there). All the coefficients induced by a single
Z0 have the factorized form

�Z0
FF0 / gFgF

0
: (3)

Because, in the universal scenario, there are only six differ-
ent Z0 couplings gF, there are many relations between the
15 operator coefficients.
Let us now examine which types of new particles can

give the right contributions�extra
i to offset, at least partially,

the Z0 coefficients. We discuss, in turn, the different types
of operators.

A. Oblique operator

The Z0 contribution to the coefficient of the oblique

operator Oð3Þ
� is negative definite: ð�ð3Þ

� ÞZ0 ¼�2ðg�Þ2�0.

The contribution to the � parameter has opposite sign, so it
is positive definite. The same would hold, clearly, for any
number of heavy Z0 bosons. This effect can be compen-
sated for in several ways.
First, we need not resort to additional new physics. The

loop effects of a heavy Higgs (with respect to the ones for a
light Higgs, which is preferred by EWPD within the SM)
give a negative correction to � and can counterbalance to a
large extent the Z0 contribution. In fact, if the Higgs were
found to be heavy, a Z0 extension would be clearly favored
over the SM. This mechanism has been analyzed quanti-
tatively in [10]. It should be noted that the heavy Higgs also
induces universal SVF operators, contributing to the S
parameter, so the cancellation is not perfect.

Second, a vanishing �ð3Þ
� can be achieved if the Z0 is

accompanied by a singlet vector boson with hypercharge
Y ¼ 1, such as the one that appears in left-right models.
This field gives rise, upon electroweak symmetry breaking,
to an extra charged vector boson. Its main effect in EWPD
is a negative contribution to �, proportional to the square of
its coupling to the scalar doublet. In fact, this mechanism is
at work in any model with a Z0 and custodial symmetry. On
the other hand, its couplings to RH quarks (and to RH
leptons if the neutrinos are Dirac) are constrained by
measurements of K0- �K0 mixing, � decay, � decay, and
weak universality [19,20].
Third, the effects can be cancelled or eliminated if

several scalars participate in electroweak symmetry break-
ing. There are two distinct effects. One is that the Z-Z0
mixing is given for large MZ0 by

5One can use other operator bases to describe the integration
of Z0s [18], which may be more convenient for other purposes.
We choose to use the standard basis [16,17], which is well
adapted to perform global fits.
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sZZ0 � �
P

i t3ig
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p jh�iij2
M2

Z0
(4)

for an arbitrary set of scalar fields �i with fti; t3ig their
weak isospin and third component, respectively. This can
be reduced or eliminated by cancellations between�i with
opposite signs for t3ig

�i , which are often present, e.g., in
GUT models. A second effect is that the � parameter is
modified at the dimension-four level:

�SM ! �multiple vevs ¼
P

iðt2i � t23i þ tiÞjh�iij2P
i 2t

2
3ijh�iij2

: (5)

The Z0 contribution can be canceled by adjusting the VEVs
of scalars with ti � 1 and the appropriate t3i.

Finally, the simplest possibility is making the Z0 scalar
coupling g� and thus the mixing small. As we have men-
tioned before, this has no consequences for collider
searches.

B. SVF operators

All the coefficients of SVF operators are proportional to
the Z-Z0 mixing, so the simplest way to get rid of them is,
again, to have a sufficiently small mixing, either by can-
cellations, as in (4), or by a small g�. It is also possible to
cancel a nonvanishing Z0 contribution with additional par-
ticles, as we discuss next.

Extra vectorlike leptons and quarks contribute exclu-
sively to SVF operators via their mixing with the SM
fermions [21,22]. Using the results of [23,24], it is easy
to check that for any Z0 couplings there exist combinations
of extra leptons and quarks, with adjusted Yukawa cou-
plings, such that the five net SVF coefficients vanish.
However, in generic cases the combinations are very con-
trived: several multiplets in different representations of the
SM gauge group are required. Moreover, to avoid flavor-
changing neutral currents a replica of the multiplets is
necessary. This is similar to the discussion of scalars in
Sec. II D.

A cleaner cancellation is achieved by adding other vec-
tor bosons that also mix with the Z boson. According to the
results in [10], only the extra vector bosons of vanishing
hypercharge that are SUð2ÞL and color singlets can give
contributions to the SVF operators generated by the Z0.
Hence, we have to resort to additional Z0 bosons. The net
contribution of N Z0 bosons, including the original one, to
the SVF coefficients will vanish if the following equations
are satisfied:

�ð1Þ
�c

�2
¼ � XN

n¼1

Gc
n G

�
n ¼ 0; ðc ¼ l; q; e; u; dÞ; (6)

withGF
n ¼ gFn=Mn and g

F
n ,Mn the couplings and masses of

the nth Z0. Already with N ¼ 2, for any fixed couplings

gc
1 , g

�
1 and fixed mass M1, there are nontrivial solutions

that make all these coefficients vanish: G�
2 ¼ 	cSVFG

�
1 ,

cSVFG
c
2 ¼ 
Gc

1 , c ¼ l, q, e, u, d, with cSVF any real

number. We call such a companion Z0 boson a mirror Z0.
Of course, the additional Z0 bosons increase the devia-

tion in the � parameter, but this can be taken care of as
discussed above. Then, all the Z-pole observables will be
blind to this pair of Z0 bosons. All these Z0 bosons also
contribute to four-fermion observables, as we discuss in the
next subsections.

C. Indefinite-sign four-fermion operators

Scalar and vector bosons both contribute to four-fermion
operators. To cancel most of the contributions of the Z0, the
better suited fields are again additional neutral vector
bosons, due to their chirality structure and quantum num-
bers. However, in the universal scenario the contribution of

each Z0 to the four-fermion operators Oð1Þ
ll and Oee is

negative semidefinite, so the different contributions go in
the same direction and cannot cancel. The same holds for
vector bosons with other quantum numbers [10]. Then the
question is whether canceling the coefficients of these two
operators is possible by introducing scalar fields. We will
postpone that analysis to the next subsection, and concen-
trate here on the seven four-fermion operators with coef-
ficients of indefinite sign.
Let us consider again a set of N Z0 bosons. The cancel-

lations we are looking for are given, in this sector, by
nontrivial solutions to the following system of equations:

�ð1Þ
lq

�2
¼ � XN

n¼1

Gl
nG

q
n ¼ 0; (7)

�lu

�2 ¼ 2
XN

n¼1

Gl
nG

u
n ¼ 0; (8)

�ld

�2 ¼ 2
XN

n¼1

Gl
nG

d
n ¼ 0; (9)

�le

�2 ¼ 2
XN

n¼1

Gl
nG

e
n ¼ 0; (10)

�eu

�2 ¼ � XN

n¼1

Ge
nG

u
n ¼ 0; (11)

�ed

�2 ¼ � XN

n¼1

Ge
nG

d
n ¼ 0; (12)

�qe

�2 ¼ 2
XN

n¼1

Gq
nGe

n ¼ 0: (13)

For given Gc
1 of the initial Z0, the unknowns are the

ratios Gc
n , n � 2. In the case of two Z0s, N ¼ 2, there are
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seven equations for five unknowns. In fact, Eqs. (11) and
(12) are not independent for N ¼ 2, and will be automati-
cally satisfied if Eqs. (7)–(9) and (13) are. However, it is
easy to see that Eqs. (7)–(11) have no real solution unless
Gl

1 ¼ 0, Ge
1 ¼ 0, or Gq

1 ¼ Gu
1 ¼ Gd

1 ¼ 0. Nevertheless,

the EWPD limits can be relaxed if the nonvanishing coef-
ficient only enters observables that are less precisely mea-
sured. With N ¼ 3, all seven coefficients of indefinite sign
can be zero.

On the other hand, if the Z-Z0 mixings do not vanish, and
assuming no other contributions to four-fermion or SVF
operators, the system of Z0s would have to satisfy at the
same time Eqs. (7)–(13) and (6). This requires at least four
Z0s, including the initial one. In view of such a prolifera-
tion, it is important to keep in mind that each of the extra
Z0s increases the size of the four-fermion operator coeffi-
cients of definite sign.

D. Definite-sign four-fermion operators

We address now the operators with four LH leptons,

Oð1Þ
ll , and with four RH leptons, Oee. Assuming diagonal

and universal couplings, the contribution of the Z0s to their
coefficients is

ð�ð1Þ
ll Þijkl ¼ � XN

n¼1

ðGl
nÞ2�ij�kl;

ð�eeÞijkl ¼ � 1

2

XN

n¼1

ðGe
nÞ2ð�ij�kl þ �il�kjÞ;

(14)

which is indeed negative semidefinite.6 We have displayed
in this case the flavor indices, as they will be important
in the discussion below. These operators contribute to the
lepton cross sections and asymmetries at LEP 2, and to
purely leptonic low-energy observables, such as parity
violation in Møller scattering and neutral current neutrino
electron scattering. As shown in [10], these operators
cannot be canceled by other vector bosons. However, we
will see that scalar fields can do the job. In general, we need
two types of scalars.

The coefficient �ee can be canceled by the contribution
of a scalar singlet ’ with hypercharge Y ¼ �2.7 This
scalar can only have the following renormalizable interac-
tion with the SM fermions:

�L ¼ �	ij
’’yeiRcejR þ H:c: (15)

The Yukawa coupling matrix 	’ is symmetric. From the

interaction above, we see that ’ has lepton number L ¼ 2.
Integrating it out, the operator Oee is generated, with
coefficient

ð�eeÞijkl ¼ ð	y
’Þki	jl

’

M2
’

: (16)

The coefficient is symmetric under exchange of the first
and third and/or second and fourth family indices, just as
the coefficient generated by the Z0s. This is actually a
symmetry of the operator itself. Moreover, the coefficient
has the right sign required to cancel the effect of the Z0s to
this operator. The coefficient �ð1Þ

ll can, in turn, be canceled

by the contribution of a scalar triplet � with hypercharge
Y ¼ 1. These scalars are well known by their role as
messengers in the seesaw mechanism of type II [25]. For
our purposes neutrino masses can be neglected and we can
assume lepton number conservation. Thus, assigning to �
lepton number L ¼ �2, its only possible renormalizable
interaction with SM fermions is

�L ¼ �	ij
�l

i
L
ci�2�

a�al
j
L þ H:c: (17)

The contribution to the coefficient of the operator with four
LH leptons is [26]

ð�ð1Þ
ll Þijkl ¼ 2

ð	y
�Þki	jl

�

M2
�

: (18)

Again, this can neutralize the corresponding Z0
contribution.
There is, however, an important difficulty in realizing

these cancellations. Because of the different chiral struc-
ture of their couplings, the flavor indices of the scalars are
crossed with respect to the ones of the vectors. For the
relevant observables, the first two (or last two) indices
correspond to the first family, i.e., to electrons. Fixing these
two indices in the operator coefficient, for the vector con-
tribution one is left with a symmetric matrix, which in the
diagonal universal case is proportional to the identity. In
the scalar contribution, on the other hand, the coefficient
reduces to a rank-one matrix. So, the cancellation of the
contribution of any number of universal Z0 bosons with
only one singlet and/or triplet scalar always leaves non-
vanishing off-diagonal scalar contributions. Removing
them from the purely leptonic four-fermion operators re-
quires at least three scalars of each type.
The scalars couplings, in general, lead to lepton flavor-

violating processes, for which there are stringent con-
straints. For example, the couplings of the triplet must

obey j	e�ðe
Þ
� jj	ee

� j=M2
� < 1:2� 10�5ð1:3� 10�2Þ TeV�2

from ��ð
�Þ ! e�eþe�, and j	e�
� jj	e


� j=M2
�<

1:7� 10�2 TeV�2 from 
� ! e�eþ�� [27]. All these
restrictions are satisfied if each scalar couples the electron
to just one lepton family, i.e., e, �, or 
, and they do not
mix. So, for a perfect cancellation of the operatorsOee and

Oð1Þ
ll without flavor violation we would need to introduce

three singlet scalars, ’e;�;
, with nonvanishing Yukawa

couplings 	ee
’e
, 	e�

’�
¼ 	�e

’�
, and 	e


’

¼ 	
e

’

, respectively,

6For general (nondiagonal and nonuniversal) couplings only
the coefficients with i ¼ k and j ¼ l are negative semidefinite.

7Note that this kind of scalar field must not get a VEV.
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and three triplet scalars, �e;�;
, with nonvanishing Yukawa

couplings satisfying analogous relations.
However, in the triplet case there is an additional

problem: the same coupling 	e�
� that enter the LEP 2

eþe� ! �þ�� observables also contributes to � decay,
and hence, indirectly, to other observables such as
Cabibbo-Kobayashi-Maskawa universality. In the absence
of further new physics affecting � decay [28], this cou-
pling is strongly constrained. This prevents the required
cancellation of the Z0 effects on LEP 2 eþe� ! �þ��
data.

III. RELAXING ELECTROWEAK LIMITS
ON Z0 MODELS

So far we have determined what kind of additional new
physics is required to cancel the effects of a Z0 boson in
EWPD. We have seen that an optimal cancellation requires
introducing many different particles with specific cou-
plings. Such a complicated scenario is, of course, highly
unnatural. However, in most cases it is possible to weaken
the limits significantly using only a few extra particles, for
instance, adding an appropriate second Z0, or scalar sin-
glets and triplets, or both. In this section we give several
examples with these two types of additions. We consider a
few popular Z0 models and show numerically how the
limits are relaxed with the help of these extra particles.
In particular, we have chosen those examples where cur-
rent limits exclude the corresponding Z0 masses below
1 TeV. This includes the Z0

�, Z
0
I, and Z0

S models, inspired

in E6 GUTs, the Z
0
LR from left-right models, the Z0

R, whose
charges are given by the third component of SUð2ÞR, and

the Z0
B�L model. The explicit fermionic charges, Qc

Z0 , for

these models can be found in Table I, where we have also
included the Z0

� charges for later convenience. All these

charges are related to the ratios Gc
Z0 entering in the elec-

troweak fit by Qc
Z0 � Gc

Z0MZ0=gZ0 , with gZ0 ¼ ffiffiffiffiffiffiffiffi
5=3

p
g0 �

0:46. For a more detailed description of these models and
their origin see [1]. Finally, we also discuss the effects of
extra particles in the class of minimal Z0 models discussed
in [12]. For these models, which we will denote by Z0

min,

the charges are normalized with gZ0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p � 0:74
[see Eq. (20) below]. In all cases we assume family inde-
pendent gauge couplings.

A. Extra particle additions canceling Z0 effects
For the popular Z0 examples the electroweak bounds are

typically derived assuming free mixing [10,11]. Thus, the
limits on their masses are determined by the constraints
from observables off the Z pole, i.e., by their contributions
to four-fermion operators.8

Following the discussion in Secs. II C and II D such
contributions can be canceled by adding extra Z0s and extra
scalar fields. Thus, the addition of such particles should
allow for weaker bounds in the selected examples. For each
of the above mentioned Z0s we will consider a custom

counterpart, denoted by Z0, with charges chosen to attain
(at least partially) such cancellations. The charges for these

TABLE I. SM fermion charges, Qc
Z0 ¼ Gc

Z0MZ0=gZ0 , with gZ0 ¼ ffiffiffiffiffiffiffiffi
5=3

p
g0 (gZ0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 þ g02
p

) for the popular (minimal) Z0 models

discussed in Sec. III. For the left-right model � ¼ 1:53. The charges for the Z0 models are functions of the corresponding Z0 charges
and chosen for convenience. See the text for details. The charges for the Z0

� model are also included for completeness.

Model lL qL eR uR dR

Z0
�

3
2
ffiffiffiffi
10

p � 1
2
ffiffiffiffi
10

p 1
2
ffiffiffiffi
10

p 1
2
ffiffiffiffi
10

p � 3
2
ffiffiffiffi
10

p

Z0
� � 1

10Q
l
Z0
�

5Qq
Z0
�

0 5Qu
Z0
�

5Qd
Z0
�

Z0
I � 1

2 0 0 0 1
2

Z0
I � 1

10Q
l
Z0
I

0 0 0 2Ql
Z0
�

Z0
S

2ffiffiffiffi
15

p � 1
4
ffiffiffiffi
15

p 1
4
ffiffiffiffi
15

p 1
4
ffiffiffiffi
15

p � 2ffiffiffiffi
15

p

Z0
S � 1

10Q
l
Z0
S

5Qq
Z0
S

0 5Qu
Z0
S

5Qd
Z0
S

Z0
LR

ffiffi
3
5

q
1
2�

ffiffi
3
5

q
1
6�

ffiffi
3
5

q
ð� �

2 þ 1
2�Þ

ffiffi
3
5

q
ð�2 � 1

6�Þ �
ffiffi
3
5

q
ð�2 þ 1

6�Þ
Z0

LR � 1
10Q

l
Z0
LR

2Qq
Z0
LR

� 1
10Q

e
Z0
LR

2Qu
Z0
LR

2Qd
Z0
LR

Z0
R 0 0 � 1

2
1
2 � 1

2

Z0
R 0 0 � 1

10Q
e
Z0
R

2Qu
Z0
R

2Qd
Z0
R

Z0
B�L � 1

2
1
6 � 1

2
1
6

1
6

Z0
�

1
2
ffiffiffiffi
15

p � 1ffiffiffiffi
15

p 1ffiffiffiffi
15

p 1ffiffiffiffi
15

p � 1
2
ffiffiffiffi
15

p

Z0
min � 1

2gY � gB�L
1
6gY þ 1

3gB�L �gY � gB�L
2
3gY � 1

3gB�L � 1
3gY þ 1

3gB�L

8The corrections to Z-pole observables are proportional to the
mixing of the Z0 with the Z boson, sZZ0 , and thus can be adjusted
to zero.
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Z0 models are also shown in Table I, below the ones for the
corresponding Z0 example. Let us explain how we choose
them in general. First, since we are interested in the
contributions to observables off the Z pole we can choose
the effective Higgs charge of these particles to be zero. For
two Z0s, we can exactly solve six of the Eqs. (7) to (13).

Choosing Gq;u;d
1 ¼ 
c4FG

q;u;d
2 and c4FG

l;e
1 ¼ 	Gl;e

2 , with

c4F a real number, we can solve all but (10). It is conve-
nient to choose c4F to be small, which typically ensures
that the second Z0 would not have been observed in the
dilepton searches at the Tevatron and LHC. A small c4F
also minimizes the extra contributions to all four-lepton
operators, and, in particular, avoids increasing too much
the size of the operators with four LH or four RH leptons,
which are definite negative. On the other hand, we cannot
choose c4F to be too small. Large hadronic ratios would
imply either large charges that could spoil perturbativity or
too low masses, which would go against the effective
Lagrangian expansion we use (and present limits on extra
Z0s and other new particles). In practice, we increase the
hadronic charges by a factor smaller than the one used to
suppress the leptonic ones, and we restrict to order-one
charges.

For the cancellation of the four-lepton operators with
definite sign we will use the extra scalars ’ and � intro-
duced in Sec. II D. To illustrate the possible effects without
introducing (adjusting) too many extra parameters, we will
restrict to a somewhat minimal scenario. We will consider
three scalars singlets, ’‘, each of them coupling the elec-
tron to only one lepton family ‘ ¼ e, �, 
, respectively,
avoiding lepton flavor-violating constraints in this way.
Moreover, we choose all their couplings in Eq. (15) to be
equal 	e‘

’‘
ð¼ 	‘e

’‘
Þ � 	’, ‘ ¼ e, �, 
. On the other hand,

wewill only add one� and with a nonzero coupling only to
electrons, 	ee

� � 	�, thus evading � decay data con-

straints. It must be stressed that the choice of equal ’
scalar couplings does not allow for the exact cancellation
of the four-lepton operators resulting from the Z0 integra-
tion, as they have a different coefficient relation by a factor
of 2. Thus, ð�eeÞeeee ¼ 2ð�eeÞee�� for a Z0 with diagonal

and universal couplings, whereas ð�eeÞeeee ¼ ð�eeÞee��

for our choice of ’ couplings [see Eqs. (14) and (16)]. If
we had chosen the ’ scalar couplings to obtain such a
cancellation, the numerical results (limits) below would
not change much because the fits involve many other data
and contributions, with the exception of the Z0

R addition as
we will comment when discussing this extended model.
Obviously, allowing for many different arbitrary additions
and couplings the �2 can be relatively improved, but not its
significance.

B. Results and discussion

We have updated the fit to EWPD for each of the above
mentioned popular Z0 examples [10], and performed new
fits to the further extended models. For each case we
compute the bounds on the Z0 mass and the new parameters
controlling the interactions of the extra particles. The
results are presented in Table II.9 Prior to discussing

TABLE II. 95% C.L. electroweak limits on the Z0 masses for some of the most popular models. We compare the limits obtained in

the single Z0 scenario with those including extra Z0 vectors and scalars. See text for details and Table I for the Z0 and Z0 charges.
For comparison, we also give in parentheses in the second column the most stringent limit from direct searches at the Tevatron and
LHC [6,7,9].

95% C.L. electroweak limits

Model Z0 alone Z0 þ Z0 Z0 þ ’þ � Z0 þ Z0 þ ’þ�

MZ0 MZ0
jg

Z0 j
M

Z0
MZ0

j	’j
M’

j	�j
M�

MZ0
jg

Z0 j
M

Z0

j	’j
M’

j	�j
M�

[GeV] [GeV] ½TeV�1� [GeV] ½TeV�1� [GeV] ½TeV�1�
Z0
� 1035 (900) 856 0.77 869 0.19 0.36 475 1.2 0.35 [0.07, 0.46]

Z0
I 1144 (842) 878 1.3 993 0.34 681 1.6 0.38

Z0
S 1162 (871) 895 0.79 994 0.17 0.35 434 1.4 0.38 0.49

Z0
LR 1206 (959) 605 1.9 1234 0.14 0.33 611 1.9 0.17 0.33

Z0
R 1146 (1006) 697 1.9 1146 0.15 451 2.5 0.36

Z0
B�L 1261 (971) 905 0.27 0.37

Model Z0
I þ Z0

� Z0
I þ Z0

� þ ’þ�

MZ0
I

MZ0
�

MZ0
I

MZ0
�

j	’j
M’

j	�j
M�

[GeV] [GeV] [GeV] [GeV] ½TeV�1�
Z0
I; Z

0
� 1061 489 767 373 0.32 0.39

9In general we allow for arbitrary Z-Z0 mixing. In order for
this to vanish in the models considered, however, an extended
scalar sector allowing for cancellations between different un-
known VEVs is required, as emphasized in Sec. II. In the fits
below we take this mixing to be a free parameter, except for the
minimal models which are discussed at the end, without intro-
ducing explicitly the corresponding extra scalars.
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them, let us sketch a few details about the fits. We largely
follow [10] and refer there for further details. There have
been several updates of the experimental data considered
in that reference. We use the updated values for the top
mass [29], the SM Higgs direct searches limits from
Tevatron [30], and the value for the five-quark contribution
to the running of �em [31,32]. Other changes include the
value of the W width [33] and some updates in the low-
energy data [20]. With these improvements the SM fit
gives MH ¼ 125 GeV,10 mt ¼ 173:6	 1:0 GeV, MZ ¼
91:1876	 0:0021 GeV, �SðM2

ZÞ ¼ 0:1184	 0:0007, and

��ð5Þ
hadðM2

ZÞ ¼ 0:02751 	 0:00008. At the minimum,

�2
SM ¼ 158:5 for a total of 207 degrees of freedom. As

explained in the introduction, we fix all the SM parameters
except the Higgs mass, which is left free, to these best SM
fit values. Finally, the 95% C.L. limits (two-dimensional
regions) presented in this section are obtained by requiring
��2

95% ¼ 3:84ð5:99Þ relative to the corresponding �2 mini-

mum for each case.
(i) Z0

�: The inclusion of the extra scalars suffices to pull

the limit on MZ0 for the � model below the direct
LHC bound of 900 GeV, even in the absence of any
other Z0. In order to understand this, let us note that
in this case the LEP 2 observables do not require an
increase of the mass limit obtained from the Z-pole
and low-energy data alone. On the contrary, they
lower it (see Table 5 in [10]). This is because the

effect of the � model tends to increase the total
eþe� ! had cross section, which is 1:7� above
the SM. Thus, the addition of new scalars allows
one to maintain this enhancement and compensate
for the Z0

� contributions to leptonic processes, which

are in good agreement with the SM predictions.
Furthermore, they also help to reduce the 1:3� dis-
crepancy with the electron weak charge extracted
from Møller scattering. A similar limit is obtained
if we consider the two Z0 scenario obtained by

introducing the Z0
� in Table I. Note that in this

particular case we have chosen not to couple the

Z0
� to the RH leptons. Thus, we are not canceling

any of the operators with RH quarks and leptons.
This particular choice preserves large contributions
to the hadronic cross section at LEP 2, while the
cancellations prevent a significant discrepancy with
the atomic parity violation data. Finally, when we
include all the new particles, the limit on MZ0

�
is

lowered to around 475 GeV. The effect of adding
different particles is illustrated in Fig. 1. On the left
we show the 95% confidence region in the MZ0

�
�

M
Z0

�
=g

Z0
�
plane from a fit to the model with two Z0s

alone (inner region), and with extra scalars in addi-
tion (outer region). On the right we show the corre-
sponding regions in theMZ0

�
�M’=	’ plane (in this

case the inner one corresponds to the fit to Z0
� alone

plus the extra scalars). Apart from the scales, both
figures look almost the same. Notice the significant
correlation for low masses when we include all the
particles at the same time. The correlation is less
pronounced and the effect on theMZ0

�
bound smaller

for each separate addition. In particular, there is no

M
Z

’ χ
 [

T
eV

]

MZ
-
’χ

/gZ
-
’χ

 [TeV]

LHC bound
EW bound

Z’χ, Z
-
’χ, ϕ, ∆

Z’χ, Z
-
’χ

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5

95% C.L.

M
Z

’ χ
 [

T
eV

]

Mϕ/λϕ [TeV]

LHC bound
EW bound

Z’χ, Z
-
’χ, ϕ, ∆

Z’χ, ϕ, ∆

 0

 0.5

 1

 1.5

 2

 2.5

 0  2  4  6  8  10

95% C.L.

FIG. 1 (color online). Left: 95% C.L. confidence regions in the MZ0
�
� ðg

Z0
�
=M

Z0
�
Þ�1 parameter space from a two-Z0 fit with

and without including the scalars ’ and � (light [ocher] and dark [brown] solid regions, respectively). Right: the same in the

MZ0
�
� ð	’=M’Þ�1 plane from the fit to a Z0

� plus the scalars ’, � (dark [green] solid region), and the fit including the Z0
� (light

[ocher] solid region).

10Without including the direct limits the best-fit value for the
Higgs mass still passes the barrier of 100 GeV, MH ¼
105þ32

�26 GeV, getting closer to the LEP 2 exclusion bound of
114 GeV. This shift is due to the slightly larger value of the new

top mass but mainly to the new determination of ��ð5Þ
hadðM2

ZÞ
[32].
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appreciable correlation between the MZ0
�

lower

bound and ’, as observed in Fig. 1, right panel. In
this case its significant reduction is mostly due to the
triplet scalar � contribution.

(ii) Z0
I: As in the Z

0
� case, the limit on the Z0

I mass can be

slightly reduced adding new scalars (only the scalar
triplet in this case, since Z0

I does not couple to RH

leptons). However, the new scalar is not enough to
lower the EWPD limit below the LHC bound of
842 GeV, because the electroweak bound is more
stringent in this case. The Z0

I counterpart needs only

to couple to LH leptons and RH d quarks to attain a
complete cancellation of all the four-fermion opera-
tors with no definite sign. The sole addition of the

Z0
I in Table I lowers the limit around 100 GeV

below that obtained with the scalar triplet.
However, a complete cancellation of all four-
fermion contributions is not possible when both

Z0
I and � are included. This is because, even if

we choose completely general couplings for �, �
decay constraints on the electron-muon couplings
prevent the cancellation of the Z0 contribution to the
operator with two LH electrons and two LH muons.
Still, the combined scenario in the right columns of
Table II suffices to lower the electroweak limit
significantly below the direct searches bound. We
can also lower the MZ0

I
limits with a second Z0

within E6, Z
0
�. (See Table II.) Actually, the charges

of the � and I models are orthogonal within this
group. When we combine these two Z0s with the
(two) extra scalars, we can lower the limit on MZ0

I

below the LHC bound of 842 GeV. This can be seen
in Fig. 2. However, this limit occurs in correlation
with a low Z0

� mass and this is excluded below

910 GeV by Tevatron searches.11 Taking this into
account, the limit on MZ0

I
is still slightly below the

LHC bound.
(iii) Z0

S: The Z
0
S charges have a pattern rather similar to

those of the Z0
�. Hence, we choose similar charges

for its counterpart Z0
S. Then, a similar discussion

regarding the scalar additions and the combined
scenario including all extra particles also applies,
as can be seen in Table II.

(iv) Z0
LR: The limit on the Z0

LR mass cannot be relaxed
by introducing extra scalars. The reason is that for
this model the LEP 2 constraints are dominated by
the eþe� ! had data and the effect of the Z0 is to
reduce the total cross section relative to the SM,
increasing the discrepancy with experiment.12 We
can ameliorate these restrictions, as well as those
from low-energy data (in particular those from
atomic parity violation experiments), by introduc-

ing a Z0
LR with charges designed to cancel the left-

right model contributions to operators with two
leptons and two quarks. This addition alone suffices
to lower the limit to half the electroweak bound in
the single Z0 case. We find no improvement in this
case when we also add extra scalars.

M
Z

’ I
 [

T
eV

]

MZ’η
 [TeV]

LHC and Tevatron bounds
EW bounds

Z’η, Z’I, ϕ, ∆
Z’η, Z’I

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2  2.5

95% C.L.

M
Z

’ I
 [

T
eV

]

M∆/λ∆ [TeV]

LHC bound
EW bound

Z’η, Z’I, ϕ, ∆
Z’I, ∆

 0

 0.5

 1

 1.5

 2

 2.5

 0  2  4  6  8  10

95% C.L.

FIG. 2 (color online). Left: 95% C.L. confidence regions in the MZ0
I
-MZ0

�
parameter space from the two-Z0 fit with and without

including the scalars ’ and � (light [ocher] and dark [brown] solid regions, respectively). Right: the same in the MZ0
I
� ð	�=M�Þ�1

plane from the fit to the Z0
I plus the scalar � (dark [green] solid region) and from the fit also including Z0

� and ’ (light [ocher] solid

region).

11We assume these limits still apply in the two-Z0 models,
which is a good approximation if the resonances are narrow
enough to be distinctively separated.
12Although it may seem surprising that in this case the 95%
C.L. on the Z0

LR mass in Table II is slightly higher when adding
new scalars (parameters), this is so because this limit is relative
to the corresponding new minimum. This is deeper due to the
scalar contributions which do not decouple near this point, then
redefining the probability distribution.
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(v) Z0
R: Similar to the LR model, the limits on Z0

R can be

drastically reduced adding a Z0
R. Also as in the LR

case, the cancellation of the purely leptonic contri-
butions by adding extra scalars alone leaves the
limits intact. However, a significant improvement
is possible when we combine the two additions.
Since the Z0

R only couples to RH fermions a com-
plete cancellation of all four-fermion contributions
would be possible with the addition of the second

Z0
R and of scalar singlets ’‘ with couplings prop-

erly chosen. For our specific choice of scalar cou-
plings, however, this cancellation is incomplete.
Hence, we can find a 95% C.L. limit on MZ0

R
. As

can be observed by comparing Eqs. (14) and (16), a
perfect cancellation of the leptonic four-fermion
operators requires that the scalar couplings satisfy
the equality

	ee
’e
=

ffiffiffi
2

p ¼ 	e�
’�

¼ 	�e
’�

¼ 	e

’


¼ 	
e
’

: (19)

In such a case there is a flat direction in the parame-
ter space, allowing for arbitrary MZ0

R
values by ad-

justing the other extra parameters. This is illustrated
in Fig. 3, which is analogous to Fig. 1 for Z0

�, but

with the scalar coupling choice in (19). We must
emphasize, however, that in the effective
Lagrangian approach used here the fit only makes
sense for MZ0

R
above the maximum LEP 2 energies

�209 GeV.
(vi) Z0

B�L: The limit on the Z0
B�L mass is to a large

extent determined by purely leptonic LEP 2 data.

Thus, we do not find anyZ0 that can lower this limit.
On the other hand, the addition of new scalars does
allow for aMZ0

B�L
limit around 350 GeV lower than

in the single Z0
B�L case.

The corresponding contours for the Z0
S, Z

0
LR, Z

0
R (for our

standard choice of ’ couplings), and Z0
B�L are analogous

to Figs. 1 and 2 for the Z0
� and Z0

I.

Finally, we discuss the minimal Z0 models studied in
[12]. Their charges are a linear combination of the hyper-
charge Y and B� L. Thus, this case is fully characterized
by the Z0 massMZ0

min
and the two coupling constants gY and

gB�L defining its current. Following [12] we normalize
these constants in such a way that the fermionic current
coupling to the Z0

min is given (before mixing with the Z) by

J
�
Z0
min

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2þg02

q X
c

½gYYc þgB�LðB�LÞc � �c��c : (20)

Thus, the fit only constrains the ratios gY=MZ0
min

and

gB�L=MZ0
min
. In Fig. 4 we depict the 95% confidence re-

gions using two different parametrizations. On the left we
draw the MZ0

min
=gY �MZ0

min
=gB�L plane to facilitate the

comparison with previous cases, and on the right the
gY=MZ0

min
� gB�L=MZ0

min
plane as done in [12]. In this class

of models the relative sign between gY and gB�L is physi-
cal. The limits are in general more stringent than the ones
for the popular models above because by construction the
Z0 mixing with the Z boson is not a free parameter and
is nonvanishing. Taking into account the different normal-
ization used, which stands for a multiplicative factorffiffiffiffiffiffiffiffi
5=3

p
g0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ g02

p � 0:6, the lower limits in Fig. 4, left
panel, are almost a factor �3 larger than those in the
previous figures.
The results can be better visualized in Fig. 4, right panel,

where the limits are plotted as a function of gY=MZ0
min

and

gB�L=MZ0
min
. As in [12], we also draw the constraints from

different data sets. In this class of models the addition of
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FIG. 3 (color online). Left: 95% C.L. confidence regions in the MZ0
R
� ðg

Z0
R
=M

Z0
R
Þ�1 parameter space from a two-Z0 fit with and

without including the scalars ’ (light [ocher] and dark [brown] solid regions, respectively). In this case, the scalar couplings are
specifically chosen to attain a perfect cancellation of the purely leptonic Z0

R effects. See text for details. Right: the same in the

MZ0
R
� ð	’=M’Þ�1 plane from the fit to a Z0

R plus the scalars ’ (dark [green] solid region) and the fit including the Z0
R (light [ocher]

solid region).
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new scalars has a limited effect. The corresponding 95%
confidence region, which is delimited by the solid (blue)
contours in Fig. 4, is not much larger than that of the
minimal model alone. At any rate, due to the cancellation
of the purely leptonic effects, the LEP 2 bounds can be
somewhat relaxed and the allowed region is enlarged along
the band determined by the Z-pole, MW and low-energy
data (among others). When we include the new gauge

bosons B1 and Z0
min,

13 the constraints from the Z-pole
data and the observables sensitive to oblique effects can
be significantly relaxed. Thus, the extended confidence
region, delimited by the dot-dashed (red) contours in the
figure, opens along the band allowed by LEP 2 data. The
low-energy constraints, however, prevent one from obtain-
ing a much larger region. On the other hand, (even) more
contrived constructions including additional Z0s, in order
to relax the remaining low-energy and LEP 2 hadronic
constraints, may allow for larger regions.

IV. CONCLUSIONS

New particles can manifest themselves as resonances at
large colliders, or indirectly as deviations from the SM
predictions in some observables. In this sense the Tevatron
and LHC are complementary tools to EWPD for new
physics searches, although none of them has provided
significant evidence for physics beyond the SM yet. It is

well known, however, that the quite good agreement of the
SM predictions with EWPD implies that simple new phys-
ics is banished above the TeV scale, near the LHC reach. It
is then important to investigate if more complex scenarios
allow for small contributions to EWPD but relatively light
new particles. This question is especially relevant to guide
LHC searches.
In this paper we have addressed this question for extra

neutral gauge bosons. We have discussed in turn several
popular Z0 models based on E6 and with EWPD mass
limits above present direct bounds from the Tevatron and
LHC. In particular, we have studied which additions of
extra vector bosons and scalars can cancel their main
contributions to EWPD. Using the effective Lagrangian
approach, which is especially suited for comparing or
combining different extensions of the SM, one can decide
if there is a choice of couplings which may partially cancel
the large contributions of any given extra gauge boson. We
found that in all cases the EWPD bounds on the Z0 masses
can be lowered below the present direct limits, although
with specific additions designed for this purpose.14

Otherwise, the EWPD limits appear to be robust.
We emphasize that the interest of the analysis presented

here goes beyond the popular Z0 examples considered in
Sec. III. Indeed, the methods and results in Sec. II are valid
for arbitrary Z0 bosons with universal couplings, and the
generalization to nonuniversal and flavor-changing cou-
plings is straightforward.
If dilepton resonances are not found when more

LHC data are available, the direct limits will eventually
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FIG. 4 (color online). Left: 95% C.L. confidence regions in the MZ0
min
=gY �MZ0

min
=gB�L parameter space for the minimal Z0 models

(dark [green] solid region) and their extensions including also the scalars ’ and � (solid [blue] line) or a B1 together with a Z0 with
mirror charges (dot-dashed [red] line). Right: the same in the gY=MZ0

min
� gB�L=MZ0

min
plane. We also include the regions

corresponding to the fit to EWPD without LEP 2 eþe� ! �ff data (vertical [yellow] band) and to LEP 2 data only (diagonal
[blue] band) for the Z0

min model alone.

13B1 is a fermiophobic singlet vector boson with hypercharge
Y ¼ 1, following the notation introduced in [10]; whereas Z0

min
is a Z0 with mirror minimal couplings, as described in Sec. II B.
These additions allow for a complete cancellation of the Z-Z0

min
mixing effects, as discussed in Secs. II A and II B. Of course, it is
also possible to avoid these effects by allowing more general
Higgs structures, as also described in those sections.

14We also require that the new particles have not been observed.
In particular, that the custom Z0 has a dilepton production cross
section at large hadron colliders smaller than that of the Z0.
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overcome those derived from EWPD for definite Z0s cou-
pling to quarks and leptons, as long as the couplings are of
the electroweak or GUT order. However, for large cou-
plings the EWPD require large Z0 masses, which may be
beyond the reach of the LHC (at least at 7 TeV). Indeed, Z0
production is suppressed at hadron colliders for large
masses, due to the energy dependence of the parton distri-
bution functions. This suppression is stronger than the
1=MZ0 scaling of EWPD limits. Thus, for large couplings
the EWPD bounds may remain competitive.

In the opposite limit, leptophobic Z0 bosons [34] can be
very light, since they evade Tevatron and LHC Drell-Yan
bounds, and are not constrained by EWPD if they do not
mix with the Z boson. These Z0 bosons have been recently
invoked [3,5] to account for Tevatron anomalies in the top
forward-backward asymmetry [2] (other direct constraints
apply in this case [35]) and W þ jj distribution [4]. Here

we have shown that the EWPD constraints can also be
evaded in models of leptophobic Z0 bosons with nonvan-
ishing mixing. We note in passing that, because only theW
mass and Z-pole observables are relevant in this case, the
effective Lagrangian approach can be accurate enough for
a leptophobic Z0 with a mass �150 GeV.
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Energy Phys. 09 (2010) 033.
[11] L. S. Durkin and P. Langacker, Phys. Lett. B 166, 436

(1986); F. del Aguila, G. A. Blair, M. Daniel, G. G. Ross,

Nucl. Phys. B283, 50 (1987); F. del Aguila, J.M. Moreno,

and M. Quiros, Phys. Rev. D 40, 2481 (1989); M.C.

Gonzalez-Garcia and J.W. F. Valle, Phys. Lett. B 236,
360 (1990); F. del Aguila, J.M. Moreno, and M. Quiros,

Phys. Lett. B 254, 497 (1991); M.C. Gonzalez-Garcia and

J.W. F. Valle, Nucl. Phys. B345, 312 (1990); F. del Aguila,
J.M. Moreno, and M. Quiros, Nucl. Phys. B361, 45

(1991); F. del Aguila, W. Hollik, J.M. Moreno, and M.

Quiros, Nucl. Phys. B372, 3 (1992); P. Langacker and

M.X. Luo, Phys. Rev. D 45, 278 (1992); J. Erler and P.

Langacker, Phys. Lett. B 456, 68 (1999); J. Erler and P.

Langacker, Phys. Rev. Lett. 84, 212 (2000); J. Erler, Nucl.

Phys. B586, 73 (2000); R. S. Chivukula and E.H.

Simmons, Phys. Rev. D 66, 015006 (2002); J. Erler, P.

Langacker, S. Munir, and E. R. Pena, J. High Energy Phys.

08 (2009) 017.
[12] E. Salvioni, G. Villadoro, and F. Zwirner, J. High Energy

Phys. 11 (2009) 068; E. Salvioni, A. Strumia, G.

Villadoro, and F. Zwirner, J. High Energy Phys. 03

(2010) 010.
[13] J. Kang and P. Langacker, Phys. Rev. D 71, 035014

(2005).
[14] R. Barbieri and A. Strumia, arXiv:hep-ph/0007265.
[15] J. de Blas, Ph. D. thesis, Universidad de Granada, 2010.
[16] W. Buchmuller and D. Wyler, Nucl. Phys. B268, 621

(1986); C. Arzt, M. B. Einhorn, and J. Wudka, Nucl.

Phys. B433, 41 (1995).
[17] B. Grzadkowski, Z. Hioki, K. Ohkuma, and J. Wudka,

Nucl. Phys. B689, 108 (2004); J. A. Aguilar-Saavedra,

Nucl. Phys. B812, 181 (2009); D. Nomura, J. High

Energy Phys. 02 (2010) 061; J. A. Aguilar-Saavedra,

Nucl. Phys. B843, 638 (2011).
[18] G. Cacciapaglia, C. Csaki, G. Marandella, and A. Strumia,

Phys. Rev. D 74, 033011 (2006).
[19] G. Beall, M. Bander, and A. Soni, Phys. Rev. Lett. 48, 848

(1982); P. Langacker and S. Uma Sankar, Phys. Rev. D 40,
1569 (1989); Y. Zhang, H. An, X. Ji, and R.N. Mohapatra,

Phys. Rev. D 76, 091301 (2007); C. Grojean, E. Salvioni,

and R. Torre, arXiv:1103.2761.
[20] K. Nakamura et al. (Particle Data Group), J. Phys. G 37,

075021 (2010).
[21] F. del Aguila and M. J. Bowick, Nucl. Phys. B224, 107

(1983).
[22] P. Langacker and D. London, Phys. Rev. D 38, 886 (1988).

F. DEL AGUILA et al. PHYSICAL REVIEW D 84, 015015 (2011)

015015-12

http://dx.doi.org/10.1103/RevModPhys.81.1199
http://dx.doi.org/10.1103/PhysRevD.83.112003
http://dx.doi.org/10.1103/PhysRevD.83.112003
http://dx.doi.org/10.1103/PhysRevD.81.015004
http://dx.doi.org/10.1103/PhysRevD.81.015004
http://dx.doi.org/10.1103/PhysRevLett.106.171801
http://dx.doi.org/10.1103/PhysRevLett.106.171801
http://dx.doi.org/10.1103/PhysRevD.83.115013
http://dx.doi.org/10.1103/PhysRevD.83.115013
http://dx.doi.org/10.1103/PhysRevLett.106.211803
http://dx.doi.org/10.1103/PhysRevLett.106.211803
http://arXiv.org/abs/1104.3139
http://dx.doi.org/10.1016/0370-2693(96)00554-0
http://dx.doi.org/10.1103/PhysRevLett.79.2192
http://dx.doi.org/10.1103/PhysRevLett.79.2192
http://dx.doi.org/10.1103/PhysRevLett.102.091805
http://arXiv.org/abs/1010.3097
http://arXiv.org/abs/1103.2659
http://dx.doi.org/10.1103/PhysRevD.70.093009
http://dx.doi.org/10.1103/PhysRevD.70.093009
http://dx.doi.org/10.1007/JHEP05(2011)093
http://dx.doi.org/10.1007/JHEP05(2011)093
http://dx.doi.org/10.1016/j.physletb.2011.04.044
http://dx.doi.org/10.1016/j.physletb.2011.04.044
http://dx.doi.org/10.1007/JHEP09(2010)033
http://dx.doi.org/10.1007/JHEP09(2010)033
http://dx.doi.org/10.1016/0370-2693(86)91594-7
http://dx.doi.org/10.1016/0370-2693(86)91594-7
http://dx.doi.org/10.1016/0550-3213(87)90261-6
http://dx.doi.org/10.1103/PhysRevD.40.2481
http://dx.doi.org/10.1016/0370-2693(90)90998-L
http://dx.doi.org/10.1016/0370-2693(90)90998-L
http://dx.doi.org/10.1016/0370-2693(91)91193-Y
http://dx.doi.org/10.1016/0550-3213(90)90389-U
http://dx.doi.org/10.1016/0550-3213(91)90616-6
http://dx.doi.org/10.1016/0550-3213(91)90616-6
http://dx.doi.org/10.1016/0550-3213(92)90309-Y
http://dx.doi.org/10.1103/PhysRevD.45.278
http://dx.doi.org/10.1016/S0370-2693(99)00457-8
http://dx.doi.org/10.1103/PhysRevLett.84.212
http://dx.doi.org/10.1016/S0550-3213(00)00427-2
http://dx.doi.org/10.1016/S0550-3213(00)00427-2
http://dx.doi.org/10.1103/PhysRevD.66.015006
http://dx.doi.org/10.1088/1126-6708/2009/08/017
http://dx.doi.org/10.1088/1126-6708/2009/08/017
http://dx.doi.org/10.1088/1126-6708/2009/11/068
http://dx.doi.org/10.1088/1126-6708/2009/11/068
http://dx.doi.org/10.1007/JHEP03(2010)010
http://dx.doi.org/10.1007/JHEP03(2010)010
http://dx.doi.org/10.1103/PhysRevD.71.035014
http://dx.doi.org/10.1103/PhysRevD.71.035014
http://arXiv.org/abs/hep-ph/0007265
http://dx.doi.org/10.1016/0550-3213(86)90262-2
http://dx.doi.org/10.1016/0550-3213(86)90262-2
http://dx.doi.org/10.1016/0550-3213(94)00336-D
http://dx.doi.org/10.1016/0550-3213(94)00336-D
http://dx.doi.org/10.1016/j.nuclphysb.2004.04.006
http://dx.doi.org/10.1016/j.nuclphysb.2008.12.012
http://dx.doi.org/10.1007/JHEP02(2010)061
http://dx.doi.org/10.1007/JHEP02(2010)061
http://dx.doi.org/10.1016/j.nuclphysb.2010.10.015
http://dx.doi.org/10.1103/PhysRevD.74.033011
http://dx.doi.org/10.1103/PhysRevLett.48.848
http://dx.doi.org/10.1103/PhysRevLett.48.848
http://dx.doi.org/10.1103/PhysRevD.40.1569
http://dx.doi.org/10.1103/PhysRevD.40.1569
http://dx.doi.org/10.1103/PhysRevD.76.091301
http://arXiv.org/abs/1103.2761
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1016/0550-3213(83)90316-4
http://dx.doi.org/10.1016/0550-3213(83)90316-4
http://dx.doi.org/10.1103/PhysRevD.38.886


[23] F. del Aguila, J. de Blas, and M. Pérez-Victoria, Phys. Rev.
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