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A conformally invariant hidden sector is considered, with a scalar operator O of low dimension that

couples to the electroweak gauge bosons of the standard model, via terms such as F��F��O. By

examining single photon production at LEP, we bound the strength of these interactions. We apply our

results, along with those of Delgado and Strassler [A. Delgado and M. J. Strassler, Phys. Rev. D 81,

056003(2010).] and of Caracciolo and Rychkov [F. Caracciolo and S. Rychkov, Phys. Rev. D 81, 085037

(2010).], to improve the bound on 4� production through ‘‘unparticle self-interactions,’’ as proposed by

Feng et al. [J. L. Feng, A. Rajaraman, and H. Tu, Phys. Rev. D 77, 075007 (2008).]. We find the maximum

allowable cross section is of order a few tens of femtobarns at the 14 TeV LHC, and lies well below 1 fb

for a wide range of parameters.

DOI: 10.1103/PhysRevD.84.015010 PACS numbers: 12.60.Cn

I. INTRODUCTION

A ‘‘hidden’’ sector of light particles, none of which
carry standard model quantum numbers, is still allowed
by experiment. Neither direct searches, nor indirect tests of
the standard model, nor cosmology or astrophysics can
exclude this possibility. If the coupling of such a sector
to our own is purely through gravitation, constraints are
extremely weak. But if additional interactions, with char-
acteristic energy scales far below the Planck scale, are
present, then it is possible to obtain some correlated con-
straints on the strength of those interactions and the con-
tents of the hidden sector.

Since the contents of such a sector are all neutral and
may all be stable or metastable, production of anything in
that sector may generally be invisible. In such a case,
constraints may be obtained at a wide range of particle
colliders, using their searches for unexplained sources
of missing momentum. At a hadron collider, the typical
search is for a jet or a photon plus missing transverse
momentum. At an electron-positron collider, a powerful
constraint may be obtained from searches for ‘‘photon-
plus-nothing’’—events in which a photon is observed
whose momentum is not balanced against any visible
object. Since the collision energy and momentum are
known at a lepton collider, the four-momentum of the
missing object, and its square, the ‘‘missing mass,’’ may
be reconstructed. The events are very clean and easy to
interpret, though a background from eþe� ! �� ��, where
the neutrinos may or may not originate from an on-shell
Z0, must be removed.

In this article, we consider constraints on hidden sectors
from photon-plus-nothing searches at the Large Electron-
Positron (LEP) collider in its two stages, LEP I (at the

Z boson peak) and LEP II (at center-of-mass energies up
to 209 GeV). Our focus here will be on exactly or
approximately conformal hidden sectors, now often called
‘‘unparticle’’ sectors [1]. We will obtain constraints on
couplings of SUð2Þ �Uð1Þ gauge bosons to low-
dimension scalar operators in such sectors. We only con-
sider operators with dimension less than 2. (For �> 2,
operator renormalizations become necessary and the cal-
culations become sensitive to the ultraviolet, leaving them
less predictive. Note also that unitarity requires � � 1.)
As an application of our results, we will combine them

with the work of [2,3] to obtain limits on the process gg !
����, highlighted in [4] as a possible source of a large
effect of an unparticle sector. We will see that where
qualitatively new constraints can be obtained, the allowed
signals must lie below 5 fb, even at a 14 TeV collider.
In Sec. II, we will discuss the general theoretical back-

ground and calculations needed for this paper. In Sec. III,
we will obtain bounds from LEP results. Finally, we will
apply these bounds in the particular case of four-photon
production at the LHC.

II. NATURE OF THE CFT COUPLING

In what follows, we imagine that, through new physics
somewhat above the TeV scale, a hidden conformal (un-
particle) sector is coupled to the standard model gauge
bosons. (Couplings to fermions risk flavor-changing neu-
tral currents, unless they occur through conserved currents
of dimension 3, in which case contact terms generally
dominate [5].) We assume the following Lagrangian,
where a scalar primary operator O of the conformal sector
couples to the electroweak gauge fields.

�L ¼ �1

��
1

B��B��Oþ �2

��
2

W��
a Wa

��O: (2.1)

Here, j�1j ¼ j�2j ¼ 1 and�1 and�2 are real and positive.
The two conformal operators in this expression are
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assumed to be the same, with scaling dimension �; we
consider only 2 � � � 1. As is the standard operating
procedure in the literature on scalar unparticle sectors,
we ignore serious subtleties involving the generation of
the operator jOj2 through quantum effects, assuming that
(as for the Higgs mass operator) the coefficient of the
operator is suppressed through an unspecified mechanism.
Examples of possible mechanisms include supersymmetry;
see for example [6].

After electroweak symmetry breaking mixes the B and
the W3 to form the photon and the Z0, the Lagrangian
contains the terms

�L�� ¼ 2

�
c2�

�1

��
1

þ s2�
�2

��
2

�
ð@�A�@

�A� � @�A�@
�A�ÞO

(2.2)

�LZ� ¼ 4c�s�

�
�2

��
2

� �1

��
1

�
ð@�A�@

�Z� � @�A�@
�Z�ÞO

(2.3)

�LZZ ¼ 2

�
s2�

�1

��
1

þ c2�
�2

��
2

�
ð@�Z�@

�Z� � @�Z�@
�Z�ÞO

(2.4)

�LWW ¼2
�2

��
2

ð@�W�
� @

�W���@�W
�
� @

�W��ÞO; (2.5)

where c� � cosð�wÞ and s� � sinð�wÞ. The following defi-
nitions will simplify formulae

��

��
�

� c2�
�1

��
1

þ s2�
�2

��
2

(2.6)

�Z

��
Z

� �2

��
2

� �1

��
1

(2.7)

with j��j ¼ j�Zj ¼ 1 and�� and�Z real and positive. For

the present article the most interesting interactions will be
those involving the photon. The photon–photon–unparticle
vertex, and the photon–Z0–unparticle vertex, lead to verti-
ces with Feynman rules [4,7]

��O ! �4i
��

��
�

ðg�1�2k1 � k2 � k
�2

1 k
�1

2 Þ (2.8)

Z�O ! �4ic�s�
�Z

��
Z

ðg�1�2k1 � k2 � k
�2

1 k
�1

2 Þ: (2.9)

In Sec. V, we will assume that the gluons couple to the
unparticle sector as well. We will rename O and � as O�

and ��, and permit the gluons to couple to an operator Og

�L ¼ �g

��
g

Ga
��G

��
a Og (2.10)

¼ 2
�g

��
g

ð@�Ga
�@

�G�
a � @�G

a
�@

�G
�
a ÞOg: (2.11)

Here, Og (and �g) may or may not be the same as O�

(and ��). (Note that [4], in considering four-photon pro-

duction at the Tevatron and LHC, assumed Og ¼ O�.)

This Lagrangian yields the vertex

ggOg ! �4i
�g

�
�g
g

ðg�1�2k1 � k2 � k
�2

1 k
�1

2 Þ�a2
a1 : (2.12)

III. CROSS SECTION

The amplitude for eþe� ! f� or Z0g ! �O at tree
level (Fig. 1) is

�XjMj2 ¼ Að�Þ e
2

s
ðt2 þ u2Þ (3.1)

where

Að�Þ �
�
AZ

1

�2�
Z

þ A�

1

�2�
�

þ AZ�

1

��
Z�

�
�

�
(3.2)

AZ �
�
1

2
� 2s2� þ 4s4�

��
s2

ðs�m2
ZÞ2 þm2

Z�
2
Z

�
(3.3)

A� � 4 (3.4)

AZ� � 2ð1� 4s2�Þ
�ðs�m2

ZÞ cosð�Þ �mZ�Z sinð�Þ
ðs�m2

ZÞ2 þm2
Z�

2
Z

�
s:

(3.5)

Here � is the relative phase difference between the two
diagrams in Figs. 1(a) and 1(b), originally parametrized by
�� and �Z. The result for A� matches [8] appropriately in

the � ! 1 limit.
The differential cross section is calculated with respect

to the Mandelstam variables t and u, as well as with
respect to cos� and q, with q the energy of the final state
photon.

FIG. 1. Feynman diagrams for production of hidden states in
the LEP collider. The dots represent states in the conformal
hidden sector.
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d2�

dtdu
¼ ð4�Þ1�2�

4�ð�� 1Þ�ð�ÞAð�Þe2 ðt
2 þ u2Þðsþ tþ uÞ��2

s3

(3.6)

d2�

dqd cos�
¼ ð4�Þ1�2�

�ð�� 1Þ�ð�ÞAð�Þe2q3s��3

�
1� 2

qffiffiffi
s

p
�
��2

�ð1þ cos2�Þ
(3.7)

The latter result is most suitable for numerical integration
to compare to experiments with lepton colliders.

At the peak of the Z0 resonance, jAZj � 85jA� þ AZ�j,
for � ¼ 0 or � ¼ �. This ratio becomes the smallest for
� ¼ 3�=2, where jAZj � 35jA� þ AZ�j. From LEP I data

at the Z0 resonance, we mainly obtain a bound of�Z alone.
At LEP II energies, near 200 GeV, jA�j � 7jAZ þ AZ�j for
� ¼ 0, up to a maximum of jA�j � 19jAZ þ AZ�j for

� ¼ �, and thus we obtain a limit mainly on ��.

IV. BOUNDS FROM LEP DATA

From LEP I data

During the first run of the LEP experiment, data was
collected at the Z resonance. Unparticle production is
therefore dominated by the AZ term [see Eq. (3.2)], as
was argued in the previous paragraph. To obtain a worst
case bound on �Z, we will neglect contributions from the
photon channel.1 This bound could be only slightly im-
proved by incorporating the data from LEP II.

As can be seen from the energy distribution of the single
photon in formula (3.7), unparticles tend to produce very
hard photons for values of � less than two. The standard
model background for this signal on the other hand is only
of order 0.5–1 events. To obtain optimal sensitivity for our
bounds we require the photon energy to be larger than a
certain minimum energy, Ecut, which is determined by
optimizing the sensitivity for the bound on �Z. More de-
tails on the energy cuts can be found in Appendix C. None
of the four LEP I detectors observed events that pass our
energy cuts [9–12].

Combining (as described in Appendix C) the available
data from all four experiments we establish a 95% con-
fidence level (C.L.) bound on �Z, following [13]. Our
bounds are displayed in Table I. A plot of the allowed
regions for �2 and �1, the couplings to the SUð2Þ �Uð1Þ
bosons, is also given in Fig. 3. For this plot, the entire
matrix element was taken into account.

The value we give for�Z when� ! 1 is consistent with
the known branching fraction for Z ! �þ X, where X is a

very light new invisible particle and E� � 45 GeV. The

partial width for this process would be

� ¼ c2�s
2
�M

3
Z

6��2
Z

: (4.1)

Since no 45 GeV photons plus missing energy were ob-
served in any of the four LEP experiments, one can obtain a
model-independent 95% C.L. bound on the branching
ratio. The best such published bound, 1:1� 10�6, was
obtained by the L3 experiment [10], and this can be con-
verted to �Z > 51 TeV with 95% C.L. The bound in our
table above is consistent with this, though somewhat
stronger since we combine all four LEP I experiments in
our calculation.

B. From LEP II data

The second run of LEP scanned center-of-mass energies
from 130 GeV to 209 GeV. Since the cross section (3.7)
grows with

ffiffiffi
s

p
, the highest collider energies will give us

the best bounds. The dominant mode of unparticle produc-
tion at these energies is via the photon channel, and inter-
ference effects are small, so we obtain a worst case bound
on �� by neglecting contribution from the Z channel.

As mentioned above, the best bounds on �� can be

obtained from the highest energies at LEP II. Our bounds
below therefore take account only of data from energy in
the range 183–209 GeV. In particular, DELPHI [14],
ALEPH [15], and L3 [16] published results for

ffiffiffi
s

p
between

183 GeVand 209 GeV, while OPAL [17] did not publish a
result above 189 GeV. If one accounted for the results at
lower collider energies, it would be possible to extract a
bound that is slightly better than ours.

TABLE I. 95% confidence level lower bounds on the given
scales, in TeV, from LEP data. For bounds on �1 and �2, see the
figures in Appendix A.

� �Z ��

1 69.5 25.2

1.01 59.0 23.0

1.05 40.7 13.2

1.1 26.6 8.0

1.2 12.7 3.6

1.3 6.8 2.0

1.4 4.0 1.2

1.5 2.5 0.79

1.6 1.6 0.57

1.7 1.1 0.41

1.8 0.80 0.30

1.9 0.60 0.24

2 0.46 0.19

1Strictly speaking, if the phase � is such that interference is
maximally destructive, including the photon channel can de-
crease the signal by up to 1%. But this is less than other
systematic errors discussed in Sec. IVC, so we neglect it.
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Since the collider energy was changed over time, the
data in [14–17] are given not in terms of the photon energy
itself but in terms of the ‘‘missing mass,’’ the mass that an
invisible particle would have had if it were recoiling from
the observed photon. For low �, the signal is peaked in the
low missing-mass region,2 while for higher �, the signal is
rather flat. Since the standard model background is small-
est in the low missing-mass region, far from the Z ! � ��
peak, integrating the signal from zero missing mass up to
some maximum missing massMcut yields the best bounds.
The selection of Mcut for each �, and other details of our
analysis, are described in Appendix C. OPAL, ALEPH and,
in particular, DELPHI detected several events that pass our
energy cuts. The bounds we obtain are found in Table I.
The allowed regions for �2 and �1 (the couplings to the
SUð2Þ �Uð1Þ bosons) are given in Fig. 4; here the entire
matrix element including the Z contribution is taken into
account. Figure 5 displays the combined bounds on �1 and
�2 from both LEPI and LEP II.

Finally, we wish to note that there are ambiguities
regarding the interpretation of certain published plots
which affect the analyses, and require us to make certain
assumptions. A key ambiguity regarding our analysis re-
volves around the result of the DELPHI experiment. (At
DELPHI, as with the other experiments, we only use data
from approximately 45 to 135 degrees; see Appendix C.) In
the bin at zero missing mass, there are 7 events, above one
expected in background. This bin was used as an under-
flow, and at least 6 of the events are from ‘‘photons’’ with
energy larger than half the beam energy, giving a negative
apparent missing mass, which is not consistent with our
signal. We therefore view the interpretation of one unex-
plained event in this bin as ambiguous. There are several
choices, including discarding this bin as having large
background, discarding the 7th event in the bin as being
more plausibly background than signal, discarding the
DELPHI data completely, etc.

Our table above reflects the most liberal (but in our view,
also the most plausible) assumption that the seventh event
in the zero-missing-mass bin is, like the other six, from a
background source. It is likely that this could be shown to
be the case with sufficient information about the DELPHI
data. If instead we treat the seventh event as a potential
signal, the effect on our bounds is substantial in the regime
where � is small, on the order of 20% in ��.

C. Error estimate

The largest uncertainty in both the LEP I and the LEP II
analyses (other than the ambiguities in the LEP II data
described above) is due to the systematic errors in manu-
ally reading the backgrounds from the graphs. However, in
the case of LEP I, this error only contributes in the calcu-
lation of the cuts, as no events are found in the signal region

[13]. Furthermore we find that the bounds are not very
sensitive to cuts, and the error due to the background
only contributes a few percent to the total error on the
bounds. When accounting for experimental uncertainties
we can estimate the total uncertainty on the bounds to be
within 5%.
For LEP II, the systematic uncertainty from reading

backgrounds from the plots is significantly larger.
Moreover the bounds do depend directly on the back-
ground in this case, although the dependence is very
mild. The total uncertainties on the bound on �� are

estimated to be smaller than 10%. In these estimates we
ignore the much larger systematic uncertainties that arise
from the ambiguities described above in the interpretation
of the published data.

V. FOUR-PHOTON SIGNALS

Multipoint correlation functions (sometimes called ‘‘un-
particle self-interactions’’) for the conformal operators O
have been proposed as a possible source at the LHC of very
large new-physics signals—including four-photon signals
as large as 10 nb [4]. But as shown in [2], CDF limits on
signals that give a jet plus missing transverse momentum
(MET), and general considerations of unitarity and self-
consistency, strongly constrain such processes, to a few fb
in some regimes (including those considered in [4]) and a
few pb in some other regimes. The results of the current
paper, combined with work of [3], allow us to improve
constraints by several orders of magnitude. In Table II, we
show limits on the contribution of the three-point function
to the gg ! 4� cross section, at a 14 TeV LHC. Here we
have assumed (see below) no interference with other con-
tributions. In this table, we assume that the standard model
gauge bosons couple to operators Og and O�, with dimen-

sions �g and ��, as described in Sec. II.

Before explaining how we obtained these results, let us
make a couple of brief comments. Compared to [2], our
new bounds for �� < 1:7 are far stronger, especially for

small��, by as many as 5 orders of magnitude. We can see

that bounds are below 5 fb for �� < 1:7. For �� > 1:7 we

must rely on the methods of [2] (extended to 14 TeV),
obtaining constraints of a few tens of fbs or less at low to
moderate �g. We should note also that the bounds at low

�g are obtained from a CDF jet-plus-MET measurement

[18] that uses only 1.1 inverse fb of data, much less than the
total Tevatron data set.

A. Obtaining the bounds

In general, the contribution of the three-point function
to the gg ! 4� cross section is proportional to

C2
3�

�2�g
g �

�4��
� ŝ�gþ2���1, where C3 is the coefficient of

the three-point function hOgO�O�i, and the scales �g, ��

and dimensions �g;�� are as defined in Sec. II. (In [4]

both the gluons and the photons are assumed to couple to2� ¼ 1 corresponds to a massless invisible scalar particle.
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the same operator in the conformal sector, but this is an
unnecessary assumption.) The potentially enormous cross
sections suggested by [4] arise from the rapid growth with
ŝ; even strong limits on 4� production at the Tevatron
naively allow very large LHC signals. But [4] did not
consider unitarity, or direct and indirect constraints on
�g,�� and C3. In [2], experimental and theoretical bounds

on�g were found (Table III), along with a simple unitarity

argument that eliminated the possibility of very large cross
sections. In the current article we have found experimental
bounds on��, which (as described below) we may supple-

ment with theoretical bounds. And recently, unitarity
constraints on C3, from internal consistency arguments
of the conformal field theory, were obtained in [3] for
�� < 1:7 and any �g. We now explain how these bounds

are obtained and combined together into Table II.
In the regime �� > 1:7, indicated by numbers in italics

in the table, the constraints obtained in [2] are extended to a
14 TeV LHC, using bounds on �g only. Direct experimen-

tal bounds on �g arise because the gluon-gluon-unparticle

interaction can generate a large jet-plus-MET signature
[2]. Limits from CDF [18] using 1:1 fb�1 of data (unfortu-
nately not yet updated for the current, much larger,
Tevatron data sets) were obtained in [2], and are extended
in Table III. These bounds are powerful at small �g.

A theoretical bound on �g is obtained as follows.

A coupling of gluons of the form G2O corrects the
hOðpÞOð�pÞi two-point function by a computable
amount. Once this correction becomes large enough that
the two-point function is no longer of its conformal form,
the assumptions that undergird the conformal computation
break down: either conformal invariance fails or the point-
like coupling G2O develops a form factor, in both cases
acting to reduce the cross section. As emphasized in [2],
the dominant cross section for gg ! 4� is at very large ŝ,
because d�=dŝ initially grows with ŝ even after the falling
parton distribution functions are accounted for, shrinking
only at multi-TeVenergies. Thus for the cross section to be
correctly computed, the energy at which conformal invari-
ance breaks down must be somewhat larger than the energyffiffiffiffiffiffiffiffiffi
ŝmax

p
at which the cross section peaks. This constraint was

computed for a 10 TeV LHC in [2]. Here we use the self-
consistency constraints for a 14 TeV LHC.
For smaller ��, we need bounds on both scales. We

obtain constraints on�� using our direct LEP II bounds on

this quantity at small �� from Table I, and using unitarity

considerations at large ��. Since there are four photons in

the final state, we require consistency for all diphoton

TABLE II. Bounds on 4 photon production through the CFT three-point function, in fb. Values in regular font are obtained using
only experimental limits on�g and��; see also Appendix B. Values in boldface are obtained from experimental and unitarity bounds,

or unitarity bounds only, on these scales. The values in italics are calculated using the unitarity argument of [2].

�gn�� 1.05 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

1.05 2:7� 10�6 2:7� 10�5 4:8� 10�4 0.010 0.093 0.62 1:1 1:7 3.8 2.3 1.4

1.1 5:1� 10�6 5:2� 10�5 6:7� 10�4 0.014 0.13 0.89 1:4 1:6 9.6 5.9 3.7

1.2 1:5� 10�5 1:4� 10�4 1:3� 10�3 0.023 0.37 2.4 2:3 1:7 2.3 1.4 7.1

1.3 3:7� 10�5 2:8� 10�4 3:2� 10�3 0:031 0:33 1:7 1:2 0:91 16. 9.3 5.4

1.4 3:3� 10�5 2:5� 10�4 2:3� 10�3 0:023 0:24 1:2 0:73 0:56 12. 7.1 4.5

1.5 3:6� 10�5 2:4� 10�4 2:8� 10�3 0:025 0:19 0:78 0:57 0:37 9.3 5.4 3.2

1.6 3:6� 10�5 2:6� 10�4 2:3� 10�3 0:021 0:16 0:55 0:48 0:31 7.1 4.7 2.5

1.7 4:7� 10�5 2:9� 10�4 2:7� 10�3 0:024 0:16 0:50 0:35 0:26 5.4 3.2 2.0

1.8 4:4� 10�5 2:2� 10�4 1:7� 10�3 0:022 0:20 0:38 0:32 0:23 4.2 2.5 1.5

1.9 3:4� 10�5 1:6� 10�4 1:5� 10�3 0:014 0:15 0:36 0:29 0:23 3.2 2.0 1.2

2.0 2:7� 10�5 1:3� 10�4 8:7� 10�4 0:013 0:14 0:35 0:31 0:24 2.5 1.5 0.96

TABLE III. Lower bounds (quoting and extending the results
of [2]) on the interaction scale �g as a function of �g, using only

constraints from jet-plus-MET studies at CDF [18]. The unitarity
considerations also discussed in [2] are not applied here.

�g �g (TeV)

1.05 9.19

1.10 6.82

1.15 5.18

1.20 4.03

1.25 3.19

1.30 2.58

1.35 2.11

1.40 1.75

1.45 1.48

1.50 1.26

1.55 1.08

1.60 0.94

1.65 0.82

1.70 0.73

1.75 0.64

1.80 0.58

1.85 0.52

1.90 0.47

1.95 0.43
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invariant masses up to
ffiffiffiffiffiffiffiffiffi
ŝmax

p
=2, noting (see below) that the

dominant cross section arises where both photon pairs have
invariant mass of this order.

For C3, constraints can be read off from Figs. 1, 2 of [3].
The absence of constraints for �� > 1:7 may be purely

technical, and perhaps other bounds may be obtained in
this region. However, we only use the results of [3] as they
currently stand.

We now combine these (for �� < 1:7) with an overall

bound on the squared matrix element, integrated over
phase space, allowing us to obtain the results in Table II.
In principle we could compute the exact cross section (for a
givenC3,�g and��,) but it is already sufficient, as wewill

see, to make a rough estimate that bounds the true cross
section from above.3 SinceZ

d½phase space�jMj2 < jM2jmax

Z
d½phase space�;

(5.1)

and the phase space for four identical massless particles of

total energy
ffiffiffî
s

p
can be computedZ
d½phase space� ¼ 1

4!

ŝ2

2133�5
(5.2)

we only need to bound the squared matrix element. We do
this by bounding M itself, which contains three diagrams
related by permutation of the final state photons, as shown
in Fig. 2. Let us consider the first diagram, where photons
couple to the hidden sector in pairs 1,2 and 3,4. (The other
diagrams give the same bound.) The diagram factors into a
standard model piece and a hidden sector piece. The stan-
dard model piece can be bounded directly. The kinematic
factor from the two gluons can be treated exactly, but for
the photons, with momenta p1, p2, p3, p4, we make an
approximation. The two photon pairs each have a kine-
matic factor from F��F�� which satisfies

j	i � 	jpi � pj � 	i � pjpi � 	jj< pi � pj ¼ mij=2; (5.3)

where mij is the invariant mass of photons i; j. Then we

note that m12m34 times the hidden sector matrix element

can also be bounded; it is maximized where m12 ¼ m34 ¼ffiffiffî
s

p
=2. Armed with this bound on each of the three terms in

the amplitude, we find the partonic cross section at any
ffiffiffî
s

p
is then bounded by4

�̂ <
1

227�9

C2
3

�
2�g
g �

4��
�

ŝ�gþ2���1½Qð�g;��Þ�2 (5.4)

with

Qð�g;��Þ ¼
�ð4� �g

2 � ��Þ
�ð2þ �g

2 ���Þ½�ð2� �g

2 Þ�2
Z 1

0
dx

Z 1�x

0
dy

� ðxyÞ1��g=2ð1� x� yÞ1þ�g=2���

½xyþ 1
4 ð1� x� yÞðxþ yÞ�4��g=2���

:

(5.5)

Finally, we integrate (5.4) against the gluon-gluon par-
ton luminosity.5 At that point we need only substitute the
appropriate constraints on �g, �� and C3 to obtain the

bounds displayed in Table II.

B. Commentary

In the table, numbers shown in regular font are those for
which only experimental data was used. For these, there is
little ambiguity and relatively small uncertainty.6 Numbers
shown in boldface are those for which unitarity consider-
ations apply for either or both �g or ��. Theoretical

FIG. 2. Feynman diagrams for four-photon production at the LHC. The dots represent the conformal three-point function.

3More details will be presented elsewhere.

4Since there are three graphs in the amplitude, each of which
has the same bound, there is an overall factor of 32 in this
expression, canceling the factors of 3 in the phase space integral.
The existence of three diagrams appears to have been neglected
in [4]. Inclusion would have increased rates, for a given Cd, by a
factor of several, but would not much have affected the results
quoted in [4], since the change affects both the Tevatron, where
experimental bounds were obtained, and LHC, to which these
bounds were extrapolated.

5For technical reasons (calculational speed) we have used the
outdated CTEQ5M parton distribution functions [19]. As gg
luminosities are uncertain at high energies, use of more up-to-
date pdfs would shift our answers by up to a few tens of percent.
This is comparable to other sources of uncertainty, in particular,
the extraction of the minimum �g allowed by Tevatron data and
unitarity considerations.

6Bounds on the 4� cross section obtained with purely
experimentally-based constraints on the �i are given in
Appendix B, in Table IV. These bounds remain below a few fb
for �g þ 2�� less than �4:4.
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uncertainties are somewhat larger here, as much as a factor
of 2. Similar uncertainties apply for the numbers in italics.
The relevant uncertainties in these regions are discussed in
[2]. It should be noted that it is possible to exceed these
bounds as long as one gives up conformal invariance; in
this case the rate could be larger, but is not predictable
either in magnitude or in its differential distributions.

It appears that the phenomenon suggested in [4] is
unobservable at the LHC for smaller values of �g, ��.

For �� < 1:7 the rates are never better than marginal, and

other signals of a conformal hidden sector (such as jet-
plus-MET or two-photons-plus-MET) may be so much
larger that they are easier to observe despite larger back-
grounds. The weaker bounds for �� > 1:7 still allow for

observable cross sections, but it is quite possible that there
will eventually be bounds on C3 in this regime. (In the
special case studied in [4] where the operators Og and O�

to which the gluons and photons couple are the same
operator, the unitarity constraints of [2] are more powerful,
and the numbers on the diagonal at �g ¼ �� ¼ 1:8, 1.9,

2.0 should be divided by a factor [2] of 33.) We emphasize
also that most conformal field theories do not saturate
unitarity bounds. We conclude that four-photon production
through the unparticle three-point function is unlikely to be
a discovery channel for a conformal hidden sector, or even
an observable signal in many cases.

It should be noted that our bounds are so strong that it is
possible to produce the 4� signal with a larger cross
section through the appearance, once or twice, of the
unparticle two-point function [20]. However, the applica-
tion of our bounds, together with a proper implementation
of the unitarity considerations in [2], strongly constrains
these contributions as well. We will provide details else-
where, but our conclusion remains unchanged: we still find
that four-photon production must be very small—often far
below a femtobarn at a 14 TeV LHC—for �� < 1:7. For

�� > 1:7, the bounds from [2] are still the best available.

Our work indicates that this direction of research un-
covers nothing surprising about conformal field theory.
Naively, one would have expected that in a hidden sector
with no mass gap, the dominant signals would be in
channels with missing momentum, and that the cost to
obtain a visible signal would be high, leading only to
relatively small and subtle signals. (This is in contrast
to ‘‘hidden valleys’’ [21] where, because of a mass gap in
the hidden sector, the visible signatures may easily and
naturally dominate.) The suggestion of [4] flies in the face
of this expectation. But in fact, the naive intuition appears
to be essentially correct.

C. Other possible signals

Similar naive intuition suggests that two-photon-plus-
MET signals are almost always larger than the four-photon

signals, because the latter is suppressed by �
4��
� while the

former is suppressed only by �
2��
� . It is possible to prove

that the four-photon signal can only exceed the digamma-
plus-MET signal by a logarithmic enhancement, and this
only in extreme circumstances. We therefore suspect that
any discovery of a hidden sector coupling to gauge bosons
will occur in a MET signal, either with an initial state
radiation jet or with two photons.
The same set of operators considered here can generate

s-channel diphoton production [22]. For low �, the purely
experimental bounds on �� and �g given above suffice to

put strong bounds on this process, ruling out early discov-
ery at the LHC. For � close to 2 some care is needed,
as the two-point function is divergent for � ! 2, requiring
renormalization and thus introducing UV dependence.
Although the cross section can no longer be computed
in a UV-independent way, one can calculate model-
independent bounds from unitarity 7 using the techniques
of [2]. This will be considered elsewhere.

VI. CONCLUSION

We have considered bounds on couplings of scalar op-
erators built from electroweak bosons to hidden sectors
with an exact or approximate conformal invariance above a
few GeV. Such unparticle sectors are significantly con-
strained by LEP I and LEP II data on photon-plus-nothing
events. We have provided constraints on couplings to both
SUð2Þ and Uð1Þ gauge bosons for 1 	 �O 	 2. These are
particularly powerful at smaller values of �O.
We have also used these results, and those of [2,3], to

constrain four-photon production at the 14 TeV LHC
through the unparticle three-point function. We dramati-
cally improve the bounds for �� in the range 1 to 1.7 from

of order several pb to far less than 5 fb. For �� near 2,

where the bounds of [3] are not available, the best bounds
(a femtobarn if Og ¼ O�, as in [4], and a few tens of

femtobarns in the more general case) still come from the
methods of [2], due to the lack of a bound on the three-
point OPE coefficient from [3]. It seems likely that these
bounds will be further strengthened as more is learned
about the unitarity constraints on conformal field theory.
In particular, the powerful methods of [3] may not yet
have been exhausted, and may yet give additional con-
straints at �� > 1:7.

It is also worth noting that constraints on�g will sharply

improve with early data at the LHC. By the time 1 inverse
fb of data is obtained at the 14 TeV LHC, it seems likely,
if no jet-plus-MET signal is observed, that bounds on �g

will improve by a factor of 5 or so relative to the bounds
at the Tevatron. This in turn will even further tighten
limits on four-photon events, long before there is any
chance of seeing them. Conversely, if a four-photon signal

7This is possible since the imaginary part of the two-points
function remains finite for � ¼ 2.
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is observable at the LHC, it seems likely that a jet-plus-
MET signal will be detected first.
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APPENDIX A: FIGURES

These figures summarize our results for experimental
bounds on the strength of CFT coupling to the electroweak
gauge bosons. The values �1 and �2 are defined in

Eq. (2.1). The plots represent the allowed regions for these
variables given constraints from LEP I and LEP II only.
The effect of interference between the photon and Z chan-
nel for these graphs is very small, and they are drawn for
� ¼ 0, where � is defined in Eq. (3.5). The graphs include
all contributions from Eq. (3.2).

APPENDIX B: BOUNDS WITHOUT
UNITARITYARGUMENT

In the table below are shown the bounds on gg ! ����
that would be obtained with our methods using only ex-
perimental bounds on �g and �� and the unitarity bounds

on the conformal three-point function coefficient C3 from
[3]. No theoretical assumptions go into these bounds, so
they are particularly robust.

APPENDIX C: DETAIL OFANALYSIS

At both LEP I and LEP II, the highest signal-to-
background ratio is found for large photon energies. The
only significant source of standard model background in
this regime is � ��� production, which falls quickly with
rising photon energy [23]. As mentioned before, the un-
particle signal is peaked at higher photon energy.
Optimal values for the photon energy cut were found

using the following method. For any potential value of the
cut energy Ecut, the bound on �Z or �� was calculated for

any number n of observed photon events with energy above
the cut. These bounds were then averaged over n, using a
Poisson distribution for n assuming the only source is the
background. The value of Ecut that produces the strongest
average expected bound on �Z or �� via this method is

then used as the energy cut, following [13].

FIG. 3. Plot of 95% C.L. allowed regions of �1 vs �2, in units
of TeV, from LEP I data for � ¼ 0. The shaded areas, from
largest area to smallest, are the allowed regions for � ¼ 1:5,
1.35, 1.2, 1.05.

FIG. 4. Plot of 95% C.L. allowed regions of �1 vs �2, in units
of TeV, from LEP II data for � ¼ 0. The shaded areas, from
largest area to smallest, are the allowed regions for � ¼ 1:5,
1.35, 1.2, 1.05.

FIG. 5. Combined plot of 95% C.L. allowed regions of �1 vs
�2, in units of TeV, from both LEP I and LEP II data. This
represents the combination of the two previous figures without
careful statistical weighting. At the corners of the contours
(where both bounds saturate) the true 95% contours would be
more rounded than shown. The shaded areas, from largest area to
smallest, correspond to � ¼ 1:5, 1.35, 1.2, 1.05.
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For LEP I, we can reproduce reasonably well the shape
of each experiment’s Monte Carlo simulation of back-
ground with the background model [23]. We fit the nor-
malization to account for each experiment’s efficiency. An
additional complication was that L3 had a larger angular
acceptance than OPAL, DELPHI and ALEPH. For the
purpose of being conservative, we only considered the
signal in the wedge that all four detectors have in common,
but took into account the background for the entire L3
detector.

The cut energies for different values of � were calcu-
lated to the nearest 0.2 GeV, maximizing the expected
bound on �Z, and can be found in Table V. The signal
efficiencies for these cuts range from 0.98 for � close
to 1 to 0.74 for � close to 2.

In the case of LEP II, the background model is less clear-
cut. The background in L3 and ALEPH is very small, and
the resolution of the plots is insufficient to make a reliable
estimate. We therefore chose to omit any background from
L3 and OPAL in our analysis. For OPAL and especially
DELPHI, the background is more significant. However,
because of the rather low resolution of DELPHI‘s inner
detector wedge (HPC), we cannot reproduce the shape of
DELPHI‘s Monte Carlo with the background model of

[23]. Instead we used a more general fit function with three
fit parameters to model the background in OPAL and
DELPHI.
Furthermore, DELPHI is the only experiment that has

separate plots available for the different segments of its
detector. Since the signal is rather flat in cos� and the
background is peaked in the forward region, we only
consider DELPHI‘s inner wedge to increase the signal-
to-background ratio. As DELPHI‘s resolution is inferior
compared to the other three experiments, it has some
background events leaking into the signal region, resulting
from the smearing of the Z-peak. These events signifi-
cantly weaken our bound for values of � close to 2.
To calculate the cuts, the same analysis was performed

as was done for LEP I, but now in terms of missing mass.
The cut on the missing mass was calculated to the nearest
1.0 GeV, maximizing the expected bound on ��, and can

be found in Table VI.
To determine the bounds at 95% confidence level, the

following equation was used, from [13]

ð1� 0:95Þ Xn0
n¼0

�n
B

n!
¼ e�N

Xn0
n¼0

ð�B þ NÞn
n!

; (C1)

TABLE IV. Bounds, in fb, on 4 photon production at the LHC (14 TeV), using only constraints
from experiment and internal consistency of the conformal field theory. No unitarity arguments
are used here in constraining �g or ��. There is no bound for �� > 1:7, since no bound on C3 is

known there.

�gn�� 1.05 1.1 1.2 1.3 1.4 1.5 1.6 1.7

1.05 2:7� 10�6 2:7� 10�5 4:8� 10�4 0.010 0.093 0.62 6.4 110.

1.1 5:2� 10�6 5:2� 10�5 6:7� 10�4 0.014 0.13 0.89 9.2 110.

1.2 1:5� 10�5 1:4� 10�4 1:3� 10�3 0.029 0.37 2.4 19. 180.

1.3 3:7� 10�5 3:1� 10�4 4:8� 10�3 0.058 0.76 4.9 40. 370.

1.4 9:0� 10�5 7:8� 10�4 9:6� 10�3 0.12 1.6 10. 85. 800.

1.5 2:5� 10�4 2:0� 10�3 0.030 0.35 3.2 21. 210. 1600.

1.6 6:1� 10�4 5:2� 10�3 0.060 0.71 6.6 44. 520. 4000.

1.7 1:9� 10�3 0.014 0.17 1.9 18. 110. 1100. 9600.

1.8 4:1� 10�3 0.023 0.24 3.9 46. 230. 2600. 23 000.

1.9 7:3� 10�3 0.040 0.49 6.0 77. 600. 6500. 63 000.

TABLE V. The photon energy cut for the different values of � for LEP I.

� 1 1.05 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Ecut (GeV) 43.8 42.0 40.8 39.0 37.8 36.6 35.8 34.8 34.0 33.2 32.4 31.6

TABLE VI. The missing mass cut for the different values of � for LEP II.

� 1 1.05 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Mcut (GeV) 15 22 26 30 33 35 37 39 41 43 45 48
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where�B is the expected number of background events, n0
is the number of observed events, and N is the 95% C.L.
upper limit on the expected number of signal events. Note
that if n0 ¼ 0, corresponding to no observed events, then
N ¼ 2:99 independent of the number of expected back-
ground events.

At LEP I, none of the experiments observed any events
with energies above the cuts. The bound was imposed by
integrating the cross section (3.7) above the appropriate
energy cut, within the angular wedge that all four detectors
shared ( cos� < 0:7), and accounting for the various detec-
tor efficiencies and luminosities. The calculation was per-
formed at each value of

ffiffiffi
s

p
used by the experiments, and

summed over all values, accounting for the various effi-
ciencies and luminosities.
At LEP II, some events were observed that passed the

missing-mass cuts. The events were counted by hand from
the graphs in [14–17]. As in LEP I, the integrated cross
section was bounded to the appropriate value computed
from Eq. (C1). Again, the calculation was performed at
each value of

ffiffiffi
s

p
used by the experiments, and summed

over all values, accounting for the various efficiencies and
luminosities. When computing the expected signal, we
have been conservative by only accounting for angular
acceptance that all detectors have in common with
DELPHI‘s inner wedge (� < 45
).
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