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The electroweak chiral Lagrangian for the topcolor-assisted technicolor model proposed by

K. Lane, which uses nontrivial patterns of techniquark condensation and walking, was investigated in

this study. We found that the features of the model are qualitatively similar to those of Lane’s

previous natural topcolor-assisted technicolor prototype model, but there is no limit on the upper bound

of the Z0 mass. We discuss the phase structure and possible walking behavior of the model. We

obtained the values of all coefficients of the electroweak chiral Lagrangian up to an order of p4.

We show that although the walking effect reduces the S parameter to half its original value, it maintains

an order of 2. Moreover, a special hypercharge arrangement is needed to achieve further reductions

in its value.
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I. INTRODUCTION

Modern technicolor (TC) models of dynamical electro-
weak symmetry breaking require assistance for topcolor
interactions that are strong in the TeV energy region to
provide the large mass of the top quark, and a walking
technicolor gauge coupling to aid in the avoidance of large
flavor-changing neutral current (FCNC) effects. The first
addition consists of a class of topcolor-assisted technicolor
(TC2) models made through the careful arrangement of
TC, topcolor, extended hypercharge groups, and relevant
techniquark and Standard Model (SM) fermion represen-
tations. With the help of extended technicolor (ETC), we
expect that technicolor condensates will form and provide
the mass for the weak vector bosons. ETC provides the
mass for the light quarks and leptons and a bottom-quark-
sized mass to the top. The largest contribution to the top
quark mass is from the formation of a top quark condensate
through the dynamics of the topcolor gauge sector. The
second addition is based on the phase diagram of strongly-
coupled TC gauge theories involving fermions in arbitrary
representations of the gauge group. With suitable choices
for the TC group and techniquark representations, walking
technicolor is a natural option for situations with asymp-
totic freedom that are nearly conformal. In this case, the
TC gauge coupling has an approximate infrared-stable
fixed point (the zero of the beta function) �� which is
slightly larger than the critical value �c necessary for
techniquark condensate formation. In such a theory, for

values of � below ��, as the energy scale decreases �
increases. However, its rate of increase decreases to zero as
� approaches ��. Hence, over an extended energy interval,
� is orderOð1Þ, and it is slowly varying which leads a large
anomalous dimension � ’ 1 for the bilinear local techni-
quark operator. This results in the enhancement of the SM
fermion and those undiscovered pseudo-goldstone boson
masses, which achieve realistic scales while maintaining
sufficient suppression of FCNC effects.
The typical gauge group of the TC2 models is

SUðNÞTC�SUð3Þ1�SUð3Þ2�SUð2ÞL�Uð1ÞY1
�Uð1ÞY2

(1)

in which the topcolor and extended hypercharge groups
SUð3Þ1 � SUð3Þ2 �Uð1ÞY1

�Uð1ÞY2
spontaneously break

into their diagonal subgroups SUð3ÞC �Uð1ÞY at an
energy of a few TeV. The remaining electroweak groups
SUð2ÞL �Uð1ÞY spontaneously break into their electro-
magnetic subgroup Uð1Þem at electroweak scale because
of a combination of a top quark condensate and techni-
quark condensate. In the simplest example of Hill’s TC2
model [1], there are separate color and weak hyper-
charge gauge groups for the heavy third generation
quarks and leptons and for the two lighter generations.
The third generation transforms under a strongly-
coupled SUð3Þ1 �Uð1Þ1 and maintains its usual charges.
However, the light generations transform conventionally
under a weakly coupled SUð3Þ2 �Uð1Þ2. Near 1 TeV,
these four groups break into a diagonal subgroup of
ordinary color and hypercharge, SUð3ÞC �Uð1ÞY . The
desired condensation pattern occurs because the Uð1Þ1
couplings are such that the spontaneously broken
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SUð3Þ1 �Uð1Þ1 interactions are supercritical only for the
top quark.

After Hill’s proposal was made, Chivukula, Dobrescu,
and Terning [2] claimed that the techniquarks required to
break the top and bottom quark chiral symmetries are
likely to have custodial isospin violating couplings to the
strong Uð1Þ1. To maintain a � ’ 1, the Uð1Þ1 interaction
must be so weak that it is necessary to fine-tune the SUð3Þ1
coupling. This results in the implementation of the theory
being unnatural. To remedy this isospin violation and
improve the suitability of the model, K. Lane proposed a
natural prototype TC2 model in Ref. [3]. In that model, the
different techniquark isodoublets, Tt and Tb, provide ETC
mass to the top and bottom quarks. These doublets then
could have different Uð1Þ1 charges, which are isospin
conserving for the right and left handed parts of each
doublet. The Uð1Þ symmetries presented in the model
automatically avoid the problem of Bd � �Bd mixing raised
by Kominis [4]. To achieve the mixing of the magnitude
observed between the heavy and light generations while
breaking the strong topcolor interactions near 1 TeV, K.
Lane also proposed an alternative model based on the
nontrivial patterns of techniquark condensation and dis-
cussed its phenomenology [5]. In this new model, to break
the extended hypercharge groups into Uð1ÞY , a set of
electrically neutral SUð2Þ singlet techniquarks belonging
to the antisymmetric tensor representation of the TC group
were added into the model. This, in combination with other
techniquarks, further ensures the technicolor coupling
walks. With so many techniquarks, one may wonder
whether the S parameter of the model can be small.
Although qualitatively the large number of techniquarks
will increase the value of S, walking effects and certain
arrangements of the hypercharges of the techniquarks may
compensate for this increase, and result in a small overall S
parameter. One aim of this paper is to examine this
possibility.

In fact, our interests are not limited to the S parameter,
which is one of the low energy constants (LECs) of the
bosonic part of the standard electroweak chiral Lagrangian
(EWCL) [6]. Rather, our interests include all EWCL LECs.
In our previous studies, we compiled a formulation for
computing the bosonic part of the EWCL LECs for orders
up to p4 for the one-doublet TC model discussed in
Ref. [7], Hill’s schematic TC2 model [1] in Ref. [8], K.
Lane’s natural prototype TC2 model [3] in Ref. [9] and a
hypercharge-universal TC2 model [10] in Ref. [11]. Here,
the bosonic part of the EWCL is the part that only involves
SM electroweak gauge fields and corresponding Goldstone
fields. This part describes the electroweak symmetry
breaking effects on the electroweak gauge fields, but the
parts of the EWCL dealing with matter also include SM
fermions which describe the electroweak symmetry break-
ing effects on the SM fermion fields. In the literature, these
two parts are proposed in Refs. [6,12] separately because

they have independent characteristics. The reason that
we choose to compute the bosonic part of the EWCL in
isolation is that the matter part is more complex than the
bosonic part. Moreover, some of the three-dimensional
fermion mass terms and six-dimensional FCNC terms
were already discussed in Lane’s original paper [5]. In
this paper, we only discuss the bosonic part of the EWCL
for the first stage of computing the LECs that are general-
ized from the S parameter, and leave the part dealing with
matter for future discussion. The EWCL is a universal
platform which enables us to compare different underlying
models with experimental data and extract the true physi-
cal theory that guides our world. To achieve this compari-
son, we compute the EWCL coefficients model by model.
This study is the fourth paper in a series, starting with
Ref. [8], in which we compute these strongly-coupled
physics models. Here, we focus on K. Lane’s alternative
TC2 model with nontrivial TC fermion condensation
and walking [5], which was mentioned previously.
Corresponding to recent advances in the understanding
of the phase diagram of the SUðNÞ gauge theories and
the new possibilities for model building [13], this
work offers a modern way to investigate walking effects
in a realistic strongly-coupled theory with complex
structures.
In this paper, except for some conventional calculations

that are similar to those in our previous papers, we focus
on the effects of walking that have not been discussed
before. We will compare the different situations of walk-
ing, ideal walking, and running; and examine their effects
on the S parameter. In the next section, we first review K.
Lane’s alternative TC2 model with nontrivial condensa-
tion and walking [5] and discuss its phase structure. In
Sec. III, we apply our formulation developed in Ref. [8] to
Lane’s model [5]. We perform these dynamical calcula-
tions through several steps: first we integrate in the
Goldstone field, U. Then, we integrate out the techni-
gluons and techniquarks by solving the Schwinger-
Dyson equation (SDE) for techniquarks. Next, we inte-
grate out the colorons and Z0, perform a low energy
expansion, and compute the effective action. Finally, we
obtain the EWCL coefficients. For simplicity, some de-
tails of the derivation and computation in this section are
placed in the appendices. Sec. IV contains numerical
results and discussions. Sec. V is a short summary and
discussion.

II. REVIEW OF THE MODEL AND ITS
PHASE STRUCTURE

Consider K. Lane’s TC2 model [5] with nontrivial TC
fermion condensation and walking, in which the group is
given by (1). Because we are only interested in the bosonic
part of EWCL, which is independent of the SM fermions,
we do not list their representations and Uð1Þ charge
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arrangements here. The left gauge charges for the techni-
quarks are shown in Table I. There are three sets of
techniquarks. The first set includes T1 and T2. These are
the specific techniquarks of the model and are expected to
have twisted condensates that generate SUð3Þ1 �
SUð3Þ2 ! SUð3Þc and electroweak breaking, and a suffi-
cient level of generation mixing. The second set includes
Tl, Tt and Tb, which are the standard TC2 techniquarks
from Lane’s first natural prototype TC2 model [3]. They
supply the ETC mass to the SM fermions, including
the top and bottom. The third set consists of the high-
dimensional representation field c , which is responsible
for generating Uð1Þ1 �Uð1Þ2 ! Uð1ÞY and ensuring
theory walking.

The details of the ETC interaction are not specified
in Lane’s original paper [5]; this prohibits quantitative
computations. The effects on the EWCL LECs from
these ETC operators can be ignored in our calculation
because the relevant operators are small. Unfortunately,
although we know from Ref. [9] that its contribution to
the EWCL LECs is small, the effective four-fermion
coupling may become strong enough to change the
results of the current walking theory [14]. When the
effective four-fermion coupling exceeds its critical
value, the position of the infrared fixed point changes
significantly. For the first step of the investigation,
we ignore this case by assuming that the four-fermion
coupling does not exceed the critical value and
leave discussion of more general effects for future
studies.

A number of constraints were given in Lane’s original
paper [5] to limit and simplify the charges:

(i) To ensure that the techniquark condensates conserve
electric charge, u1 þ u2 ¼ v1 þ v2, x1 þ x2 ¼ x01 þ
x02, y1 þ y2 ¼ y01 þ y02, and z1 þ z2 ¼ z01 þ z02.

(ii) The Uð1Þ1 charges of the techniquarks respect cus-
todial isospin.

(iii) For the Uð1Þ1 charges of T1 and T2: while u1 � v1,
the brokenUð1Þ1 interactions favor the condensation
of T1 with T2. If this interaction is stronger than the
SUð3Þ1 attraction of T1 to itself and we neglect the
other vacuum-aligning ETC interactions, then

h �Ti
LT

j
Ri / ði�2Þij in each charge sector.

(iv) u1 � v1 implies Y1i � Y0
1i for the fermions.

(v) For the SUðNÞTC antisymmetric tensor c , �0 � �
guarantees Uð1Þ1 �Uð1Þ2 ! Uð1ÞY when h �c Lc Ri
forms.

The Lagrangian of the model is

S½G;A1; A2; W; B1; B2; �T; T; �c ; c �
¼
Z

d4x½Lgauge kinetic þLtechniquark

þLSM fermion�; (2)

with

L gauge kinetic ¼ � 1

4
½G�

��G
�;�� þ AA

1��A
A;1��

þ AA
2��A

A;2�� þWa
��W

a;��

þ B1��B
1;�� þ B2��B

2;���

and

TABLE I. Gauge charge assignments of the techniquarks in Lane’s TC2 model.

field/group SUðNÞTC SUð3Þ1 SUð3Þ2 SUð2ÞL Uð1Þ1 Uð1Þ2
field, coupling G�

�, gTC AA
1�, h1 AA

2�, h2 Wa
�, g2 B1�, q1 B2�, q2

T1
L N 3 1 2 u1 u2

U1
R N 3 1 1 v1 v2 þ 1

2

D1
R N 3 1 1 v1 v2 � 1

2

T2
L N 1 3 2 v1 v2

U2
R N 1 3 1 u1 u2 þ 1

2

D2
R N 1 3 1 u1 u2 � 1

2

Tl
L N 1 1 2 x1 x2

Ul
R N 1 1 1 x01 x02 þ 1

2

Dl
R N 1 1 1 x01 x02 � 1

2

Tt
L N 1 1 2 y1 y2

Ut
R N 1 1 1 y01 y02 þ 1

2

Dt
R N 1 1 1 y01 y02 � 1

2

Tb
L N 1 1 2 z1 z2

Ub
R N 1 1 1 z01 z02 þ 1

2

Db
R N 1 1 1 z01 z02 � 1

2

c L
1
2NðN � 1Þ 1 1 1 � ��

c R
1
2NðN � 1Þ 1 1 1 �0 ��0
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Ltechniquark¼þ �T1½i@�gTCt
�G��h1

�A

2
AA
1 �g2

�a

2
WaPL�q1u1B1PL�q2u2B2PL�q1v1B1PR

�q2

�
v2þ�3

2

�
B2PR�T1þ �T2½i@�gTCt

�G��h2
�A

2
AA
2 �g2

�a

2
WaPL�q1v1B1PL�q2v2B2PL

�q1u1B1PR�q2

�
u2þ�3

2

�
B2PR�T2þ �Tl½i@�gTCt

�G��g2
�a

2
WaPL�q1x1B1PL�q2x2B2PL

�q1x
0
1B1PR�q2

�
x02þ

�3

2

�
B2PR�Tlþ �Tt½i@�gTCt

�G��g2
�a

2
WaPL�q1y1B1PL�q2y2B2PL

�q1y
0
1B1PR�q2

�
y02þ

�3

2

�
B2PR�Ttþ �Tb½i@�gTCt

�G��g2
�a

2
WaPL�q1z1B1PL�q2z2B2PL

�q1z
0
1B1PR�q2

�
z02þ

�3

2

�
B2PR�Tbþ �c ½i@�gTC~t

�G��q1�B1PLþq2�B2PL�q1�
0
1B1PR

þq2�
0B2PR�c ; (3)

where �A is the three-dimensional Gellman matrix for
topcolor interaction, �a is the Pauli matrix for the electro-
weak interaction, t� is the SUðNÞTC fundamental represen-
tation matrix, ~t� is the SUðNÞTC antisymmetric tensor
representation matrix. We do not specify LSM fermion
which is not relevant to our discussions for the present
approximation.

Now we will discuss the phase structure of the model.
The two-loop	 function of the SUðNÞTC coupling, gTC, is

1

	ð�Þ ¼ �	0

g3TC
ð4
Þ2 � 	1

g5TC
ð4
Þ4 � � g2TC

4

: (4)

In this case, the two coefficients 	0 and 	1
2 are

2N	0¼11

3
C2ðSUðNÞTCÞ�4

3
½TðR1ÞþTðR2ÞþTðR3Þ� (5)

ð2NÞ2	1 ¼ 34

3
C2
2ðSUðNÞTCÞ �

X3
i¼1

�
20

3
C2ðSUðNÞTCÞTðRiÞ

þ 4C2ðRiÞTðRiÞ
�
: (6)

The representations of the three sets of techniquarks men-
tioned above are labeled R1, R2 and R3. Their correspond-
ing parameters are given in Table II.
The reason that we only use the two-loop 	 function is

that the three-loop term of the 	 function is scheme-
dependent. Usually, it is only used for error estimates.
The behavior of the TC coupling, �, is guided by the
renormalization group equation � @�

@� ¼ 	. From the equa-

tion, we know that	0 > 0 corresponds to the case in which
the TC interaction allows asymptotic freedom. However,
	0 < 0 corresponds to the loss of asymptotic freedom, or
nonasymptotic freedom. From (5) and Table II, we find that
the critical value dividing asymptotic freedom and non-
asymptotic freedom is determined by 	0 ¼ 0 and leads
N ¼ 32=9. If further (	0 > 0 and 	1 < 0), TC interaction

creates a Banks-Zaks infrared fixed point �� ¼ � 4
	0

	1

[16], which corresponds to the zero of the 	 function. In
the more general case, an infrared fixed point may not

TABLE II. The representation parameters of this model. dðRÞ is the dimension of the
representation, and dðSUðNÞTCÞ is the number of group generators. C2ðRiÞ and C2ðSUðNÞTCÞ
are the quadratic Casimir operators of the representation Ri and the adjoint representation,
respectively. Nf is the number of techniquarks in the same representation, NfC2ðRÞdðRÞ ¼
TðRÞdðGÞ.
i dðRiÞ C2ðRiÞ C2ðSUðNÞTCÞ TðRiÞ dðSUðNÞTCÞ Nf

1 N N2 � 1 2N2 NfN N2 � 1 12

2 N N2 � 1 2N2 NfN N2 � 1 6

3 NðN � 1Þ=2 2ðN þ 1ÞðN � 2Þ 2N2 NfNðN � 2Þ N2 � 1 1

1The reason that we chose the two-loop 	 function instead of
the one-loop version is that it can generate the walking effects
needed for the model. Otherwise, the model setting must be
rearranged. Physically, we expect that the most significant con-
tribution should come from the TC interaction. The SM particle
mass does not reach the TC scale, and the masses of the colorons
and Z0 slightly exceed this scale; all of their contributions are
expected to be smaller than those of the TC interactions. For
simplicity in the first-stage approximation, we ignore the pos-
sible effects from SM particles, colorons, and Z0. We also ignore
the high-dimension ETC interactions. We will investigate the
accuracy of this approximation in a future study of all of these
effects.

2Here we apply the convention of Ref. [15].
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exist, which often happens in the situation in which the
number of fermions is small. This is the case for QCD. In
this model, because there are already too many technifer-
mions, we have checked that the infrared fixed point al-
ways exists. The existence of an infrared fixed point
requires that the coupling remains nearly constant over a
given range of infrared energy scales, i.e., it walks. This is
the modern realization of the walking mechanism. When
an infrared fixed point exists, the two-loop 	 function
dictates the following energy scale dependence of the TC
coupling:

1

�ðxÞ ¼ 	0

2

lnxþ 1

��
ln

�ðxÞ
�� � �ðxÞ x ¼ q2

�2
w

; (7)

where the parameter �w is roughly the length of the
interval of constant coupling in the infrared region. At
this scale, the coupling constant completes the walk and
begins a fast run in which it exhibits typical asymptotic
freedom behavior. In Sec. IV, we show that in the ideal
walking situation, �w can be interpreted as the ETC scale.
It is often referred to as �ETC in the literature [17].
Moreover, in the standard running situation, �w can be
treated as the TC scale (or �TC). Realistically, in our
model, the system is somewhere between the cases of
running and ideal walking, which suggests that �TC <
�w <�ETC. This change from �ETC to �w also reflects
the fact that �ðxÞ in the presence of some walking effects
does not depend on the value of �ETC too much. However,
in the ideal walking theory they are very much correlated.
Furthermore, the existence of both asymptotic freedom and
an infrared fixed point will divide the theory into two
different phases. One phase is the asymptotic freedom
phase in which � � ��. In this case, the coupling �
increases from zero to �� monotonically while the energy
scale decreases from the ultraviolet region to the infrared
region. The other phase is the nonasymptotic freedom
phase, where � � ��. In this case, the coupling � de-
creases from infinity to �� monotonically while the energy
scale decreases from the ultraviolet region to the infrared
region. Furthermore, the ladder approximation Schwinger-
Dyson equation for techniquark self-energy predicts a
critical coupling:

�c ¼ 2
N

3C2ðRÞ (8)

for techniquarks that belong to the technigauge group
representation, R. While the infrared fixed point �� ex-
ceeds its critical coupling�c, spontaneous chiral symmetry
breaking occurs, and the SDE automatically develops non-
zero techniquark self-energies and condensates. However,
when �� is less than �c, there is no spontaneous chiral
symmetry breaking, and the techniquark self-energy van-
ishes. Later, we will see that to ensure the correctness of
our 	 function, the nonzero values of the techniquark self-
energy and condensate must be small enough compared to

�w. This dictates that �� can only be larger than �c by a
small amount. In practice, �� may not be so close in value
to �c, this will cause inaccuracy in our computations. We
will estimate this error in later calculations. For the cases
discussed above for different values of TC coupling and
different choices of N, our model may exhibit different
behaviors and then form different phases. We present3 a
phase diagram of our model in Fig. 1.
From Fig. 1, we can see that the blue line (infrared fixed

point) divides the phase space into two parts: the region
above the blue line represents the nonasymptotic freedom
phase and that below the blue line represents the asymp-
totic freedom phase.
In the asymptotic freedom phase, � runs from �� (blue

line) to zero, as the energy scale increases. The blue line
crosses the red dashed line (critical coupling of the first and
second techniquark sets) and the black dashed-dotted line
(critical coupling of the third techniquark set) at two
points, which divide the blue line into three segments.
The trapezoids (and triangle) under these segments form
the three subregions of the asymptotic freedom phase.

2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N

α

 

 

Nonasymptotic freedom

Asymptotic freedom

α
*

α
c,1,2

α
c,3

β
0
=0

FIG. 1 (color online). Phases of Lane’s alternative TC2 model
with nontrivial TC fermion condensation and walking. The blue
solid line represents the infrared fixed point ��. The red dashed
line denotes the critical coupling of the first and second techni-
quark sets(fundamental representation of SU ðNÞTC). The black
dashed-dotted line denotes the critical coupling of the third
techniquark set(antisymmetric representation of SU ðNÞTC).
The magenta dotted line shows the value N¼32=9 from 	0 ¼ 0.

3Because Nf is fixed in the model, we depict the phase
diagram in terms of N and �, instead of N and Nf, which is
more commonly done in the literature. Comparing our Fig. 1 to
the phase diagram depicted by Fig. 1 in Ref. [15], our phase
diagram corresponds to a horizontal line with a fixed Nf in their
diagram. Their phase diagram only provides information about
Nf and N . Our phase diagram does not provide information
about Nf, but does provide more information about the running
coupling constant.
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From left to right, the blue region is the conformal region,
where � is always below its critical value and no techni-
quark condensation forms. Therefore, there is no sponta-
neous chiral symmetry breaking. The second red region is
the intermediate mixture region, where � is always below
the critical value �c;1 ¼ �c;2, but will cross �c;3 as the

energy scale decreases. This means the third set of techni-
quarks forms condensates, but the first and second sets do
not. The yellow and green regions are the ones that we
mainly focus on in this paper. In these regions, � will cross
all its critical values as the energy scale decreases. Thus, all
techniquarks have nonzero self-energies and condensates.
Therefore, this is the model required for spontaneous chiral
symmetry breaking.

In the yellow region, the unique TC coupling in the
infrared energy region approaches that of the infrared fixed
point, critical values �c of the first and second techniquark
sets (within a magnitude of 0.2), and that of the third
techniquark set (within a magnitude of 0.4), as the energy
scale decreases. This causes a near conformal behavior in
which the value of the techniquark self-energy is very
small (corresponding to a tiny mass). For at least two
reasons, this region is the most important to the investiga-
tion of the walking effect. First, the lower the techniquark
self-energy, the more accurate and reliable our estimate of
the 	 function over the energy region will be. This is

because we have used the MS scheme, which assumes
massless techniquarks, to obtain the coefficients of the 	
function in (5) and (6). Second, if a techniquark has a
significant mass, it will decouple and not contribute to
the 	 function in the low energy region. Therefore, in the
extreme infrared region, because of spontaneous chiral
symmetry breaking, we cannot treat techniquarks as mass-
less. Therefore, we need to ignore techniquark contribu-
tions if they have mass. The coupling without these
techniquark contributions will run (rather than walk) to a
very large value and will not reach its original infrared
fixed point. We show this special running behavior in the
infrared energy region for N ¼ 6 using a dashed magenta
line near the vertical axis in Fig. 2. A techniquark self-
energy on the order of FTC leads to an infrared interval of
the same order size, which is small in comparison to the
typical scale for �w. The smaller the FTC is, the more
accurately (7) describes the coupling walking behavior.
Therefore, we expect that replacing the running behavior
in this region with an infrared fixed point will only cause
errors of order FTC=�w in the solution of the SDE for the
techniquark self-energy. In this model, because our techni-
quarks belong to different representations of the TC group,
which leads to different critical couplings, there is not a
unique point where the �� is equal to all the critical
coupling values. Usually this is a necessary component
of modern walking theory.

Furthermore, the minimum integer N closest to the
conformal region is N ¼ 6, but the value N ¼ 4 was

chosen in Lane’s original paper [5] and does not satisfy
the walking requirements of this study. Although we do not
have an unique �� that is equal to all the critical coupling
values and N ¼ 6 is perhaps too far from the conformal
region, our numerical results given in Sec. IV show that
walking effects are present. Therefore, we do achieve the
situation where the infrared fixed point is not enough but
sufficiently close to the critical coupling. In fact, even if we
found a unique infrared fixed point �� meets all the critical
couplings and an integer N very near the conformal region,
the walking results would not be significantly more reli-
able. This is because of the large number of assumptions
made in our calculations. These assumptions include:
ignoring higher-order loops (error of 1=16
2), SM parti-
cles of mass m (error of m2=F2

TC), and gauge fields such as

coloron and Z0 (error of F2
TC=M

2
coloron

and F2
TC=M

2
Z0 in

the 	 function). The precision in the critical value is now
only at the two-loop level. As we mentioned before, the
ETC effects may also play a role. One known effect from
the ETC interaction [14] is that while the coupling of the
ETC-induced effective four-fermion interaction exceeds its
critical value, the area of the conformal window will be
substantially reduced. In this sense, we must include all the
above-mentioned corrections before we can quantitatively
improve the precision of the present calculation of the
possible walking effects of the model. In the asymptotic
freedom phase, we show the scale dependence of the TC
coupling according to formula (7) for different values of N
in Fig. 2. From Fig. 2, it can be seen that in the asymptotic
freedom phase, the smaller the value of N, the flatter the
curve. In other words, the smaller the slope of the curve or
corresponding value of the 	, the larger the impact on the
walking effect. From Fig. 1, we know that when N � 5,
there is no overall spontaneous chiral symmetry breaking.
Therefore, the minimum value of N at which spontaneous
chiral symmetry breaking occurs and results in the largest
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FIG. 2 (color online). Energy scale dependence of the TC
coupling, �, determined using (7).
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walking effect is N ¼ 6. Throughout this paper, we will
use N ¼ 6 in our quantitative computations.

III. DERIVATION OF THE EWCL FROM
LANE’S MODEL

Our goal is to obtain

expðiSEW½Wa
�; B��Þ

¼
Z

D �cDcD �T1DT1D �T2DT2D �TlDTlD �Tt

�DTtD �TbDTbDG�
�DBA

�DZ0
�

� expðiS½G�
�; A

A
1�; A

A
2�;W

a
�; B1�; B2�; �T; T;

�c ; c �Þ
��������AA

�¼0
(9)

¼ N ½Wa
�; B��

Z
D�ðUÞ expðiSeff½U;Wa

�; B��Þ; (10)

where Seff½U;Wa
�; B�� �

R
d4x

P
iLi is the action of the

EWCL. B� is the gauge field of Uð1ÞY and Z0
� is the gauge

field of Uð1Þ0 � Uð1ÞY1
�Uð1ÞY2

=Uð1ÞY . They are related

to B1� and B2� through the mixing angle � by

B1� B2�

� � ¼ Z0
� B�

� � cos� � sin�
sin� cos�

� �
g1 � q1 sin� ¼ q2 cos�:

(11)

In (9), AA
� is the gluon field of SUð3Þc and BA

� is the gauge

field of SUð3Þ1 � SUð3Þ2=SUð3Þc. They are related to AA
1�

and AA
2� through the mixing angle �0 by

AA
1� AA

2�

� 	
¼ BA

� AA
�

� � cos�0 � sin�0
sin�0 cos�0

� �
g3 � h1 sin�

0 ¼ h2 cos�
0:

(12)

In the next section, we will use Schwinger-Dyson equation
analysis that the SUðNÞTC interaction induces techniquark

condensates h �c Lc Ri � 0 and h �Ti
LT

j
Ri � 0 for i, j ¼ 1, 2.

They trigger the extended hypercharge symmetry break-
ing, Uð1ÞY1

�Uð1ÞY2
! Uð1ÞY , and the topcolor symmetry

breaking, SUð3Þ1 � SUð3Þ2 ! SUð3Þc, at a TeV energy
scale. These processes leave a singlet heavy state Z0

� in

broken Uð1Þ0 and colorons BA
� in the broken SUð3Þ1 �

SUð3Þ2=SUð3Þc, respectively. Because this work is only
concerned with the EWCL, we ignored the gluon field by
taking AA

� ¼ 0.

In (10), U is the standard electroweak Goldstone boson,
which can be expressed in terms of a dimensionless unitary
unimodular 2� 2 matrix field, D� denotes the normal-
ized functional integration measure on U. The normaliza-
tion factor N ½Wa

�; B�� is determined through the

requirement that when the TC interaction is switched off,
Seff½U;Wa

�; B�� must vanish. This fixes it at:

N ½Wa
�; B��

¼
Z

D �cDcD �T1DT1D �T2DT2D �TlDTlD �TtDTt

�D �TbDTbDG�
�DBA

�DZ0
�

� expðiS½G�
�; A

A
1�; A

A
2�;W

a
�; B1�; B2�; �T; T;

�c ; c �ÞjAA
�¼0;ignore TC interaction: (13)

In Ref. [6], the EWCL was constructed with building
blocks which are SUð2ÞL covariant and Uð1ÞY invariant
as T � U�3Uy, V� � ðD�UÞUy, g1B��, g2W�� �
g2

�a

2 W
a
��. Where B�� and W�� are the field strengths of

the Uð1ÞY and SUð2ÞL gauge fields, respectively.
Alternatively, in Ref. [8], we reformulated the EWCL
equivalently using SUð2ÞL invariant and Uð1ÞY covariant
building blocks as �3, X� � UyðD�UÞ, g1B��, �W�� �
Uyg2W��U. In which, �3 and g1B�� are both SUð2ÞL
and Uð1ÞY invariant, but X� and �W�� are bilinearly

Uð1ÞY covariant. The second formulation was used
throughout this paper. In Table III, we detail the relation-
ship between the two formalisms.
From (9) and (10), it can be seen that to obtain the

EWCL, we must integrate in the electroweak Goldstone
boson field, U. We also need to integrate out the series of
fields which include the three sets of techniquarks, c , T1,
T2, Tl, Tt, Tb and the technigluonG�

�, and the colorons B
A
�

and Z0
�. In the following subsections, we divide this work

into five steps.

A. Integrating in the electroweak Goldstone
boson field U

We introduce a local 2� 2 operator

OðxÞ� tr½T1
L
�T1
RþT2

L
�T2
RþTl

L
�Tl
RþTt

L
�Tt
RþTb

L
�Tb
R�ðxÞ (14)

In this case, tr are the traces with respect to the Lorentz,
SUðNÞTC, SUð3Þ1 and SUð3Þ2 indices. The transformation
of OðxÞ under SUð2ÞL �Uð1ÞY is

OðxÞ ! VLðxÞOðxÞVy
RðxÞ VLðxÞ ¼ eið�a=2Þ�aðxÞ

VRðxÞ ¼ e�ið�3=2Þ�0ðxÞ:
(15)

Then we decompose OðxÞ as
OðxÞ ¼ �y

LðxÞ�ðxÞ�RðxÞ; (16)

where�ðxÞ, which is represented using a Hermitian matrix,
describes the modular degree of freedom, and �LðxÞ and
�RðxÞ, which are represented using unitary matrices, de-
scribe the phase degrees of freedom of SUð2ÞL and Uð1ÞY
respectively. Their transformations under SUð2ÞL �Uð1ÞY
are

�ðxÞ ! hðxÞ�ðxÞhyðxÞ �LðxÞ ! hðxÞ�LðxÞVy
L ðxÞ

�RðxÞ ! hðxÞ�RðxÞVy
RðxÞ; (17)
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where

hðxÞ ¼ ei�hðxÞð�3=2Þ (18)

belongs to an induced hidden local Uð1Þ symmetry group.
Next, we define a new field

UðxÞ � �y
LðxÞ�RðxÞ; (19)

which is the nonlinear realization of the Goldstone boson
field in the EWCL. Subtracting the �ðxÞ field, we find
that the present decomposition results in a constraint

�LðxÞOðxÞ�y
RðxÞ��RðxÞOyðxÞ�y

LðxÞ¼0 and its functional
expression isZ

D�ðUÞF ½O�ð�LO�y
R � �RO

y�y
LÞ ¼ const; (20)

whereD�ðUÞ is an effective invariant integration measure;

and F ½O� only depends on O and is invariant under
SUð2ÞL �Uð1ÞY transformations. This causes the value of
the integrated quantity to be a constant. Inserting the above
identity into (9), we have

eiSEW½Wa
�;B��

¼
Z
D �cDcD �T1DT1D �T2DT2D �TlDTlD �TtDTt

�D �TbDTbDG�
�DBA

�DZ0
�

�
Z
D�ðUÞF ½O�ð�LO�y

R��RO
y�y

LÞ

�eiS½G
�
�;A

A
1�;A

A
2�;W

a
�;B1�;B2�; �T;T; �c ;c �jAA

�¼0: (21)

Using a special SUð2ÞL �Uð1ÞY rotation for VLðxÞ ¼
�LðxÞ and VRðxÞ ¼ �RðxÞ and labeling the fields after

rotation with the subscript, �, the above path integral
becomes:

eiSEW½Wa
�;B��

¼
Z
D �cDcD �T1

�DT1
�D �T2

�DT2
�D �Tl

�DTl
�D �Tt

�

�DTt
�D �Tb

�DTb
�DG�

�DBA
�DZ0

�

�
Z
D�ðUÞF ½O��ðO��Oy

�Þ

�eiS½G
�
�;A

A
1�
;AA

2�
;Wa

�;�
;B1�;�;B2�;�; �T�;T�; �c ;c �

��������AA
�¼0

; (22)

where we have used the result that the functional integra-
tion measure, F ½O� and the action on the exponential of
the integrand are invariant under SUð2ÞL �Uð1ÞY trans-
formations. From Table I, it can be seen that:

T1
�L¼e�iðu1þu2Þ�0PL�LT

1
L T1

�R¼e�iðv1þv2Þ�0PR�RT
1
R

T2
�L¼e�iðv1þv2Þ�0PL�LT

2
L T2

�R¼e�iðu1þu2Þ�0PR�RT
2
R

Tl
�L¼e�iðx1þx2Þ�0PL�LT

l
L Tl

�R¼e�iðx01þx02Þ�0PR�RT
l
R

Tt
�L¼e�iðy1þy2Þ�0PL�LT

t
L Tt

�R¼e�iðy0
1
þy0

2
Þ�0PR�RT

t
R

Tb
�L¼e�iðz1þz2Þ�0PL�LT

b
L Tb

�R¼e�iðz0
1
þz0

2
Þ�0PR�RT

b
R:

(23)

Furthermore,

g2
�a

2
Wa

�;� ¼ �L

�
g2

�a

2
Wa

� � i@�

�
�y
L (24)

TABLE III. Symmetry breaking sector of the EWCL Seff½U;Wa
�; B�� ¼

R
d4x

P
iLi.

Formulation in Ref. [6] Formulation in Ref. [8]

Lð2Þ 1
4 f

2 tr½ðD�U
yÞðD�UÞ� ¼ � 1

4 f
2 trðV�V

�Þ � 1
4 f

2 trðX�X
�Þ

Lð2Þ0 1
4	1f

2½trðTV�Þ�2 1
4	1f

2½trð�3X�Þ�2
L1

1
2�1g2g1B�� trðTW��Þ 1

2�1g1B�� trð�3 �W��Þ
L2

1
2 i�2g1B�� trðT½V�; V��Þ i�2g1B�� trð�3X�X�Þ

L3 i�3g2 trðW��½V�; V��Þ 2i�3 trð �W��X
�X�Þ

L4 �4½trðV�V�Þ�2 �4½trðX�X�Þ�2
L5 �5½trðV�V

�Þ�2 �5½trðX�X
�Þ�2

L6 �6 trðV�V�ÞtrðTV�ÞtrðTV�Þ �6 trðX�X�Þtrð�3X�Þtrð�3X�Þ
L7 �7 trðV�V

�ÞtrðTV�ÞtrðTV�Þ �7 trðX�X
�Þtrð�3X�Þtrð�3X�Þ

L8
1
4�8g

2
2½trðTW��Þ�2 1

4�8½trð�3 �W��Þ�2
L9

1
2 i�9g2 trðTW��ÞtrðT½V�; V��Þ i�9trð�3 �W��Þtrð�3X�X�Þ

L10
1
2�10½trðTV�ÞtrðTV�Þ�2 1

2�10½trð�3X�Þtrð�3X�Þ�2
L11 �11g2�

���� trðTV�ÞtrðV�W��Þ �11�
���� trð�3X�ÞtrðX�

�W��Þ
L12 �12g2 trðTV�ÞtrðV�W

��Þ �12 trð�3X�ÞtrðX�
�W��Þ

L13 �13g2g1�
����B�� trðTW��Þ �13�

����g1B�� trð�3 �W��Þ
L14 �14g

2
2�

����trðTW��ÞtrðTW��Þ �14�
����trð�3 �W��Þtrð�3 �W��Þ
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g1
�3

2
B�;� ¼ �R

�
g1

�3

2
B� � i@�

�
�y
R B1�;� B2�;�

� �
¼ Z0

� B�;�

� � cos� � sin�

sin� cos�

 !
: (25)

Note the fields without the subscript � in (22) are the fields
that are invariant under SUð2ÞL �Uð1ÞY rotation.

B. Integrating out the technigluons

As a second step,we integrate out the technigluon in (22)
using:Z

DG�
�e

iS½G�
�;A

A
1�;A

A
2�;W

a
�;�

;B1�;�;B2�;�; �T�;T�; �c ;c �

¼eiSTC½ �T�;T�; �c ;c �þiSTC1½AA
1�;A

A
2�;W

a
�;�

;B1�;�;B2�;�; �T�;T�; �c ;c �;

(26)

where we choose

eiSTC½ �T�;T�; �c ;c � ¼
Z
DG�

�e
i
R
d4xð�ð1=4ÞG�

��G
�;���gTCG

�
�J

��Þ

(27)

STC1½AA
1�;A

A
2�;W

a
�;�;B1�;�;B2�;�; �T�;T�; �c ;c �

¼S½G�
�;A

A
1�;A

A
2�;W

a
�;�;B1�;�;B2�;�; �T�;T�; �c ;c �jG�

�¼0

(28)

and

J�� ¼ �c~t���c þ ~J�� (29)

~J �� ¼ �T1
�t

���T1
� þ �T2

�t
���T2

� þ �Tl
�t

���Tl
�

þ �Tt
�t

���Tt
� þ �Tb

�t
���Tb

�: (30)

Integrating out the technigluon fields in (27), we get

iSTC½ �T�; T�; �c ; c �

¼ X1
n¼2

Z
d4x1 . . . d

4xn
ð�igTCÞn

n!

�G�1...�n
�1...�n

ðx1; . . . ; xnÞJ�1
�1
ðx1Þ . . . J�n

�n
ðxnÞ; (31)

where G�1...�n
�1...�nðx1; . . . ; xnÞ is a n-point Green’s function for

the technigluons.

C. Integrating out the techniquarks

Combining (22) and (26), our starting SEW½Wa
�; B��,

after integrating in the electroweak Goldstone boson field
U and integrating out the technigluons, becomes

eiSEW½Wa
�;B�� ¼

Z
D �cDcD �T1

�DT1
�D �T2

�DT2
�D �Tl

�DTl
�D �Tt

�DTt
�D �Tb

�DTb
�DBA

�DZ0
�

�
Z

D�ðUÞF ½O��ðO� �Oy
�ÞeiSTC½

�T�;T�; �c ;c �þiSTC1½AA
1�
;AA

2�
;Wa

�;�
;B1�;�;B2�;�; �T�;T�; �c ;c �

��������AA
�¼0

: (32)

After some detailed derivations and approximations which can be found in Appendix A, we get:

eiSEW½Wa
�;B�� ¼

Z
D�ðUÞF ½O��ðO� �Oy

�Þ �
Z

DBA
�DZ0

� exp

�
i
Z

d4x

�
� 1

4
ðAA

1��A
A;1�� þ AA

2��A
A;2�� þWa

��W
a;��

þ B1;��B
1;�� þ B2;��B

2;��Þ
�
þ Tr ln½i@þ g1ðcot�þ tan�Þ�Z0�5 � ~�ð@2Þ� þ Tr00 ln½i@þ V2� þ A2��

5

� �̂ð �r2Þ� þ Tr0 ln½i@þ V1� þ A1��
5 � ��ðr̂2Þ � i�5�2 ��5ðr̂2Þ�

�
AA
�¼0

: (33)

The various quantities appearing in (33) are defined at the end of Appendix A. Furthermore, in Appendix B, we have shown
that the techniquark self-energies ~�, �̂, �� and ��5 satisfy the following SDEs,

~�ðp2
EÞ ¼

3ðN þ 1ÞðN � 2Þ
4
3N

Z
d4qE

�½ðpE � qEÞ2�
ðpE � qEÞ2

~�ðq2EÞ
q2E þ ~�2ðq2EÞ

(34)
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�̂ðp2
EÞ ¼

3ðN2 � 1Þ
8
3N

Z
d4qE

�½ðpE � qEÞ2�
ðpE � qEÞ2

�̂ðq2EÞ
q2E þ �̂

2ðq2EÞ
(35)

��ðp2
EÞ ¼

3ðN2 � 1Þ
8
3N

Z
d4qE

�½ðpE � qEÞ2�
ðpE � qEÞ2

�
��ðq2EÞ

q2E þ ��2ðq2EÞ þ ��2
5ðq2EÞ

(36)

�� 5ðp2
EÞ ¼

3ðN2 � 1Þ
8
3N

Z
d4qE

�½ðpE � qEÞ2�
ðpE � qEÞ2

�
��5ðq2EÞ

q2E þ ��2ðq2EÞ þ ��2
5ðq2EÞ

; (37)

where the technigluon propagator is parameterized though
the TC running coupling constant � as

G�	
��ðx;yÞ¼

Z d4p

ð2
Þ4e
�ipðx�yÞ �i�	

p2½1þ�ð�p2Þ�
�
�
g���

p�p�

p2

�

�ðp2
EÞ�

g2TC
4
½1þ�ðp2

EÞ�
: (38)

D. Integrating out the colorons and the low
energy expansion

Before integrating out the coloron field, we first discuss
its mass, which is determined by the kinetic and mass terms.
From the exponential of the integrand in (33), it can be seen
that there is already a standard coloron kinetic term
from � 1

4 ðAA
1��A

A;1�� þ AA
2��A

A;2��Þ. The first set of tech-
niquarks contributes to the quantum loop corrections to the

coloron kinetic andmass terms through the term Tr0 ln½i@þ
V1� þA1��

5 � ��ðr̂2Þ � i�5�2 ��5ðr̂2Þ� in (33). Through

detailed computations, we find that these corrections are

Tr 0 ln½i@þ V1� þ A1��
5 � ��ðr̂2Þ � i�5�2 ��5ðr̂2Þ�

��������coloron kinetic and mass terms

¼ i

4

Z
d4x

�
Cg23ðtan�0 þ tan�0Þ2BA

�B
�
A � ð@�BA

� � @�BA
�Þ2

�
Kg23ðcot2�0 þ tan2�0Þ þ K̂��0

13 g23ðtan�0 � cot�0Þ2

þ 1

2
Êg23ðtan�0 þ cot�0Þ2

��
: (39)

In this case, the coefficients are given at the beginning of Appendix C. Combining the standard coloron kinetic term in (33)
and the techniquark quantum loop correction given by (39), we find the formula for the coloron mass to be

M2
coloron

¼ C

Êþ 2ðKþ K̂��0
13 Þ þ ð2=g23 � 8K̂��0

13 Þ=ðcot�0 þ tan�0Þ2
: (40)

In Appendix C, we integrate out the coloron fields and perform the low energy expansion. Finally we obtain

eiSEW½Wa
�;B�� ¼ ei

R
d4x½�ð14ÞWa

��W
a;���1

4B��B
��� Z D�ðUÞF ½O��ðO� �Oy

�Þ
Z

DZ0
�e

iS0þiSZ0 ; (41)

where detailed expressions of S0 and SZ0 are given in (C18)
and (C22) respectively in Appendix C.

E. Integrating out Z0

We denote the resulting action after the integration over
Z0 as Z

DZ0
�e

iSZ0 ¼ ei
�SZ0 : (42)

We can use the loop expansion to calculate the above
integral

�S Z0 ¼ SZ0

��������Z0¼Z0
c

þloop corrections (43)

where the classical field Z0
c satisfies

@

@Z0
c;�ðxÞ ½SZ0 þ loop corrections� ¼ 0: (44)

Using this method, we integrate out the Z0 field in
Appendix D and simplify the result �SZ0 given in (D4)
into the form of EWCL. Furthermore, combining (42) and
(41) together, we find

eiSEW½Wa
�;B�� ¼ ei

R
d4x½�ð1=4ÞWa

��W
a;���ð1=4ÞB��B

���

�
Z

D�ðUÞF ½O��ðO� �Oy
�ÞeiS0þi �SZ0 :

(45)

Comparing this with (10) and Table. III, we obtain all the
EWCL LECs. Our final analytical results for the EWCL
LECs (up to an order of p4) are
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f2¼5F̂2
0 	1¼10a23F̂

2
0

�M2
Z0

�1¼5

2
ð1�2	1ÞðK̂��0

2 �K̂��0
13 Þþ	1f

2

2M2
Z0
��	1

2a3

�2¼
�
	1�1

2

��
5

2
K̂��0

13 �5

8
K̂��0

14

�
þ	1f

2

2M2
Z0
��	1

2a3
�3¼

�
	1�1

2

��
5

2
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�11¼�12¼�13¼�14¼0: (46)

IV. NUMERICAL RESULTS AND DISCUSSION

We first analyze the general features of the EWCL LECs
obtained in the previous section, which are similar to those
in Lane’s first natural prototype TC2 model [9]:

(i) The contributions of the p4-order coefficients are
divided into two parts: the contribution from the
three sets of techniquarks and the Z0 contribution

(ii) All correction terms from the Z0 particle to the
EWCL LECs are proportional to powers of 	1,
which vanish if the mixing disappear (� ¼ 0).
This can be seen from (46) and (C34) which show

that 	1 ¼ 10g2
1
F̂2
0tan

2�

16 �M2

Z0
. By using the relation �emT ¼

2	1, we can express all LECs in terms of the T
parameter. Later in the paper, we show the T
dependence of the LECs.

(iii) From (46) (for f2 and 	1), combined with (C34)
and (C27), the relation �emT ¼ 2	1 and the rela-
tionships of the hypercharges from Ref. [5], we
have

�emT ¼
�
1þ 2

5

�
81 ~F2

0

4F̂2
0

þ 716þ 4

�
1� F02

0

F̂2
0

��

� ðu1 � v1Þ2ð1þ cot2�Þ2
��1

:

If we include the numerical result that F02
0 < F̂2

0,

the above result implies that T must be positive and
has an upper bound. The upper bound is:

�emTMax¼ 1

1þ 2
5½

81 ~F2
0

4F̂2
0

þ716þ4ð1�F02
0

F̂2
0

Þ�ðu1�v1Þ2
:

(47)

(iv) Because numerical calculation shows that K̂��0
2 �

K̂��0
13 < 0 and	1 is positive,�8 is negative based on

(46). ThenU¼�16
�8, which is a coefficient given
in Ref. [6], is always positive in the present model.

Combining (C27), (C28), and (C42), we find,

2
~F2
0

M2
Z0
g21ðcot�þ tan�Þ2�2þ4

F̂2
0

M2
Z0
ð2a20þ â20þ5a23Þ�8

F02
0

M2
Z0
a20

¼1þ½4ðcot�þ tan�Þ2�2þ2tan2�þ8v̂þ3tan2�þ ŷ�
�Kg21þ4ðcot�þ tan�Þ2�2 ~K��0

2 g21

þ8ð2a20þ â20þ5a23ÞK̂��0
2 þ½40a23þ2ðt̂þ ŝÞg21�K̂��0

13

�15D̂0a
2
0: (48)

We treat the above equation as a constraint on K. This
is done as following: A suitable choice is made for the
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hypercharges (this will be discussed later), electroweak
gauge coupling, T and MZ0 . We already know most of the

parameters in (48), except ~F0, F̂0, F
02
0 ,

~K��0
2 , K̂��0

2 ,

K̂��0
13 and D̂0. By solving the SDEs, (34)–(37), we can

obtain the techniquark self-energies, ~�, �̂, ��, ��5.
Furthermore, substituting the resulting techniquark self-
energies into the formulas given in Appendix E and

(C13), we can obtain ~F0, F̂0, F
02
0 ,

~K��0
2 , K̂��0

2 , K̂��0
13

and D̂0 from (48). Now, aside fromK all the parameters in
(48) are known. Then we can use (48) to fix the value ofK.
Once K is fixed, with the help of (C2), we can determine
the ratio of the infrared cutoff � and ultraviolet cutoff �.
Numerical calculations show that this is unlike the results
in Refs. [9,11], where the condition �> � occurs through
the definitions used for the calculations and offers stringent
constraints on the allowed region for T and the upper
bound for MZ0 . In our model, �> � is naturally satisfied
for real values of MZ0 . For example, we find that ln�=� is
about�7:6 and�9:0 forMZ0 values of 0.5 TeVand 1 TeV,
respectively.

With the above qualitative features, we now can gener-
ate numerical results. First, we take N ¼ 6which yields an
infrared fixed point of �� ¼ 88
=523. Then, we take f ¼
250 GeV. This completely fixes the two-loop value at
�w ¼ 5:5 TeV through the running behavior of (7), SDE

(35), f2 ¼ 5F̂2
0 and (E1), which sets up the relationship

between F̂2
0 techniquark self-energy. This value of �w is

smaller than the expected conventional ETC scale.
Therefore, we cannot interpret it as �ETC. Later, we will
see that this is because the walking effect is not large
enough, and more ideal walking can lead to a larger �w.
The current result with �w 	 �ETC shows that our run-
ning coupling constant cannot always walk from extreme
infrared energy regions to the ETC scale, �ETC. Instead, it
can only walk a shorter distance to the scale �w. Beyond
�w, it will run and fall quickly exhibiting conventional
asymptotic freedom behavior. Another theoretical parame-
ter is the coloron mass given by (40), which theoretically
depends on the values �0, introduced in (12) and �, intro-
duced in (B15). We find the largest coloron mass occurs for
� ¼ 
=2, i.e., the self-energies for the first set of techni-
quarks are completely contributed by the twisted part of the

set, ��5 ¼ �̂ sin� and �� ¼ 0. Using this value of � ¼

=2, in Fig. 3, we plot the coloron mass in terms of the
T parameter. We used four values ofMZ0 ¼ 0:5, 1, 2, 5 TeV
(corresponding to ln�=�
 �7:6, �9:0, �9:4 and �9:5).
We found that that the coloron mass is not sensitive to �0.
From Fig. 3, it can be seen that the coloron mass is roughly
half the 1 TeV expected in Lane’s original paper [5]. The
reason is that we included a techniquark loop correction in
the coloron kinetic term, which appeared in (40) with the

coefficients Ê, K and K̂��0
13 . If we denote the coloron

mass without this correction as Mbare coloron which was

the notation used in Lane’s original work [5], then our

numerical calculation shows that Mbare coloron=

Mcoloron 
 2
3 ðtan�0 þ cot�0Þ. This leads to a larger value

for Mbare coloron. In fact, if we carefully examine the

denominator of (40), the structure of this kinetic term
correction can be divided into three parts: the tree order
term 2=g23ðcot�0 þ tan�0Þ2, the techniquark self-energy-

dependent part Êþ2K̂��0
13 �8K̂��0

13 =ðcot�0 þ tan�0Þ2,
and the techniquark self-energy-independent part 2K.
The numerical calculation shows that the main contribu-
tion comes from the techniquark self-energy-dependent
part, which is an order of magnitude larger than the con-
tributions from the other two parts. Because the coloron
mass is small,4 we will use � ¼ 
=2 to give the largest
coloron mass for all the following computations.
To provide numerical values for all the EWCL LECs, we

need to choose the various hypercharges for the model.
Note that the arrangement of the hypercharges given in
Lane’s original paper [5] is not suitable here because that
result used N ¼ 4. We showed in Sec. II that for the
modern interpretation of our two-loop based phase struc-
ture model, we use N ¼ 6, and recalculate the hyper-
charges. According to a series of relations among
different hypercharges given by K. Lane in Ref. [5], we
need to use three hypercharges x1, y1 and y1 þ y2. We use a
treatment similar to the one used by K. Lane in Ref. [5];
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FIG. 3 (color online). Coloron mass for Lane’s model.

4The small coloron mass forces us to switch the order of
integration over the coloron and Z0, i.e., instead of integrating
out the coloron before the Z0 boson, we need to integrate out Z0
and then the coloron. We have performed the computation using
this new procedure and found the same result as that of the
present paper, i.e., switching the order of integration yields no
correction. We found that the possible correction from switching
this order of integration depends on the classical field B�

A;c
caused by the coloron integration. These classical coloron fields
are determined by stationary equations. In both cases, the sta-
tionary equations offer the null solution, B

�
A;c ¼ 0, which was

used in our results.
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namely, we use x1 ¼ y1, y1 þ y2 ¼ 0. Furthermore, this
requires that u ¼ ðu1 � v1Þ=2
 1. These fully fix the
typical values of all the hypercharges. By ‘‘typical’’ we
mean that the value of the hypercharges must satisfy all 23
constraint equations given in Ref. [5] and two more con-
straints: x1 ¼ y1, y1 þ y2 ¼ 0. The last two constraints
were not explicitly mentioned in Ref. [5], but the detailed
example used them. These typical hypercharges are: a ¼
�39, a0 ¼ �46, b ¼ 14, b0 ¼ 8:2, c ¼ �39, c0 ¼ �46,
d¼�12, d0 ¼�14, �¼4:6, �0 ¼�4:6, x1¼25, x01¼19,
x2 ¼ �26, x02 ¼ �19, y1 ¼ 25, y01 ¼ 23, y2 ¼ �25, y02 ¼
�23, z1 ¼ �7:7, z01¼19, z2 ¼ 7:7, z02¼�19, u1¼�4:1,
v1 ¼ �6:1, u2 ¼ 4:2, v2 ¼ 6:2. Using this set of typical
hypercharges, combined with the other necessary inputs
for the model, which were discussed in the previous para-
graph, (47) yields an upper bound, Tmax ¼ 0:035. We show
S ¼ �16
�1 in Fig. 4, and U ¼ �16
�8 in Fig. 5. From
Fig. 4, it can be seen that the value of S is generally larger
than 2, which is not in agreement with experimental data.
This value of the S parameter already includes the walking
effects in the model, which we will discuss later. To
examine the possibility of reducing the value of the S
parameter through the choice of hypercharges, we found
that when the input hypercharges x1, y1 are not constrained
by the requirement x1 ¼ y1 and are much larger than 1, S

may achieve small values. Figure 6 shows the case with:
x1 ¼ �50; y1 ¼ 36; y2 ¼ �12 which leads a ¼ �19,
a0 ¼ �22, b ¼ 7, b0 ¼ 4, c ¼ �19, c0 ¼ �22, d ¼ �6,
d0 ¼ �7, � ¼ 2:3, �0 ¼ �2:3, x1 ¼ �50, x01 ¼ �53,
x2 ¼ 2:7, x02 ¼ 5:7,y1¼36,y01 ¼ 35,y2¼�12, y02 ¼ �11,
z1 ¼ 20, z01 ¼ 33, z2 ¼ 3:6, z02 ¼ �9:4, u1 ¼ 0:41, v1 ¼
�0:59, u2 ¼ �0:41, v2 ¼ 0:59. The S parameter can
achieve negative values with larger values of T. There
may be other sets of hypercharges which can also yield
small or even negative values of S, but typically these
hypercharges have large values. Excluding the S and U
parameters, the leftmost eight nonzero parameters �2, �3,
�4, �5, �6, �7, �9, �10 are shown in Fig. 7–13 . �3 and �10

are independent of MZ0 and are shown in the same figure.
We found that �2, �3, �4, �5, are on the order of 10�2,

�6, �7, �9 are on the order of 10
�5, and �10 is on the order

of 10�10. In QCD, �6 to �10 exactly vanish. And in the
present model, �6 to �10 are at least three orders smaller
than �1 to �5. This implies that the low-energy effects
from this model are somewhat similar to those of QCD.
Previously, we discussed the three other TC2 models

[1,3,10]. In Table IV, we list the different features and the
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orders of magnitude for all the LECs of these TC2 models.
In Fig. 14–18, we show the 10 nonzero LECs from these
four TC2 models for comparison. This comparison may be
useful to other researchers as they consider the needs of
future models.

Finally, we estimate the magnitude of the walking effect
in the present model. Because the primary contribution to
the walking effect is from the running coupling constant,
which appears in the kernel of the SDE, we canmeasure the
walking effect by comparing two other running behaviors:

(i) Running �: Rather than using a two-loop running
coupling constant (7) which exhibits an approxima-
tion of walking behavior in N ¼ 6 and spontaneous
chiral symmetry breaking, we used the one-loop
running coupling constant used in our previous
work [8,9,11] as

�ðxÞ¼4


	0

�

8>>><
>>>:
7 lnx��2

7� 4
5ð2þ lnxÞ2 �2� lnx�0:5

1
lnx lnx�0:5

x¼ p2

�2
TC

:

(49)

Equation (49) was originally introduced in Ref. [18].
The general principle of the technique is to use a
plateau in the low energy region to normalize the
possibly infinite value in the infrared region that is
predicted using the perturbative result and smoothly
connect this infrared plateau with the ultraviolet
asymptotic freedom running behavior. Note that if
we ignore the two-loop term in the 	 function in this
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model and normalize the infrared coupling constant
such that it has a finite value, we can qualitatively
obtain the above form of the running coupling con-
stant. Furthermore, this approximation at the one-
loop level suggests that�w must be treated as�TC in
this running situation. The change from one-loop
running to two-loop walking reflects the evolution
of our understanding of the gauge coupling running
behavior in non-Abelian gauge theory. In addition,
the decision to use the latter model in this study is
important because it confirms the existence of the
infrared fixed point [19] which qualitatively supports
the modern two-loop-based explanation of walking.

(ii) Ideal walking �: Rather than using a two-loop run-
ning coupling constant (7) and a value of �� ¼
88
=523 that is not close in value to the critical
coupling �c ¼ 4
=35 for the first and second set of
techniquarks, we use the same running coupling
constant but change the value of �� in (7) by artifi-
cially requiring that �� ¼1:02 �c ¼ 1:02 � 4
=35.

Although this is not a realistic case for the model, it
is closer to the conformal situation, and therefore,
ideal walking. The reason we must consider the
above cases is because our analytical estimation
using the 	 may cause some error. Therefore, we
can use these two extremes to investigate the effect
of changes in the situation on our results. We show
three different behaviors of � in Fig. 20. It can be
seen that �r is much bigger than �w only in the
extreme infrared region and that the running behav-
ior corresponding to 1:02�c is smaller than that
corresponding to �w over most of the energy region.
From a comparison of Fig. 20 with Fig. 2, it can be
seen that the running effect increases the height of
the infrared plateau and narrows its length. To con-
trast other differences resulting from these different
couplings, in Fig. 21 we show the techniquark self-

energies, ~� and �̂, which are determined by the
SDEs (34) and (35). We found that the closer
the system came to walking, the lower and wider
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TABLE IV. Features and LECs of the TC2 models [1,3,5,10].

Property or LEC Schematic TC2 [1] Natural TC2½3� [3] Hypercharge Universal [10] Present [5]

Upper bound of MZ0 ✓ ✓ ✓ �
Negative S MZ0 < 0:44 TeV or T > 0:17 � T � 10�1 Choose hypercharges

Typical S ¼ �16
�1 
0:3 
0:8 
1 
2
�2 �10�3 �10�3 �10�3 �10�2

�3 �10�3 3� result of [1] �10�3 �10�2

�4 10�3 3� result of [1] 10�3 10�2

�5 �10�3 3� result of [1] �10�3 �10�2

�6 
� 10�4 
� 10�3 
� 10�4 
� 10�5

�7 
10�4 
10�3 
10�4 
10�5

�8 ¼ � U
16
 
� 10�4 3� result of [1] 
� 10�4 
� 10�5

�9 
� 10�4 3� result of [1] 
� 10�4 
� 10�5

�10 
� 10�8 
� 10�8 
� 10�7 
10�10
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the techniquark self-energy plateau was. By con-
trast, during running, the plateau was higher
and narrower. For fixed f ¼ 250 GeV, we found
that the running situation produces a value of
�TC ¼ 0:21 TeV (�ETC in the running case cannot
be determined solely by the running behavior
and requires some other physical parameters
to be known). This result is consistent with the

estimate of �TC ’ 2f
ffiffiffiffiffiffiffiffiffi
3=N

p
given in Ref. [20].

Our walking and ideal walking situations
yield

�w ¼
�
5:5 TeV walking

958 TeV ideal walking

From this, it can be seen that �w is very sensitive to
the walking effect. The closer the system is to ideal
walking, the bigger the value of �w. This was
further checked by calculating�w for several values
of ��=�c ¼ 1:04, 1. 06, 1.08, 1.1, 1.12, 1.14, 1.16,
1.18, 1.2. These points were then plotted as a curve
in Fig. 19 to quantitatively show the sensitivity of
�w to the degree of walking. The small value of �w
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FIG. 15 (color online). �3 and �4 of the TC2 model [1]-Hill, [3]-Lane (I), [10]-Chiv and [5]-Lane (II). The numbers on each curve
are the masses of the Z0 boson in TeV.
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in our walking situation suggests that the walking
effect in the present model is not large enough. In an
ideal walking situation, �w is large and can be
treated as �ETC.

To show the effect of walking on the S parameter, in
Fig. 22 we show the value of S for couplings corresponding
to running and ideal walking. It can be seen that for ideal
walking (the upper bound on T is reduced to 0.012 in this
case), S is only slightly smaller than 2. Therefore, our
prediction that S is about 2 is not significantly altered,
even as one approaches the walking region. However,
Fig. 22 shows that for running, S is doubled by reaching

a value of 4. This implies that because of the existence of
the infrared fixed point, the walking only reduces the S
parameter by a factor of 2. Furthermore, comparing the
values of the S parameters at different couplings with their
perturbative values Spert ¼ ND � N=6
 ¼ 9=
, we found

that the perturbative value of S lies just between our
realistic value and that of the running case.
For the effect of walking on the other EWCL LECs,

our numerical calculation shows that for �2, �3, �4

walking reduces these LECs to roughly 65% of their
original values in the running case. �5, similar to the S
parameter, is reduced by the walking effect to half of its
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FIG. 17 (color online). �7 and �8 of the TC2 model [1]-Hill, [3]-Lane(I), [10]-Chiv and [5]-Lane (II). The numbers on each curve
are the masses of the Z0 boson in TeV.
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original value in the running case. �6, �7, �9 are
reduced by one order of magnitude by the walking
effect, but their signs are preserved. �10 is reduced by
two orders of magnitude and changes in sign. Using the
expression for �10 given by (46), the numerical compu-
tation shows that some cancellations occur here. It is
these cancellations that result in �10 being the smallest
among the EWCL LECs. Because of this cancellation, if
the techniquark self-energy is changed, more sign
changes may occur. This cancellation may reduce the
reliability of our estimate of �10 and �10 may be seen as
one of the limitations of the calculation for the approx-
imations used. We found that not all LECs are sensitive

to how close to ideal walking the theory is. The only
major exception is �10. Finally, we found that walking
has almost no effect on the coloron mass. We interpret
this to mean that the techniquark self-energy will
change the value of the coloron mass significantly, but
walking, which changes the form of the techniquark
self-energy, does not have a large effect on the coloron
mass. In fact, some quantities, such as �w are sensitive
to this detailed form of the techniquark self-energy, but
some other quantities, such as the coloron mass, are not.
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V. SUMMARY

In this paper, we discuss K. Lane’s TC2 Model in the
presence of nontrivial TC fermion condensation and walk-
ing. We focus on the walking effects in the model, which
has not been discussed before. We also discuss the phase
structure of the model in terms of the two-loop 	 function
of the TC coupling of the model. We found that to have both
an infrared fixed point and spontaneous chiral symmetry
breaking, the minimum N for the TC group SUðNÞ is N ¼
6. This is the optimal choice because it is the value that is
the most conformal that can be used in our model. Although
this choice differs from the critical values, Nc

1;2 ¼ 5:42 for

the first and second sets of techniquarks and Nc
3 ¼ 4:93 for

the third set of techniquarks (Fig. 1), walking effects occur
in the computed EWCL LECs. We can understand this
explicit walking effect qualitatively through the relation,
N � Nc

i 	 Nc
i for i ¼ 1, 2, 3. For N ¼ 6, using the tech-

nique used in our previous studies [8,9,11], we derive the
EWCL from Lane’s model and calculate the EWCL LECs
up to an order of p4. We found that the primary contribu-
tions to the p4 order coefficients arise from the three sets of
techniquarks and Z0. There is no limit on the upper bound of
the Z0 mass which differs from the TC2models [1,3,10] that
we discussed previously. Moreover, all corrections from the
Z0 particle are at least proportional to 	1 and vanish for a
mixing of � ¼ 0. It is especially important that the scale
parameter, �w, appears in the solution of the two-loop 	.
This signifies that the scale of walking cannot be assumed
to be �ETC in this model because, generally, �TC � �w �
�ETC. We found that �w ¼ 5:5 TeV. The value of �w is
small because it is sensitive to the walking effect. However,
our choice of N differs from its critical value, and does not
exhibit a sufficient walking effect. We verified that in a
more ideal walking case, �w can be increased by at least
two orders of magnitude. The ratio ð�ETC ��wÞ=�ETC can
be used as a measurement of the deviation of our theory
from ideal walking. We also found that the coloron mass is
roughly half of its expected value of 1 TeVand is indepen-
dent of the walking effect. The small coloron mass occurs
as the result of including a correction from the coloron
kinetic term for which the main contribution is from the
techniquark self-energy. One may wonder that whether this
small coloron mass is a general phenomena for TC2 model.
We have examined other three TC2 models [1,3,10]we
discussed before, and find that model [1] has a similar
result, while models [3,10] are irrelevant to this problem.
Since in these two models, coloron mass is generated
through condensation of the effective scalar field put in
theory by hand. The T and U parameters are positive, and
there is an upper bound for the T parameter. For our choice
of typical hypercharges, the upper bound of the T parameter
is 0.035, which is well below the experimentally measured
bound from PDG. The S parameter is about 2 for our choice
of typical hypercharges, which already exceeds the experi-
mentally verified constraint that it be half of the value from
the running case, but similar to that of the ideal walking
case. To reduce the value of the S parameter, one can
change hypercharges. This can result in S being negative
for slightly larger values of T. This allows for a case in
which both S and T are within the bound from PDG. The
leftmost nine nonzero LECs,�2,�3,�4,�5 are on the order
of 10�2 which matches the estimate obtained from naive
dimensional analysis. �6, �7, �9 are on the order of 10�5

and �10 is on order of 10�10. This is because �6, �7, �9,
and especially �10, are sensitive to walking effects.
Comparing these results with the constraints imposed by
the precision data [21], we find that the results are consis-
tent with the constraints from the precision data. However,
�3 has the correct order of magnitude, but the wrong sign.
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Previously, we investigated bosonic contribution to the
EWCL LECs for most of the TC2 models. In the future, we
will focus on calculating the EWCL LECs in four areas:
The first will be to explore new physics models, including
the non-TC2-type models. The second will be to investi-
gate the part of the EWCL dealing with matter. In particu-
lar, we will focus on the top quark. The third will be to
deepen our understanding of the structure of the model we
are currently discussing in areas such as phase diagrams
and the infrared behavior of the gauge coupling constant.
The fourth will be to improve the precision of the compu-
tation and reduce the number of approximations necessary.
With an increasing number of models in our EWCL plat-
form, it will be effective for future investigations of the
electroweak symmetry breaking mechanisms.
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APPENDIX A: PROCESS OF INTEGRATING OUT
THE TECHNIQUARKS

To integrate out the techniquarks, which we have done in
previous studies [8,9,11], we assume only four-fermion inter-
actions in (31), because a naive dimensional analysis indicates
that the contributions from higher-dimensional operators are
usually suppressed in the low energy region. Also, this ap-
proximation leads to the conventional ladder approximation,
which is often used in discussions of the SDE. This yields

iSTC½ �T�;T�; �c ;c ��
Z
d4x1d

4x2
ð�igTCÞ2

2
G�1�2

�1�2
ðx1;x2ÞJ�1

�1
ðx1ÞJ�2

�2
ðx2Þ

¼�g2TC
2

Z
d4x1d

4x2G
�1�2
�1�2

ðx1;x2Þ½ �c ðx1Þ~t�1��1c ðx1Þ �c ðx2Þ~t�2��2c ðx2Þ

þ X
i;j¼1;2;l;t;b

�Ti
�ðx1Þt�1��1Ti

�ðx1Þ �Tj
�ðx2Þt�2��2Tj

�ðx2Þ

þ2
X

i¼1;2;l;t;b

�c ðx1Þ~t�1��1c ðx1Þ �Ti
�ðx2Þt�2��2Ti

�ðx2Þ�

�
Z
d4x1d

4x2

�
�c �ðx1Þ ~���ðx1;x2Þc �ðx2Þþ

X
i;j¼1;2;l;t;b

�Ti�
� ðx1Þ�ij

��ðx1;x2Þ �Tj�
� ðx2Þ

�
; (A1)

where we have used (29) and (30). And

~� ��ðx1; x2Þ � �g2TCG
�1�2
�1�2

ðx1; x2Þ~t�1��1
��1

hc �1ðx1Þ �c �2ðx2Þi~t�2��2
�2� (A2)

�ij
��ðx1; x2Þ � �g2TCG

�1�2
�1�2

ðx1; x2Þt�1��1
��1

hTi�1ðx1Þ �Tj�2ðx2Þit�2��2
�2�: (A3)

To obtain (A1), we have used the average field approxi-
mation and approximated the four-fermion interactions
using their vacuum expectation values (VEVs).
Furthermore, we used the result h �c ðxÞ��c ðxÞi ¼
h �TiðxÞ��TjðxÞi ¼ 0, which can be obtained from the
Lorentz invariance, h �c ðxÞTiðxÞi ¼ h �TiðxÞc ðxÞi ¼ 0,
which was assumed in Lane’s original paper [5] and can
be verified as a solution to the SDE. In fact, one can
confirm that the VEVs between the different sets of tech-
niquarks vanish and VEVs among the different techni-
quarks of the second set also vanish. For (A1), this yields:

iSTC½ �T�;T�; �c ;c �
�
Z
d4x1d

4x2

�
�c �ðx1Þ ~���ðx1;x2Þc �ðx2Þ

þ X
i;j¼1;2

�Ti�
� ðx1Þ ��ij

��ðx1;x2ÞTj�
� ðx2Þ

þ X
i¼l;t;b

�Ti�
� ðx1Þ�̂��ðx1;x2ÞTi�

� ðx2Þ
�

(A4)

with

�ij
��ðx1; x2Þ ¼

� ��ij
��ðx1; x2Þ i; j ¼ 1; 2

�̂��ðx1; x2Þ i; j ¼ l; t; b
: (A5)

Therefore ��, �̂ and ~� represent the fermion self-energies
for the first, second, and third sets of techniquarks, respec-
tively. Following the treatment in our previous studies
[8,9,11], these techniquark self-energies can be approxi-
mated as

�̂ij
��ðx; yÞ � ���½�̂ð �r2

xÞ4ðx� yÞ�ij
~���ðx; yÞ � ���

~�ð@2xÞ4ðx� yÞ
�r� ¼ @� � iV�

2�

(A6)

��ij
��ðx;yÞ��½��

��ðr̂2
xÞþ i�5

���
2 ��5ðr̂2

xÞ�ij4ðx�yÞ
r̂�¼@�� iV

�
1�jv1¼0; (A7)

where V�
2�, V�

1� and v�
1 will be discussed later in the

appendices. The above approximation is the lowest order
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of a dynamical perturbation originally proposed by Pagels
and Stokar in Ref. [22]. In this perturbation, all source-
dependent parts are expressed in terms of the techniquark
self-energy and the detailed dependence is determined by
including the minimal contribution that is covariant with
the local chiral symmetry. An important result of this
dynamical perturbation is that the lowest order, which
includes the fermion loop terms, yields spontaneous chiral
symmetry breaking and is dominated by the fermion self-
energy. In our previous studies [8,9,11], the � functions
are diagonal in the spinor space, but in this model,
����ðx; yÞ in (A7) differs from the conventional expression.
In this case, there is an extra term ( ��5) that is proportional
to �5 and �2 (in isospin space) because of the special model
arrangement that generates nontrivial twisted TC fermion
condensation. This condensation will stimulate topcolor
symmetry breaking: SUð3Þ1 � SUð3Þ2 ! SUð3Þc and gen-
erate the coloron mass. Later, we will discuss the
appearance of this term and determine the functions cor-
responding to �̂, ~�, �� and ��5.

With the results from (A4)–(A7), the techniquark inter-
actions in (32) become bilinear, and we can complete the
integration over the techniquarks and obtain (33), which is
given in the text. Where

V1�¼
v1þv2�g3

�A

2 B
Acot�0 0

0 v1þv2þg3
�A

2 B
A tan�0

0
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1
A
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a1�a2

 !
(A8)

V2�¼
vl 0 0
0 vt 0
0 0 vb

0
@

1
A A2�¼

al 0 0
0 at 0
0 0 ab

0
@

1
A: (A9)

The prime in Tr0 denotes the trace of the extra 2� 2 space
for the first two sets of techniquarks, and the double prime
in Tr00 denotes the trace of the extra 3� 3 space for the
third set of techniquarks with:

v1 ¼ � 1

2
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2
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2
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We have used the relation

iq1�B1�;�PL� iq2�B2�;�PLþ iq1�
0
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� iq2�
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APPENDIX B: DERIVATION OF THE
SCHWINGER-DYSON EQUATIONS FOR THE

TECHNIQUARK SELF-ENERGIES

In this appendix, we derive the SDE for the techniquark
self-energies. We start from the path integral given in (32),
and fix the functional integration over the U, BA

� and Z0
�

fields. The total functional derivative of the integrand with
respect to �c and �Ti

� is zero, which yields

0 ¼
Z

D�ðc ; TÞ 

 �c �ðxÞ e
iSTCþiSTC1þiSsource

��������AA
�¼0

(B1)

0 ¼
Z

D�ðc ; TÞ 

 �T�
i;�ðxÞ e

iSTCþiSTC1þiSsource

��������AA
�¼0

(B2)

D�ðc ; TÞ � D �cDcD �T1
�DT1

�D �T2
�DT2

�D �Tl
�DTl

�

�D �Tt
�DTt

�D �Tb
�DTb

�: (B3)

In this case, we have introduced source terms with external
sources �I and �J to help to derive the SDEs

iSsource¼
Z
d4x

�
�c ðxÞIðxÞþ X

i¼1;2;l;t;b

�TiðxÞJiðxÞ
�
: (B4)

We derive I�ðyÞ for both sides of (B1) and remove all
external sources. We obtain

0¼S�1
c��ðx;yÞþ i½i@xþg1ðcot�þ tan�Þ�Z0�5���ðx�yÞ

�g2TCG
�1�2
�1�2ðx;yÞ½~t�1��1Sðx;yÞ~t�2��2��� (B5)

Sc��ðx;yÞ� hc �ðxÞ �c �ðyÞi

¼
R
D�ðc ;TÞc �ðxÞ �c �ðyÞeiSTCþiSTC1R

D�ðc ;TÞeiSTCþiSTC1

��������AA
�¼0

:

(B6)

(B5) is the SDE in coordinate space for the third set of
techniquarks. Combining (B2) and (B5), we find that
Sc��ðx; yÞ, which is determined by the SDE, relates to
~���ðx; yÞ, introduced in (A2), through

0¼S�1
c��ðx;yÞþ i½i@xþg1ðcot�þ tan�Þ�Z0�5���ðx�yÞ

þ ~���ðx;yÞ: (B7)

Similarly we derive Jj�ðyÞ for both sides of (B2), and
remove all external sources, We obtain

0 ¼ Sij;�1
T�� ðx; yÞ þ i½i@x þ V1� þA1��

5�ij��ðx� yÞ
� g2TCG

�1�2
�1�2ðx; yÞ½t�1��1Sðx; yÞt�2��2�ij��

i; j ¼ 1; 2 (B8)

0 ¼ Sij;�1
T�� ðx; yÞ þ i½i@x þ V2� þA2��

5�ij��ðx� yÞ
� g2TCG

�1�2
�1�2

ðx; yÞ½t�1��1Sðx; yÞt�2��2�ij��
i; j ¼ l; t; b; (B9)

where

SijT��ðx; yÞ � hTi�ðxÞ �Tj�ðyÞi

¼
R
D�ðc ; TÞTi�ðxÞ �Tj�ðyÞeiSTCþiSTC1R

D�ðc ; TÞeiSTCþiSTC1

��������AA
�¼0

:

(B10)

(B8) and (B9) are the SDEs in the coordinate space of the
first and second sets of techniquarks. Combining (A3),

(A5), (B8), and (B9), we find that SijT��ðx; yÞ, which is

determined by the SDE, relates to ��ij
��ðx; yÞ and

�̂ij
��ðx; yÞ, introduced in (A3) and (A5), through’’

0¼Sij;�1
T�� ðx;yÞþi½i@xþV1�þA1��

5�ij��ðx�yÞþ ��ij
��ðx;yÞ

i;j¼1;2 (B11)

0¼Sij;�1
T�� ðx;yÞþi½i@xþV2�þA2��

5�ij��ðx�yÞþ�̂ij
��ðx;yÞ

i;j¼ l;t;b: (B12)

Following the treatment in our previous works [8,9,11], the

techniquark self-energies �̂ and ~� in (A6) and ��, ��5 in
(A7) are determined by removing the gauge fields in the
SDEs. Using this approximation, we find the three sets of
techniquarks

Sc��ðx;yÞ¼
Z d4p

ð2
Þ4e
�ipðx�yÞ

�
i

p� ~�ð�p2Þ
�
��

SijT��ðx;yÞ¼
Z d4p

ð2
Þ4e
�ipðx�yÞ

�
iij

p��̂ð�p2Þ
�
��

i;j¼ l;t;b (B13)

SijT��ðx;yÞ¼
Z d4p

ð2
Þ4e
�ipðx�yÞ

�
�

i

p� ��ð�p2Þ� i�5�
2 ��5ð�p2Þ

�
ij

��

i;j¼1;2: (B14)

In Euclidean space, we obtain (34)–(37), in the main text.

In terms of �̂, comparing (35) with (36) and (37), we can

construct �� and ��5 as follows:

��ðp2
EÞ¼ �̂ðp2

EÞcos� ��5ðp2
EÞ¼ �̂ðp2

EÞsin�: (B15)

� at the present stage in the computation is an arbitrary
constant, and we have verified that the vacuum energy
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generated by �� and ��5 only depends on ��2 þ ��2
5 ¼ �̂

2
,

which is independent of �. Later we show that the
coloron mass is dependent on � and the present model
gives a relatively small coloron mass (several hundred

GeV). In practice, we use the value of � which offers the
largest coloron mass. Once nonzero techniquark self-
energies are present, we will have nonzero techniquark
condensates:

h �Ti
LðxÞTj

RðxÞi ¼ �2N
Z d4pE

ð2
Þ4
�

ij
��ðp2

EÞ
p2
E þ ��2ðp2

EÞ þ ��2
5ðp2

EÞ
� i�2ij

��5ðp2
EÞ

p2
E þ ��2ðp2

EÞ þ ��2
5ðp2

EÞ
p2
E � ��2ðp2

EÞ
p2
E þ ��2ðp2

EÞ
�

i; j ¼ 1; 2; (B16)

h �Ti
LðxÞTj

RðxÞi ¼ �2Nij

Z d4pE

ð2
Þ4
�̂ðp2

EÞ
p2
E þ �̂

2ðp2
EÞ

i; j ¼ l; t; b; (B17)

h �c LðxÞc RðxÞi ¼ �NðN � 1Þ
Z d4pE

ð2
Þ4
~�ðp2

EÞ
p2
E þ ~�2ðp2

EÞ
: (B18)

Note that the first techniquark set has a nontrivial twisted condensation: h �T1
LðxÞT2

RðxÞi ¼ �h �T2
LðxÞT1

RðxÞi � 0 resulting
from the nonzero self-energies.

APPENDIX C: INTEGRATING OUT THE COLORONS AND THE LOW ENERGY EXPANSION

The coefficients in (39) are

C ¼
Z

d4 ~k½�2�þ �2k2E þ 16�2 ��2
5� (C1)

K ¼ � 1

48
2

�
ln
�2

�2
þ �

�
�; �: infrared and ultraviolet cutoffs (C2)

Ê¼
Z
d4 ~k

�
�2þ16�2 ��5

��0
5þ4�2k2E

��02þ8�2k2E
��5

��00
5 þ4�2k2E

��02
5 �1

3
�3k2E�

16

3
�3 ��2

5�2

3
�3k2E

�� ��0�6�3k2E
��5

��0
5

�32

3
�3 �� ��0 ��2

5�32

3
�3 ��3

5
��0
5�2

9
�3k4E

�� ��00 �2

9
�3k4E

��02�2

9
�3k4E

��5
��00
5 �2

9
�3k4E

��02
5 �32

3
�3k2E

�� ��0 ��5
��0
5�16

3
�3k2E

�� ��00 ��2
5

�16

3
�3k2E

��02 ��2
5�16�3k2E

��2
5
��02
5 þ 1

18
�4k4Eþ

4

3
�4k2E

��2
5þ2

9
�4k4E

�� ��0þ2

9
�4k4E

��5
��0
5þ16

3
�4k2E

�� ��0 ��2
5þ16

3
�4k2E

��3
5
��0

þ2

9
�4k4E

��2 ��02þ�4k4E
�� ��0 ��5

��0
5þ�4k4E

��2
5
��02
5 þ16

3
�4k2E

��2 ��02 ��2
5þ32

3
�4k2E

�� ��0 ��3
5
��0
5þ16

3
�4k2E

��4
5
��02
5

�
(C3)

Z
d4 ~k ¼ N

Z 1
1

�2

d�

�

Z d4kE
ð2
Þ4 e

��½k2Eþ ��2ðk2EÞ�; �� ¼ ��ðk2EÞ; ��5 ¼ ��5ðk2EÞ; (C4)

where K̂��0
13 are the coefficients that are introduced later in (C8), � is a cutoff that is not sensitive to changes for values

between 10 TeV and 100 TeV for our walking theory. In our practical calculation, we set it to 40 TeV. Combining the
standard coloron kinetic term in (33) and the techniquark quantum loop correction given by (39), we obtain the formula for
the coloron mass (40) given in the text. With the coloron mass from (40), we can discuss coloron field integration in (40),
we then discuss coloron field integration in (33). This can be achieved using the standard loop expansion
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Z
DBA

� exp

�
i
Z

d4x

�
� 1

4
ðAA

1��A
A;1�� þ AA

2��A
A;2�� þWa

��W
a;�� þ B1;��B

1;�� þ B2;��B
2;��Þ

�

þ Tr ln½i@þ g1ðcot�þ tan�Þ�Z0�5 � ~�ð@2Þ� þ Tr00 ln½i@þ V2� þ A2��
5 � �̂ð �r2Þ

�

þ Tr0 ln
�
i@þ V1� þ A1��

5 � ��ðr̂2Þ � i�5�2 ��5ðr̂2Þ
��

AA
�¼0

¼ exp

�
i
Z

d4x

�
� 1

4
ðAA

1��A
A;1�� þ AA

2��A
A;2�� þWa

��W
a;�� þ B1;��B

1;�� þ B2;��B
2;��Þ

�
þ Tr ln½i@þ g1ðcot�þ tan�Þ�Z0�5 � ~�ð@2Þ� þ Tr00 ln½i@þ V2� þ A2��

5 � �̂ð �r2Þ�
þ Tr0 ln½i@þ V1� þ A1��

5 � ��ðr̂2Þ � i�5�2 ��5ðr̂2Þ� þ loop corrections

�
AA
�¼0;BA

�¼BA
�;c

; (C5)

and BA
�;c is determined by requiring that the result reach its extremum at BA

� ¼ BA
�;c. One can show that BA

�;c ¼ 0 is one
solution. Consequently, (33) becomes:

eiSEW½Wa
�;B�� ¼ ei

R
d4x½�ð1=4ÞWa

��W
a;���ð1=4ÞB��B

��� Z D�ðUÞF ½O��ðO� �Oy
�Þ
Z

DZ0
� exp

�
i
Z

d4x

�
� 1

4
Z0
��Z

0��

�
þ Tr ln½i@þ g1ðcot�þ tan�Þ�Z0�5 � ~�ð@2Þ� þ Tr0 ln½i@þ V1� þ A1��

5 � ��ðr̂2Þ � i�5�2 ��5ðr̂2Þ�
þ Tr” ln½i@þ V2� þ A2��

5 � �̂ð �r2Þ� þ loop corrections

�
AA
�¼BA

�¼0
: (C6)

Note that we are interested in the bosonic part of the EWCL, those operators involve explicit top quark fields, which
belong to the part of the EWCL dealing with matter, are beyond the scope of this paper. The top quark loop term
(especially the top quark condensate) is expected to essentially contribute only to the top quark mass and not to the
W and Z masses in TC2 models. This suggests that the contribution from top quark condensation to the bosonic part
of the EWCL may also be small (we will show this in the future in a separate paper). Consequently, colorons, which are
important in the formation of top quark condensates and contribute the majority of the top quark mass, only play a
passive role in our present calculations. From (12), the requirement AA

� ¼ BA
� ¼ 0 in (C6) is equivalent to the requirement

AA
1� ¼ AA

2� ¼ 0.
Now, with the help of a technique used in our previous studies [8,9,11], we take low energy expansion for the three TrLn

terms in (C6):

Trln½i@þg1ðcot�þ tan�Þ�Z0�5� ~�ð@2Þ�
��������normal part

¼ i
Z
d4xðcot�þ tan�Þ2½ ~F2

0g
2
1�

2Z02�ðKþ ~K��0
2 Þg21�2Z0

��Z
0��

� ~K��0
1 g21�

2ð@�Z0
�Þ2þð ~K��0

3 þ ~K��0
4 Þ

�g41ðcot�þ tan�Þ2�4Z04�þOðp6Þ (C7)

Tr0 ln½i@þ V1� þ A1��
5 � ��ðr̂2Þ � i�5�2 ��5ðr̂2Þ�

��������normal part

¼ i
Z

d4x

�
F̂2
0A

2
1� � 8F02

0 g
2
1u

2ðcot�þ tan�Þ2Z02 � 1

2
K½g22Wa

��W
a�� þ g21½1þ 4ðu1 þ u2Þ2 þ 4ðv1 þ v2Þ2�B��B

��

þ g21½4ðu2 tan�� u1 cot�Þ2 þ 4ðv2 tan�� v1 cot�Þ2 þ tan2�þ 4D̂0u
2ðcot�þ tan�Þ2�Z0

��Z
0��

� 2g21½4ðu1 þ u2Þðu2 tan�� u1 cot�Þ þ 4ðv1 þ v2Þðv2 tan�� v1 cot�Þ þ tan��B��Z
0���

þ tr½�K̂��0
1 ðd�A�

1�Þ2 þ K̂��0
3 ðA2

1�Þ2 � K̂��0
2 ðd�A1�� � d�A1��Þ2 þ K̂��0

4 ðA1��A1��Þ2

� K̂��0
13 V1���V

��
1� þ iK̂��0

14 V1���A
�
1�A

�
1�� � 8½D̂1a

4
0 þ D̂2a

2
0a

2
3�Z04 þ D̂3a

2
0Z

02trðX�X�Þ
þ 2D̂4a

2
0Z

0
�Z

0
�trðX�X�Þ þ 4iD̂2a

2
0a3Z

02Z0
�trðX��3Þ

�
þOðp6Þ (C8)
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Tr00 ln½i@þ V2� þ A2��
5 � �̂ð �r2Þ�

��������normal part
¼ i

Z
d4x

X
�¼l;t;b

trf½F̂2
0a

�2 � K̂��0
1 ðd�a��Þ2 � K̂��0

2 ðd�a�� � d�a
�
�Þ2

þ K̂��0
3 ða�2Þ2 þ K̂��0

4 ða��a�� Þ2 � K̂��0
13 v

�
��v���

þ iK̂��0
14 a��a

�
�v���� þOðp6Þ; (C9)

where

d�A1�� ¼ @�A1�� � i½V1��; A1��� V1��� ¼ @�V1�� � @�V1�� � i½V1��; V1��� (C10)

d�a
�
� ¼ @�a

�
� � i½v�

�; a
�
� � v

�
�� ¼ @�v

�
� � @�v

�
� � i½v�

�; v
�
� � (C11)

F02
0 ¼

Z
d4 ~k2� ��2

5 (C12)

D̂0 ¼
Z

d4 ~k

�
2�2 ��5

��0
5 þ �2k2E

��5
��00
5 � 2

3
�3 ��2

5 � 2

3
�3k2E

��5
��0
5 � 4

3
�3 �� ��0 ��2

5 � 4

3
�3 ��3

5
��0
5 � 4

3
�3k2E

�� ��0 ��5
��0
5

� 2

3
�3k2E

�� ��00 ��2
5 � 2

3
�3k2E

��02 ��2
5 � 2

3
�3k2E

��3
5
��00
5 � 10

3
�3k2E

��2
5
��02
5 þ 1

6
�4k2E

��2
5 þ 2

3
�4k2E

�� ��0 ��2
5 þ 2

3
�4k2E

��3
5
��0
5

þ 2

3
�4k2E

��2 ��02 ��2
5 þ 4

3
�4k2E

�� ��0 ��3
5
��0
5 þ 2

3
�4k2E

��4
5
��02
5

�
(C13)

D̂ 1 ¼
Z

d4 ~k

�
2�3 ��2

5 � 1

3
�4k2E

��2
5 � 4

3
�4 ��2 ��2

5 � 2

3
�4 ��4

5

�
(C14)

D̂ 2 ¼
Z

d4 ~k

�
2�3 ��2

5 þ 1

3
�4k2E

��2
5 � 4�4 ��2 ��2

5

�
(C15)

D̂ 3 ¼
Z

d4 ~k

�
1

3
�4k2E

��2
5 � 4

3
�4 ��2 ��2

5

�
(C16)

D̂ 4 ¼
Z

d4 ~k

�
�3 ��2

5 � �4 ��2 ��2
5 � 1

3
�4 ��4

5

�
: (C17)

F̂2
0 and K̂��0

i are functions of the techniquark self-energy �̂ðp2
EÞ, which is determined by (35). Detailed expressions for

these quantities are given in (E1) and (E2) of Appendix. E. Similarly, ~F2
0 and

~K��0
i are functions of the techniquark self-

energy ~�ðp2
EÞ, which is determined by (34). Detailed expressions for these quantities are given in (E1) and (E2) of

Appendix. E. In this case, the substitution �̂ ! ~� is used.
With expansions (C7)–(C9) and (A8)–(A12), and by ignoring loop corrections, we can express (C6) as (41) in the text. In

this case, S0 and SZ0 are Z0-independent and dependent parts of the actions:

S0¼
Z
d4x

�
�
�
5

4
Kþ1

4
K̂��0

2 þ5

8
K̂��0

2 þ3

8
K̂��0

13

�
g22W

a
��W

a;���
��

5

4
þ2ûþ2x̂

�
Kþ5

8
K̂��0

2 þ
�
5

8
þ2ûþ2x̂

�
K̂��0

13

�

�g21B��B
��þ

�
5

8
K̂��0

1 þ 5

32
K̂��0

3 � 5

32
K̂��0

4 �5

8
K̂��0

13 þ 5

16
K̂��0

14

�
ðtr½X�X

��Þ2þ
�
5

16
K̂��0

4 þ5

8
K̂��0

13

� 5

16
K̂��0

14

�
tr½X�X��tr½X�X

��þ
�
5

4
K̂��0

2 �5

4
K̂��0

13

�
g1tr½ �W���3�B��þ

�
�5

2
K̂��0

13 þ5

8
K̂��0

14

�
itr½ �W��X

�X��

þ
�
�5

4
K̂��0

13 þ 5

16
K̂��0

14

�
ig1B��tr½�3X�X��þ1

2
K̂��0

1 tr½UyðD�D�UÞUyðD�D�UÞþ2UyðD�D�UÞðD�UyÞðD�UÞ�

þ3

4
K̂��0

1 tr½UyðD�D�UÞUyðD�D�UÞþ2UyðD�D�UÞðD�UyÞðD�UÞ�
�
; (C18)

where
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UðxÞ ¼ �y
LðxÞ�RðxÞ X� ¼ UyðD�UÞ
�W�� ¼ Uyg2

�a

2
Wa

��U (C19)

D�U ¼ @�Uþ ig2
�a

2
Wa

�U� ig1U
�3

2
B�

D�U
y ¼ @�U

y � ig2U
y �

a

2
Wa

� þ ig1
�3

2
B�U

y
(C20)

x̂ ¼ ðx1 þ x2Þ2 þ ðy1 þ y2Þ2 þ ðz1 þ z2Þ2
û ¼ ðu1 þ u2Þ2 þ ðv1 þ v2Þ2:

(C21)

While

SZ0 ¼
Z

d4x

�
1

2
Z0
�D

�1;��
Z Z0

� þ Z0;�JZ;� þ Z02Z0
�J

�
3Z

þ g4ZZ
04
�
; (C22)

with

D
�1;��
Z ¼ g��ðc2Z0@2 þ �M2

Z0 Þ � ð1þ �ZÞ@�@� þ �
��
Z ðXÞ
(C23)

J�Z ¼ J�Z0 þ g1�@
�B�� þ ~J�Z (C24)

g4Z¼½10a43þ12a23ð2a20þ â20Þþ4a40þ2â40�
�ðK̂��0

3 þK̂��0
4 Þþg41ðtan�þcot�Þ4

��4ð ~K��0
3 þ ~K��0

4 Þ�8D̂1a
4
0�8D̂2a

2
0a

2
3 (C25)

J
�
3Z ¼ �i½ð10a33 þ 12a20a

2
3 þ 6â20a3ÞðK̂��0

3 þ K̂��0
4 Þ

þ 4a20a3D̂2�tr½X��3�; (C26)

where

�M2
Z0 ¼ 2 ~F2

0g
2
1ðcot�þ tan�Þ2�2 þ 4F̂2

0ð2a20 þ â20 þ 5a23Þ
� 8F02

0 a
2
0 (C27)

c2Z0 ¼ 1þ ½4ðcot�þ tan�Þ2�2 þ 2tan2�þ 8v̂

þ 3tan2�þ ŷ�Kg21 þ 4ðcot�þ tan�Þ2�2 ~K��0
2 g21

þ 8ð2a20 þ â20 þ 5a23ÞK̂��0
2 þ ½40a23

þ 2ðt̂þ ŝÞg21�K̂��0
13 � 16D̂0a

2
0 (C28)

�Z¼�2g21ðtan�þcot�Þ2 ~K��0
1 �4ð2a20þ â20þ5a23ÞK̂��0

1

(C29)

���
Z ðXÞ ¼ ½40a23K̂��0

1 � ð4a20 þ 2â20ÞK̂��0
3 � ð4a20 þ 2â20 þ 10a23ÞK̂��0

4 � 20a23K̂
��0
13 þ 10a23K̂

��0
14

þ 2a20D̂4�tr½X�X�� � ð20K̂��0
1 þ 5K̂��0

3 � 10K̂��0
13 þ 5K̂��0

14 Þa23tr½X��3�tr½X��3� þ g��½ð5a23 þ 2a20

þ â20ÞK̂��0
3 þ ð2a20 þ 2â20 � 5a23ÞK̂��0

4 � 20a23K̂
��0
13 þ 10a23K̂

��0
14 þ a20D̂3�tr½X�X�� � g��ð5K̂��0

4

þ 10K̂��0
13 � 5K̂��0

14 Þa23tr½X��
3�tr½X��3�

(C30)

J�Z0 ¼ �5ia3F̂
2
0tr½X��3� (C31)

� ¼ 2½5a3K̂��0
2 þ ð5a3 þ 4g1ŵþ 2g1ẑÞK̂��0

13 þ ð4ŵþ 5

2
tan�þ 2ẑÞg1K� (C32)

~J
�
Z ¼ 10ð�K̂��0

2 þ K̂��0
13 Þa3@�tr½ �W���3� þ 10

�
K̂��0

13 � 1

4
K̂��0

14

�
ia3@�tr½X�X��3� þ 5

�
1

4
K̂��0

3 � 1

4
K̂��0

4

� K̂��0
13 þ 1

2
K̂��0

14

�
ia3tr½X�X��tr½X��3� þ 5

�
1

2
K̂��0

4 þ K̂��0
13 � 1

2
K̂��0

14

�
ia3tr½X�X��tr½X��3�

þ
�
�5K̂��0

13 þ 5

4
K̂��0

14

�
a3tr½ �W��ðX��

3 � �3X�Þ� þ 5ia3K̂
��0
1 tr½UyðD�D�UÞUyD�U�3

�UyðD�D�UÞ�3UyD�U� @�½UyðD�D�UÞ�3�� þ iâ0K
��0
1 @�tr½X�X� �UyðD�D�UÞ� (C33)

in which

a0 ¼ 1

2
g1ðu1 � v1Þðcot�� tan�Þ a3 ¼ 1

4
g1 tan� (C34)
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â 2
0 ¼

1

4
g21ðtan�þ cot�Þ2½ðx1 � x01Þ2 þ ðy1 � y01Þ2 þ ðz1 � z01Þ2� (C35)

â 4
0 ¼

1

16
g41ðtan�þ cot�Þ4½ðx1 � x01Þ4 þ ðy1 � y01Þ4 þ ðz1 � z01Þ4� (C36)

v̂ ¼ ðu2 tan�� u1 cot�Þ2 þ ðv2 tan�� v1 cot�Þ2
ŵ ¼ ðu1 þ u2Þðu2 tan�� u1 cot�Þ þ ðv1 þ v2Þðv2 tan�� v1 cot�Þ

(C37)

t̂ ¼ 2½ðu2 þ v2Þ tan�� ðu1 þ v1Þ cot��2 (C38)

ŷ ¼ ðx02 tan�� x01 cot�Þ2 þ ðx2 tan�� x1 cot�Þ2 þ ðy02 tan�� y01 cot�Þ2 þ ðy2 tan�� y1 cot�Þ2
þ ðz02 tan�� z01 cot�Þ2 þ ðz2 tan�� z1 cot�Þ2 (C39)

ẑ ¼ ðx1 þ x2Þ½ðx02 þ x2Þ tan�� ðx01 þ x1Þ cot�� þ ðy1 þ y2Þ½ðy02 þ y2Þ tan�� ðy01 þ y1Þ cot��
þ ðz1 þ z2Þ½ðz02 þ z2Þ tan�� ðz01 þ z1Þ cot�� (C40)

ŝ¼½ðx02þx2Þ tan��ðx01þx1Þcot��2þ½ðy02þy2Þtan��ðy01þy1Þcot��2þ½ðz02þz2Þ tan��ðz01þz1Þcot��2: (C41)

From (C22) and (C23), it can be seen that the Z0 mass squared, M2
Z0 , is determined by

M2
Z0 ¼

�M2
Z0

c2Z0
: (C42)

APPENDIX D: PROCESS OF INTEGRATING OUT Z0

From (C22), the solution of Eq. (44) is

Z
0�
c ðxÞ ¼ �D

��
Z JZ;�ðxÞ þOðp3Þ þ loop corrections; (D1)

then

�S Z0 ¼
Z

d4x

�
� 1

2
JZ;�D

��
Z JZ;� � J3Z;�0 ðD�0�0

Z JZ;�0 ÞðD��
Z JZ;�Þ2 þ g4ZðD��

Z JZ;�Þ4
�
þ loop corrections; (D2)

where

D�1;��
Z DZ;�� ¼ D��

Z D�1
Z;�� ¼ g�� : (D3)

It can be shown that if our accuracy is on the order of p4, then p1 order Z0
c solution is sufficient because all contributions

from p3 order Z0
c are at least on the order of p6.

Combining (D2), (C23), and (C24), and ignoring loop corrections, we obtain

�S Z0 ¼
Z

d4x

�
� 1

2
JZ0;�D

��
Z JZ0;� � 1

�M2
Z0
JZ0;�ð~J�Z þ g1�@�B

��Þ � 1
�M6
Z0
J3Z;�J

�
Z0J

2
Z0 þ

g4Z
�M8
Z0
J4Z0

�
: (D4)

With the help of the following algebraic relations
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@�tr½�3X�� ¼ 0tr½�3ð@�X� � @�X�Þ� ¼ �2trð�3X�X�Þ þ itrð�3 �W��Þ � ig1B��trð�3X�X�Þtrð�3X�X�Þ
¼ ½trðX�X�Þ�2 � ½trðX�X

�Þ�2 � trðX�X�Þtrð�3X�Þtrð�3X�Þ þ trðX�X
�Þ½trð�3X�Þ�2trðTAÞtrðTBCÞ

þ trðTBÞtrðTCAÞ þ trðTCÞtrðTABÞ
¼ 2trðABCÞ; (D5)

where trA ¼ trB ¼ trC ¼ 0 and T2 ¼ 1. We can simplify (D4) into the form of the EWCL.

APPENDIX E: K COEFFICIENTS

In Minkowski space

F̂ 2
0 ¼ 2

Z
d~p

�
ð�2�2

p � p2�p�
0
pÞX2

p þ ð2�2
p þ p2�p�

0
pÞ
Xp

�2

�
; (E1)

K1 ¼ 2
Z

d~p

�
�2ApX

3
p þ 2Ap

X2
p

�2
� Ap

Xp

�4
þ p2

2
�02

p

Xp

�2
� p2

2
�02

p X
2
p;

�
;

K2 ¼
Z

d~p

�
�2BpX

3
p þ 2Bp

X2
p

�2
� Bp

Xp

�4
þ p2

2
�02

p

Xp

�2
;�p2

2
�02

p X
2
p

�
;

K3 ¼ 2
Z

d~p

��
4�4

p

3
� 2p2�2

p

3
þ p4

18

��
6X4

p �
6X3

p

�2
þ 3X2

p

�4
� Xp

�6

�
;þ

�
�4�2

p þ p2

2

��
�2X3

p þ
2X2

p

�2
� Xp

�4

�

� Xp

�2
þ X2

p

�
;

K4 ¼
Z

d~p

���4�4
p

3
þ 2p2�2

p

3
þ p4

18

��
6X4

p �
6X3

p

�2
þ 3X2

p

�4
� Xp

�6

�
þ 4�2

p

�
�2X3

p þ
2X2

p

�2
� Xp

�4

�
þ Xp

�2
� X2

p

�
;

K5 ¼ K6 ¼ 0; K7 ¼ 2
Z

d~p

�
ð3�2

p þ 2p2�p�
0
pÞX2

p þ ½�2�2
p � p2ð1þ 2�p�

0
pÞ�

Xp

�2

�
; K8 ¼ 0;

K9 ¼ 2
Z

d~p

�
ð�2

p þ 2p2�p�
0
pÞX2

p � p2ð1þ 2�p�
0
pÞ
Xp

�2

�
; K10 ¼ 0;

K11 ¼ 4
Z

d~p

�
ð�4�3

p þ p2�pÞX3
p þ ð4�3

p � p2�pÞ
Xp

�2
�
�
2�3

p � 1

2
p2�p

�
Xp

�4
þ 3�p

Xp

�2
� 3�pX

2
p

�
; K12 ¼ 0;

K13 ¼
Z

d~p

��
1

2
p2�0

p�
00
p þ 1

6
p2�p�

000
p

�
Xp þ ðCp �DpÞ

Xp

�2
� ðCp �DpÞX2

p � 2EpX
3
p þ 2Ep

X2
p

�2
� Ep

X2
p

�4

�
;

K14 ¼ �4
Z

d~p

�
�2FpX

3
p þ 2Fp

X2
p

�2
� Fp

Xp

�4
þ p2

2
�02

p

Xp

�2
� p2

2
�02

p X
2
p

�
;

K15 ¼ �4
Z

d~p

�
�
�
�p þ 1

2
p2�0

p

�
Xp

�2
þ
�
�p þ 1

2
p2�0

p

�
X2
p

�
;

K��0
i ¼ Ki �Ki

���������̂¼0
i ¼ 1; 2; . . . ; 15 (E2)

in which the short notations are

Z
d~p � iN

Z d4p

ð2
Þ4 e
p2��̂

2ðp2Þ=�2
; (E3)
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�p � �̂ðp2Þ; Xp � 1

p2 � �̂
2ðp2Þ ;

Ap ¼ � 2

3
p2�p�

0
pð�1� 2�p�

0
pÞ � 1

3
�2

pð�1� 2�p�
0
pÞ þ 1

3
p2�2

pð��02
p � �p�

00
pÞ � 1

6
p4ð��02

p � �p�
00
pÞ;

Bp ¼ � 2

3
p2�p�

0
pð�1� 2�p�

0
pÞ � 1

3
�2

pð�1� 2�p�
0
pÞ þ 1

3
p2�2

pð��02
p � �p�

00
pÞ � 1

18
p4ð��02

p � �p�
00
pÞ

� 1

6
p2ð�1� 2�p�

0
pÞ;

Cp ¼ 1

3
� 1

3
�p�

0
p � 1

2
p2�02

p ;

Dp ¼ 1

2
p2�02

p � 1

3
p2�p�

00
pð�1� 2�p�

0
pÞ � 2

9
p4�0

p�
00
pð�1� 2�p�

0
pÞ� � 2

9
p4�02ðp��02

p ��p�
00
pÞ

� 1

3
p2�p�

0
pð��02

p ��p�
00
pÞ;

Ep ¼ � 1

6
p2�p�

0
pð�1� 2�p�

0
pÞ2 � 1

9
kp4�02

p ð�1� 2�p�
0
pÞ2;

Fp ¼ � 4

3
p2�p�

0
p þ 4

3
p2ð�p�

0
pÞ2 � 2

3
�2

p þ 2

3
�3

p�
0
p þ 1

3
p2�2

pð��02
p � �p�

00
pÞ � 1

9
p4ð��02

p � �p�
00
pÞ

� 1

3
p2ð�1� 2�p�

0
pÞ � 1

2
p2: (E4)
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