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The different ground-state energies of N-pion and M-kaon systems for N þM � 12 are studied in

lattice QCD. These energies are then used to extract the various two- and three-body interactions that

occur in these systems. Particular attention is paid to additional thermal states present in the spectrum

because of the finite temporal extent. These calculations are performed using one ensemble of 2þ 1 flavor

anisotropic lattices with a spatial lattice spacing as � 0:125 fm, an anisotropy factor � ¼ as=at ¼ 3:5,

and a spatial volume L3 � ð2:5 fmÞ3. The quark masses used correspond to pion and kaon masses of

m� � 383 MeV and mK � 537 MeV, respectively. The isospin and strangeness chemical potentials of

these systems are found to be in the region where chiral perturbation theory and hadronic models predict a

phase transition between a pion-condensed phase and a kaon-condensed phase.

DOI: 10.1103/PhysRevD.84.014508 PACS numbers: 12.38.Gc

I. INTRODUCTION

An important goal of nuclear physics is to calculate
nuclear properties and processes from quantum chromo-
dynamics (QCD). The only known way to perform such
calculations in an ab initio manner is using the nonpertur-
bative formulation of QCD on a space-time lattice (lattice
QCD). Much progress has been made in recent years in
studying few hadrons systems, see, for example, the recent
review of Ref. [1]. Many channels of meson-meson,
meson-baryon, and baryon-baryon interactions have been
studied using the finite volume behavior of two-particle
energy levels [2–5]. Ground-state energies of three- [6] and
four- [7] baryon systems have been computed for the first
time in QCD and quenched QCD, respectively. To become
a central part of nuclear physics, the successes of lattice
QCD in the realm of few-hadron systems must be trans-
lated into the realm of many hadrons and the complexity
frontier must be addressed. To this end, recent work has
focused on numerical investigations in systems of up to 12
pions or kaons [8–11], and algorithms [12] have been
constructed to greatly extend these studies. An important
outcome of these studies was the extraction of the two- and
three-body interactions in pion and, separately, kaon sys-
tems. The shifts in the N-meson energy levels at finite
volume were calculated numerically and then compared
with the analytical expectations derived in Refs. [13–15].
These calculations also probed the relation between isospin
(hypercharge) chemical potential and isospin (hyper-
charge) density, finding agreement with the predictions of
chiral perturbation theory [16,17].

In this work, we study more complicated multimeson
systems involving both pions and kaons. As in the

single-species case, the expected volume dependence of
the energy of an N-�þ, M-Kþ system has been computed
[18] and these calculations will enable us to extract the
scattering lengths for the three two-body interactions,
�a�þ�þ , �a�þKþ , �aKþKþ , and also to study the various
zero momentum three-body interactions, parametrized as
��3;���, ��3;��K, ��3;�KK, ��3;KKK (restricted to the maximal

isospin in each case). Multimeson systems such as these
exhibit a rich phase structure [16,19] and are phenomeno-
logically relevant in a number of settings ranging from the
Relativistic Heavy Ion Collider [20] to the interiors of
neutron stars [21]. At low temperatures, the ground state
of a finite density system of, for example, pions is expected
to undergo a transition from a Bose-Einstein condensed
phase [19,22–26] to a BCS-type superconducting phase as
the isospin chemical potential is increased, and other in-
teresting phenomena such as � condensation may also
occur [27–29]. Similar effects are expected in kaon sys-
tems. The phase structure of a mixed system of pions and
kaons is a less well investigated question. Studies in the
Nambu–Jona-Lasinio model, [30–32], random matrix the-
ory [33], and SU(3) chiral perturbation theory (�PT) with
nonzero isospin and hypercharge chemical potentials [17],
suggest that pion and kaon-condensed phases compete in
interesting ways for different ranges of isospin and hyper-
charge chemical potentials.
In the following, we focus on a numerical analysis of

lattice QCD realizations of these complex multimeson
systems and on the methodology needed to extract the
two- and three-body interactions. We calculate the 90
possible two-point correlation functions involving
N-�þ’s and M-Kþ’s for all N þM � 12. These results
are then analyzed to extract the ground-state energies of the
appropriate quantum numbers, taking care to account for
thermal excitations in the lattice volume. Finally, the re-
sulting large set of energies is used to extract the seven
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underlying interactions discussed above. The extracted
energies also allow us to study the chemical potential of
these systems. This study is performed using a single
ensemble of 2þ 1 flavor anisotropic gauge field configu-
rations generated by the Hadron Spectrum Collaboration
[34] and so should be viewed as an exploratory study,
testing methods necessary for the analysis of complicated
many body systems. Future work with different lattice
spacings, volumes, and quark masses will allow contact
with experiment [35–39], in the case of two-body inter-
actions, and with other lattice studies.

II. MULTI-HADRON CORRELATION FUNCTIONS

In order to extract the energies of the multimeson sys-
tems, we will study the behavior of two-point correlation
functions

CN;MðtÞ ¼ h0j
�X

x

��ðx; tÞ
�
N
�X

x

K�ðx; tÞ
�
M

� ð�þð0; tÞÞNðKþð0; tÞÞMj0i; (2.1)

where the pion and kaon interpolating operators are de-
fined in terms of quark fields as ��y ¼ �þðx; tÞ ¼
�uðx; tÞ�5dðx; tÞ and K�y ¼ Kþðx; tÞ ¼ �uðx; tÞ�5dðx; tÞ,
respectively. This system corresponds to a system of
N�þ’s and MKþ’s with total momentum, Ptot ¼ 0.

It is instructive to first consider the form of such corre-
lation functions which can be generically expressed as

CðtÞ ¼ h0jÔ0yðtÞÔð0Þj0i; (2.2)

for some interpolating operators, Oð0Þ, with commensurate
quantum numbers.1 In a system with infinite (Euclidean)
temporal extent, application of the transfer matrix formal-
ism shows that

CðtÞ ¼ X1
k¼0

Zke
�Ekt; (2.3)

where the sum runs over all eigenstates with the quantum
numbers of the operators under study. The Ek are the

energies of eigenstates jEki and Zk ¼ h0jÔ0yð0ÞjEki�
hEkjÔð0Þj0i. At large Euclidean time, the correlator is
dominated by the ground-state energy of the system,
CðtÞ ! Z0 expð�E0tÞ. However, in a system with a finite
temporal extent, T, a natural choice of temporal boundary
conditions for quark and gluon fields, antiperiodic and
periodic, respectively, will force CðtÞ to be periodic
[assuming the operators under study are bosonic, as in
Eq. (2.1)]. The expected form of the correlation function
can again be inferred:

CðtÞ¼ 1

Z
trðe�TĤÔ0yðtÞÔð0ÞÞ

¼ 1

Z

X1
n;m¼0

e�ðT�tÞEne�tEmhEnjÔ0yð0ÞjEmihEmjÔð0ÞjEni;

(2.4)

with Z ¼ trðe�TĤÞ. The contributions on the right-hand
side of Eq. (2.4) can be separated into two distinct classes.
The first class is defined by choosing jEni to be the vacuum
state (En ¼ 0) and correspond to the ground state and
excited states of the system. These contributions are
special as they persist in the T ! 1 (or zero temperature)
limit. The remaining contributions exist solely due to
the finite time extent and are known as thermal states
[8,10,40–44]. These states vanish as T ! 1 because of
the first exponential under the sum in Eq. (2.4).
Thermal contributions can be illustrated with a concrete

example. Consider C4;0ðtÞ which corresponds to a system

with the quantum numbers of four pions. The correlation
function is dominated by a sum of three contributions in
the large t limit:

C4�;0KðtÞ ¼ Z1e
�E4�T=2 coshðE4�tTÞ

þ Z2e
�ðE3�þM�ÞT=2 coshððE3� �M�ÞtTÞ

þ Z3 coshðE2�TÞ þ . . . ;

¼ ~Z1 coshðE4�tTÞ þ ~Z2 coshððE3� �M�ÞtTÞ
þ ~Z3 þ . . . ; (2.5)

where tT ¼ t� T=2, the ellipsis denotes contributions in-
volving excited pion systems that we will ignore in the
current discussion, and the ~Z’s are constant with respect to
time. The first term in Eq. (2.5) corresponds to states where
all four ��’s propagate forward in time (jEni ¼ j0i,
jEmi ¼ j4�i) and four �þ’s propagate backward in time
(jEni ¼ j4�i, jEmi ¼ j0i). The second term represents
three ��’s propagating forward in time and one �þ prop-
agating backward in time (jEni ¼ j�i, jEmi ¼ j3�i) as
well as three �þ’s propagating backward in time and one
�þ propagating forward in time (jEni¼ j3�i, jEmi¼ j�i).
Finally, the last term arises from two ��’s propagating
forward in time and two �þ’s propagating backward in
time (jEni ¼ j2�i, jEmi ¼ j2�i).
The general form for the correlation function of N pions

and M kaons can be straightforwardly worked out and is
given by the following:

CN;MðtÞ ¼
XM
m¼0

XN
n¼0

ZN�n;M�m
n;m coshð�EN�n;M�m

n;m tTÞ

þ ZðN=2Þ;ðM=2Þ
ðN=2Þ;ðM=2Þ�Nmod2;0�Mmod2;0 þ . . . ; (2.6)

where �EN�n;M�m
n;m ¼ ðEN�n;M�m � En;mÞ, the ellipsis de-

notes excited state contributions, and the last term in
Eq. (2.6) is only present when N,M are even. It is apparent

1The creation and annihilation interpolating operators are not,
in general, Hermitian conjugates of one another.
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that the number of possible terms contributing to CN;MðtÞ
grows with N and M. Locality of the transfer matrix
guarantees that the eigen-energies En;m appearing in

many places in different CN;MðtÞ are identical.

Consequently, multiple correlation functions (choices of
N and M) can be used to extract the common set of
eigen-energies.

Thermal states contribute to most lattice calculations
and need to be considered in precise analyses. They are
particularly prevalent in the multihadron context as these
systems easily factorize into multiple color singlet states
that can propagate over long distances. In Refs. [8–10], the
issue of thermal states was avoided by using Dirichlet
boundary conditions. In principle, such boundary condi-
tions introduce unknown contamination into correlation
functions, however, these works analyzed correlations sig-
nificantly separated from the boundary to reduce such
effects.

III. DETAILS OF LATTICE CALCULATION

The lattice calculations presented in this work are based
on a single ensemble of anisotropic gauge field configura-
tions generated by the Hadron Spectrum Collaboration
[34]. These configurations were generated using a stout
smeared [45] gauge action and a 2þ 1 flavor clover fer-
mion action; further details can be found in Refs. [34]. The
spatial and temporal lattice spacings are as ¼ 0:125 fm

and at ¼ as=�, respectively, where � ¼ 3:5 is the renor-
malized anisotropy. The lattices have a volume of
203 � 128, corresponding in physical units to ð2:5 fmÞ3 �
4:6 fm, and the light and strange quark masses are such
that the pion and kaon have masses ofm� � 383 MeV and
mK � 537 MeV. These configurations have been exten-
sively studied by the HSC and NPLQCD Collaborations.
For this study, an ensemble of 400 configurations were
chosen from a long stream of �10 000 trajectories and are
well separated in Monte Carlo time such that autocorrela-
tions are reduced.
Our analysis makes use of light and strange quark

propagators generated by the NPLQCD Collaboration.
For each configuration, randomly positioned gauge invari-
ant Gaussian smeared (APE) [46,47] sources were used to
generate approximately 75 propagators. The EigCG inver-
ter [48] was used to perform the multiple inversions effi-
ciently. These propagators were then APE smeared at
the sink and combined into the correlation functions of
Eq. (2.1).
Naively, the number of contractions involved in

the correlation functions of Eq. (2.1) is enormous,
ðN þMÞ!N!M!. To compute the requisite contractions,
we extend the methods developed in Ref. [9] to the
mixed-species case. Following the manipulations of
Ref. [9] it is straightforward to show that for arbitrary
12� 12 matrices, �, K:

detð1þ�P�þ�KKÞ ¼ exp

�
tr

�X1
j¼1

ð�Þj�1

j
ð�P�þ�KKÞj

��
¼ exp

�
tr

�X1
j¼1

ð�Þj�1

j

Xj
k¼1

j!

k!ðj� kÞ!�
k
P�

j�k
K �kKj�k

��

¼ 1þ�P tr�þ�K trKþ�2
P

2
ð½tr��2 � tr�2Þþ�2

K

2
ð½trK�2 � trK2Þþ�P�Kðtr�trK� tr�KÞþ . . . ;

(3.1)

with

�ðtÞ ¼X
x

Suðx; t; 0; 0ÞSyd ðx; t; 0; 0Þ; (3.2)

KðtÞ ¼ X
x

Suðx; t; 0; 0ÞSys ðx; t; 0; 0Þ; (3.3)

where the Sf corresponds to the source and sink smeared
quark propagators of flavor f. Additionally, one can gen-
eralize the results of the single-species case to show that in
the mixed-species case,

detð1þ �P�þ �KKÞ ¼ 1

12!

X12
j¼1

Xj
k¼0

12
j

� �

� j
k

� �
�k
P�

j�k
K Ck;j�kðtÞ; (3.4)

where

Ck;j�kðtÞ ¼ 	
1...
k�1...�j�k�1...�12�j	�1...�k
1...
j�k�1...�12�j

���1

1

. . .��k

k
K
1

�1
. . .K


j�k
�j�k

: (3.5)

By expanding the exponential to a particular order in �P

and �K, and equating Eq. (3.1) and (3.4), one can identify
the function CN;MðtÞ.
The computational complexity of these two-species con-

tractions is significantly more than that of the single-
species cases studied previously. The reader can find an
example, the C4�;3KðtÞ correlator, in Eq. (B1). As in the

single-species cases [9,10], high precision arithmetic is
required to perform these contractions correctly and this
is implemented using the ARPREC and QD libraries [49].
Explicit calculations for all N þM ¼ 13 correlation func-
tions show these correlators vanish to the requisite preci-
sion and are an effective check of the correctness of our
code. The computational cost of computing all contrac-
tions CN;MðtÞ for N þM � 12 and all 0 � t < 128 is
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approximately 20 minutes on a single core, compared to a
few seconds for the single-species case. While not avail-
able at the time that the current calculations began, the
recursive constructions developed in Ref. [12] provide an
alternate, and computationally more efficient, way of gen-
erating the contractions. The results of both methods agree
to arbitrary precision.2

IV. VOLUME DEPENDENCE OF
MULTI-HADRON ENERGIES

As discussed above, the calculations of the correlators in
Eq. (2.6) determine the energies of the mesonic systems.
These can in turn be used to determine the interactions
through the well-known results of Lüscher [3,4] in the two-
body case and the results of Refs. [13–15,18] in the many
meson case where a perturbative expansion in the inverse
volume is performed.

A. Volume dependence of two-particle energies

An extraction of the scattering lengths from the single-
species and mixed-species two-particle systems provides
a baseline reference with which to compare the results
of the multiparticle analysis. In the center-of-mass frame,
we define the interaction momentum, p ¼ jpj, from

the energy shift �EAB�EAB�EA�EB¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þm2

A

q
þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2þm2
B

q
�mA�mB. �EAB is determined from lattice

calculations and one first solves for the momentum p [4].
Lüscher’s formula relates this momentum to the phase
shift, �ðpÞ, of two-particle scattering as

p cot�ðpÞ ¼ S

�
p2L2

4�2

�
; (4.1)

where j 2 Z3 and

S ðxÞ ¼ Xjjj<�k

j

1

jjj2 � x
� 4��k (4.2)

is a regulated three-dimensional zeta function. By expand-
ing the left-hand side of Eq. (4.1) using the effective-range
expansion, p cot�ðpÞ ¼ � 1

a þ r0
2 p

2, the scattering length,

a, can be determined. In the absence of interactions, S
possesses poles at j ¼ 2�n=L for n 2 Z3. With interac-
tions these poles are shifted. One then computes a as

a ¼ � �L

Sðp2L2

4�2 Þ
: (4.3)

Using this formula with the associated one-body and two-
body energies will yield precise determinations of the
scattering lengths as the one- and two-body energies are
the most cleanly determined and the above results only
omit exponentially suppressed finite volume effects.

B. Volume dependence of multimeson energies

In Ref. [18], the energy shift of a system N pions andM
kaons in a finite volume from the corresponding noninter-
acting system was calculated. The shift is given by

�Eðn;m; LÞ ¼ Eðn;m; LÞ � nm� �mmK

¼ �E�ðn; LÞ þ �EKðm;LÞ
þ �~E�Kðn;m; LÞ; (4.4)

with m�K ¼ m�mK=ðm� þmKÞ and i 2 �, K and

�Eiðn; LÞ ¼ 4� �aii
miL

3

n

2

 !�
1�

�
�aii
�L

�
I

þ
�
�aii
�L

�
2ðI2 þ ð2n� 5ÞJ Þ

�
�
�aii
�L

�
3ðI3 þ ð2n� 7ÞIJ

þ ð5n2 � 41nþ 63ÞKÞ
�

þ n

3

 !
��3;iiið�Þ
L6

þOðL�7Þ; (4.5)

�~E�Kðn;m;LÞ¼ 2� �a�Kmn

m�KL
3

�
1�

�
�a�K
�L

�
Iþ

�
�a�K
�L

�
2
�
I2þJ

�
�1þ2

�a��
�a�K

ðn�1Þ
�
1þm�K

m�

�
þ2

�aKK

�a�K
ðm�1Þ

�
1þm�K

mK

���

þ
�
�a�K
�L

�
3
�
�I3þfK;�K

�
�a�� �aKK

�a2�K

�
KþX2

i¼0

X
p¼�;K

ðfIJ ;p
i IJ þfK;p

i KÞ
�
�app
�a�K

�
i
��

þnmðn�1Þ ��3;��KðLÞ
2L6

þnmðm�1Þ ��3;�KKðLÞ
2L6

þOðL�7Þ; (4.6)

where the parameters �aij are related to the scattering lengths and effective ranges through [9,18]

2In future calculations that extend the number of pions and kaons beyond 12, these recursive techniques will be critical as the explicit
code generated for all the requisite contractions would be unmanageably large.
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a�� ¼ �a�� � 2� �a3��r��
L3

;

aKK ¼ �aKK � 2� �a3KKrKK

L3
;

a�K ¼ �a�K � 2� �a3�Kr�K
L3

:

(4.7)

It is the �aij parameters that will be determined in the
current lattice calculations. The four volume dependent
(but renormalization scale independent) quantities charac-
terizing the momentum independent three-body interac-
tions are defined by (y ¼ m�=mK)

��3;iiiðLÞ ¼ �3;iiið�Þ þ 64�a4i
mi

ð3 ffiffiffi
3

p � 4�Þ logð�LÞ

� 96a4i
�2mi

ð2q½1; 1� þ r½1; 1�Þ;

��3;��KðL; yÞ ¼ �3;��Kð�; yÞ

� 4a4�K
�2m�K

X2
i¼0

X
p¼�;K

X
N2N 1

�
ap
a�K

�
i
fN ;p
i N ;

��3;�KKðL; yÞ ¼ �3;�KKð�; yÞ

� 4a4�K
�2m�K

X2
i¼0

X
p¼�;K

X
N2N 2

�
ap
a�K

�
i
fN ;p
i N ;

(4.8)

and

N 1 ¼ fQ̂ð1; yÞ; Q̂ðy; 1Þ; R̂ðy; 1Þ; R̂ð1=y; 1=yÞg;
N 2 ¼ fQ̂ð1; 1=yÞ; Q̂ðy; yÞ; R̂ðy; yÞ; R̂ð1; 1=yÞg;

(4.9)

with i ¼ �, K. The functions Q̂, R̂, q, and r along with the
coefficients fi are defined in Ref. [18]. The finite parts of
Q̂ða; bÞ and R̂ða; bÞ are scheme dependent quantities where
changes in the value will be compensated by changes in
�3ð�Þ; the numerical values for the minimal subtraction
scheme are given in Ref. [18]. However, the ��3 are scheme
independent and these are the quantities that will be de-
termined during a lattice calculation. Furthermore, the
three-body interactions in the ��K and �KK cases de-
pend on the mass ratio, m�=mK. Finally, in the limit of
N ! 0 or M ! 0, this result simplifies to the previously
determined N-boson case while the limit M ! N with
mK ! m� and all interactions set to be equal it simplifies
to the 2N-boson case.

V. ANALYSIS STRATEGIES

After calculating the above correlation functions on the
ensemble of gauge configurations, we obtain lattice mea-
surements of CN;MðtÞ in Eq. (2.1). Provided that we can

reliably deal with the presence of thermal and excited
states, these allow us to extract the ground-state energies

of the N-pion, M-kaon systems. By matching these mea-
surements onto the analytic expectations of Eq. (4.6), the
various two- and three-body interaction parameters can
then be extracted. There are many ways in which such an
analysis could proceed. One could attempt to directly fit
the correlation functions in terms of overlap factors, and
the scattering parameters and three-body interactions by
inserting the explicit form of the energies from Eq. (4.6).
However, we choose to perform this as a two stage analy-
sis, first extracting the various energies by fits to the
correlation functions using the model functions of
Eq. (2.6) and then subsequently fitting these energies to
the analytic forms of Eq. (4.6) to extract the interaction
parameters. The primary advantage of this approach to
performing the fits is increased stability, however, care
must be taken to preserve the significant correlations be-
tween the different correlation functions which are com-
puted on the same set of gauge configurations.

A. Wave function overlap

As shown in Eq. (2.6), the Z factors for each term are, in
general, distinct. This makes for a difficult analysis since
there are large numbers of linear and nonlinear fit parame-
ters that must be determined. In the noninteracting system,
these Z factors are simply related. In the single-species
case, the relation would be

ZN�n
n ¼ N

n

� �
ZN

such that ZN is common to each term. The factorial simply
counts the number of ways that n pions propagate forward
and (N � n) propagate backward. Generalizing this to the
multimeson case leads to

ZN;M
n;m ¼ N

n

� �
M
m

� �
ZN;M:

In an interacting system, however, this relationship does not
hold. Nevertheless, in this work, we study pion and kaon
systems with relatively weak interactions, and therefore we
employ the ansatz above for the wave function factors. We
stress this is a crucial assumption, allowing us to subse-
quently fit all 90 correlators. As a check, analyses were also
performed allowing the Z factors to remain distinct for as
many correlators as possible. Results from both methods
were found to agree within uncertainty, but a full analysis

using independent ZN�n;M�m
n;m ’s proved unfeasible.

An alternative method that can be utilized for these
systems is the method of variable projection [50,51] which
eliminates linear fit parameters by performing their mini-
mization analytically. This approach is useful in the case of

unrelated ZN�n;M�m
n;m ’s from Eq. (2.4). Additionally, when

many energies exist to be fitted, convergence to the mini-
mum of parameter space is not always guaranteed, particu-
larly if the minimum is flat. To aid convergence, Bayesian
priors [52,53] can be implemented so the physically
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reasonable region of parameter space is immediately
tested. In an earlier stage of our analysis, the variable
projection method (with priors) was used for correlators
with lower total particle number. The results were found to
agree within uncertainty with the results using the ansatz
above.

As a final check, the fitted energies were substituted
back into the form for the correlator and compared against
the original data set. Consistency was achieved within
uncertainty. Therefore, for the remainder of this work,
we assume the simplified form for the wave function
overlap.

B. Thermal effects of correlation functions

A particular multimeson correlator depends not only on
its ground-state energy in the large-T limit, but also upon
fewer body energies in the thermal states that were dis-
cussed earlier. To account for this, we began by fitting the
one pion (kaon) correlator to determine E1;0ðE0;1Þ with a

bootstrap method as will be explained below. Once these
values were known, we turned to the two pion (kaon)
correlator. This correlator depends on E2;0ðE0;2Þ and

E1;0ðE0;1Þ. Instead of refitting both energies, we used pre-

vious bootstrapped values of E1;0ðE0;1Þ in the two pion

(kaon) fit function. This is reasonable since the cleanest
signal for the EN;M energy will come from its respective

correlator. To preserve all covariances in the data, the same
bootstrap sample of gauge field configurations was used for
all correlators. This sequential procedure was used to build
up the analysis and ascertain all of the multimeson ener-
gies. The fitted results for the energies and their statistical
and systematic errors can be found in Tables I and II.

C. Statistical analysis

The correlation functions span the time interval [0, 127]
and a suitable subinterval, where the fit formula is appli-
cable, must be chosen. As a first step, the (periodic) corre-
lation function data was reflected around its midpoint in
order to improve statistics. Effective mass plots for all
correlation functions were constructed, allowing initial
estimates to be made of where (in time) contamination
from excited states ceases. These plots revealed that ex-
cited state contributions are suppressed by t� 20.
Therefore, in an effort to be as general as possible, fits
were run on all time intervals, ðtmin; tmin þ �tÞ, such that
tmin 2 ½25; 33� and �t 2 ½10; 20�. Using intervals beyond
these values showed no improvement in fit results.

In this work, we utilized the bootstrap method of statis-
tical resampling to estimate uncertainties. To construct the
bootstrap ensembles, we first averaged over correlators
from all sources on each gauge configurations, for each
N, M. Let CkðtiÞ be a given correlation function for some
fixed number of pions and kaons, N andM, calculated on a
given gauge field configuration k at time ti. Then we denote

this set as fC1ðtiÞ; C2ðtiÞ; . . . ; CMðtiÞg, withM ¼ 400. The
data covariance matrix is defined from the full data set as

Cðti; tjÞ ¼ 1

MðM� 1Þ
XM
k¼1

ðCkðtiÞ � �CðtiÞÞðCkðtjÞ � �CðtjÞÞ;

(5.1)

where �CðtiÞ ¼ ð1=MÞPM
k¼1 CkðtiÞ.

Next, we randomly sampled configurations from the full
data set and constructed a bootstrap sample, B1ðtiÞ of M
elements, for each time ti. This sample was averaged to
yield �B1ðtiÞ and this entire process repeated P times where
P ¼ 450, resulting in f �B1ðtiÞ; �B2ðtiÞ; . . .

P
; �BP ðtiÞg. For

each of the �Bj, a �
2
j function was determined as

�2
j ¼

X
t;t0
ð �BjðtÞ � yðt;EN;MÞÞC�1ðt; t0Þð �Bjðt0Þ � yðt0;EN;MÞÞ;

(5.2)

where yðt;EN;MÞ represents the fit model in Eq. (2.6). Each

of the �2
j functions were minimized and results recorded.

In order to assess the reliability of the fits, we use

the usual test of goodness-of-fit, Qj ¼ 1
2d=2�ðd=2Þ �R1

ð�2
min

Þj d�
2
j ð�2

j Þd=2�1e��2
j =2, where d is the number of

degrees-of-freedom for each �2
j . Once a best fit energy is

selected on each bootstrap sample, we determine a
weighted average for the ensemble,

hEN;Mi ¼ 1

W 1

XP
j¼1

QjE
ðjÞ
N;M; (5.3)

with weights Qj, and a weighted standard deviation,

�2
N;M ¼ W 1

W 2
1 �W 2

XP
j¼1

QjðEðjÞ
N;M � hEN;MiÞ2: (5.4)

Above, W 1 ¼
PP

j¼1 Qj and W 2 ¼
PP

j¼1 Q
2
j .

To assign a systematic uncertainty for the extracted
energies, we return to the fits performed to the correlators.
This is a necessary component of the analysis since there
exists arbitrariness in the choice of which tmin and which
�t were selected for the correlation function fits as ex-
plained above. The systematic error on the best fit energy is
defined as

�sys ¼ 1
2jEN;Mð�tþÞ � EN;Mð�t�Þj; (5.5)

where EN;Mð�tþ;�Þ are the energies extracted from

CN;MðtÞ using the time intervals ½tmin þ 1; tmax þ 1� and

½tmin � 1; tmax � 1�.

D. Two- and three-body parameters

The second stage of our analysis now focuses on the
extraction of the scattering lengths and three-body
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coefficients from the measured energies using Eqs. (4.5)
and (4.6). These determinations rely on a second bootstrap
analysis involving a resampling of the extracted energies.
The bootstrapping procedure for a specific correlation
function yielded P energies, and these formed the boot-
strap samples for the extraction of the two- and three-body
parameters.

Once the best fit multimeson energies were known, a
very similar procedure used for the analysis of the corre-
lators was used to find the �a’s and ��’s. Since a bootstrap
ensemble exists for every best fit energy value, we created
an energy sample, E
 such that 
 2 ½1;P �. This sample
carries an additional vector index that labels the energies
within the vector. In the case of single-species pion ener-
gies (the kaon case is identical), an energy vector initially

composed of E
 ¼ fEð
Þ
2;0 ; E

ð
Þ
3;0 ; E

ð
Þ
4;0 g was used to fit to �a��

and ��3;���. We included another energy and refitted the

interaction parameters and repeated this until all the ener-
gies were exhausted. In the multispecies case, a base set of

fEð
Þ
2;0 ; . . . ; E

ð
Þ
12;0; E

ð
Þ
0;2 ; . . . ; E

ð
Þ
0;12g along with ten randomly

selected multispecies energies was created and fits per-
formed for all seven hadronic parameters. This first set
thus made use of 34 different energies. This set was en-
larged by one, the parameters were refitted, and the process
repeated until all 90 energies were used. The energy co-
variance matrix used in these fits is defined according to

C ðEÞi;j ¼ 1

P � 1

XP

¼1

ðE
;i � hEiiÞðE
;j � hEjiÞ; (5.6)

such that hEii ¼ ð1=P ÞPP

¼1 E
;i, and the energy �2 on

each bootstrap is defined as

�2

¼

X
i;j

ðE
;i�f
;ið �a; ��ÞÞCðEÞ�1
i;j ðE
;j�f
;jð �a; ��ÞÞ; (5.7)

where fð �a; ��Þ is shorthand notation for the fit functions in
Eqs. (4.4), (4.5), and (4.6).

The systematic errors assigned to the �a’s and ��’s are
more complicated than those of the energies. Given a
particular energy set of N energies that are used to

make a determination of �a’s and ��’s there are 3N different
combinations of the intervals that must be fit in order to
completely propagate the systematic uncertainties of the

energies to those of the interaction parameters (it is 3N

because there is a ½tmin; tmax� for each best fit energy as well
as its systematic counterparts corresponding to the shifted
time interval in the forward and backward direction). Even
in the single-species case, when N ¼ 10, there are al-
ready�6� 104 combinations. For the multispecies case, it
is too costly to fit all these permutations. Rather, we only fit
Oð103Þ randomly chosen permutations and take the differ-
ence of the mean of this set from the best fit �a and �� as the
systematic error. From fitting all permutations in the

single-species case, up to N ¼ 9, it was seen the system-
atic error stabilized well before the total number of combi-
nations was computed and we assume this is also the case
for the two-species case.

VI. RESULTS

A. Energies

Using the methods discussed above, we extracted the
energies of the mixed and pure species system, from all 90
correlators. The final extracted values are shown in Tables I
and II below, along with their associated fit ranges. These
energies are shown in a three-dimensional plot along with
their respective uncertainties in Fig. 1.
The fits become progressively more difficult as the

number of mesons grows because of the increasing thermal
contamination. This is directly reflected in the quality of
the fits decreasing for large meson number in both the pure
species and mixed-species case. Fits to example correlators
are shown in Figure 2.

B. Interactions

The extractions of interaction parameters from mixed-
meson energies were performed to yield the three scatter-
ing lengths and four three-body coefficients. This work
builds upon the studies of [8–10] and presents the first
measurements of ��3;��K, and ���KK since these parameters

can only be measured within the framework of the mixed-
meson system.
The most straightforward determination of the scattering

lengths is given by using the eigenvalue relation from
Eq. (4.1). Using this, we find

0

5

10

N
0

5

10

NK

0.5

1.0

1.5

EN ,NK

FIG. 1 (color online). Energy of multimeson states.
Uncertainties shown result from combining statistical and sys-
tematic uncertainties in quadrature.
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m� �a�� ¼ 0:225� 0:001� 0:023;

mK �aKK ¼ 0:4465� 0:0006� 0:0266;

m�K �a�K ¼ 0:1560� 0:0004� 0:0095:

(6.1)

The three-body coefficients can only be determined within
the framework of Eqs. (4.4), (4.5), and (4.6). We also use
this same analysis to provide a check on the above results.
Given that our analysis provides multiple determinations of
the interaction parameters for varying numbers of combi-
nations of energies used in the fits, these must be combined
in some way to obtain the final values. Since each separate
extraction can be viewed as a somewhat independent mea-
surement, the final value given is taken to be the mean from
the set of all extractions. The final uncertainties on the
extractions are combinations of statistical uncertainties,
systematic uncertainties obtained from variation of the
fitting windows as discussed in Sec. VD, and a second
systematic uncertainty determined from the standard de-
viation of the full set of extractions, combined in quad-
rature. The systematics are the largest source of
uncertainties in the results. The individual extractions of
the various parameters and the final extractions are shown
in Figs. 3–7. The error bars shown combine the statistical
and systematic uncertainties as discussed in Sec. V in
quadrature. The shaded regions with thin borders denote
the final results and their uncertainties. For the mixed-
species extractions, the second shaded band with thick

borders denotes the range of uncertainty in the quoted
values from the single-species analysis. These are shown
together so the reader can see the overlap region between
both sets of results. The poorest behavior originates from
��3;��� where the mixed-species results drift away from the

pure species one. The final values of the interaction pa-
rameters for the single-species case are

mK �aKK ¼ 0:444� 0:011;

m� �a�� ¼ 0:224� 0:031;

mK ��3;KKKf
4
K ¼ 0:11� 0:28;

m� ��3;���f
4
� ¼ 1:81� 0:52;

(6.2)

whereas for the multispecies case we find

mK �aKK ¼ 0:461� 0:010;

m� �a�� ¼ 0:271� 0:021;

m�K �a�K ¼ 0:166� 0:016;

mK ��3;KKKf
4
K ¼ �0:08� 0:12;

m� ��3;���f
4
� ¼ 0:68� 0:33;

m�mK

m� þ 2mK

��3;�KKf
4
�KK ¼ 0:22� 0:17;

m�mK

2m� þmK

��3;��Kf
4
��K ¼ 0:45� 0:26:

(6.3)
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FIG. 2 (color online). Plots of the log of the fitted correlation function (enclosed region) and those based on the full data set of gauge
configurations (data points) for their respective fit intervals for representative N and M. The envelope denotes the uncertainty in the
fitted correlator propagated from the uncertainty of the energies.
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For the two-body parameters, the perturbative analysis
(for both pure species and mixed species) is in agreement
with the nonperturbative values. In the above results, only
the final uncertainty, including all statistical and systematic
contributions, is given as discussed above. A full list of our
extractions can be found in Table III.
In previous studies, NPLQCD [54], CP-PACS [55],

and ETMC [56] have measured the pion scattering lengths
in the isospin, I ¼ 2 channel. The NPLQCD determination
of the �þ�þ scattering length at m� ¼ 350 MeV, yielded
jm�a��j ¼ 0:2061ð49Þð17Þð20Þ whereas an analysis
from multipion correlators [8,9] yielded an extraction
of jm�a��j ¼ 0:2058ð45Þþ46

�82 and m� ��3;���f
4
� ¼

1:02ð08Þþ19
�22 (in these results, the first uncertainty is statis-

tical and the other uncertainties are systematics as dis-
cussed in the original references). In the ETMC analysis
of �þ�þ scattering, jm�a��j ¼ 0:252ð22Þð13Þ is mea-
sured at m� � 391 MeV. Figure 8 shows the dimension-
less combination jm�a��j from the current work in
comparison to the determinations by other groups at a
similar pion mass. However, these results are at nonzero
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m
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FIG. 4 (color online). The meaning of the points is identical to
that of Fig. 3 only we show pions rather than kaons.
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FIG. 3 (color online). Calculation of scattering lengths and
three-body coefficients for kaons from Eq. (4.4). Uncertainties
per extraction result from combining statistical and systematic
uncertainties in quadrature. The shaded band defines the stan-
dard deviation of the mean of all extractions. The left-most point
is the nonperturbative Lüscher result.
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FIG. 5 (color online). Calculation of hadronic parameters for
mixed mesons. Extractions are shown as a function of the
number of energies that were used in the extraction. The number
of energies used ranged from 34 to 90 as discussed in Sec. VD.
Uncertainties for a given extraction result from combining
statistical and systematic uncertainties in quadrature. The shaded
band with thick borders denotes the standard deviation of the
mean of all extractions in the multispecies case while the shaded
band with thin borders denotes the standard deviation of the
mean of all extractions in the single-species case. The point at
the left-most end is the nonperturbative Lüscher result.
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lattice spacing and correspond to different discretizations,
so agreement is not necessary. The I ¼ 1, KþKþ scatter-
ing length was also determined by the NPLQCD
Collaboration in Ref. [57]. An analysis of the two-
point kaon correlator yielded a value of jmKaKKj ¼
0:497ð10Þð22Þ, again atm� � 350 MeV. Analysis of multi-
kaon correlators [10], led to jmKaKKj ¼ 0:503ð11Þð19Þ and
mK ��3;KKKf

4
K ¼ �0:1ð2Þð5Þ where the uncertainties are

statistical and systematic, respectively. The �K scattering
length has been investigated in quenched [58] and
full QCD [59] and the unquenched determination at
m� � 350 MeV ism�K �a�K ¼ 0:155ð40Þ. Hence, it is clear
the current results are generally consistent with other
groups’ extractions. The mixed-species three-body pa-
rameters are novel results and are found to be of natural
size and positive.

C. Isospin and hypercharge chemical potentials

As we have determined the dependence of the energy of
the mixed-meson systems on the number of pions and
kaons, we can construct the isospin and hypercharge (or
strangeness) chemical potentials using finite differences
following Refs. [9,10] where systems of pions and kaons
were investigated separately. In Refs. [9,10], remarkable
agreement was found between the numerical results and
the leading order �PT prediction [60] of the relation be-
tween the isospin (hypercharge) density and chemical
potential

�j ¼
f2j�j

2

�
1�m4

j

�4
j

�
; (6.4)

with j 2 ð�;KÞ. The situation here is more complicated
since there are finite differences acting in various
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FIG. 6 (color online). Scattering parameters and three-body
interactions are shown. The meaning of the points and regions
is the same as in Fig. 5.
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FIG. 7 (color online). Scattering parameters and three-body
interactions are shown. The meaning of the points and regions
is the same as in Fig. 5.
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FIG. 8 (color online). The values of jm�a��j obtained by
different groups with pion masses m� � 350 MeV are shown.
From bottom to top, the data are from NPLQCD [54], NPLQCD
[8,9], ETMC [56], the present work’s single-species value, and
the present work’s multispecies value, respectively. Note that
these calculations are at nonzero lattice spacing and use different
discretizations so complete agreement is not expected.
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nonorthogonal directions; the differences between EN�;NK

and EN��1;NK
determine �I while linear combinations

of EN�;NK
; EN��1;NK

, and EN�;NK�1 determine �S.
3 One

goal of this analysis is to see where on the �S vs �I

phase diagram [17] the states created in the lattice calcu-
lation lie.

In Ref. [17], leading order SU(3) �PT is used to predict
three distinct phases for nonzero isospin and hypercharge
chemical potential. The first is the normal phase where the
ground state has a net particle number of zero. The other
two phases are the pion-condensed and kaon-condensed
phases. The transition between the kaon-condensed
phase and the pion-condensed phase is predicted to
be a first-order phase transition, separated by the line

�S ¼ ð�m2
� þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

� ��2
I Þ2 þ 4m2

K�
2
I

q
Þ=2�I, while the

transition from the normal phase to either condensed phase
is expected to be of second order4 and are defined by the
lines �S ¼ mK ��I=2 and �I ¼ m�. These predictions
assume zero temperature and are likely softened by the
nonzero temperature at which the lattice calculation is
performed [62].

In Fig. 9, both the lattice calculations of ð�I;�SÞ and the
�PT phase boundaries are shown (dashed lines). Data
points corresponding to higher numbers of particle states
are shown in a orange/reddish color, while lower numbers
are given in a blueish/greenish color. Points with large
uncertainties are excluded from this figure for clarity (the
omitted data correspond to the highest particle numbers).

It is striking that the calculated chemical potentials mostly
lie near the first-order phase transition line predicted by
�PT. Further calculations with larger numbers of pions and
kaons will be enlightening, but more complex probes of
these systems may be needed to fully understand the states
that have been produced.

VII. CONCLUSIONS

In this work, we have numerically studied complex
systems of mesons of two distinct flavors, like-charged
pions and kaons, and used them to extract information
about the two- and three- body interactions amongst pions
and kaons. Where known, the interactions were found to be
consistent with previous calculations, however, two mixed-
species three-body interactions were determined for the
first time. Additionally, the isospin and strangeness chemi-
cal potentials and phase structure of the system have been
investigated, with the systems preferring to probe a region
in the ð�I;�sÞ plane where �PT predicts a first-order phase
transition.
A major aim of this work was to investigate technical

issues that arise in the analysis of complex multihadron
systems. Accounting for the thermal states that proliferate
in such systems, which easily factorize into distinct color
singlet states, proved challenging and future calculations
should avoid this by using larger temporal extents.
Additionally, a number of techniques to perform coupled
fits to theOð100Þ correlators studied were investigated and
found to be beneficial in the analysis.
In the future, calculations probing larger meson numbers

will allow further investigations of the phase structure of
these interesting QCD systems. To understand the structure
of the condensed systems created in the current and future
calculations, more complicated observables that access
transport properties may be needed; investigations in this
direction are under consideration.
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FIG. 9 (color online). �S vs �I. The data points correspond to
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surement of the lattice correlators. The dashed lines are predic-
tions of �PT. The lower-left region is the normal phase, the
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3�Kþ ¼ �S þ�I=2 with �Kþ ¼ EN�;NK
� EN�;NK�1 and

�I ¼ EN�;NK
� EN��1;NK4An AdS/QCD based model [61] finds these transitions to be

of first order.
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APPENDIX A: TABLES

Letting

F1¼mK �aKK; F2¼m� �a��; F3¼m�K �a�K;

F4¼mK ��3;Kf
4
K; F5¼m� ��3;�f

4
�;

F6¼m�mK ��3;�KKf
4
�KK

m�þ2mK

; F7¼m�mK ��3;��Kf
4
��K

2m�þmK

:

TABLE II. Extraction of multispecies meson energies (in lat-
tice units). The columns are the same as in Table I.

N, M hEi � �stat � �sys ðtmin; tmaxÞ
1, 1 0:1687� 0:0004� 0:0002 (27, 37)

1, 2 0:2703� 0:0006� 0:0006 (27, 37)

1, 3 0:3743� 0:0009� 0:0013 (27, 37)

1, 4 0:481� 0:001� 0:002 (27, 37)

1, 5 0:590� 0:002� 0:004 (27, 37)

1, 6 0:7024� 0:0032� 0:0005 (28, 39)

1, 7 0:8171� 0:0043� 0:0003 (28, 39)

1, 8 0:938� 0:005� 0:005 (27, 37)

1, 9 1:07� 0:01� 0:12 (31, 49)

1, 10 1:21� 0:02� 0:19 (27, 41)

1, 11 1:36� 0:08� 0:05 (33, 49)

TABLE I. Extraction of single-species meson energies (in
lattice units). The first set of uncertainties are statistical and
the second set are systematic uncertainties associated with
shifting the correlator fitting window by �t ¼ �1. The remain-
ing column shows the fit range chosen.

N, M hEi � �stat � �sys ðtmin; tmaxÞ
1, 0 0:069 36� 0:000 21� 0:000 02 (27, 37)

2, 0 0:140 67� 0:000 49� 0:000 07 (27, 37)

3, 0 0:2143� 0:0010� 0:0004 (27, 37)

4, 0 0:291� 0:002� 0:001 (27, 37)

5, 0 0:378� 0:003� 0:003 (31, 41)

6, 0 0:470� 0:005� 0:004 (31, 41)

7, 0 0:547� 0:005� 0:003 (26, 36)

8, 0 0:654� 0:007� 0:003 (31, 41)

9, 0 0:7560� 0:0090� 0:0007 (31, 41)

10, 0 0:868� 0:014� 0:002 (31, 41)

11, 0 0:983� 0:015� 0:003 (32, 42)

12, 0 1:101� 0:046� 0:009 (25, 35)

0, 1 0:097 27� 0:000 15� 0:000 01 (27, 37)

0, 2 0:196 63� 0:000 31� 0:000 07 (27, 37)

0, 3 0:2982� 0:0005� 0:0004 (27, 37)

0, 4 0:4021� 0:0008� 0:0011 (27, 37)

0, 5 0:5083� 0:0011� 0:0008 (27, 37)

0, 6 0:617� 0:002� 0:003 (27, 37)

0, 7 0:728� 0:002� 0:007 (28, 39)

0, 8 0:842� 0:003� 0:004 (28, 39)

0, 9 0:959� 0:005� 0:011 (28, 39)

0, 10 1:101� 0:036� 0:009 (32, 49)

0, 11 1:23� 0:03� 0:01 (27, 41)

0, 12 1:384� 0:076� 0:001 (33, 52)

N, M hEi � �stat � �sys ðtmin; tmaxÞ
2, 1 0:2423� 0:0008� 0:0005 (27, 37)

2, 2 0:347� 0:001� 0:001 (27, 37)

2, 3 0:453� 0:002� 0:002 (27, 37)

2, 4 0:563� 0:002� 0:003 (27, 37)

2, 5 0:6770� 0:0037� 0:0007 (28, 39)

2, 6 0:793� 0:006� 0:003 (28, 39)

2, 7 0:914� 0:006� 0:007 (27, 37)

2, 8 1:049� 0:006� 0:057 (31, 49)

2, 9 1:19� 0:01� 0:04 (33, 50)

2, 10 1:33� 0:04� 0:01 (33, 49)

3, 1 0:319� 0:001� 0:001 (27, 37)

3, 2 0:426� 0:002� 0:002 (27, 37)

3, 3 0:537� 0:003� 0:002 (27, 37)

3, 4 0:652� 0:005� 0:002 (28, 39)

3, 5 0:769� 0:007� 0:004 (28, 39)

3, 6 0:889� 0:008� 0:003 (28, 38)

3, 7 1:02� 0:01� 0:10 (27, 38)

3, 8 1:16� 0:03� 0:01 (33,48)

3, 9 1:305� 0:040� 0:006 (33, 49)

4, 1 0:400� 0:003� 0:001 (27, 37)

4, 2 0:512� 0:004� 0:001 (27, 37)

4, 3 0:626� 0:004� 0:002 (28, 39)

4, 4 0:745� 0:007� 0:005 (28, 39)

4, 5 0:868� 0:011� 0:008 (28, 39)

4, 6 0:99� 0:01� 0:05 (27, 38)

4, 7 1:132� 0:017� 0:009 (33, 47)

4, 8 1:280� 0:03� 0:001 (33, 49)

5, 1 0:492� 0:004� 0:004 (31, 41)

5, 2 0:610� 0:006� 0:004 (31, 41)

5, 3 0:7313� 0:0061� 0:0007 (31, 42)

5, 4 0:856� 0:010� 0:001 (31, 42)

5, 5 0:982� 0:01� 0:007 (31, 43)

5, 6 1:113� 0:023� 0:002 (33, 46)

5, 7 1:250� 0:028� 0:003 (33, 47)

6, 1 0:590� 0:007� 0:003 (31, 41)

6, 2 0:697� 0:006� 0:007 (27, 37)

6, 3 0:837� 0:009� 0:002 (31, 42)

6, 4 0:968� 0:012� 0:002 (31, 41)

6, 5 1:103� 0:025� 0:006 (33, 43)

6, 6 1:2349� 0:0244� 0:0005 (33, 47)

7, 1 0:664� 0:006� 0:007 (26, 36)

7, 2 0:8098� 0:009� 0:0003 (33, 43)

7, 3 0:949� 0:011� 0:003 (31, 41)

7, 4 1:091� 0:016� 0:002 (32, 42)

7, 5 1:19� 0:05� 0:02 (28, 38)

8, 1 0:770� 0:006� 0:009 (27, 37)

8, 2 0:914� 0:010� 0:003 (31, 41)

8, 3 1:071� 0:015� 0:002 (32, 42)

8, 4 1:160� 0:051� 0:027 (28, 38)

9, 1 0:8757� 0:0084� 0:0002 (31, 42)

9, 2 1:034� 0:014� 0:002 (32, 42)

9, 3 1:13� 0:05� 0:03 (28, 38)

10, 1 0:988� 0:011� 0:002 (32, 42)

10, 2 1:11� 0:04� 0:03 (28, 38)

11, 1 1:105� 0:014� 0:005 (32, 42)

TABLE II. (Continued)
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TABLE III. Results for scattering and three-body parameters in lattice units. The uncertainties shown are statistical and systematic,
respectively.

Number F1 F2 F3 F4 F5 F6 F7

34 0.451(10)(7) 0.22(1)(2) 0.141(9)(4) 0.046(21)(3) 1.4(16)(3) 0.43(10)(5) 0.83(14)(5)

35 0.452(10)(4) 0.22(1)(2) 0.1422(89)(7) 0.056(21)(1) 1.39(165)(8) 0.43(10)(8) 0.83(14)(0)

36 0.452(10)(4) 0.22(1)(2) 0.142(8)(2) 0.056(22)(0) 1.3(16)(1) 0.4(1)(1) 0.82(14)(2)

37 0.455(11)(0) 0.23(1)(1) 0.133(11)(0) 0.1(2)(1) 1.2(16)(9) 0.57(11)(2) 1.(15)(6)

38 0.455(11)(0) 0.245(14)(2) 0.135(10)(5) 0.1(2)(2) 1.(1)(2) 0.55(12)(1) 1.(15)(6)

39 0.453(11)(2) 0.24(12)(9) 0.131(9)(9) 0.1(2)(1) 1.(1)(2) 0.56(10)(3) 1.(1)(1)

40 0.451(11)(1) 0.242(12)(3) 0.133(9)(8) 0.1(2)(1) 1.(1)(2) 0.54(10)(3) 1.(1)(1)

41 0.458(11)(5) 0.26(1)(1) 0.151(9)(11) 0.4(2)(3) 0.9(1)(4) 0.3(1)(2) 0.6(1)(1)

42 0.458(9)(8) 0.26(1)(2) 0.152(9)(14) 0.3(2)(4) 0.88(9)(54) 0.31(9)(26) 0.6(1)(2)

43 0.46(9)(8) 0.26(1)(2) 0.153(9)(10) 0.3(2)(4) 0.8(1)(6) 0.3(9)(19) 0.6(1)(1)

44 0.4526(87)(4) 0.253(10)(8) 0.144(6)(1) 0.1(2)(1) 0.9(1)(5) 0.39(6)(6) 0.76(7)(2)

45 0.453(9)(1) 0.254(11)(8) 0.145(6)(5) 0.1(2)(2) 0.9(1)(5) 0.39(7)(12) 0.75(7)(8)

46 0.453(9)(3) 0.25(1)(1) 0.145(7)(1) 0.1(2)(2) 0.9(1)(5) 0.38(7)(10) 0.75(8)(6)

47 0.453(9)(1) 0.254(10)(7) 0.145(7)(4) 0.1(2)(1) 0.9(1)(4) 0.38(6)(14) 0.75(7)(10)

48 0.454(8)(3) 0.25(1)(1) 0.155(7)(13) 0.085(20)(5) 0.9(1)(5) 0.35(8)(13) 0.6(9)(22)

49 0.453(9)(6) 0.25(1)(1) 0.155(7)(14) 0.1(19)(4) 0.9(1)(4) 0.35(8)(14) 0.61(9)(22)

50 0.453(9)(4) 0.25(1)(1) 0.156(8)(10) 0.11(21)(0) 0.9(1)(5) 0.34(8)(11) 0.6(1)(2)

51 0.462(6)(14) 0.27(1)(3) 0.173(5)(19) 0.09(1)(3) 0.6(1)(8) 0.14(3)(23) 0.35(4)(34)

52 0.462(7)(15) 0.27(1)(3) 0.172(5)(20) 0.1(1)(3) 0.7(1)(8) 0.14(4)(25) 0.35(4)(37)

53 0.462(6)(16) 0.273(9)(31) 0.172(4)(18) 0.1(1)(3) 0.7(1)(7) 0.13(2)(23) 0.35(3)(33)

54 0.458(5)(11) 0.269(9)(29) 0.168(4)(14) 0.07(1)(2) 0.7(1)(7) 0.18(2)(19) 0.38(3)(30)

55 0.459(7)(13) 0.27(1)(2) 0.171(6)(15) 0.04(1)(1) 0.6(2)(8) 0.18(3)(18) 0.37(4)(29)

56 0.464(5)(16) 0.28(1)(3) 0.175(5)(19) 0.007(1)(2) 0.5(2)(6) 0.16(1)(22) 0.33(3)(31)

57 0.464(6)(12) 0.28(1)(2) 0.175(5)(19) 0.0029(10)(1) 0.5(2)(5) 0.16(1)(13) 0.33(3)(35)

58 0.466(8)(10) 0.28(1)(1) 0.175(6)(9) 0.0625(67)(9) 0.5(2)(5) 0.15(2)(11) 0.32(4)(19)

59 0.465(8)(13) 0.27(1)(2) 0.174(6)(15) 0.049(6)(14) 0.5(2)(5) 0.15(2)(14) 0.32(5)(26)

60 0.465(8)(19) 0.279(9)(27) 0.174(6)(18) 0.049(6)(24) 0.5(2)(5) 0.15(2)(18) 0.33(4)(25)

61 0.465(8)(19) 0.279(9)(27) 0.174(6)(18) 0.049(6)(24) 0.5(2)(5) 0.15(2)(18) 0.33(4)(25)

62 0.46(1)(1) 0.28(1)(3) 0.176(7)(17) 0.047(13)(1) 0.5(1)(7) 0.14(4)(16) 0.31(4)(36)

63 0.468(9)(22) 0.28(1)(3) 0.177(7)(20) 0.06(1)(4) 0.4(1)(7) 0.13(4)(22) 0.3(4)(33)

64 0.468(9)(14) 0.28(1)(3) 0.177(7)(16) 0.06(1)(1) 0.4(1)(6) 0.13(4)(15) 0.3(4)(21)

65 0.468(9)(12) 0.28(1)(3) 0.177(7)(18) 0.065(13)(6) 0.4(1)(5) 0.13(4)(13) 0.3(4)(26)

66 0.468(8)(16) 0.28(1)(3) 0.177(6)(17) 0.06(1)(2) 0.4(1)(6) 0.13(3)(17) 0.29(3)(24)

67 0.468(8)(16) 0.28(1)(3) 0.177(6)(17) 0.06(1)(2) 0.4(1)(6) 0.13(3)(17) 0.29(3)(24)

68 0.468(7)(14) 0.28(1)(3) 0.177(6)(15) 0.06(1)(1) 0.4(1)(6) 0.13(3)(12) 0.29(3)(24)

69 0.467(5)(15) 0.28(1)(3) 0.177(6)(15) 0.08(1)(2) 0.46(9)(63) 0.12(3)(14) 0.29(3)(20)

70 0.467(6)(13) 0.28(1)(3) 0.177(6)(16) 0.085(9)(13) 0.45(8)(68) 0.12(3)(12) 0.28(2)(20)

71 0.467(6)(19) 0.28(1)(3) 0.177(6)(21) 0.087(8)(26) 0.45(8)(64) 0.12(3)(20) 0.28(2)(28)

72 0.468(6)(14) 0.28(1)(3) 0.177(6)(15) 0.1(1)(1) 0.4(1)(6) 0.11(4)(14) 0.27(3)(19)

73 0.467(8)(13) 0.28(1)(3) 0.177(6)(16) 0.1(1)(1) 0.43(9)(61) 0.11(3)(16) 0.27(3)(21)

74 0.467(8)(18) 0.28(1)(3) 0.177(6)(17) 0.09(1)(3) 0.41(9)(67) 0.11(3)(17) 0.27(3)(23)

75 0.466(7)(19) 0.28(1)(3) 0.177(6)(16) 0.08(1)(3) 0.43(9)(62) 0.12(4)(18) 0.27(3)(24)

76 0.464(7)(17) 0.28(1)(3) 0.175(7)(18) 0.04(1)(2) 0.4(1)(6) 0.13(5)(16) 0.29(4)(25)

77 0.46(1)(1) 0.28(1)(2) 0.175(7)(11) 0.04(1)(4) 0.4(1)(5) 0.11(3)(15) 0.26(2)(28)

78 0.46(1)(1) 0.27(2)(3) 0.175(9)(14) 0.01(1)(2) 0.4(1)(7) 0.12(4)(13) 0.26(3)(25)

79 0.46(1)(1) 0.27(2)(2) 0.175(9)(12) 0.01(1)(3) 0.4(1)(6) 0.12(4)(19) 0.26(3)(24)

80 0.462(14)(3) 0.27(2)(1) 0.175(9)(11) 0.017(19)(7) 0.4(1)(5) 0.12(4)(11) 0.27(3)(21)

81 0.46(1)(1) 0.27(1)(3) 0.175(8)(12) 0.01(1)(2) 0.4(1)(6) 0.11(4)(13) 0.26(3)(18)

82 0.46(1)(1) 0.27(1)(3) 0.174(8)(15) 0.03(2)(2) 0.4(1)(6) 0.11(4)(16) 0.26(3)(21)

83 0.46(1)(1) 0.27(1)(3) 0.174(8)(14) 0.03(2)(2) 0.4(1)(6) 0.11(4)(18) 0.27(3)(22)

84 0.462(13)(7) 0.27(1)(1) 0.174(8)(12) 0.05(1)(2) 0.4(1)(5) 0.11(4)(22) 0.26(3)(27)

85 0.46(10)(9) 0.27(1)(3) 0.174(6)(16) 0.019(16)(3) 0.51(7)(65) 0.12(4)(17) 0.28(2)(24)

86 0.46(10)(9) 0.27(1)(3) 0.173(7)(12) 0.002(1)(1) 0.51(9)(66) 0.12(4)(12) 0.28(3)(17)

87 0.46(1)(1) 0.27(1)(1) 0.173(7)(13) 0.002(1)(2) 0.51(9)(42) 0.12(4)(16) 0.28(3)(20)

88 0.46(10)(5) 0.27(1)(2) 0.173(7)(12) 0.002(1)(1) 0.51(9)(59) 0.12(4)(16) 0.28(3)(26)

89 0.46(9)(6) 0.27(1)(2) 0.173(6)(9) 0.0022(16)(9) 0.51(9)(44) 0.12(4)(9) 0.28(2)(13)

90 0.461(9)(10) 0.27(1)(2) 0.174(6)(21) 0.02(1)(1) 0.49(9)(77) 0.12(4)(28) 0.27(3)(34)
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APPENDIX B: EXAMPLE MULTI-MESON CORRELATION FUNCTION

C4�;3KðtÞ ¼ 1
144 tr½K�3 tr½��4 � 1

48 tr½K� tr½K2� tr½��4 þ 1
72 tr½K3� tr½��4 � 1

24 tr½K�3 tr½��2 tr½�2�
þ 1

8 tr½K� tr½K2� tr½��2 tr½�2� � 1
12 tr½K3� tr½��2 tr½�2� þ 1

48 tr½K�3 tr½�2�2 � 1
16 tr½K� tr½K2� tr½�2�2

þ 1
24 tr½K3� tr½�2�2 þ 1

18 tr½K�3 tr½�� tr½�3� � 1
6 tr½K� tr½K2� tr½�� tr½�3� þ 1

9 tr½K3� tr½�� tr½�3�
� 1

24 tr½K�3 tr½�4� þ 1
8 tr½K� tr½K2� tr½�4� � 1

12 tr½K3� tr½�4� � 1
12 tr½K�2 tr½��3 tr½K��

þ 1
12 tr½K2� tr½��3 tr½K�� þ 1

4 tr½K�2 tr½�� tr½�2� tr½K�� � 1
4 tr½K2� tr½�� tr½�2� tr½K��

� 1
6 tr½K�2 tr½�3� tr½K�� þ 1

6 tr½K2� tr½�3� tr½K�� þ 1
4 tr½K� tr½��2 tr½K��2 � 1

4 tr½K� tr½�2� tr½K��2
� 1

6 tr½�� tr½K��3 þ 1
4 tr½K�2 tr½��2 tr½K�2� � 1

4 tr½K2� tr½��2 tr½K�2� � 1
4 tr½K�2 tr½�2� tr½K�2�

þ 1
4 tr½K2� tr½�2� tr½K�2� � tr½K� tr½�� tr½K�� tr½K�2� þ 1

2 tr½K��2 tr½K�2� þ 1
2 tr½K� tr½K�2�2

� 1
2 tr½K�2 tr½�� tr½K�3� þ 1

2 tr½K2� tr½�� tr½K�3� þ tr½K� tr½K�� tr½K�3� þ 1
2 tr½K�2 tr½K�4�

� 1
2 tr½K2� tr½K�4� þ 1

6 tr½K� tr½��3 tr½K2�� � 1
2 tr½K� tr½�� tr½�2� tr½K2�� þ 1

3 tr½K� tr½�3� tr½K2��
� 1

2 tr½��2 tr½K�� tr½K2�� þ 1
2 tr½�2� tr½K�� tr½K2�� þ tr½�� tr½K�2� tr½K2�� � tr½K�3� tr½K2��

� 3
4 tr½K� tr½��2 tr½K2�2� þ 3

4 tr½K� tr½�2� tr½K2�2� þ 3
2 tr½�� tr½K�� tr½K2�2� � 3

2 tr½K�2� tr½K2�2�
þ 2 tr½K� tr½�� tr½K2�3� � 2 tr½K�� tr½K2�3� � 5

2 tr½K� tr½K2�4� � 1
6 tr½��3 tr½K3��

þ 1
2 tr½�� tr½�2� tr½K3�� � 1

3 tr½�3� tr½K3�� þ tr½��2 tr½K3�2� � tr½�2� tr½K3�2�
� 10

3 tr½�� tr½K3�3� þ 5 tr½K3�4� (B1)
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