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Mimicking pristine 2D graphene, we revisit the BBTW model for 4D lattice QCD given in

[P. F. Bedaque et al., Phys. Rev. D 78, 017502 (2008)] by using the hidden SUð5Þ symmetry of the 4D

hyperdiamond lattice H 4. We first study the link between the H 4 and SUð5Þ; then we refine the BBTW

4D lattice action by using the weight vectors �1, �2, �3, �4, and �5 of the five-dimensional representation

of SUð5Þ satisfying
P

i�i ¼ 0. After that, we study explicitly the solutions of the zeros of the Dirac

operator D in terms of the SUð5Þ simple roots �1, �2, �3, and �4 generating H 4; and its fundamental

weights !1, !2, !3 !4 which generate the reciprocal lattice H �
4. It is shown, among others, that

these zeros live at the sites of H �
4; and the continuous limit D is given by id

ffiffi
5

p
2 ��k� with d, ��,

and k� standing, respectively, for the lattice parameter of H 4, the usual 4 Dirac matrices and the

4D wave vector. Other features, such as differences with BBTW model as well as the link between the

Dirac operator following from our construction and the one suggested by Creutz using quaternions, are

also given.
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I. INTRODUCTION

In the last few years, there have been attempts to extend
results on the relativistic electron system on a 2D honey-
comb (graphene) [1–3] to a 4D honeycomb lattice (called
4D hyperdiamond, denoted below as H 4) and apply it to
the lattice QCD simulations [4–13]. These attempts try to
construct the Dirac fermion on H 4 by keeping all desir-
able properties; in particular, locality, chiral symmetry,
and the minimal number of fermion doublings [4,8]; see
also [12] and references therein. In this regard, two re-
markable approaches were given, first by Creutz suggest-
ing an extension of graphene dispersion relations by using
quaternions [4,8]; and subsequently by Bedaque–Bachoff–
Tiburzi–Walker-Loud (BBTW) [5] proposing a 4D hyper-
diamond lattice action with enough symmetries to exclude
fine tuning. Apparently those two attempts look very simi-
lar since both of them extend 2D graphene to 4D; however
they have basic differences some of which are discussed in
[5]. The Creutz model involves a two-parameter lattice
action that lives on a distorted 4D lattice, and so loses
the high discrete symmetry of the 4D hyperdiamond. The
lattice action of the BBTW model extends pristine 2D
graphene; it is built on perfect 4D hyperdiamond and
has sufficient discrete symmetries for a good continuum
limit. Nevertheless, in both Creutz and BBTW construc-
tions, the distorted and perfect 4D hyperdiamonds are
thought of as made by the superposition of two sublattices,
A4 and B4 with massless left- and right-handed fermions
as required by the no-go theorems for lattice chiral
symmetry [14,15].

Guided by the rich symmetries of the 4D hyperdiamond
H 4, we revisit in this paper the BBTW model of Ref. [5]

and its higher dimension extensions given in [12] by using
the hidden SUð5Þ [respectively, SUðdþ 1Þ] symmetry of
H 4 [respectively, H dþ1] and its reciprocal lattice H �

4

[respectively, H �
dþ1]. Focusing on 4D lattice QCD, we

first review the link between BBTW construction and
SUð5Þ. Then we refine the hyperdiamond lattice action
by using the weight vectors �1, �2, �3, �4, and �5 of the
five-dimensional (fundamental) representation of SUð5Þ as
well as mimicking pristine 2D graphene which, in the
language of groups, corresponds precisely to SUð3Þ.
After that, we study explicitly the solutions of the zeros
of the Dirac operator by using the SUð5Þ simple roots �1,
�2, �3, and �4 generating H 4, and its fundamental
weights !1, !2, !3, and !4 generating the reciprocal
lattice H �

4. We also comment on the differences with

BBTW construction, and exhibit the link between the
Dirac operator, following from our approach and the one
suggested by Creutz using quaternions.
The presentation is as follows: In Sec. II, we review

briefly the BBTW parametrization of the real 4D hyper-
diamond H 4 and comment on some particular discrete
symmetries. In Sec. III, we study the link betweenH 4 and
the SUð5Þ symmetry. It is shown that H 4 is precisely
generated by the four simple roots �1, �2, �, and �4 of
SUð5Þ, and the reciprocal lattice H �

4 is generated by its

four weight vectors !1, !2, !3, and !4. In Sec. IV, we
revisit the BBTWmodel onH 4 given in [5] and propose a
refined 4D lattice action mimicking perfectly 2D graphene.
In Sec. V, we study explicitly the zeros of the Dirac
operator, and in Sec. VI we rederive the Boriçi-Creutz
fermions. In the last section, we give a conclusion and
make comments regarding other lattice models.
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II. 4D HYPERDIAMOND H 4

Having seen that the 4D hyperdiamond H 4 plays a
central role in both BBTW and Creutz lattice models
[4,5], we start by studying this 4D lattice by exhibiting
explicitly its crystallographic structure. In particular, we
give the relative positions of the 5 first- and the 20 second-
nearest neighbors, and exhibit some particular discrete
symmetries of H 4.

This analysis, which is useful in studying the link be-
tween the lattices H 4 and the SUð5Þ simple roots, is
important in our construction; it will be used in Sec. III
to build the reciprocal latticeH �

4 and in Sec. V to study the
dispersion energy relations as well as the zeros of the Dirac
operator.

A. BBTW parametrization of H 4

In order to apply graphene simulation methods to lattice
QCD, BBTW generalizes tight binding model of 2D gra-
phene to the 4D diamond H 4 [5,6]; see also [7–10]. Like
in the case of 2D honeycomb, this 4D lattice is defined by
two superposed sublattices, A4 and B4, with the two
following basic objects:

First, sites in A4 and B4 (L-nodes and R-nodes in the
terminology of [5]) are parameterized by the typical
4D-vectors rn with n ¼ ðn1; n2; n3; n4Þ and ni’s arbitrary
integers. These lattice vectors are expanded as follows:

A4: rn ¼ n1a1 þ n2a2 þ n3a3 þ n4a4;

B4: r
0
n ¼ rn þ e;

(2.1)

where a1, a2, a3, and a4 are primitive vectors generating
these sublattices, and e is a shift vector as described in
what follows.

Second, the vector e is a global vector taking the
same value 8 n; it is a shift vector giving the relative
positions of the B4 sites with respect to the A4 ones, i.e
e ¼ r0n � rn,8 n. In Ref. [5], the al’s and the e have been
chosen as given by the following four-component vectors:

a 1 ¼ e1 � e5; a3 ¼ e3 � e5; e ¼ e5;

a2 ¼ e2 � e5; a4 ¼ e4 � e5
(2.2)

with the representation

e �
1 ¼ 1

4
ðþ ffiffiffi

5
p

;þ ffiffiffi
5

p
;þ ffiffiffi

5
p

;þ1Þ;

e�2 ¼ 1

4
ðþ ffiffiffi

5
p

;� ffiffiffi
5

p
;� ffiffiffi

5
p

;þ1Þ;

e�3 ¼ 1

4
ð� ffiffiffi

5
p

;� ffiffiffi
5

p
;þ ffiffiffi

5
p

;þ1Þ;

e�4 ¼ 1

4
ð� ffiffiffi

5
p

;þ ffiffiffi
5

p
;� ffiffiffi

5
p

;þ1Þ;

(2.3)

and

e
�
5 ¼ �e

�
1 � e

�
2 � e

�
3 � e

�
4 ¼ 0; 0; 0; �1

� �
:

(2.4)

Notice also that the five vectors e1, e2, e3, e4, and e5 define
the first-nearest neighbors to (0, 0, 0, 0) and satisfy the
constraint relations

ei:ei ¼
X

e
�
i :e

�
i ¼ X

ei�:e
�
i ¼ 1

ei:ej ¼ cos#ij ¼ � 1

4
; i � j;

(2.5)

showing that the ei’s are distributed in a symmetric way
since all the angles #ij are equal to arccosð� 1

4Þ; see also

Fig. 1 for illustration.
In the matrix representation (2.3) and (2.4), the free four

vectors e1, e2, e3, and e4 are permuted amongst each other
by the typical unimodular matrices O½ij� acting as

e �
i ¼ X4

�¼1

ðO½ji�Þ�� e�j ; i; j ¼ 1; 2; 3; 4; (2.6)

with

O½21� ¼

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 1

0
BBBBB@

1
CCCCCA;

O½32� ¼

�1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 1

0
BBBBB@

1
CCCCCA:

(2.7)

These transformations leave invariant the vector e5 ¼
�ðe1 þ e2 þ e3 þ e4Þ; they are subsymmetries of the per-
mutation group generated by permutations of the five ei’s.
We also have

FIG. 1 (color online). On the left, the five first-nearest neigh-
bors in the pristine 4D hyperdiamond with the properties
keik ¼ 1 and e1 þ e2 þ e3 þ e4 þ e5 ¼ 0. On the right, the
three first-nearest in pristine 2D graphene with keik ¼ 1 and
e1 þ e2 þ e3 ¼ 0.
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O ½21� ¼ O½43�; O½31� ¼ O½32�O½21�
O½32� ¼ O½14�; O½41� ¼ O½43�O½31�

(2.8)

together with other similar relations.

B. Some specific properties

From the Fig. 1 representing the first-nearest neighbors
in the 4D hyperdiamond and their analog in 2D graphene,
we learn that eachA4-type node at rn, with some attached
wave function Arn , has the following closed neighbors: five

first-nearest neighbors belonging to B4 with wave func-
tions Brnþdei ; and 20 second-nearest neighbors belonging

to the same A4 with the wave functions Arnþdðei�ejÞ. The
first-nearest neighbors are given by

lattice position attached wave

rn þ de1 $ Brnþde1

rn þ de2 $ Brnþde2

rn þ de3 $ Brnþde3

rn þ de4 $ Brnþde4

rn þ de5 $ Brnþde5

(2.9)

Using this configuration, the typical tight binding
Hamiltonian describing the couplings between the first-
nearest neighbors reads as

� t
X
rn

X5
i¼1

ArnB
þ
rnþdei

þ hc (2.10)

where t is the hop energy and where d is the lattice
parameter. Notice that in the case where the wave functions
at rn and rn þ dei are rather given by two-component
Weyl spinors

Aa
rn ¼

A1
rn

A2
rn

 !
; �B _a

rnþdei
¼

�B
_1
rnþdei
�B
_2
rnþdei

 !
(2.11)

together with their adjoints �A _a
rn and �Ba

rnþdei
, as in the

example of 4D lattice QCD to be described in Sec. IV,
the corresponding tight binding model would be

� t
X
rn

X5
i¼1

�X4
�¼1

e�i ðAa
rn�

�
a _a

�B _a
rnþdei

Þ
�
þ hc (2.12)

where the e
�
i ’s are as in (2.3) and where the coefficients

�
�
a _a will be specified later on. Notice moreover that the

term
P

5
i¼1 e

�
i ðAa

rn�
�
a _a

�B _a
rnÞ vanishes identically due toP

5
i¼1 e

�
i ¼ 0. The 20 second nearest neighbors read as

rn � dðe1 � e2Þ; rn � dðe1 � e3Þ;
rn � dðe1 � e4Þ; rn � dðe1 � e5Þ;
rn � dðe2 � e3Þ; rn � dðe2 � e4Þ;
rn � dðe2 � e5Þ; rn � dðe3 � e4Þ;
rn � dðe3 � e5Þ; rn � dðe4 � e5Þ:

(2.13)

At this order, the standard tight binding Hamiltonian reads
as follows:

� t0
X
rn

X5
i;j¼1

ðArnA
þ
rnþdðei�ejÞ þ BrnB

þ
rnþdðei�ejÞÞ þ hc

(2.14)

and in the case of Weyl spinors, we have

� t0
X
rn

X5
i;j¼1

�X4
�¼1

e
�
i ðAa

rn�
�
a _a

�A _a
rnþdðei�ejÞ

þ Ba
rn�

�
a _a

�B _a
rnþdðei�ejÞÞ

�
þ hc: (2.15)

In what follows, we show that the five vectors e1, e2, e3, e4,

and e5 are, up to a normalization factor namely
ffiffi
5

p
2 ,

precisely the weight vectors �0, �1, �2, �3, and �4 of the
five-dimensional representation of SUð5Þ; the 20 vectors

(ei � ej) are, up to a scale factor
ffiffi
5

p
2 , their roots �ij ¼

ð�i � �jÞ. We show as well that the particular property

ei:ej ¼ � 1
4 , which is constant 8 ei, 8 ej, has a natural

interpretation in terms of the Cartan matrix of SUð5Þ.

III. LINK WITH SUð5Þ SYMMETRY

For later use, we exhibit here the hidden SUð5Þ symme-
try of the 4D hyperdiamond; we show thatH 4 considered
above is precisely the lattice Lsuð5Þ studied in [16]. More

concretely, we show the three following:
First, the five bond vectors e1, e2, e3, e4, and e5 (first-

nearest neighbors) are given by the five weight vectors �1,
�2, �3, �4, and �5 (below, we set �5 � �0) of the five-
dimensional (fundamental) representation of SUð5Þ which
also satisfy

�0 þ �1 þ �2 þ �3 þ �4 ¼ 0: (3.1)

We will show later that ei ¼
ffiffi
5

p
2 �i with �i:�i ¼ 4

5 .

Second, the four primitive ones (a1, a2, a3, and a4)
used in generating H 4 are particular linear combinations
of the four simple roots �1, �2, �3, and �4 of SUð5Þ; see
Eq. (3.20) for the explicit relations. Recall that the SUð5Þ
symmetry has 20 roots as given below:

��1;�ð�1þ�2Þ; �ð�1þ�2þ�3Þ;
�ð�1þ�2þ�3þ�4Þ ��2;�ð�2þ�3Þ;
�ð�2þ�3þ�4Þ; ��3;�ð�3þ�4Þ; ��3:

(3.2)

These vectors have all of them the same length�2 ¼ 2, and
so they generate the relative lattice positions of the second-
nearest neighbors in the 4D hyperdiamond.
Third, the SUð5Þ has also discrete symmetries given by

the so-called Weyl group transformations generated by the
��’s acting on generic roots � of SUð5Þ as follows:
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��ð�Þ ¼ �� 2
�:�

�2
� ¼ �� ð�:�Þ�: (3.3)

These discrete transformations permute the roots (3.2)
among themselves and are isomorphic to S5 permutation
group transformations. For instance, we have ��1

ð�1Þ ¼
��1 and ��1

ð�2Þ ¼ �1 þ �2.

A. Exhibiting the link H 4=SUð5Þ
To exhibit explicitly the link between pristine lattice

H 4 and the simple roots and the basic weight vectors of
SUð5Þ, we start by recalling some of its features; in
particular, the following useful ingredients: SUð5Þ is a
24-dimensional symmetry group; it has rank 4, that is
four simple roots �1, �2, �3, and �4; it has 20 roots
��ij given by Eq. (3.2). The simple roots �1, �2, �3,

and �4 capture most of the algebraic properties of SUð5Þ,
and as a consequence, those of the 4D hyperdiamond
crystal. In particular, they generate the 20 roots ��ij as

shown on (3.2) and they have a symmetric intersection
matrix Kij ¼ �i:�j with inverse K�1

ij given by

K ij ¼
2 �1 0 0
�1 2 �1 0
0 �1 2 �1
0 0 �1 2

0
BBB@

1
CCCA;

K�1
ij ¼ 1

5

4 3 2 1
3 6 4 2
2 4 6 3
1 2 3 4

0
BBB@

1
CCCA

(3.4)

that encode the algebraic data of the underlying Lie algebra
of the SUð5Þ symmetry. These simple roots define as well
the four fundamental weights !1, !2, !3, and !4 through
the following duality relation:

!i:�j ¼ �ij; i; j ¼ 1; . . . ; 4: (3.5)

These fundamental weights are important for us; first
because they allow us to build the reciprocal 4D hyper-
diamond H �

4, and second they can be used to expand any
wave vector in H �

4 as follows:

k ¼ k1!1 þ k2!2 þ k3!3 þ k4!4: (3.6)

From this expansion, we read the relations ki ¼ k:�i

showing that the ki’s are precisely the wave vector com-
ponents propagating along the �i-directions; thanks to
Eqs. (3.5).

B. Other useful relations

Using the matrices Kij and K�1
ij , one can express the

simple roots �i in terms of the fundamental weight vectors
!i, and inversely the !i’s as linear combinations of the
simple roots as given below:

!1 ¼ 4

5
�1 þ 3

5
�2 þ 2

5
�3 þ 1

5
�4

!2 ¼ 3

5
�1 þ 6

5
�2 þ 4

5
�3 þ 2

5
�4

!3 ¼ 2

5
�1 þ 4

5
�2 þ 6

5
�3 þ 3

5
�4

!4 ¼ 1

5
�1 þ 2

5
�2 þ 3

5
�3 þ 4

5
�4:

(3.7)

Using these relations, it is not difficult to check that they
satisfy (3.5). For instance, we have!1:�1 ¼ 8

5 � 3
5 ¼ 1 and

!1:�2 ¼ � 4
5 þ 6

5 � 2
5 ¼ 0, and similarly for the others !2,

!3,!4, and the intersections!i:�j. Notice, moreover, that

the fundamental weight vector !1 defines a highest weight
representation of SUð5Þ of dimension 5 with weight vec-
tors �0, �1, �2, �3, and �4 related to !1 as follows:

�0¼!1; �1¼!1��1; �2¼!1��1��2;

�3¼!1��1��2��3; �4¼!1��1��2��3��4:

(3.8)

By using (3.7), one may also express these vectors weights
in terms of the !i’s as follows:

�0 ¼!1; �1 ¼!2�!1; �2 ¼!3�!2;

�3 ¼!4�!3; �4 ¼�!4:
(3.9)

Furthermore, substituting!1 by its expression (3.7), we get
the following values of the �i’s in terms of the simple roots:

�0 ¼ þ 4

5
�1 þ 3

5
�2 þ 2

5
�3 þ 1

5
�4;

�1 ¼ � 1

5
�1 þ 3

5
�2 þ 2

5
�3 þ 1

5
�4;

�2 ¼ � 1

5
�1 � 2

5
�2 þ 2

5
�3 þ 1

5
�4;

�3 ¼ � 1

5
�1 � 2

5
�2 � 3

5
�3 þ 1

5
�4;

�4 ¼ � 1

5
�1 � 2

5
�2 � 3

5
�3 � 4

5
�4:

(3.10)

These weight vectors satisfy remarkable properties that
will be used later on, in particular, the three following:
First, these �i’s obey the constraint relation

P
4
i¼0 �i ¼ 0

which agrees with (3.1) and which should be compared
with the identity e

�
1 þ e

�
2 þ e

�
3 þ e

�
4 þ e

�
4 ¼ 0. Second,

they have the intersection matrix

�i:�i ¼ 4

5
; �i:�j ¼ � 1

5
;

cos#ij ¼
�i:�j

j�ijj�jj ¼ � 1

4
;

(3.11)

leading to Eq. (2.5). The third point concerns the zeros of
the Dirac operator; see Eq. (4.11) to fix the ideas. They are
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given by solving the following constraint relations:

eiðd
ffiffi
5

p
=2Þp0 ¼ eiðd

ffiffi
5

p
=2Þp1 ¼ eiðd

ffiffi
5

p
=2Þp2 ¼ eiðd

ffiffi
5

p
=2Þp3

¼ eiðd
ffiffi
5

p
=2Þp4 ¼ ei’; (3.12)

where we have set

p0 ¼ k:�0; p1 ¼ k:�1; p2 ¼ k:�2

p3 ¼ k:�3; p4 ¼ k:�4

(3.13)

and where the phase ’ ¼ 2	N
5 , with N an integer. The

values of this phase are due to equiprobability in hops
from a generic site at r to the five first-nearest neighbors

at rþ d
ffiffi
5

p
2 �i. This equiprobability requires

Y5
l¼0

eiðd
ffiffi
5

p
=2Þpl ¼ 1 ¼ e5i’: (3.14)

Solutions of the constraint Eqs. (3.12) are then given by

pi ¼ 4	N

5d
ffiffiffi
5

p ; i ¼ 0; 1; 2; 3; 4: (3.15)

Notice, moreover, the two useful features: First, Eqs. (3.13)
imply in turn that the wave vector kmay be also written as

k ¼ p0�0 þ p1�1 þ p2�2 þ p3�3 þ p4�4: (3.16)

Multiplying both sides of this relation by �i and
using (3.11), we find k:�i ¼ pi � 1

5 ðp0 þ p1 þ p2þ
p3 þ p4Þ ¼ pi, thanks to the identity

P
ipi ¼ 0 following

from
P

i�i ¼ 0. Second, expressing this vector k in terms
of the basis !1, !2, !3, and !4 of the reciprocal lattice,
then using Eqs. (3.9) giving the �l’s in terms of the !l’s,
we get

k ¼ ðp0 � p1Þ!1 þ ðp1 � p2Þ!2 þ ðp2 � p3Þ!3

þ ðp3 � p4Þ!4: (3.17)

Putting back (3.15), we find that the zeros of the Dirac
operator are precisely located at the sites of the reciprocal
lattice H �

4.

C. Link with BBTW parametrization of H 4

From Eq. (3.8), we can also determine the expression of
the simple roots �i’s in terms of the weight vectors �i’s.
We have

�1 ¼ �0 � �1; �3 ¼ �2 � �3;

�2 ¼ �1 � �2; �4 ¼ �3 � �4:
(3.18)

By comparing these equations with Eqs. (2.3) and (2.5), we
obtain the relation between the ei’s used in [5] and the
weight vectors of the fundamental representation of SUð5Þ:

e i ¼
ffiffiffi
5

p
2

�i; �i ¼ 2
ffiffiffi
5

p
5

ei: (3.19)

Putting Eqs. (3.18) and (3.19) back into (2.2), we find that
the four primitive vectors a1, a2, a3, and a4 generating the
sublattice A4 (respectively, B4) are nothing but linear
combinations of the four simple roots of SUð5Þ,

a1 ¼ �
ffiffiffi
5

p
2

�1

a2 ¼ �
ffiffiffi
5

p
2

ð�1 þ �2Þ

a3 ¼ �
ffiffiffi
5

p
2

ð�1 þ �2 þ �3Þ

a4 ¼ �
ffiffiffi
5

p
2

ð�1 þ �2 þ �3 þ �4Þ:

(3.20)

From these relations, we read the identities of [5]

a i:ai ¼ 10

4
; ai:aj ¼ 5

4
; i � j: (3.21)

These relations are just a property of the Cartan matrix
of SUð5Þ.
We end this section by giving the following summary:
The 4D hyperdiamond H 4 is made of two superposed

sublattices,A4 andB4. These sublattices are generated by
the simple roots �1, �2, �3, and �4 of SUð5Þ. The relative
shift vector between A4 and B4 is a weight vector of the
five-dimensional representation of SUð5Þ. Each site inH 4

has five first-nearest neighbors forming a dimension 5
representation of SUð5Þ, and 20 second-nearest ones,
forming together with the ‘‘four zero roots’’ the adjoint
representation of SUð5Þ. The reciprocal space of the 4D
hyperdiamond is generated by the fundamental weight
vectors!1,!2,!3, and!4 of SUð5Þ. Generic wave vectors
k in this lattice read as

k ¼ k1!1 þ k2!2 þ k3!3 þ k4!4 (3.22)

where ki ¼ ðpi�1 � piÞ, where pi is the momentum along
the �i-direction and ðpi�1 � piÞ the momentum along the
�i-direction in the real 4D hyperdiamond lattice H 4. In
the particular case where all the momenta pi ¼ 4	N

5d
ffiffi
5

p , we

have

X4
l¼0

��
l e

�idð ffiffi5p =2Þpl ¼ e�ið2	N=5Þ
�X4
l¼0

��
l

�
¼ 0: (3.23)

This property will be used later on.

IV. BBTW LATTICE ACTION REVISITED

A. Correspondence 2D/4D

We begin to notice that a generic bond vector ei in H 4

links two sites in the same unit cell of the hyperdiamond as
shown on the typical coupling term ArnB

þ
rnþdei

. This prop-

erty is quite similar to the action of the usual �� matrices
on 4D (Euclidean) space time spinors. Mimicking the tight
binding model of 2D graphene, BBTW proposed in [5] an
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analogous model for 4D lattice QCD. Their construction
relies on the use of the following: First, the naive corre-
spondence between the bond vectors ei and the �

i matrices

e i $ �i; i ¼ 1; . . . ; 5; (4.1)

with

�e5 ¼ e1 þ e2 þ e3 þ e4;

��5 ¼ �1 þ �2 þ �3 þ �4:
(4.2)

Recall that the four �� matrices satisfy the Clifford algebra
���� þ ���� ¼ 2���, �5 ¼ �1�2�3�4 gives the� chir-
alities of the two possible Weyl spinors in 4D, and �5 is
precisely the matrix � used in the Boriçi-Creutz fermions
[17,18]; see also Eq. (2.5) of Ref. [19] for a rigorous
derivation using SUð5Þ symmetry. Second, as in the
case of 2D graphene, A4-type sites are occupied by left

L ¼ ð
a

r Þ and right 
R ¼ ð �
 _a
r Þ two-component Weyl

spinors. B4-type sites are occupied by right �R ¼
ð �� _a

rþdei
Þ and left �L ¼ ð�a

rþdei
Þ Weyl spinors.

2Dgraphene 4Dhyperdiamond

A4�sites atrn Ar 
a
r ; �


_a
r

B4�sites atrnþdei Bþ
rþdei

�� _a
rþdei

;�a
rþdei

couplings½21� ArB
þ
rþdei

P
4
�¼1e

�
i ð
a

r�
�
a _a ��

_a
rþdei

Þ
BrþdeiA

þ
r

P
4
�¼1e

�
i ð�a

rþdei
��
�
a _a

�
 _a
r Þ

where the indices a ¼ 1, 2 and _a ¼ _1, _2, and where
summation over � is in the Euclidean sense. For later
use, it is interesting to notice the two following: In 2D
graphene, the wave functions Ar and Brþdei describe po-

larized electrons in the first-nearest sites of the 2D honey-
comb. As the spin up and spin down components of the
electrons contribute equally, the effect of spin couplings in
2D graphene is ignored. In the 4D hyperdiamond, we have
4þ 4 wave functions at each A4-type site or B4-type
one. These wave functions are given by the doublets 
a ¼
ð
1

rn ; 

2
rnÞ and �
 _a

r ¼ ð �
 _1
rn ;

�

_2
rnÞ having, respectively, posi-

tive and negative �5 chirality; these are the ð12 ; 0Þ and

ð0; 12Þ representations of the SOð4Þ ’ SUð2Þ � SUð2Þ
(the doublets �� _a

rþdei
¼ ð �� _1

rþdei
; ��

_2
rþdei

Þ and �a
rþdei

¼
ð�1

rþdei
; �2

rþdei
Þ having, respectively, negative and positive

�5 chirality).
By mimicking the 2D graphene study, we expect there-

fore to have four kinds of polarized particles together with
the four corresponding ‘‘holes’’ as shown on the typical
tight binding couplings

e
�
i �

�

1 _1
ð
1

r ��
_1
rþdei

Þ; e
�
i �

�

2 _2
ð
2

r ��
_2
rþdei

Þ
e
�
i ��

�

1 _1
ð�1

rþdei
�

_1
rÞ; e

�
i ��

�

2 _2
ð�2

rþdei
�

_2
rÞ:

(4.3)

B. Building the action

Following [5], the BBTW action is a naive lattice QCD
action preserving the symmetries of H 4. To describe the
spinor structures of the lattice fermions, one considers 4D
space time Dirac spinors together with the following ��

matrices realizations:

�1 ¼ �1 � �1; �2 ¼ �1 � �2; �3 ¼ �1 � �3;

�4 ¼ �2 � I2; �5 ¼ �3 � I2; (4.4)

where the �i’s are the Pauli matrices acting on the sub-
lattice structure of the hyperdiamond lattice H 4,

�1¼ 0 1
1 0

� �
; �2¼ 0 �i

i 0

� �
; �3¼ 1 0

0 �1

� �
: (4.5)

The 2� 2 matrices �i satisfy as well the Clifford algebra
�i�j þ �j�i ¼ 2�ijI2 and act through the coupling of left

L (respectively, 
R) and right �R (respectively, left �L)
two-component Weyl spinors at neighboringA4- and B4-
sites


a
r�

�
a _a ��

_a
rþdð ffiffi5p =2Þ�i

� �a
r ��

�
a _a

�
 _a
r�dð ffiffi5p =2Þ�i

¼ ð
r�
� ��rþdð ffiffi5p =2Þ�i

� �r ��
� �
r�dð ffiffi5p =2Þ�i

Þ (4.6)

where �� ¼ ð�1; �2; �3;þiI2Þ and ��� ¼
ð�1; �2; �3;�iI2Þ. For later use, it is interesting to set

��:e
�
1 ¼

ffiffiffi
5

p
4

�1 þ
ffiffiffi
5

p
4

�2 þ
ffiffiffi
5

p
4

�3 þ i

4
I2;

���:e
�
1 ¼

ffiffiffi
5

p
4

�1 þ
ffiffiffi
5

p
4

�2 þ
ffiffiffi
5

p
4

�3 � i

4
I2;

(4.7)

and similar relations for the other �:ei and ��:ei.
Now extending the tight binding model of 2D graphene

to the 4D hyperdiamond;, and using the weight vectors �i

instead of ei, we can build a free fermion action on
the lattice H 4 by attaching a two-component left-handed
spinor 
aðrÞ and right-handed spinor �
 _a

r to eachA4-node
r, and a right-handed spinor �� _a

rþdð ffiffi5p =2Þ�i
and left-handed

spinor �a
rþdð ffiffi5p =2Þ�i

to every B4-node at rþ d
ffiffi
5

p
2 �i. The

action, describing hopping to first-nearest-neighbor sites
with equal probabilities in all five directions �i, reads as
follows:

S BBTW ¼ X
r

X4
i¼0

ð
r�
� ��rþdð ffiffi5p =2Þ�i

� �r ��
� �
r�dð ffiffi5p =2Þ�i

Þ��
i : (4.8)

Clearly, this action is invariant under the following discrete
transformations:

�� �
r�dð ffiffi5p =2Þ�i
! �� �
r�dð ffiffi5p =2Þ�j

ðOT
jiÞ�� ;

��
i ! ðOjiÞ����

j : (4.9)
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Expanding the various spinorial fields 
r�v in Fourier sums

as
R

d4k
ð2	Þ4 e

�ik:rðe�ik:v
kÞ with k standing for a generic

wave vector in H �
4, we can put the field action SBBTW

into the form

S BBTW ¼ i
X
k

ð �
k; ��kÞ 0 �iD
i �D 0

� �

k

�k

� �
(4.10)

where we have set

D ¼ X4
l¼0

Dle
idð ffiffi5p =2Þk:�l ¼ X4

�¼1

��

�X4
l¼0

��
l e

idð ffiffi5p =2Þk:�l

�
;

(4.11)

with

Dl ¼
X4
�¼1

���
�
l ¼ �3

l þ i�4
l �1

l � i�2
l

�1
l þ i�2

l �3
l � i�4

l

� �
; (4.12)

and pl ¼ k:�l ¼
P

�k��
�
l . Similarly, we have

�D ¼ X4
l¼0

�Dle
�idð ffiffi5p =2Þk:�l ¼ X4

�¼1

���

�X4
l¼0

��
l e

�idð ffiffi5p =2Þk:�l

�
:

(4.13)

We end this subsection by making three remarks: the first
one deals with the continuous limit, the second one regards
the zeros of the Dirac operator, and the third concerns the
link with the Creutz fermions. In the continuous limit
where the lattice parameter d ! 0, we have

X4
l¼0

�
�
l e

�idð ffiffi5p =2Þk:�l !
�X4
l¼0

�
�
l

�
� i

d
ffiffiffi
5

p
2

�
�X4
l¼0

�
�
l ðk:�lÞ

�
þ . . . : (4.14)

Moreover, since
P

4
l¼0 �

�
l ¼ 0 and because of the

identity
P

4
l¼0 �

�
l ðk:�lÞ ¼ k� following from Eqs. (3.16)

and (3.17), this limit reduces to

X4
l¼0

��
l e

�idð ffiffi5p =2Þk:�l ! �i
d

ffiffiffi
5

p
2

k� þ . . . : (4.15)

So, we have

D! i
d

ffiffiffi
5

p
2

X4
�¼1

��k�; �D!�i
d

ffiffiffi
5

p
2

X4
�¼1

���k�: (4.16)

The operators D and �D have zeros for wave vectors k
satisfying the following constraint relation:

k :�l ¼ 4	N

5d
ffiffiffi
5

p ; (4.17)

with N an arbitrary integer. The point is that for these

values, the phases eidð
ffiffi
5

p
=2Þk:�l ¼ ei’ and the operators D

and �D get reduced to

D ¼ ei’
X4
�¼1

��

�X4
l¼0

��
l

�
; �D ¼ e�i’

X4
�¼1

���

�X4
l¼0

��
l

�

(4.18)

which vanish identically due to the property
P

4
l¼0 �

�
l ¼ 0.

Following [8,11], the Dirac operator (4.10) in the Creutz
lattice model reads as follows:

0 z
z� 0

� �
(4.19)

where z ¼ �0I þ i�1�
1 þ i�2�

2 þ i�3�
3 with

�1 ¼ sinp1 þ sinp2 � sinp3 � sinp4

�2 ¼ sinp1 � sinp2 � sinp3 þ sinp4

�3 ¼ sinp1 � sinp2 þ sinp3 � sinp4

�0 ¼ Bð4C� cosp1 � cosp2 � cosp3 � cosp4Þ

(4.20)

and B and C two real parameters. In the Creutz lattice
model, the zero energy states correspond to z ¼ 0; this
leads to the constraints �i ¼ 0 which are solved by taking
one of the momenta as p1 ¼ p and the others as pi ¼ p or
	� p. To make contact with our construction, the analo-
gous of Eqs. (4.20) are given by

�1 ¼ �1
0e

�idð ffiffi5p =2Þp0 þ �1
1e

�idð ffiffi5p =2Þp1 þ �1
2e

�idð ffiffi5p =2Þp2

þ �1
3e

�idð ffiffi5p =2Þp3 þ �1
4e

�idð ffiffi5p =2Þp4

�2 ¼ �2
0e

�idð ffiffi5p =2Þp0 þ �2
1e

�idð ffiffi5p =2Þp1 þ �2
2e

�idð ffiffi5p =2Þp2

þ �2
3e

�idð ffiffi5p =2Þp3 þ �2
4e

�idð ffiffi5p =2Þp4

�3 ¼ �3
0e

�idð ffiffi5p =2Þp0 þ �3
1e

�idð ffiffi5p =2Þp1 þ �3
2e

�idð ffiffi5p =2Þp2

þ �3
3e

�idð ffiffi5p =2Þp3 þ �3
4e

�idð ffiffi5p =2Þp4

�0 ¼ �4
0e

�idð ffiffi5p =2Þp0 þ �4
1e

�idð ffiffi5p =2Þp1 þ �4
2e

�idð ffiffi5p =2Þp2

þ �4
3e

�idð ffiffi5p =2Þp3 þ �4
4e

�idð ffiffi5p =2Þp4 (4.21)

where pl ¼ k:�l. These relations are complex and are, in
some sense, more general than the Creutz ones (4.20). The

zeros of these solutions requires eidð
ffiffi
5

p
=2Þpi ¼ ei’8 l ¼ 0,

1, 2, 3, 4 as anticipated in (3.12).

V. ENERGY DISPERSION AND ZERO MODES

To get the dispersion energy relations of the four wave
components 
1

k, 

2
k, �

1
k, and �2

k and their corresponding
four holes, one has to solve the eigenvalues of the Dirac
operator (4.10). To that purpose, we first write the four-
dimensional wave equation as follows:

0 �iD
i �D 0

� �

k

�k

� �
¼ E


k

�k

� �
; (5.1)

where 
k ¼ ð
1
k; 


2
kÞ, �k ¼ ð�1

k; �
2
kÞ are Weyl spinors,

and where the 2� 2matricesD, �D are as in Eqs. (4.11) and
(4.13). Then determine the eigenstates and eigenvalues of

FOUR-DIMENSIONAL GRAPHENE PHYSICAL REVIEW D 84, 014504 (2011)

014504-7



the 2� 2 Dirac operator matrix by solving the following
characteristic equation:

det

�E 0 D11 D12

0 �E D21 D22
�D11

�D21 �E 0
�D12

�D22 0 �E

0
BBB@

1
CCCA ¼ 0 (5.2)

from which one can learn the four dispersion energy ei-
genvalues E1ðkÞ, E2ðkÞ, E3ðkÞ, and E4ðkÞ, and therefore
their zeros.

A. Computing the energy dispersion

An interesting way to do these calculations is to act
on (5.1) once more by the Dirac operator to bring it to
the following diagonal form:

D �D 0
0 D �D

� �

k

�k

� �
¼ E2 
k

�k

� �
: (5.3)

Then solve separately the eigenvalues problem of the
two-dimensional equations D �D
k ¼ E2
k and �DD�k ¼
E2�k. To do so, it is useful to set

uðkÞ ¼ #1 þ i#2; vðkÞ ¼ #3 þ i#4 (5.4)

with

#� ¼ X4
l¼0

��
l e

idð ffiffi5p =2Þk:�l ; � ¼ 1; 2; 3; 4: (5.5)

Notice that in the continuous limit, we have

#� ! id

ffiffiffi
5

p
2

k�;

uðkÞ ! id

ffiffiffi
5

p
2

ðk1 þ ik2Þ;

vðkÞ ! id

ffiffiffi
5

p
2

ðk3 þ ik4Þ:

(5.6)

Substituting (5.4) back into (4.11) and (4.13), we obtain the
following expressions:

D �D ¼ juj2 þ jvj2 2 �uv
2u �v juj2 þ jvj2

� �
; (5.7)

and

�DD ¼ juj2 þ jvj2 2 �u �v
2uv juj2 þ jvj2

� �
: (5.8)

By solving the characteristic equations of these 2� 2
matrix operators, we get the following eigenstates 
a0

k ,
�a0
k with their corresponding eigenvalues E2�:

eigenstates eigenvalues


10
k ¼

ffiffiffiffiffiffiffiffiffiffi
v �u

2jujjvj
q


1
kþ

ffiffiffiffiffiffiffiffiffiffi
u �v

2jujjvj
q


2
k E2þ ¼ juj2þjvj2þ2jujjvj


20
k ¼�

ffiffiffiffiffiffiffiffiffiffi
v �u

2jujjvj
q


1
kþ

ffiffiffiffiffiffiffiffiffiffi
u �v

2jujjvj
q


2
k E2� ¼ juj2þjvj2�2jujjvj

(5.9)

and

eigenstates eigenvalues

�10
k ¼

ffiffiffiffiffiffiffiffiffiffi
�u �v

2jujjvj
q

�1
kþ

ffiffiffiffiffiffiffiffiffiffi
uv

2jujjvj
q

�2
k E2þ ¼ juj2þjvj2þ2jujjvj

�20
k ¼�

ffiffiffiffiffiffiffiffiffiffi
�u �v

2jujjvj
q

�1
kþ

ffiffiffiffiffiffiffiffiffiffi
uv

2jujjvj
q

�2
k E2� ¼ juj2þjvj2�2jujjvj:

(5.10)

By taking square roots of E2�, we obtain two positive and
two negative dispersion energies; these are

E� ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjuj � jvjÞ2

q
(5.11)

which correspond to particles, and

E�� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjuj � jvjÞ2

q
(5.12)

corresponding to the associated holes.

B. Determining the zeros of E� and E��
From the above energy dispersion relations, one sees

that the zero modes are of two kinds as listed here:

zeros of both E2þ ¼ 0; E2� ¼ 0:

They are given by those wave vectors KF solving the
constraint relations uðKFÞ ¼ vðKFÞ ¼ 0, which can be
also put in the form

��
0 e

idð ffiffi5p =2ÞKF:�0 þ ��
1 e

idð ffiffi5p =2ÞKF:�1 þ ��
2 e

idð ffiffi5p =2ÞKF:�2

þ ��
3 e

idð ffiffi5p =2ÞKF:�3 þ ��
4 e

idð ffiffi5p =2ÞKF:�4 ¼ 0 (5.13)

for all values of � ¼ 1, 2, 3, 4; or equivalently like

d

ffiffiffi
5

p
2

KF:�l ¼ 2	

5
N þ 2	Nl: (5.14)

The solutions of these constraint equations have been
studied in Sec. III; they are precisely given by Eqs. (3.15)
and (3.17). Now, setting k ¼ KF þ q with small q ¼ kqk
and expanding D and �D, Eq. (5.1) gets reduced to

d
ffiffiffi
5

p
2

X4
�¼1

q�
0 ��

��� 0

� �

k

�k

� �
¼ E


k

�k

� �
: (5.15)

case E2� ¼ 0, but E2þ ¼ E2
þmin � 0

These minima are given by those wave vectors
K ¼ kmin solving the following constraint relation
juðKÞj ¼ jvðKÞj, or equivalently

X4
m;n¼0

ð�1
m þ i�2

mÞð�1
n � i�2

nÞeidð
ffiffi
5

p
=2ÞK:�mn

¼ X4
m;n¼0

ð�3
m þ i�4

mÞð�3
n � i�4

nÞeidð
ffiffi
5

p
=2ÞK:�mn : (5.16)

Expanding this equality, we get the following condition on
the wave vector:
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X4
m;n¼0

Anm cos

�
d

ffiffiffi
5

p
2

K:�mn

�

�
�
tan

�
d

ffiffiffi
5

p
2

K:�mn

�
� Bnm

Anm

�
¼ 0; (5.17)

with

Anm ¼ ð�1
n�

2
m � �1

m�
2
nÞ � ð�3

n�
4
m � �3

m�
4
nÞ

Bnm ¼ ð�1
m�

1
n þ �2

m�
2
nÞ � ð�3

m�
3
n þ �4

m�
4
nÞ:

(5.18)

A possible solution is given by those wave vectors K
obeying the relation K:�mn ¼ 2

d
ffiffi
5

p arctanðBnm=AnmÞ.

VI. REDERIVING BC FERMIONS

In this section, we give the link between the above study
based on SUð5Þ symmetry and the so-called Boriçi-Creutz
(BC) model having two zero modes associated with the
light quarks up and down of QCD. Recall that one of the
important things in lattice QCD is the need to have a
fermion action with a Dirac operator D having two zero
modes at points K and K0 of the reciprocal space, so that
they could be interpreted as the two light quarks. From this
view, one may ask [20] whether there exists a link between
the present analysis and the BC fermions [17,18]. In an-
swering this question, we have found that the BC model
can be indeed recovered from the analysis developed in this
paper. In what follows, we give the main lines of the
derivation.

A. More on lattice action (4.8)

One of the interesting lessons we have learned from the
analysis developed in the previous sections is that the
lattice action for 4D hyperdiamond fermions may gener-
ally be written like

S 	 i

4a

X
r

�X4
l¼0

��r�
l�rþa�l

þX4
l¼0

��r
��l�r�a�l

�
; (6.1)

where a ¼ d
ffiffi
5

p
2 , the weight vectors �l as in Eqs. (2.3) and

(3.19) and where �l and their complex adjoints ��l are 4� 4
complex matrices given by linear combinations of the
Dirac matrices �� as follows:

�l ¼
�X4
�¼1

���l
�

�
; ��l ¼

�X4
�¼1

�� ��l
�

�
(6.2)

with �l
� linking the lattice Euclidean space time index �

and the index l of the five-dimensional representation of
the SUð5Þ symmetry of the hyperdiamond. As such, the
lattice action (6.1) depends on the coefficients �l

� captur-

ing 20 complex numbers that form a 5� 4 matrix repre-
senting the bi-fundamental of SOð4Þ � SUð5Þ

�l
� ¼

�0
1 �1

1 �2
1 �3

1 �4
1

�0
2 �1

2 �2
2 �3

2 �4
2

�0
3 �1

3 �2
3 �3

3 �4
3

�0
4 �1

4 �2
4 �3

4 �4
4

0
BBB@

1
CCCA: (6.3)

This rank two tensor, which we decompose as (!�, �
�
�)

with !� ¼ �0
� a complex 4 component vector and ��

� a

complex 4� 4 matrix, gives enough freedom to engineer
Dirac operators with a definite number of zero modes.
Below, we derive the constraint equations for the zero
modes of the Dirac operator; and in next subsection we
apply the analysis to the BC model.

1. Dirac operator

In the reciprocal space, the lattice action (6.1) reads as

S 	X
k

�X4
�¼1

��kD�k

�
(6.4)

with the Dirac operator reading as follows:

D ¼ i

4a

X4
�¼1

��ðD� þ �D�Þ; (6.5)

and where D� and its complex adjoint �D� are given by

D� ¼ X4
l¼0

�l
�e

iak:�l ; �D� ¼ X4
l¼0

��l
�e

�iak:�l : (6.6)

These operators depend on 40 ¼ 2ð4þ 16Þ real numbers

!� ¼ 1

2
ðu� þ iv�Þ; ��

� ¼ 1

2
R�
� þ i

2
J�� (6.7)

and also on the five momenta pl ¼ ℏkl along the
�l-directions. Since kl ¼ k:�l and because of SUð5Þ sym-
metry, we have moreover the constraint relation

k0 þ k1 þ k2 þ k3 þ k4 ¼ 0; mod
2	

a
; (6.8)

allowing to express one of the five kl’s in terms of the four
others. For instance, we can express k0 as follows:

k0 ¼ �ðk1 þ k2 þ k3 þ k4Þ; mod
2	

a
: (6.9)

The next step is to find the set of wave vectors k� ¼
ðk1; k2; k3; k4Þ that give the zeros of the Dirac operator.
These zeros depend on the numbers u�, v�, R

�
�, and J��,

which can be tuned in order to get the desired number of
zeros.

2. Zero modes

The zero modes of the Dirac operator D given by
Eqs. (6.5) and (6.6) are obtained by solving the following
constraint equations:
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X4
�¼1

X4
l¼0

��ð�l
� þ ��l

�Þ cosakl

þ i
X4
�¼1

X4
l¼0

��ð�l
� � ��l

�Þ sinakl ¼ 0; (6.10)

together with the constraint Eq. (6.8). Using the decom-
position �l

� ¼ ð!�;�
�
�Þ, we can decompose these con-

straints as follows:

�þ X4
�¼1

�X4
�¼1

��ð��
� þ ���

�Þ cosak�

þ i
X4
�¼1

��ð��
� � ���

�Þ sinak�
�
¼ 0; (6.11)

where we have set

� ¼ cosak0
X4
�¼1

��ð!� þ �!�Þ

þ i sinak0
X4
�¼1

��ð!� � �!�Þ: (6.12)

Moreover, using (6.7) we can put the above constraint
relations into the following equivalent form:

�þ X4
�¼1

�X4
�¼1

��R�
� cosak� �

X4
�¼1

��J�� sinak�

�
¼ 0;

(6.13)

and

� ¼ cosak0

�X4
�¼1

��u�

�
� sinak0

�X4
�¼1

��v�

�
¼ 0;

(6.14)

with k0 given by Eq. (6.8). Equations (6.13) and (6.14)
define a highly nonlinear system of coupled equations in
the four k�’s, and are difficult to solve in the generic case.
To overcome this difficulty, one may deal with these equa-
tions by focusing on adequate solutions for the kv’s, and
engineer the corresponding �l

� tensor. Below, we apply

this idea to the BC model.

B. BC fermions

1. Deriving the model

The Boriçi-Creutz model [17] is a simple lattice QCD
fermions for modeling and simulating the interacting dy-
namics of the two light quarks up and down. The Dirac
operator of this model reads in the reciprocal space as
follows:

DBC 	 i

a

X4
�¼1

�� sinak� � i

a

X4
�¼1

�� cosak�

þ i

a

X4
�¼1

� cosak� � 2i

a
�; (6.15)

with � ¼ 1
2 ð�1 þ �2 þ �3 þ �4Þ. From this expression,

one can check that this operator has two zero modes given
by the two following wave vectors:

ð1Þ: ðk1; k2; k3; k4Þ ¼ ð0; 0; 0; 0Þ;

ð2Þ: ðk1; k2; k3; k4Þ ¼
�
	

2a
;
	

2a
;
	

2a
;
	

2a

�
;

(6.16)

satisfying the remarkable property

k1 þ k2 þ k3 þ k4 ¼ 2	

a
; mod

2	

a
: (6.17)

Clearly, the operator DBC corresponds to a particular
configuration of the complex tensor ��

� and the vector

!�. To see that is indeed the case, notice first that the

matrix � can be conveniently rewritten as � ¼ 1
2#��

�,

with

#� ¼ ð1; 1; 1; 1Þ: (6.18)

The same feature is valid for the sum
P

4
�¼1 cosak� which

can be also put in the form
P

4
�¼1 #

� cosak�. Putting these
expressions back into the above DBC relation, we get

DBC 	 i

a

X4
�;�¼1

����
� sinak�

� i

a

X4
�;�¼1

��M�
� cosak� � 2i

a
�; (6.19)

with

M�
� ¼ ��

� � 1

2
#�#

� (6.20)

or more explicitly,

M�
� ¼

þ 1
2 � 1

2 � 1
2 � 1

2

� 1
2 þ 1

2 � 1
2 � 1

2

� 1
2 � 1

2 þ 1
2 � 1

2

� 1
2 � 1

2 � 1
2 þ 1

2

0
BBBB@

1
CCCCA: (6.21)

Now, comparing Eq. (6.19) with the general form of the
Dirac operator of Eq. (6.5) and (6.6), which also reads like

�þ X4
�¼1

�X4
�¼1

��R�
� cosak� �

X4
�¼1

��J�� sinak�

�
¼ 0;

(6.22)

we see that DBC can be recovered by taking

R�
� ¼ �M�

�; J�� ¼ ���
�; (6.23)

and
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� ¼ �2� ¼ �ð�1 þ �2 þ �3 þ �4Þ: (6.24)

Equation (6.23) leads to ��
� ¼ � 1

2 ðM�
� þ i��

�Þ; by sub-

stituting M�
� by its expression given above, the tensor ��

�

reads more explicitly like

��
� ¼ �ð1þ iÞ

2
��
� þ 1

4
#�#

�: (6.25)

The second constraint relation (6.24) requires

ðu� cosak0 � v� sinak0Þ ¼ �#�; (6.26)

with #� as in (6.18). Moreover, using Eqs. (6.17) and (6.9),

we end with

u� ¼ �#�; (6.27)

and v� a free vector which, for simplicity, we set to zero.

Thus, the tensor �l
� ¼ ð!�;�

�
�Þ describing the BC fer-

mions is given by

�l
� ¼

� 1
2 � 1þ2i

4
1
4

1
4

1
4

� 1
2

1
4 � 1þ2i

4
1
4

1
4

� 1
2

1
4

1
4 � 1þ2i

4
1
4

� 1
2

1
4

1
4

1
4 � 1þ2i

4

0
BBBB@

1
CCCCA; (6.28)

with the trace property
P

l�
l
� ¼ � i

2#�.

2. Symmetries

Here, we want to make a comment on particular sym-
metries of 4D lattice QCD fermions by following the
analysis of Ref. [6], where the study of the renormalization
of this class of models has been explicitly done. There,
it has been found that the breaking of discrete symmetries,

such as parity P : �ð ~k; k4Þ ! �4�ð� ~k; k4Þ and time-

reversal T : ð ~k; k4Þ ! �5�4�ð ~k;�k4Þ, is behind the ap-

pearance of relevant dimension 3 operators OðiÞ
3 and

marginal dimension 4 ones OðjÞ
4 in the analysis of the

Symanzik effective theory with Lagrangian Leff ¼
1
a4
P

na
n
P

jc
ðjÞ
n OðjÞ

n . Following the above-mentioned work,

one starts from the 4D lattice action,

S 	 1

2

X
x

X4
�¼1

½�þ
x A

��xþa��
��þ

x
�A��x�a��

� 2iBC�þ
x �

4�x�; (6.29)

which depends on two real parameters, B and C, that are
fixed by physical requirements and symmetries. This
typical action depends also on particular combinations
of gamma matrices A� ¼ P

4
�¼1 �

�A
�
� where the coeffi-

cients A�
� , given in [6], form an invertible 4� 4 matrix

with detðA�
� Þ ¼ �16iB. Notice that setting B ¼ 1,

C ¼
ffiffi
2

p
2 , one recovers the Boriçi action. By performing

transformations of (6.29) using Fourier integrals to
move to the reciprocal space, similarity operations to
exhibit particular symmetries, expansion in powers of
the lattice spacing parameter a to use the Symanzik effec-
tive theory, and switching on the usual gauge interactions

@� ! D� ¼ @� � igA� with field strength F �� ¼ i
g �

½D�;D��, we get up to the first order in the parameter a

the following effective field action:

Leff ¼
X
x

�
�Qð�� � IÞD�Q� 1

4
F��F �� þ aO5

þ ordða2Þ
�
;

with Q� standing for the quark isodoublet (u�, d�) andO5

some dimension 5 operator that can be found in [6]. This
effective theory has several symmetries in particular:
(1) the manifest gauge invariance, (2) UBð1Þ baryon num-
ber, (3) ULð1Þ �URð1Þ chiral symmetry, (4) CPT invari-
ance, and (5) symmetry under S4 permutation of the
four hyperplane axis corresponding to C ¼ BS with eiK ¼
Cþ iS. The authors of [6] concluded their work by two
remarkable results: (i) the engineering of a chirally sym-
metric action with minimal fermion doubling which does
not generate dimension 3 operatorsO3 is possible as far as
PT symmetry is preserved. This invariance is sufficient to

forbid the relevant dimension 3 operators OðiÞ
3 whose typi-

cal forms are listed below:

brokenP : Oð1Þ
3 ¼ i �� ~k;k4

�j� ~k;k4
;

Oð2Þ
3 ¼ i �� ~k;k4

�4�5� ~k;k4

brokenT : Oð3Þ
3 ¼ i �� ~k;k4

�j�5� ~k;k4
;

Oð4Þ
3 ¼ i �� ~k;k4

�j�5� ~k;k4

with �j standing for �1, �2, and �3. (ii) For particular

values of parameters of the theory, there may emerge some
additional nonstandard symmetries which could be used to
eliminate the relevant operators. These results are impor-
tant and may serve as guidelines in dealing with this
problem by using the hyperdiamond symmetries based
on roots and weights of SUð5Þ. Below, we give a comment
on this matter; an exact answer, however, needs a deeper
analysis. In the SUð5Þ framework, the previous action
(6.29) gets extended as follows:

Ssu5 	
i

a

X
x

X
�

�X4
l¼0

½ ��x�
��l

��xþa�l

þ ��x�
� ��l

��x�a�l
�
�
; (6.30)

where �l
� as before and the �l’s are the weight vectors of

the five-dimensional representation of SUð5Þ. Clearly, this
lattice action is more general than Eq. (6.29), and has two
interesting features that are useful in dealing with the study
of underlying symmetries and renormalization of Ssu5 .

First, the SUð5Þ property (3.1) on the weight vectors,
namely

P
l�

�
l ¼ 0, induces in turns the following con-

straint relation on the wave vectors k�:
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X5
l¼0

kl ¼ 0; with kl ¼
X5
�¼1

k�:�
�
l :

This constraint is invariant under PT symmetry acting on
wave vectors as k� ! �k�, but not preserved under parity

P nor time-reversal T separately. Second, the generalized
action Ssu5 depends on 20 complex (40 real) moduli car-

ried by the tensor �l
�. This number gives quite enough

freedom to engineer QCD-like models with two zeros for
the Dirac operator as we have done in case of the BC
model. It may lead to desired symmetries of the
Symanzik effective theory that follow from the expansion
of the action Ssu5 in powers of the lattice parameter, and

may allow to make appropriate choices to eliminate rele-
vant operators. Progress in this matter will be reported in a
future occasion.

VII. CONCLUSION

In this paper, we have studied the lattice fermion action
for pristine 4D hyperdiamond H 4 with desired properties
for 4D lattice QCD simulations. Using the SUð5Þ hidden
symmetry of H 4, we have constructed a BBTW-like
lattice model by mimicking 2D graphene model. To that
purpose, we first studied the link between the construction
of [5] and SUð5Þ, then we refined the BBTW lattice action
by using the weight vectors �0, �1, �2, �3, and �4 of the
five-dimensional representation of SUð5Þ. After that, we
studied explicitly the solutions of the zeros of the Dirac
operator in terms of the SUð5Þ simple roots �1, �2, �3,
and �4, and its fundamental weights !1, !2, !3, and !4.
We have found that the zeros of the Dirac operator live at

the sites k ¼ 4	
d
ffiffi
5

p ðN1!1 þ N2!2 þ N3!3 þ N4!4Þ of the
reciprocal latticeH �

4, with Ni integers. In addition to their
quite similar continuum limit, we have also studied the link
between the Dirac operator following from our construc-
tion and the one suggested by Creutz using quaternions; the
Dirac operator in our approach may be viewed as a com-
plexification of the Creutz one where the role played by the
sinðpiÞ’s and the cosðpiÞ’s is now played by eipi as shown in
Eqs. (4.20) and (4.21). The exact link between our ap-
proach and the Boriçi-Creutz fermions has been worked
out with details in Sec. VI, where it is shown that the BC
action follows exactly from (6.1) with Eqs. (6.2) and (6.28),
giving the linear combinations of the Dirac matrices of the
model.
It is also interesting to notice that our approach is

general, and applies straightforwardly to lattice systems
in diverse dimensions. The fact that the 4D hyperdiamond
is related to SUð5Þ fundamental weights !1, !2, !3, and
!4, and its simple roots �1, �2, �3, and �4 is not specific
for four dimensions; it can be extended to generic dimen-
sions D where the underlying D-dimensional hyperdia-
mond lattice has a hidden SUðDþ 1Þ symmetry with
simple roots �1; . . . ; �D and fundamental weights
!1; . . . ; !D. From this view, the 2D graphene has therefore
a hidden SUð3Þ symmetry as reported in detail in [3].
Our construction applies as well to the fermion actions
given in [12].
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