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We determine the neutral kaon mixing matrix element BK in the continuum limit with 2þ 1 flavors of

domain wall fermions, using the Iwasaki gauge action at two different lattice spacings. These lattice

fermions have near exact chiral symmetry and therefore avoid artificial lattice operator mixing. We

introduce a significant improvement to the conventional nonperturbative renormalization (NPR) method

in which the bare matrix elements are renormalized nonperturbatively in the regularization invariant

momentum scheme (RI-MOM) and are then converted into the MS scheme using continuum perturbation

theory. In addition to RI-MOM, we introduce and implement four nonexceptional intermediate momen-

tum schemes that suppress infrared nonperturbative uncertainties in the renormalization procedure. We

compute the conversion factors relating the matrix elements in this family of regularization invariant

symmetric momentum schemes (RI-SMOM) and MS at one-loop order. Comparison of the results

obtained using these different intermediate schemes allows for a more reliable estimate of the unknown

higher-order contributions and hence for a correspondingly more robust estimate of the systematic error.

We also apply a recently proposed approach in which twisted boundary conditions are used to control the

Symanzik expansion for off-shell vertex functions leading to a better control of the renormalization in

the continuum limit. We control chiral extrapolation errors by considering both the next-to-leading

order SU(2) chiral effective theory, and an analytic mass expansion. We obtain BMS
K ð3 GeVÞ ¼

0:529ð5Þstatð15Þ�ð2ÞFVð11ÞNPR. This corresponds to B̂RGI
K ¼ 0:749ð7Þstatð21Þ�ð3ÞFVð15ÞNPR. Adding all

sources of error in quadrature, we obtain B̂RGI
K ¼ 0:749ð27Þcombined, with an overall combined error

of 3.6%.

DOI: 10.1103/PhysRevD.84.014503 PACS numbers: 11.15.Ha

I. INTRODUCTION

The indirect CP violation parameter of the neutral kaon
system

�K ¼ AðKL ! ð��ÞI¼0Þ
AðKS ! ð��ÞI¼0Þ ; (1)

was measured first at BNL in a Nobel Prize winning
experiment [1], and is now experimentally measured as

j�Kj ¼ ð2:228� 0:011Þ10�3 [2]. Since CP is not an exact
symmetry of the weak interactions, the eigenstates KL and
KS of the mass matrix of neutral kaon system are not
eigenstates of CP. We characterize the state mixing via

KS ¼ pK0 � q �K0 and KL ¼ pK0 þ q �K0 (2)

where p2 þ q2 ¼ 1, and p
q ¼ 1þ ��

1� �� .

�K receives its dominant contribution from ‘‘indirect’’
CP violation via state mixing, mediated by the imaginary
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part of the �S ¼ 2 box graph. Before �K can be used to
constrain the unitarity triangle and to provide information
on Cabibbo-Kobayashi-Maskawa (CKM) matrix elements,
we must therefore determine the QCD hadronic matrix
element of the effective weak �S ¼ 2 four-quark operator

hK0jOVVþAAj �K0i;
where

O VVþAA ¼ ð �s��dÞð�s��dÞ þ ð �s�5��dÞð�s�5��dÞ: (3)

It is conventional to define the bag parameter BK from this
matrix element as

BK ¼ hK0jOVVþAAj �K0i
8
3 f

2
KM

2
K

; (4)

whereMK and fK are the mass and leptonic decay constant
of the kaon. The kaon bag parameter is thus of fundamental
importance in studies of CP violation, and as the hadronic
matrix element is nonperturbative, lattice QCD is the
only known framework for its determination from first
principles.

Since the operatorOVVþAA depends on the renormaliza-
tion scheme and scale used in its definition, BK also has
the same scheme and scale dependence. Therefore, for
phenomenological use, it is convenient to introduce the
renormalization-group-invariant counterpart of BK,

B̂ K ¼ !�1
A ð�; nfÞBA

Kð�; nfÞ;
where the Wilson coefficient, !�1

A ð�; nfÞ, for the various

schemes A used in this paper are given in Eqs. (66) through
(70), and we use the numerical values for the 2þ 1 flavor
theory in our conversion.

We have recently calculated BK in dynamical 2þ 1
flavored simulations [3,4] with a total error of about
5.5%. It was observed by Buras and Guadagnoli [5], that
our result [3] was sufficiently accurate that additional care
needs to be taken in relating it to the measured value of �K.
Previously ignored subdominant effects of direct CP vio-
lation arising from the �S ¼ 1 Hamiltonian amount to a
few percent and must now be incorporated.

The short distance contribution ��K [6,7] differs from �K,
predominantly due to direct CP violation

�K ¼ ��K þ i
ImA0

ReA0

: (5)

Here, A0 is the K
0 ! �� amplitude for the isospin 0 final

state defined via

AðK0 ! ��ðIÞÞ ¼ AI expi�I and

Að �K0 ! ��ðIÞÞ ¼ A�
I expi�I

(6)

and �I is the �� phase shift in the I ¼ 0 or I ¼ 2 final
state.

Reliable calculation of A0 amplitudes remains a chal-
lenging project to which our collaboration is devoting a

considerable effort [8–13]. Using the measured value

Re
�0K
�K

¼ ð1:65� 0:26Þ � 10�3 [2], assuming the standard

model is correct, and making plausible assumptions in

estimating the somewhat less difficult ratio ImA2

ReA2
, the sub-

dominant contribution to �K can be effectively incorpo-
rated into a correction factor ��K [5]:

�K ¼ ��K B̂K

G2
Ff

2
KMKM

2
W

6
ffiffiffi
2

p
�2�MK

Imð�tÞeið�=4ÞfReð�cÞ½	1S0ðxcÞ

� 	3S0ðxc; xtÞ� � Reð�tÞ	2S0ðxtÞg; (7)

where �x ¼ VxdV
�
xs contains the entries of the CKMmatrix

Vxy, 	i are perturbative QCD corrections [14] and the

S0 are Inami-Lim functions of mass ratios xq ¼ m2
q

m2
W

. In

Refs. [5,15], the correction factor was estimated to be
��K � 0:94� 0:02, and here the fractional error on this

small correction is large (0.02 in a correction of size 0.06)
and model dependent.
The correction factor also includes an estimate of

long-distance contributions corresponding to two inser-
tions of the �S ¼ 1 Hamiltonian, with two pions propa-
gating long distances between them [15]. The results of our
present work are sufficiently precise that it has become
necessary to determine as many contributions as possible
using lattice gauge methods; efforts in RBC-UKQCD are
underway in this direction [16,17].
In this paper, we improve on our earlier calculations [3,4]

in three major ways. First of all, we simulate at a second
value of the lattice spacing, which allows us to perform a
continuum extrapolation. Second, we refine our approach to
nonperturbative renormalization to implement intermediate
schemes defined with no exceptional momentum channels
and thereby reduce the infrared nonperturbative uncertain-
ties. Finally, we also use twisted boundary conditions to
remove the requirement to use the Fourier modes of our
lattice for our renormalization of off-shell amplitudes: this
gives complete freedom of choice of the momentum at each
lattice spacing and enables a more reliable continuum
extrapolation of the renormalized operator.
Our final result for BK from the present analysis is

obtained using an off-shell momentum scheme renormal-

ization. When converted toMSwith p2 ¼ �2 ¼ ð3 GeVÞ2
it is

BMS
K ð3 GeVÞ ¼ 0:529ð5Þstatð15Þ�ð2ÞFVð11ÞNPR: (8)

The 3 GeV scale for our result is made accessible by our
improved renormalization techniques and enables us to
reduce perturbative error compared to a 2 GeV renormal-
ization scale. For comparison to other results, we also
quote the standard operator normalization:

B̂ RGI
K ¼ 0:749ð7Þstatð21Þ�ð3ÞFVð15ÞNPR: (9)

The full analysis of systematic errors presented in this
paper augments and finalizes an earlier conference
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presentation [18]. The result equation (8) represents around
a factor of 4 reduction in the error during the last five
years or so.

The structure of the remainder of this paper is as follows.
In the next section, we discuss the details of our simula-
tions and present the measured values of the bare matrix
elements. In Sec. IV, we discuss the definition of several
new momentum renormalization schemes and perform the
nonperturbative renormalization of the bare lattice opera-
tor OVVþAA into these schemes. In this section, we also
perform the one-loop perturbative matching from the mo-

mentum schemes into MS. Having obtained the matrix
elements at the values of the quark masses and lattice
spacing at which we perform our simulations, we present
the simultaneous chiral and continuum extrapolations of
the renormalized matrix elements in Sec. V. We will dis-
cuss the phenomenological context of our results in the
concluding Sec. VII of this paper.

II. SIMULATION PARAMETERS AND
MATRIX ELEMENTS

Details of our ensembles are given in Refs. [4,19], and
are summarized in Table I. We use the Iwasaki gauge
action [20] with 2þ 1 flavors of dynamical domain wall
fermions [21]. This action was chosen to balance topology
change against chirality after a careful study [22–24] rec-
ognizing a general problem that topological tunneling will
vanish towards the continuum limit in any local update
due to the gauge field potential barrier [22,24,25]. These
lattice fermions have near exact chiral symmetry and avoid

artificial lattice operator mixing, while retaining accept-
able topology change in our region of simulation.
We have two lattices of similar physical volume at two

lattice spacings:
(i) Our finer lattice has 323 � 64� 16 points and

a coupling 
 ¼ 2:25, which our analysis suggests
corresponds to an inverse lattice spacing a�1 ¼
2:28ð3Þ GeV. We refer to the ensembles with

 ¼ 2:25 as the 1 ensemble set.

(ii) Our coarser lattice has 243 � 64� 16 points and
a coupling 
 ¼ 2:13, corresponding to a�1 ¼
1:73ð3Þ GeV. The ensembles with 
 ¼ 2:13 are
labeled as the 2 ensemble set.

For each ensemble set, we use a number of valence masses
to increase the amount of information in the light mass
regime. We use our standard notation for quark masses. ml

andmh represent, respectively, the lighter and heavier of the
two sea-quark masses (the sea consists of two quarks with
massml and one with massmh). For the valence masses, we
use subscripts from the end of the alphabet mv, mx, and my

as appropriate.ml;h are masses in the domain wall Fermions

action used in the simulation, whereas the valence masses
appear in the corresponding partially quenched action.
Because of the finite extent of the fifth dimension, small
residual mass effects are present and the multiplicatively
renormalizable bare quark masses are defined as ~ml;h;v;x;y¼
ml;h;v;x;yþmres, where mres is the residual mass. The values

of the valence quark masses used in our measurements are
summarized in Table II. As in Ref. [4], we will restrict our
analysis, which relies on SU(2) chiral perturbation theory,
to light-quark masses corresponding to pions lighter than
about 420 MeV.
We use two approaches to calculate the matrix element

hK0jOVVþAAj �K0i. Both combine periodic and antiperiodic
boundary conditions in the time direction to eliminate the
leading, unwanted around-the-world propagation of the
meson states that arise with a finite lattice in the time
direction. In both cases, we use gauge-fixed wall sources
to create a K0 state and annihilate a �K0 state, and form a
ratio

Blat
K ¼ hK0ðt1ÞjOVVþAAðtÞj �K0ðt2Þi

8
3 hK0ðt1ÞjA0ðtÞihA0ðtÞj �K0ðt2Þi

: (10)

For convenience, we use the local axial current interpolat-
ing operators in the denominator, and this ratio must be
multiplied by a renormalization constant

TABLE I. Ensemble details. Here ‘‘traj.’’ refers to the
Monte Carlo trajectories used in our measurements. The brack-
eted ‘‘# meas.’’ refers to the number of measurements, separated
by 20 molecular dynamics (MD) time units (10 trajectories) for
the 1 ensembles, and 40 molecular dynamics time units (40
trajectories) for the 2 ensembles. To reduce the effects of
autocorrelations, we block average our data over 80 MD time
units and use blocked measurements for the purposes of statis-
tical analysis.

Lattice mh ml traj.(# meas.)

1 (323 � 64)
0.03 0.004 260–3250 (300)

0.03 0.006 500–3610 (312)

0.03 0.008 260–2770 (252)

2 (243 � 64)
0.04 0.005 900–8940 (202)

0.04 0.01 1460–8540 (178)

TABLE II. Details of partially quenched valence masses fmvg on each ensemble. Meson correlation functions were computed for all
possible pairings of valence masses.

Lattice mh fmlg fmvg
1 323 � 64 0.03 0.004, 0.006, 0.008 0.002, 0.004, 0.006, 0.008, 0.025, 0.03

2 243 � 64 0.04 0.005, 0.01 0.001, 0.005, 0.01, 0.03, 0.02, 0.04
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ZBK
¼ ZOVVþAA

Z2
A

; (11)

to obtain physically normalized matrix elements.
On our 1 ensembles, we used a single source at t ¼ 0

and used the (Pþ A) combination for the forward prop-
agatingK meson. This has the effect of creating ðPþ AÞ �
ðPþ AÞ ¼ PPþ AAþ PAþ AP combinations in meson
propagators, and the meson state has periodicity 2LT ,
where LT ¼ 64 is the temporal extent of the lattice.
Similarly, the (P� A) combination is taken for the back-
ward propagating �K meson. These Fermion boundary con-
ditions are implemented on gauge links crossing the
toroidal wrapping plane between t ¼ 0 and t ¼ LT � 1.
On each successive gauge configuration, we selected a
different time tsrc at which to insert the kaon sources. For

simplicity, this was implemented by translating the gauge
configuration and redefining tsrc to be zero. The boundary
condition described above is then applied.
The above approach requires half the number of propa-

gator inversions on each configuration (and enables us to
sample more frequently at fixed cost) compared to that
taken on the 2 ensembles. On our 2 ensembles, we used a
source at t ¼ 5 and a source at t ¼ 59 requiring separate
inversions for each source. For each propagator entering a
meson, we took the average of periodic and antiperiodic
solutions.
The �S ¼ 2 four-quark operator OVVþAA is inserted on

all times between the kaon creation and antikaon annihi-
lation operators. The locations of the kaon, antikaon, and
operator all receive L3 volume averages, giving a low
variance estimate of the correlation function.
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FIG. 1 (color online). Effective mass plateau of the lightest
unitary simulated pion (mh ¼ 0:03,mx¼my¼ml¼0:004) on the

1 ensembles. Here the plateau is obtained from the wall-local
pseudoscalar-pseudoscalar correlation function (PP) correlator,
but the fit displayed is to all pseudoscalar correlators.
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FIG. 3 (color online). Effective mass plateau of the heaviest
simulated eta (mx ¼ my ¼ mh ¼ 0:03, ml ¼ 0:008) on the 1

ensembles. Here the plateau is obtained from the wall-local PP
correlator, but the fit displayed is to all pseudoscalar correlators.
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FIG. 2 (color online). Effective mass plateau of the lightest
unitary simulated pion (mh ¼ 0:04, mx¼my¼ml¼0:005) on

the 2 ensembles. Here the plateau is obtained from the wall-local
PP correlator, but the fit displayed is to all pseudoscalar correlators.
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FIG. 4 (color online). Effective mass plateau of the heaviest
simulated eta (mx ¼ my ¼ mh ¼ 0:04, ml ¼ 0:01) on the 2

ensembles. Here the plateau is obtained from the wall-local PP
correlator, but the fit displayed is to all pseudoscalar correlators.
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The quality of the data can be gauged from Figs. 1–6,
displaying the lightest simulated pion, heaviest eta, and a
typical kaon matrix element fit to Blat

K for each of the two
lattice spacings. More examples can be found in Ref. [19].
Tables III and IV display the fitted values for the matrix
element Blat

K on each lattice. The fitted meson masses are as
in Ref. [19].

III. REWEIGHTING

As explained above, at each lattice spacing we have
performed the simulations using a number of light-quark
masses, but only a single sea strange-quark mass. As we
can only determine the physical strange-quark mass ms

after the analysis is complete, our imperfect presimulation
estimate of ms has been a source of error in previous
calculations, where we could only adjust the valence
strange-quark mass or use SU(3) chiral perturbation theory
to estimate the effects of varying the unitary strange-quark
mass. We do not expect significant effects from small

8 12 16 20 24 28 32 36 40 44 48 52 56
t

0.54

0.55
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FIG. 5 (color online). A typical Blat
K matrix element correlator

(my ¼ mh ¼ 0:03, mx ¼ ml ¼ 0:004) on the 1 ensembles.

TABLE III. Fitted Blat
K matrix element values on the 1 ensem-

bles. For heavy-light matrix elements, my is the heavy quark

mass. We chose a fit range of t ¼ 12� 52.

mx my

Bxy

ðml ¼ 0:004Þ
Bxy

ðml ¼ 0:006Þ
Bxy

ðml ¼ 0:008Þ
0.03 0.03 0.6289(12) 0.6305(12) 0.6295(12)

0.025 0.03 0.6199(12) 0.6214(12) 0.6207(12)

0.008 0.03 0.5862(17) 0.5878(17) 0.5878(19)

0.006 0.03 0.5823(19) 0.5838(21) 0.5838(22)

0.004 0.03 0.5787(24) 0.5801(27) 0.5798(28)

0.002 0.03 0.5767(46) 0.5772(43) 0.5781(50)

0.025 0.025 0.6100(13) 0.6116(13) 0.6110(13)

0.008 0.025 0.5725(16) 0.5745(17) 0.5741(18)

0.006 0.025 0.5679(17) 0.5701(20) 0.5694(21)

0.004 0.025 0.5634(21) 0.5659(24) 0.5649(26)

0.002 0.025 0.5601(39) 0.5629(37) 0.5630(43)

0.008 0.008 0.5135(18) 0.5178(19) 0.5141(20)

0.006 0.008 0.5047(19) 0.5096(20) 0.5056(22)

0.004 0.008 0.4951(21) 0.5013(23) 0.4969(25)

0.002 0.008 0.4852(28) 0.4939(32) 0.4901(34)

0.006 0.006 0.4949(20) 0.5004(22) 0.4961(24)

0.004 0.006 0.4842(23) 0.4908(25) 0.4864(27)

0.002 0.006 0.4727(29) 0.4813(34) 0.4781(35)

0.004 0.004 0.4721(26) 0.4791(29) 0.4753(31)

0.002 0.004 0.4584(32) 0.4663(37) 0.4647(39)

0.002 0.002 0.4408(39) 0.4473(44) 0.4500(48)
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FIG. 6 (color online). A typical Blat
K matrix element correlator

(my ¼ mh ¼ 0:04, mx ¼ ml ¼ 0:005) on the 2 ensembles.

TABLE IV. Fitted Blat
K matrix element values on the 2 ensem-

bles. For heavy-light matrix elements, my is the heavy quark

mass. We chose a fit range of t ¼ 12–52.

mx my Bxyðml ¼ 0:005Þ Bxyðml ¼ 0:01Þ
0.04 0.04 0.6565(12) 0.6562(12)

0.03 0.04 0.6435(14) 0.6430(13)

0.02 0.04 0.6298(16) 0.6291(14)

0.01 0.04 0.6154(20) 0.6145(17)

0.005 0.04 0.6081(26) 0.6078(24)

0.001 0.04 0.6017(48) 0.6072(53)

0.03 0.03 0.6286(14) 0.6280(13)

0.02 0.03 0.6124(16) 0.6117(14)

0.01 0.03 0.5949(19) 0.5943(16)

0.005 0.03 0.5860(23) 0.5860(20)

0.001 0.03 0.5787(40) 0.5835(40)

0.02 0.02 0.5929(17) 0.5924(15)

0.01 0.02 0.5712(19) 0.5711(16)

0.005 0.02 0.5598(23) 0.5603(19)

0.001 0.02 0.5505(36) 0.5547(31)

0.01 0.01 0.5431(22) 0.5439(18)

0.005 0.01 0.5272(26) 0.5284(21)

0.001 0.01 0.5134(37) 0.5164(29)

0.005 0.005 0.5075(31) 0.5085(24)

0.001 0.005 0.4893(42) 0.4903(31)

0.001 0.001 0.4652(55) 0.4631(40)
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adjustments of the sea strange-quark mass and reweighting
gives us a tool to demonstrate this without doubling the
cost of the simulation. For more discussion we refer to our
papers [4,19].

Figure 7 shows an overlay of a typical kaon Blat
K matrix

element correlator at the simulated sea strange-quark mass
and the physical value. Figure 8 shows the dependence of
the fitted value of the matrix element ofOVVþAA on the sea
strange-quark mass; the dependence is very small and
barely statistically significant.

For both ensemble sets, we compute the propagators at
two valence strange-quark masses: my ¼ 0:03 and 0.025

for the 1 ensembles and my ¼ 0:04 and 0.03 for the 2

ensembles. When computing kaonic quantities, we re-
weight the sea strange mass mh to both valence strange-
quark masses my such that mh ¼ my in our observables.

For each lattice and at each value of ml, we therefore have

results with two strange-quark masses with mh ¼ my, one

at the strange-quark mass at which we perform the simu-
lation and the second obtained by reweighting. This en-
ables us to interpolate linearly in the unitary strange-quark
mass to the physical point. In Tables Vand VI, we give the
values for the heavy-light Bxy matrix element on each

ensemble; it is to these data that we perform our simulta-
neous chiral fits in Sec. V.

IV. NONPERTURBATIVE RENORMALIZATION

In this section, we discuss the renormalization of the
�S ¼ 2 operator OVVþAA, whose matrix elements we are
computing. We start by performing nonperturbative renor-
malization, calculating numerically the renormalization
factor which relates the bare lattice operator corresponding
to our choice of the discrete QCD action to that defined in
some intermediate renormalization scheme. For this to be
feasible, of course, it is necessary that the intermediate
scheme can be implemented numerically and we use sev-
eral momentum subtraction schemes, which are general-
izations of the original regularization invariant momentum
scheme (RI-MOM) [26]. In phenomenological applica-
tions, our results for the matrix element hK0jOVVþAAj �K0i
have to be combined with the Wilson coefficient function,
which is calculated in perturbation theory, most frequently
using renormalization schemes based on dimensional regu-
larization, such as the naive dimensional reduction (NDR)
scheme. It is therefore necessary to combine the coefficient
function and the operator matrix element in the same
scheme. Below we present the matching factors, which
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FIG. 7 (color online). An overlay of a typical Blat
K matrix

element (my ¼ 0:03, mx ¼ ml ¼ 0:004) on the 1 ensembles at

two values of the sea strange-quark mass: mh ¼ 0:03 (red) and
mh ¼ 0:027 (blue). The latter is at our closest reweight to the
physical strange mass.
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FIG. 8 (color online). The mh dependence of a typical Blat
K

matrix element (my ¼ 0:03,mx¼ml¼0:004) on the 1 ensembles.

TABLE VI. Heavy-light Blat
K matrix element values on the 2

ensembles at the physical mh ¼ 0:035ð1Þ, mh þmres ¼ 0:038ð1Þ
obtained from the NLO PQChPT combined fits of Sec. VI. These
values are obtained by first reweighting tomh ¼ my then linearly

interpolating in the unitary strange mass.

mx Bxhðml ¼ 0:005Þ Bxhðml ¼ 0:01Þ
0.02 0.6191(32) 0.6190(27)

0.01 0.6035(35) 0.6029(31)

0.005 0.5959(38) 0.5949(37)

0.001 0.5892(64) 0.5904(65)

TABLE V. Heavy-light Blat
K matrix element values on the 1

ensembles at the physical mh ¼ 0:0273ð7Þ, mh þmres ¼
0:0278ð7Þ obtained from the NLO PQChPT combined fits of
Sec. VI. These values are obtained by first reweighting to
mh ¼ my then linearly interpolating in the unitary strange mass.

mx Bxhðml ¼ 0:004Þ Bxhðml ¼ 0:006Þ Bxhðml ¼ 0:008Þ
0.008 0.5802(27) 0.5807(29) 0.5829(26)

0.006 0.5758(29) 0.5764(32) 0.5789(29)

0.004 0.5715(33) 0.5721(38) 0.5752(36)

0.002 0.5679(49) 0.5680(52) 0.5742(59)
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relate the operator renormalized in our intermediate
schemes to the corresponding operator in the NDR scheme.
Since dimensional regularization cannot be implemented
in lattice simulations, this (continuum) matching is per-

formed in perturbation theory (at one-loop order) and is of
course independent of the lattice calculations. The proce-
dure described above can be summarized as follows:

Bare Lattice Operator !NPR Renormalized Operator in Momentum Subtraction Scheme

!PerturbationTheory
Renormalized Operator inMS� NDRScheme:

The momentum subtraction schemes, which we use
require the evaluation of the Green’s functions for the
transition dðp1Þ �sðp2Þ ! �dðp3Þsðp4Þ with a suitable choice
of the momenta pi. In the past, see, in particular, Ref. [3],
the results were presented using the RI-MOM kinematic
configuration in which p1 ¼ �p2 ¼ p3 ¼ �p4 [27].
While this is correct asymptotically, i.e., when the p2

i are
sufficiently large for each choice of the quark masses, it
was argued in Refs. [28–30] that performing the renormal-
ization using Green’s functions with no exceptional chan-
nels, i.e., with no channels in which the square of the
momentum q2 is small, suppresses the nonasymptotic chi-
ral symmetry breaking effects more effectively. In addition
to the theoretical arguments, numerical evidence was pre-
sented demonstrating the suppression of terms which vio-
lated the chiral Ward-Takahashi identities, such as the
equality of the renormalization constants of the vector
and axial currents and of the scalar and pseudoscalar
densities. Although the effects are small, typically of the
order of a few percent, lattice calculations are becoming
sufficiently precise that the reduction of this systematic
error is necessary.

For BK, the RI-MOM kinematics defined in the previous
paragraph clearly have exceptional channels (e.g., p1 þ
p2 ¼ 0) and in this paper we generalize the nonexceptional
regularization invariant symmetric momentum schemes
(RI-SMOM) of Refs. [28–30] to the four-quark operator.
The choice of nonexceptional kinematics is not unique of
course and in this paper we choose to study the Green’s
function

dðp1Þ�sð�p2Þ ! �dð�p1Þsðp2Þ (12)

with p2
1 ¼ p2

2 ¼ ðp1 � p2Þ2 � p2 for a variety of mo-
menta satisfying these conditions. In our notation below,
q ¼ p1 � p2.

We briefly mention that we have previously investigated
nonexceptional (or strictly speaking less exceptional) mo-
menta for four-quark operators [28]; here the operator was
inserted only at a single point on the lattice and the method
was less statistically precise than our current work.
Chirality mixing in the four-quark operator basis arising
in the infrared p2 region was found to be strongly sup-
pressed [28], thus revealing the true, good chiral properties
of domain wall Fermions. However, the corresponding
perturbative calculation to match this kinematic point to

the continuum MS scheme was not available, and this was
of largely academic interest in displaying the quality of
domain wall fermions.
The remainder of the section is organized as follows. In

the next subsection, we introduce 4 RI-SMOM renormal-
ization schemes, all of them defined with the kinematics of
Eq. (12). In Sec. IVB, we calculate the perturbative match-
ing factors relating OVVþAA in the 4 RI-SMOM schemes

with that in the MS-NDR renormalization scheme. We
review some aspects of the nonperturbative renormaliza-
tion of the lattice operator into a RI-SMOM renormaliza-
tion scheme in Sec. IVC, and finally in Sec. IVD, we
combine the nonperturbative renormalization (NPR) com-
putation and matching calculation to obtain the total re-

normalization factor relating the lattice and MS-NDR
operators.

A. RI-SMOM Renormalization Schemes for OVVþAA

We follow the procedure which was defined for the
renormalization of the four-quark operators in the
RI-MOM scheme [27], but now with the kinematics de-
fined in Eq. (12). We begin with the evaluation of the

amputated four-point Green’s function �ij;kl
�
;�� of the op-

erator OVVþAA, where �, 
, �, and � are the spinor labels
corresponding to the incoming �s and d quarks and outgoing
s and �d quarks, respectively, and i, j, k, l are the corre-
sponding color labels. Analogous to the definition of the
RI-MOM scheme, we impose conditions on the amputated
Green’s functions at the renormalization scale in such a
way that they are automatically satisfied by the tree-level
Green’s functions. To this end, we introduce two projection

operators Pij;kl
ðXÞ;�
;��, with X 2 f1; 2g:

Pij;kl
ð1Þ;�
;�� ¼ 1

256NðN þ 1Þ ½ð�
�Þ
�ð��Þ��

þ ð���5Þ
�ð���
5Þ����ij�kl; (13)

Pij;kl
ð2Þ;�
;�� ¼ 1

64q2NðN þ 1Þ ½ðqÞ
�ðqÞ��
þ ðq�5Þ
�ðq�5Þ����ij�kl; (14)

where N ¼ 3 is the number of colors. These projectors are
constructed to give 1 when contracted with the tree-level

result for �ij;kl
�
;�� given in Eq. (24) below.
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In order to specify the renormalization condition on the

operator, we have to include a factor of
ffiffiffiffiffiffi
Zq

p
for every

external quark line, where Zq is the wave function renor-

malization factor, and here again we use two possible
definitions, called RI-SMOM and RI-SMOM��

in

Ref. [30]. Here, we do not reproduce the explicit definitions
in terms of the renormalization of the quark propagator, but
note that they are chosen to satisfy the Ward-Takahashi
identities when combined with the renormalization condi-
tions on the vertex function for the (conserved) vector cur-
rent using two different projectors. Specifically in the
SMOM scheme,

ZRI-SMOM
q ¼ q�

12q2
Tr½��

Vq�; (15)

where the trace is over both color and spinor indices, q is the
momentum transfer at the vector current, and �V is the
amputated two point function with the incoming (outgoing)
quark having momentum p1 (p2) with q ¼ p1 � p2 and
with p2

1 ¼ p2
2 ¼ q2 chosen to be the renormalization scale.

For the second scheme, we use the same projector as in the
definition of the RI-MOM scheme, but with the nonexcep-
tional kinematics as above,

Z
RI-SMOM��
q ¼ 1

48 Tr½��
V�

��: (16)

We label the renormalized four-quark operator in each of
the four schemes by two labels ðX; YÞ with X ¼ q or ��

depending on which of the projectors, Eq. (13) or (14), are
used for the vertex and similarly Y ¼ q or �� depending
on which of the definitions, Eqs. (15) or (16), are used for
the wave function renormalization. Thus, for example,

O
ð��;qÞ
R;VVþAA ¼ Z

ð��;qÞ
O OB;VVþAA; (17)

where

Z
ð��;qÞ
O ¼ ðZRI-SMOM

q Þ2 1

Pij;kl
ð1Þ;�
;���

ij;kl
B;�
;��

: (18)

We have introduced the subscripts R and B in Eqs. (17) and
(18) to denote renormalized and bare (or lattice) quantities,
respectively. The remaining renormalized operators are
defined similarly:

Z
ð��;��Þ
O ¼ ðZRI-SMOM��

q Þ2 1

Pij;kl
ð1Þ;�
;���

ij;kl
B;�
;��

(19)

Zðq;qÞ
O ¼ ðZRI-SMOM

q Þ2 1

Pij;kl
ð2Þ;�
;���

ij;kl
B;�
;��

(20)

Z
ðq;��Þ
O ¼ ðZRI-SMOM��

q Þ2 1

Pij;kl
ð2Þ;�
;���

ij;kl
B;�
;��

; (21)

and in each case OðX;YÞ
R;VVþAA ¼ ZðX;YÞ

O OB;VVþAA, with X,

Y ¼ q, or ��.

In addition to the four renormalization schemes defined
above, we also use the standard RI-MOM scheme as the

intermediate scheme in our conversion to MS. The reason
for introducing several renormalization schemes is that it
allows us some control over the lattice and perturbative
uncertainties. After performing the perturbative matching
to the NDR scheme, each of these intermediate schemes
should lead to the same value of the matrix element of
ONDR

VVþAA. The spread of results obtained using the 5

schemes is therefore a measure of the uncertainties. In
particular, since the matching coefficients from the inter-
mediate schemes to the NDR scheme are currently avail-
able only at one-loop order (see Sec. IVB), the spread of
results is an indication of the size of the higher-order terms.
We now turn to the evaluation of the matching coefficient
at one-loop order.

B. Perturbative Conversion to the NDR Scheme

In this subsection, we calculate the conversion (match-
ing) factors between the four RI-SMOM schemes defined
in Sec. IVA above and the NDR scheme for the
�S ¼ 2 operator OVVþAA ¼ �s��

Ld�s��Ld [where ��
L �

��ð1� �5Þ and we only consider the parity even compo-
nent] using continuum perturbation theory at the one-loop
level. The two-loop anomalous dimensions are also calcu-
lated to derive the renormalization group running of the
operator in these schemes.
We now use perturbation theory to convert the operators

into the NDR schemes with the treatment of evanescent
operators as in Ref. [31], as will be explained below.
As explained above, for BK, the RI-SMOM schemes
are defined in terms of projections of the amplitude
dðp1Þ �sð�p2Þ ! �dð�p1Þsðp2Þ, where p2

1 ¼ p2
2 ¼ðp1 � p2Þ2 � p2 with p1 � p2. For p

2 in the perturbative
regime, there is no channel with soft momenta, thus re-
ducing infrared effects. At tree level, we have the 4 dia-
grams in Fig. 9, where the circles represent the two
currents �s�

�
Ld, the arrows on the quark lines denote the

flow of fermion number, and the direction of the momenta

FIG. 9. The four lowest order diagrams. Each circle represents the insertion of the current �s�
�
Ld. The d or �d (s or �s) quarks have

momenta �p1 (� p2) and the flow of fermion number is denoted by the arrow.
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are indicated explicitly below the corresponding momen-
tum. Even though both momenta p1 are ingoing and both
momenta p2 are outgoing, it is convenient to introduce the
minus signs and to think of the process as dðp1Þ �sð�p2Þ !
�dð�p1Þsðp2Þ because then the signs also implicitly keep
track of the spinor and color labels (see Fig. 10).

Since the two currents commute, the first two diagrams
are clearly equal as are the second two; thus we can rewrite
the four diagrams in Fig. 9 in terms of the two diagrams in
Fig. 10, where the spinor (Greek letters) and color (Latin
letters) indices have now been indicated explicitly. The
mathematical expression corresponding to the diagrams
in Fig. 10 is

2fð��
L Þ�
ð��LÞ���ij�kl � ð��

L Þ�
ð��LÞ���il�kjg; (22)

where the minus sign between the terms arises from fer-
mion statistics. The Fierz identity (for the parity even
component)

ð��
L Þ�
ð��LÞ�� ¼ �ð��

L Þ�
ð��LÞ�� (23)

allows us to write the lowest order result as

2ð��
L Þ�
ð��LÞ��f�ij�kl þ �il�kjg: (24)

Writing the result in this way, the spinor structure is just
that of the first of the four diagrams in Fig. 9, but the color
factor is different. It will be convenient in defining the
projectors to take a trace in color space, i.e., to multiply the
expression in Eq. (24) by �ij�kl and sum over the repeated

indices. This gives a color factor at lowest order of
N2 þ N, where N ¼ 3 is the number of colors.

We presented the above arguments explicitly because
they generalize to the one-loop calculations below.
Consider, for example, the 4 diagrams obtained by adding
a gluon between the quarks with momenta labeled p1 and
�p2 in Fig. 9. Each of these four diagrams can be Fierz
transformed into each other. It is therefore sufficient to
calculate any one of the diagrams, but care needs to be
taken in order to evaluate the color factor correctly.

Fierz identities are four dimensional relations, whereas
in NDR one works in D ¼ 4þ 2" dimensions. This is the
origin of the so-called evanescent operators such as

E1 ¼ ð �si��
Ld

jÞð�sj��Ld
iÞ � ð �si��

Ld
iÞð�sj��Ld

jÞ (25)

which vanish in 4-dimensions by the Fierz identity,
Eq. (23). Note the relative minus sign compared to
Eq. (23) due to the interchange of fermion fields. It is

conventional to define the NDR operators having
subtracted the evanescent operators, i.e. using the
4-dimensional Fierz identities [analogously to subtracting

the Euler constant and logð4�Þ when defining the MS
scheme]. This is possible because the evanescent operators
vanish in 4 dimensions and are therefore proportional to "
and are only combined with the 1=" divergence. Their
contribution is therefore independent of momenta. The
evanescent operators are therefore removed by one-loop
counterterms, and must be included when evaluating the
two-loop anomalous dimension [31,32]. In order to com-
pare our result for the one-loop counterterms with
Ref. [31], we evaluate their coefficients. We use the
same basis of three operators as in Ref. [31]; in addition
to E1 defined in Eq. (25), we introduce

E2 ¼ ð �si�����PLd
iÞð�sj�����PLd

jÞ
� ð16þ 4�Þð�si��

Ld
iÞð�sj��Ld

jÞ (26)

E3 ¼ ð �si�����PLd
jÞð�sj�����PLd

iÞ
� ð16þ 4�Þð�si��

Ld
iÞð�sj��Ld

jÞ; (27)

where PL ¼ 1� �5 [33]. In comparing our results with
Ref. [31], the reader should note that we use D ¼ 4þ 2�
to denote the number of dimensions whereas the authors of
Ref. [31] use D ¼ 4� 2�.

1. Evaluating the Diagrams

There are two independent Feynman diagrams which
have to be evaluated (see Fig. 11) and we now present the
results for these diagrams. The results are presented before
taking the traces corresponding to the projection operators
which define the RI-SMOM schemes, and so contain flavor
and color indices. The expressions for the remaining dia-
grams can then be readily obtained from those in Fig. 11 by
symmetries, except for the contribution of the evanescent
operators to the one-loop counterterm, which we also
discuss later. Leaving the indices free also provides us
with the flexibility to use a variety of renormalization
schemes (such as the schemes defined in Sec. IVA), which
we exploit at the end of this section.

FIG. 11. The two independent one-loop Feynman diagrams to
be evaluated.

FIG. 10. The lowest order diagrams, with spinor and color labels exhibited. The notation is as in Fig. 9.
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Diagram (a1) gives the following result:

g2CF

16�2
�ij�kl

�
��


L��L

�
log

p2

�2
þ2

3
C0�1

�

þ2p1

3

�

Rp1þp2�


Rp2

p2
��L

�1þ2C0

3

p1�

Rp2

p2
��L�1

3

p2�

Rp1

p2
��L

�
þ (28)

ð1��Þg
2CF

16�2
�ij�kl

�
�

L��L

�
log

p2

�2
þC0�4

3

�

þC0�1

3

�

Lp1p2þp1p2�


L

p2
��L

þC0

3

p1�

Rp2

p2
��L�C0�2

3

p1p2�

Lp1p2

p4
��L

�

�CF�ij�klA�
;��; (29)

where C0 ¼ 2
3�

0ð13Þ � ð23�Þ2 ’ 2:343 91 and �ðxÞ is the

digamma-function �ðxÞ ¼ �0ðxÞ=�ðxÞ. In Eq. (28), X � Y
denotes X�
Y��, �

�
R ¼ ��ð1þ �5Þ, and � is the gauge

parameter defined so that � ¼ 0 corresponds to the Landau
gauge and � ¼ 1 to the Feynman gauge. It will prove to be
a convenient shorthand to define A�
;�� as in Eq. (29).

The expression for diagram (b1) is

g2

16�2
Ta
ijT

a
kl

�
�

L�

�����L����

�
1

4
log

p2

�2
�2ð1� log2Þ

3

�

þð1��Þ�
L��L

�
�log

p2

�2
þ4ð1� log2Þ

3

�

þ�

Lp1�

���Lp1��

p2

�
1þ8log2

6
�ð1��Þ4log2�1

6

��
:

(30)

Diagrams (a1) and (b1) in Fig. 11 are not the only ones
which need to be evaluated but, apart from the subtlety
associated with the evanescent operators (which we neglect
for the moment but to which we return shortly), they are the
only ones for which the Feynman integrals need to be
evaluated. Consider first the four diagrams in Fig. 12, in
which one end of the gluon is attached to the quark labeled

with momentum p1 and the other to one with momentum
�p2. The results of the four diagrams in Fig. 12 can then
be deduced by inspection:

ða1Þ¼A�
;��CF�ij�kl; ða2Þ¼�A�
;��T
a
ijT

a
kl;

ða3Þ¼�A�
;��CF�il�kj; ða4Þ¼A�
;��T
a
ijT

a
kl:

(31)

To these, the contributions from the four diagrams in
which one end of the gluon is attached to the quark with
momentum �p1 must be added. These are obtained
from the results in Eq. (31) by making the substitutions
� $ �;
 $ �; i $ k; j $ l, and the sum of the eight dia-
grams is to be multiplied by 2 to include the diagrams
obtained by interchanging the two currents. In this way, we
obtain a total answer for the 16 diagrams in which a gluon
is attached to quarks of different flavor

Ca¼2ðA�
;��þA��;�
ÞðCF�ij�klþTa
ilT

a
kjÞ

�2ðA�
;��þA��;�
ÞðCF�il�kjþTa
ijT

a
klÞ

þ g2

16�2

1

�

�
1

4

�
Etree
3 � 1

N
Etree
2

�
�ð4þ�ÞEtree

1

�
: (32)

The last term contains the contribution from the evanescent
operators which we have ignored up to now in this dis-
cussion. They arise because in rewriting the divergent
terms in terms of the spinor structure, ð�

LÞ�
ð�LÞ�� or

ð�
LÞ�
ð�LÞ��, we have used the spinor Fierz identities

which are not valid in D ¼ 4þ 2� dimensions. These
contributions only arise in the presence of the � ultraviolet
divergence and are hence straightforward to identify. When
evaluating the conversion factor between the RI-SMOM
and NDR schemes, we will use projection operators, which
have some symmetry in the indices and which effectively
simplify the expression in Eq. (32).
Next we consider the 8 diagrams whose Feynman inte-

gral is given by the expression in Eq. (30). Four of these are
shown in Fig. 13 and the remaining 4 are obtained by
switching the two currents (and are equal to those in
Fig. 13). The result for each of diagrams (b2)–(b4) can
be deduced by inspection from that for (b1) given in
Eq. (30) and for the total contribution from the 8 diagrams
we find:

FIG. 12. Four one-loop diagrams whose Feynman integrals are
given by that of diagram (a1) in Fig. 11.

FIG. 13. Four one-loop diagrams whose Feynman integrals are
related to that of diagram (b1) in Fig. 11.
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Cb¼ g2

16�2

N�1

N
Otree

�S¼2

�
1þð3þ�Þlogp

2

�2

�4ð1� log2Þ
3

ð7þ�Þ
�
þ g2

16�2

2Xb
�
��;ijkl

p2

�
�
1þ8log2

6
�ð1��Þ4log2�1

6

�

þ g2

16�2

�
1

4�
ðE3� 1

N
E2Þ�1��

�
E1

�
; (33)

where

Xb
�
��;ijkl¼fð�

Lp1�
�Þ�
ð�Lp1��Þ��

þð��p2�

LÞ�
ð��p2�LÞ��gTa

ijT
a
kl

�fð�
Lp1�

�Þ�
ð�Lp1��Þ��
þð��p2�


LÞ�
ð��p2�LÞ��gTa

kjT
a
il: (34)

2. The Conversion Factor

Having kept the external color and spinor indices un-
contracted in Sec. IVB1, we are in a position to determine
the conversion factors relating the �S ¼ 2 four-quark
operator defined in the four RI-SMOM schemes to that in

the NDR scheme. The conversion factors, CðX;YÞ
BK

, are de-

fined by

O NDR
VVþAAð�Þ ¼ CðX;YÞ

BK
ðp2=�2ÞOðX;YÞ

VVþAAðpÞ; (35)

where for convenience at this stage we keep p as the
renormalization scale in the RI-SMOM ðX; YÞ schemes
and � as the renormalization scale in the NDR scheme.
Since in this subsection we are only concerned with re-
normalized quantities, we drop the subscript R denoting
renormalized. From the definition of the RI-SMOM renor-
malization schemes given in Eqs. (18)–(21), we see that the
conversion factors can be obtained from the equations

ðCðYÞ
q Þ2

CðX;YÞ
BK

Pij;kl
ðXÞ;�
;���

NDR;ij;kl
�
;�� ¼ 1; (36)

where, as throughout this paper, � represents the ampu-

tated Green’s function. CðYÞ
q are the conversion factors

relating the wave function renormalization factors in the

MS scheme and that in the RI-SMOM scheme labeled by

Y, CðYÞ
q ¼ ZMS

q =ZðYÞ
q . At one-loop order, these were already

obtained in Ref. [30],

CRI-SMOM
q ¼ 1þ g2

16�2
CF�

�
log

p2

�2
� 1

�
þOðg4Þ; (37)

C
RI-SMOM��
q ¼ 1þ g2

16�2
CF

�
1� �

2
ð3� 2 log

p2

�2
� C0Þ

�

þOðg4Þ (38)

where CF denotes the Casimir operator in the fundamental
representation of SUðNÞ. These results have recently been
extended to two loops [34,35].
We now sketch the calculation of the conversion factor

for the RI-SMOM (��; q) scheme and then present the

results for the other three RI-SMOM schemes. The renor-
malization condition in Eq. (36) with the projector of
Eq. (13) in the ð��; qÞ scheme can therefore be written in

the form

ðCRI-SMOM
q Þ2Pij;kl

ð1Þ;�
;���
NDR;ij;kl
�
;�� jnon-except: ¼ C

ð��;qÞ
BK

: (39)

From Eq. (39), together with the expressions in Eqs. (32),
(33), and (37), we can evaluate the conversion factor
between the ð��; qÞ and the NDR scheme.

There are 3 contributions to the conversion factor:
(1) The total contribution from diagrams such as those

in Fig. 12 above, in which the gluon is exchanged
between a strange quark or antiquark and a down
quark or antiquark, is

Da ¼ g2

16�2

ðN � 1ÞðN þ 2Þ
N

�
�� log

p2

�2
� 1

þ 3� C0

2
�

�
O

ð��;qÞ
VVþAAðpÞ þ

g2

16�2

1

2�

�
�
�ð8þ 2�ÞE1 � 1

2N
E2 þ 1

2
E3

�
(40)

where N ¼ 3 is the number of colors (ð3� C0Þ=2 ’
0:328 046).

(2) The corresponding contribution from diagrams,
such as those in Fig. 13 above, in which a gluon is
exchanged between quarks of the same flavor (i.e.,
the two strange quarks or the two down quarks), is

Db¼ g2

16�2

N�1

N

�
ð3þ�Þ logp

2

�2
þ12log2

�7þ2�ð2log2�1ÞgOð��;qÞ
VVþAAðpÞ

þ g2

16�2

�
1

4�

�
E3� 1

N
E2

�
�1

�
ð1��ÞE1

�
: (41)

(3) Finally, we have the contribution from the quark
wave function renormalization:

Dc ¼ g2CF

16�2
2�

�
log

p2

�2
� 1

�
O

ð��;qÞ
VVþAAðpÞ: (42)

Before presenting the final result, we make two obser-
vations:
(1) The total term with evanescent operators is

g2

16�2

1

�

�
1

2

�
E3 � 1

N
E2

�
� 5E1

�
: (43)

CONTINUUM LIMIT OF BK FROM 2þ 1 FLAVOR . . . PHYSICAL REVIEW D 84, 014503 (2011)

014503-11



This term is eliminated by introducing counterterms which are equal and opposite to this. The result agrees with (2.15) and
(2.22) of Ref. [31] (recall again that we are using D ¼ 4þ 2� and the authors of [31] are using D ¼ 4� 2�).

(2) The total logarithmic term is

g2

16�2

�
3� 3

N

�
log

p2

�2
; (44)

which agrees with the known anomalous dimension.

The final result for the conversion factor C
ð��;qÞ
BK

is given by

C
ð��;qÞ
BK

¼ 1þ g2

16�2

�
1

N

�
9� 3 log

p2

�2
� 12 log2

�
� 8þ 12 log2þ 3 log

p2

�2
� N þ �

�
1

N
ðC0 � 4 log2Þ � 1

2
� C0

2

þ 4 log2þ N

2
ð1� C0Þ

��
þOðg4Þ ¼N¼3

1þ g2

16�2

�
2 log

p2

�2
þ 8 log2� 8þ �

�
1� 5

3
C0 þ 8

3
log2

��
þOðg4Þ

’ 1þ g2

16�2

�
2 log

p2

�2
� 2:45482� �1:05812

�
þOðg4Þ: (45)

The remaining three conversion factors are obtained from Eqs. (32), (33), and (37), or (38) in a similar way and we only
present the final results. For the ð��; ��Þ scheme, we find

C
ð��;��Þ
BK

¼1þ g2

16�2

�
1

N

�
8�12log2�3log

p2

�2

�
�8þ12log2þ3log

p2

�2

þ�

�
1

2N
ð1þC0�8log2Þ�1

2
�C0

2
þ4log2

��
þOðg4Þ

¼N¼3
1þ g2

16�2

�
2log

p2

�2
þ8log2�16

3
��

�
1

3
þ1

3
C0�8

3
log2

��
þOðg4Þ

’1þ g2

16�2

�
2log

p2

�2
þ0:211844þ�0:733757

�
þOðg4Þ: (46)

For the remaining two schemes, we use the second projector in Eq. (14) and impose

ðCðYÞ
q Þ2 1

64q2NðN þ 1ÞP
ij;kl
ð2Þ;�
;���

NDR;ij;kl
�
;��

��������non-except:
¼ Cðq;YÞ

BK
(47)

again with q ¼ p1 � p2 and p2
1 ¼ p2

2 ¼ q2 ¼ p2. The conversion factors are

Cðq;qÞ
BK

¼1þ g2

16�2

�
1

N

�
9�3log

p2

�2
�12log2

�
þ12log2�9þ3log

p2

�2
þ�

�
1

N
ðC0�4log2Þ�C0þ4log2

��
þOðg4Þ

¼N¼3
1þ g2

16�2

�
2log

p2

�2
þ8log2�6þ�

�
8

3
log2�2

3
C0

��
þOðg4Þ

’1þ g2

16�2

�
2log

p2

�2
�0:454823þ�0:285788

�
þOðg4Þ (48)

and

C
ðq;��Þ
BK

¼1þ g2

16�2

�
1

N

�
8�12log2�3log

p2

�2

�
þ12log2�9þ3log

p2

�2
þ

Nþ�

�
1

2N
ð1þC0�8log2Þ�C0þ4log2þN

2
ðC0�1Þ

��
þOðg4Þ

¼N¼3
1þ g2

16�2

�
2log

p2

�2
þ8log2�10

3
þ�

�
8

3
log2þ2

3
C0�4

3

��
þOðg4Þ

’1þ g2

16�2

�
2log

p2

�2
þ2:211844þ�2:077664

�
þOðg4Þ: (49)

The results for the four conversion factors for the RI-SMOM schemes together with that for RI-MOM are summarized in
Table VII.
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3. Two-Loop Anomalous Dimension

We follow the conventions of Ref. [31] and define the
anomalous dimension � of the renormalized operatorO by

�
dOð�Þ
d�

¼ ��ð�ÞOð�Þ; (50)

where � is the renormalization scale. Expanding � as a
perturbation series

�ð�Þ ¼ g2ð�Þ
16�2

�ð0Þ þ g4ð�Þ
ð16�2Þ2 �

ð1Þ þOðg
2ð�Þ
16�2

Þ3; (51)

the one- and two-loop coefficients in theMS-NDR scheme
(called NDR in the following) are [36]

�ð0ÞNDR ¼ 6� 6

N
¼N¼3

4 and (52)

�ð1ÞNDR ¼ � 22

3
� 57

2N2
þ 39

N
� 19

6
N þ nf

�
2

3
� 2

3N

�

¼N¼3�7þ 4

9
nf; (53)

where nf ¼ 3 is the number of flavors contributing to the

running in the region of interest.

Now let the conversion factor between the NDR scheme
and scheme A, which is defined in the Landau gauge so that
the gauge parameter is not renormalized given by

ONDRð�Þ ¼
�
1þ g2ð�Þ

16�2
�rA!NDR þO

�
g2ð�Þ
16�2

�
2
�
OAð�Þ:

(54)

In the following we consider for the 5 schemes A 2
fRI-MOMð��; qÞð��; ��Þðq; qÞðq; ��Þg:.
From Eq. (45), we see that �rRI-SMOM!NDR ’

�2:454 82 and from Sec. 5 of Ref. [31] we read

�rRI-MOM!NDR¼�7þ 7

N
þ12

�
1� 1

N

�
log2 ’N¼3

0:878511:

(55)

For the one-loop anomalous dimensions, the equation

�ð0ÞA ¼ �ð0ÞNDR holds and the relations between the two-
loop anomalous dimensions are given by

�ð1ÞA ¼ �ð1ÞNDR � 2
0�rA!NDR; (56)

where 
0 is the one-loop coefficient of the QCD

-function, which is defined by


¼@�sð�Þ=ð4�Þ
@logð�2Þ ¼�
0

�
�sð�Þ
4�

�
2�
1

�
�sð�Þ
4�

�
3þOð�4

sÞ

(57)

with


0 ¼ 11

3
N � 2

3
nf; (58)


1 ¼ 34

3
N2 þ

�
1

N
� 13

3
N

�
nf; (59)

and �sð�Þ ¼ g2ð�Þ=ð4�Þ is the strong coupling constant.
In this way, we obtain in the Landau gauge

�ð1ÞNDR ¼ � 57

2N2
þ 39

N
� 22

3
� 19

6
N � nf

2

3

�
1

N
� 1

�
¼N¼3

nf¼3
� 17

3
; (60)

�ð1ÞRI-MOM¼� 57

2N2
þ39

N
�176

3
þ88log2þN

�
289

6
�88log2

�
þnf

�
1

N

�
26

3
�16log2

�
�26

3
þ16log2

�
’N¼3

nf¼3
�21:4799; (61)

�ð1Þð��;qÞ ¼� 57

2N2
þ39

N
�220

3
þ88log2þN

�
111

2
�88log2

�
þ22

3
N2þnf

�
1

N

�
34

3
�16log2

�
�10þ16log2�4

3
N

�

’N¼3

nf¼3
38:5201; (62)

�ð1Þð��;��Þ ¼� 57

2N2
þ39

N
�66þ88log2þN

�
111

2
�88log2

�
þnf

�
1

N
ð10�16log2Þþ16log2�10

�
’N¼3

nf¼3
�9:47986; (63)

�ð1Þðq;qÞ ¼� 57

2N2
þ 39

N
� 220

3
þ 88log2þN

�
377

6
� 88log2

�
þnf

�
1

N

�
34

3
� 16log2

�
� 34

3
þ 16log2

�
’N¼3

nf¼3
2:52014; (64)

TABLE VII. Summary of the conversion factors (in the
Landau gauge) of the four-quark operator from the RI-(S)
MOM schemes to the MS [NDR] scheme.

Scheme for CBK
for � ¼ 0

RI-MOM 1þ �s

4� ð0:878 51 . . .Þ þOð�2
s Þ

ð��; qÞ 1þ �s

4� ð�2:454 82 . . .Þ þOð�2
sÞ

ð��; ��Þ 1þ �s

4� ð0:211 84 . . .Þ þOð�2
s Þ

ðq; qÞ 1þ �s

4� ð�0:454 82 . . .Þ þOð�2
sÞ

ðq; ��Þ 1þ �s

4� ð2:211 84 . . .Þ þOð�2
s Þ
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�ð1Þðq;��Þ ¼ � 57

2N2
þ 39

N
� 66þ 88 log2þ N

�
377

6
� 88 log2

�
� 22

3
N2 þ nf

�
1

N
ð10� 16 log2Þ � 34

3
þ 16 log2þ 4

3
N

�

’N¼3

nf¼3
�45:4799: (65)

In Refs. [32,37], a factor has been introduced to convert the
results to the renormalization group independent (scale
invariant) value defined by

ZRGI
BK

ðnfÞ ¼ !�1
A ð�; nfÞZA

BK
ð�; nfÞ; (66)

where A again labels the scheme. At next-to-leading order,
the contribution to the evolution of the operator is written
in terms of a quantity called J

ðnfÞ
A

!�1
A ð�; nfÞ ¼ �sð�Þ��ð0Þ=ð2
0Þ

�
1þ �sð�Þ

4�
J
ðnfÞ
A

�
; (67)

as defined in Appendix D of Ref. [28]. In the notation used
here, it is given by

J
ðnfÞ
A ¼ �

�
�ð1Þ

2
0

� �ð0Þ
1

2
2
0

�
: (68)

With N ¼ 3, we find in the Landau gauge

Jð3ÞNDR ¼ 13 095� 1626nf þ 8n2f

6ð2nf � 33Þ2 ’
nf¼3

1:895 06; (69)

Jð3ÞRI-MOM¼�17397�2070nfþ104n2f

6ð2nf�33Þ2 þ8log2 ’
nf¼3

2:77357;

(70)

Jð3Þð��;qÞ¼�39177�4710nfþ184n2f

6ð2nf�33Þ2 þ8log2 ’
nf¼3

�0:55976;

(71)

Jð3Þð��;��Þ ¼ � 7251� 866nf þ 40n2f

2ð2nf � 33Þ2 þ 8 log2 ’
nf¼3

2:106 91;

(72)

Jð3Þðq;qÞ ¼�26109�3126nfþ136n2f

6ð2nf�33Þ2 þ8log2 ’
nf¼3

1:44024;

(73)

Jð3Þðq;��Þ ¼�2895�338nfþ24n2f

2ð2nf�33Þ2 þ8log2 ’
nf¼3

4:10691:

(74)

The first two results in Eqs. (69) and (70) can be taken from
Ref. [32] and agree with (D4) and (D3), respectively, in
Ref. [28].

C. Volume averaged vertex functions

In contrast to earlier RBC-UKQCD publications [28], in
the present study we have developed volume-source NPR
for four-quark operators with a generalized momentum
configuration. As will be demonstrated below, this volume
averaging greatly improves the statistical precision. The
technique is similar in style to previous analyses intro-
duced for bilinear operators by the QCDSF Collaboration
[38]. The advantage of the method arises from the fact that
the amputated vertex functions are evaluated with the
operator insertion averaged over all L4 lattice sites, as
opposed to the single-point source operator insertion. The
resulting statistical errors are tiny and systematic effects
like O4 breaking lattice artifacts dominate. These must be
included in the error analysis or removed using, for ex-
ample, the techniques of [39] (which we also do in this
study).
We define the four momentum source, used on a Landau

gauge-fixed configuration, as

	pðxÞ ¼ eip�x
�
�ij��
; (75)

where i, j and �, 
 are color and spinor labels, respec-
tively, and the momenta take the values

p� ¼ n�
2�

L
; (76)

where n is a four-vector of integers.
On a given gauge field U�ðxÞ, we solve the equation

Mðx; yÞGpðyÞ ¼ 	pðxÞ; (77)

and M is the domain wall fermion matrix with ð5�M5Þ1
on the site diagonal portion.
In performing the NPR, as explained above, we

select two momenta, p1 and p2, satisfying p2
1 ¼ p2

2 ¼ðp1 � p2Þ2. In order to reduce the artifacts arising from
the breaking of O4 symmetry, we selected values for
p2
1 ¼ p2

2 ¼ ðp1 � p2Þ2, such that while still satisfying the
Fourier constraints we best minimize

P
ip

4
i as documented

in Table VIII. Alternatively, following Ref. [39], we may
impose twisted boundary conditions [40–45] on the quark
fields

qðxþ LÞ ¼ eiBxqðxÞ; where B� ¼ ��

L�

: (78)

Equation (77) is then modified to

Mðx;yÞ ~GpðyÞ¼	pðxÞ; where ~Gðy;pÞ¼e�iByGpþBðyÞ:
(79)
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Thus, by varying the twist angle �, we can vary the mag-
nitude of the momentum without changing the direction.
Our choices of p and B are documented in Table IX.
The particular choices here are the nonexceptional direc-
tions that minimize

P
ip

4
i . We choose the components of B

equal and always in the same direction as p: for example, if
p ¼ ð0; 1; 1; 0Þ then B ¼ �

L ð0; �; �; 0Þ.
We now form phased propagators

G0
pðxÞ ¼ GpðxÞe�ip	x ¼ X

y

M�1ðx; yÞeip	ðy�xÞ: (80)

With twisted boundary conditions, this equation is gener-
alized to

~GpðxÞe�ip	x ¼ GpþBðxÞe�iðpþBÞ	x

¼ X
y

M�1ðx; yÞeiðpþBÞ	ðy�xÞ ¼ G0
pþBðxÞ;

(81)

so that the phases are properly accounted for and the
following discussion holds for both twisted or untwisted
propagators. For each configuration, we form unamputated
bilinear and four-quark vertex functions for generic Dirac
structure �:

�X
x

�5ðG0
p1
ðxÞÞy�5�G

0
p2
ðxÞ

�
ij;�


; (82)

and

X
x

ð�5ðG0
p1
ðxÞÞy�5�G

0
p2
ðxÞÞij;�


�ð�5ðG0
p1
ðxÞÞy�5�G

0
p2
ðxÞÞkl;��: (83)

Here, external color and spin indices are left free for later
amputation. We use the kinematics explained in Sec. IVB
in which the four-point functions have two legs with
incoming momentum p1 and two with outgoing momen-
tum p2.
A single 12� 12 object is written out for each configu-

ration and momentum point for the bilinear vertex func-
tions, and a 12� 12� 12� 12 object for the four-quark
operator. For convenience, we use a single 12 valued index
below to represent both color and spin. These building
blocks enable the accumulation of the following ensemble
averages:

ð �G0
pÞab ¼

X
x

hðG0
pðxÞÞabi; (84)

TABLE VIII. Nonexceptional discrete momenta used for the evaluation of amputated Green’s
functions in our NPR analysis. The momenta here are listed in ðx; y; z; tÞ order for our 243 � 64
and 323 � 64 lattices. The integer Fourier mode numbers fnig are given and the lattice momenta
are related via api ¼ ni2�

Li
. The exceptional momenta used correspond to p2 ¼ p1 for the same

set of momenta.

243 � 64 p1 p2 323 � 64 p1 p2

(0,4,4,0) (4,0,4,0) (3,2,2,2) (3,2,�1,�4)
(1,2,2,8) (�2,�1,2,8) (4,2,2,0) (4,0,�2,4)
(1,4,2,8) (2,�1,4,8) (4,4,3,2) (4,3, �1, �8)
(2,2,4,0) (4,�2,2,0) (4,�5,0,-6) (4,0,�5, �6)
(2,3,2,8) (3,� 2, 2,8) (�4, �1, �4, 2) (�4,�4,1,2)
(�3,1,1,8) (1,1,3,8)

TABLE IX. Nonexceptional momenta and twist angles used for the evaluation of amputated
twisted Green’s functions in our NPR analysis. The momenta here are listed in ðx; y; z; tÞ order
for our 243 � 64 and 323 � 64 lattices. The integer Fourier mode numbers fnig are related to the
lattice momenta via api ¼ ni2�

Li
. The momentum added by the twist, B, is determined by the

twist angle � giving api ¼ ð2niþ�Þ�
Li

. The exceptional momenta used correspond to p2 ¼ p1 for

the same set of momenta.

243 � 64 p1 p2 �

(� 3,0,3,0) (0,3,3,0) 3
16n: n ¼ f�2; 1 . . . ; 12g

(� 4,0,4,0) (0,4,4,0) 3
2

323 � 64 p1 p2 �
(� 3,0,3,0) (0,3,3,0) 1

4

(� 4,0,4,0) (0,4,4,0) � 3
4 ,

3
8

(� 5,0,5,0) (0,5,5,0) � 5
8 ,

3
8
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ðV�ðp1; p2ÞÞab ¼ hX
x

ð�5ðG0
p1
ÞyðxÞ�5�G

0
p2
ðxÞÞabi; (85)

Wstuv
� ðp1; p2Þ ¼ hX

x

ð�5ðG0
p1
ÞyðxÞ�5�G

0
p2
ðxÞÞsu

� ð�5ðG0
p1
ÞyðxÞ�5�G

0
p2
ðxÞÞtvi: (86)

These ensemble averages are then used to construct the
amputated vertex functions for bilinears

�bilinear
� ¼ �5ð �G0

p1
Þ�y�5V�ðp1; p2Þð �G0

p2
Þ�1; (87)

where � 2 fA; V; S; P; Tg and for four-quark operators

�4q
� ¼ ð�5ð �G0

p2
Þ�y�5Þasð�5ð �G0

p2
Þ�y�5Þbt

�Wstuv
� ðp1; p2Þð �G0

p1
Þ�1
uc ð �G0

p1
Þ�1
vd (88)

where � 2 fVV � AA; SS� PP; TTg.
Finally the �4q

� are contracted with the projectors de-

fined in Eqs. (13) and (14).

D. Lattice Results for the Renormalization of BK

While the methods summarized in the previous section
can be directly applied to the case at hand, it is important
to adopt a strategy which depends on amplitudes which
can be accurately determined. For example, it is useful to
directly calculate the ratio of renormalization factors in the
scheme S, ZS

OVVþAA
=Z2

A, which is needed for the ratio of the

four-quark matrix element to f2K, which enters the actual
definition of BK because the common factor of Z2

q appear-

ing in the lattice calculation of ZS
OVVþAA

and Z2
A cancels in

this ratio. (Here Zq is the renormalization factor for the

domain wall quark field, which is central to the RI-MOM
approach, but may introduce large systematic errors if it is
identified as the coefficient of a momentum-dependent
term in the lattice quark propagator.)

Thus, we transform our lattice-normalized result for BK

to one normalized in the scheme S by multiplying by the
ratio

ZS
BK

¼ ZS
OVVþAA

Z2
V

¼
�

�2
V

�OVVþAA

�
S

m!0
; (89)

where �OVVþAA
is the projection of the amputated Green’s

function, �4q
� , with a projector from Eqs. (13) and (14)

corresponding to the renormalization scheme S, and �V ¼
Zq

ZV
is the appropriate projection of the amputated vertex

function of the local vector current �V . Here either the
local vector or axial current can be used since their differ-
ence is expected to be of order m2

res.
We compute ZBK

in each scheme using Eq. (89). The

twisted momenta are given in Table IX. For the 1 ensem-
bles, the lattice momenta approximately span the physical
range 4:0 GeV2 <p2 < 11:0 GeV2. On the 2 ensembles,

the momenta span 3:25 GeV2 <p2 < 9:0 GeV2. The
overlap region, 4:0 GeV2 < p2 < 9:0 GeV2, will be used
for continuum extrapolations.
We perform a linear extrapolation of the results to the

massless limit using data with quark masses corresponding
to the dynamical light-quark massesml. We do not observe
any statistically relevant mass dependence in ZBK

. Since

we are restricted to a single sea strange-quark mass in our
computation, we cannot perform a chiral extrapolation for
the third active flavor. This mismatch between the mass-
independent renormalization schemes and the finite sea
strange-quark mass is included in our error budget.
The lattice data in the chiral limit is converted to the

NDR scheme at the renormalization scale � ¼ 2 GeV or
� ¼ 3 GeV using the perturbative results from Sec. IVB.
Several additional inputs are required: we define the

three flavor coupling �s from the PDG 2010 central values

�sðMZÞ ¼ 0:1184ð7Þ, mMS
b ¼ 4:19þ18

�6 GeV, and mMS
c ¼

1:27þ7
�9 GeV by using the four-loop running down to our

renormalization scale and matching across flavor thresh-
olds. We combine this four-loop and 2þ 1 flavor �s with
the two-loop anomalous dimensions to obtain the Wilson

coefficients for both scheme change to MS, and to obtain
the 2þ 1 flavor renormalization group invariant (RGI)
operator.
The perturbative contribution to the momentum scale

dependence is divided out, and the data for ZS
BK

is dis-

played in Figs. 14 and 15. The remaining p2 dependence is
a source of systematic error and is discussed in detail in
Sec. IVD1.

1. Systematic errors due to renormalization

In Tables X, XI, XII, and XIII, we summarize the results
and the error budget for the schemes described in Sec. IVA.
There are six main contributions to the total error:
(1) Statistical errors. These are denoted by the label

‘‘stat’’ in Tables X, XI, XII, and XIII.
(2) Errors due to the breaking of O4 symmetry. As

explained below, we eliminate these errors by eval-
uating the Green’s functions using momenta which
are made accessible by the implementation of
twisted boundary conditions. These are therefore
absent in Tables X, XI, XII, and XIII.

(3) Uncertainty in the values of the lattice spacing. We
denote these by a�1 in Tables X, XI, XII, and XIII.

(4) Uncertainties due to infrared chiral symmetry
breaking effects. These are only significant in the
RI-MOM scheme where one manifestation is the
difference in the values of �V and �A. We therefore
label these effects by V � A in Tables X, XI, XII,
and XIII.

(5) Errors due to the fixed sea strange-quark mass when
defining mass-independent renormalization
schemes. We label this by ms in Tables X, XI, XII,
and XIII.
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(6) Error due to the truncation of the perturbation series
in the matching. We label this by PT. Since we
estimate this error by comparing the results obtained
in different schemes, it is absent in Tables X, XI,
XII, and XIII where errors in individual schemes are
presented separately.

We define the central value for ZBK
through a linear

interpolation in ðapÞ2 to the same physical scale p2 ¼ �2

on both ensemble sets, and this is our chosen MS renor-
malization scale �. We take the continuum limit of the
renormalized matrix element, removing the lattice arti-
facts. This approach differs from earlier work in our col-
laboration [28] where the values of the renormalization
constants extrapolated to p2 ¼ 0 were used.

We now consider the sources of systematic error in more
detail:

O4 breaking: The use of volume sources leads to tiny
statistical errors and as a result the scatter of the points
around a smooth curve in ðapÞ2 becomes a prominent
source of uncertainty. This is illustrated by a comparison

of the left- and right-hand plots of Figs. 14 and 15. The
scatter in the left-hand plots, which correspond to
Fourier momenta given in Table VIII, can be attributed
to artifacts which appear due to the breaking of rota-
tional symmetries on the lattice. In previous studies,
they have been hidden due to the statistical noise and
the averaging over all degenerate p2. In a recent paper
[39], it has been shown how this scatter can be avoided
using twisted boundary conditions. Instead of using the
Fourier modes, we introduce twisted boundary condi-
tions and use momenta which are equivalent under the
hypercubic group on each lattice spacing. This elimi-
nates the spread due to the breaking of O4 invariance.
This expectation is confirmed in the right-hand plots in
Figs. 14 and 15, where we use the twisting angles
specified in Table IX and we therefore use the twisted
data exclusively in this analysis. Of course, the Oða2Þ
errors still remain—we have simply chosen a single
orientation for the lattice momentum. The twisting al-
lows us to deal with these discretization errors by taking
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FIG. 14 (color online). We can use the perturbative running to convert the chiral limit of the ratio (91) to MS at 2 GeV for each

p2 using ZS
BK
ðp2Þ � !NDRð�¼2 GeV;nf¼3Þ

!Sð�2¼p2 ;nf¼3Þ . This is displayed for all five intermediate MOM schemes S on the 2 ensemble set (243, a�1 ¼
1:73 GeV lattice). The top two panels correspond to the original RI-MOM as the intermediate scheme and the other four rows
correspond to the schemes of Sec. IVB. The left-hand panels show the data with the momenta of Table VIII and the right-hand panels
show the data using the momenta in Table IX accessible with the use of twisted boundary conditions. The scatter due to the Oð4Þ
symmetry breaking in the left-hand panels is absent in the right-hand panels. For this reason, we use the data with twisted boundary
conditions for our analysis.
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the continuum limit of a fixed observable with a con-
trolled Symanzik expansion.

Uncertainty in the lattice spacing: In order to obtain the
renormalization constants at a given physical scale, we use
our measured values of the lattice spacings a�1

24 ¼ 1:73ð3Þ
and a�1

32 ¼ 2:28ð3Þ [19]. The central values quoted above

for the renormalization constants are obtained using the
central values for a�1 and the errors are estimated by
recalculating ZBK

using a�1 þ �a�1, where �a�1 is the

error in the inverse lattice spacing, and taking the differ-
ence for the estimated uncertainty.
Infrared chiral symmetry breaking effects: In the origi-

nal RI-MOM scheme, the difference between the bilinear
vertex functions of the vector and the axial vector current
is significant [28]. We perform separate analyses using �V

or 1
2 ð�V þ�AÞ in ZBK

, as these differ for the original

RI-MOM kinematics due to infrared chiral symmetry ef-
fects. We include the difference as a systematic error and
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FIG. 15 (color online). We can use the perturbative running to convert the chiral limit of the ratio (91) to MS at 2 GeV for each p2

using ZS
BK
ðp2Þ � !NDRð�¼2 GeV;nf¼3Þ

!Sð�2¼p2;nf¼3Þ . This is displayed for all five intermediate MOM schemes on the 1 ensemble set (323, a�1 ¼
2:28 GeV lattice). The top two panels correspond to the original RI-MOM as the intermediate scheme and the other four rows
correspond to the schemes of Sec. IVB. The left-hand panels show the data with the momenta of Table VIII and the right-hand panels
show the data using the momenta in Table IX accessible with the use of twisted boundary conditions. The scatter due to the breaking of
Oð4Þ symmetry is smaller on this finer lattice.

TABLE X. Error budget, without the perturbative truncation (PT) error, for ZNDR
BK

ð2 GeVÞ on the 1 ensemble set (
 ¼ 2:25 323

lattices.)

Scheme MOM SMOM ð��; ��Þ SMOM ð��; qÞ SMOM ðq; ��Þ SMOM ðq; qÞ
ZNDR
BK

ð2 GeVÞ 0.955 41 0.960 89 1.038 38 0.921 64 1.000 28

Stat 0.001 51 0.000 46 0.000 93 0.001 04 0.000 36

a�1 0.000 45 0.000 52 0.002 11 0.000 30 0.001 29

ms 0.008 46 0.002 21 0.003 86 0.001 74 0.001 51

V � A 0.005 51 0.000 14 0.000 13 0.000 10 0.000 14

Total 0.010 22 0.002 32 0.004 50 0.002 05 0.002 02
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take the ratio with �V as the central value. This was
estimated to be one of the largest sources error in our
previous RI-MOM work, but we now find that there is no
measurable difference between the two cases for the new
SMOM schemes.

ms: We associate an error due to our treatment of data
with sea strange quarks near their physical mass while
using a mass-independent scheme when converting to

MS. This can be estimated by measuring the slope of the
data with respect to the simulated light-quark masses in the
chiral extrapolation of vertex functions. We take one half
of this slope, as there is now a single flavor, and multiply by
the simulated strange-quark mass to obtain the systematic
error. This error is rather small for the nonexceptional
momentum schemes, which have a mild mass dependence.

Perturbative truncation: For each scheme, a perturbative
truncation error arises because we only know the perturba-
tive running to some fixed order. Estimating this error is
necessarily subjective as a rigorous estimate would require
us to know the unknown higher-order terms.

At fixed order, there are two possible approaches that
may be advocated as being reasonable estimates of this

error. First, notional convergence of the perturbative series
could allow one to estimate the error as either the last term
in the series, or perhaps �n

s , where n is the order of the first
unknown term, or even ð�s

4�Þn according to subjective taste.

These differ greatly, however for our preferred scheme
SMOMðq; qÞ the last term is around 0.8%.
Another approach is to compare the results obtained

using different schemes to the order at which we know
the results, and consider that any discrepancies between the
schemes after the well-controlled continuum limit has been
taken are indicative of the residual perturbative uncer-
tainty. Here again some subjectivity enters through an
assessment of which and how many schemes should be
considered, however this is a promising approach which
we adopt.
In Ref. [39], it was found that the SMOMðq; qÞ scheme

was better described by two-loop perturbative running than
the other schemes. Here we also find that the residual p2

dependence for the SMOMðq; qÞ scheme is the smallest,
and in Sec. IVD 3 we confirm the analysis of [39] on our
ensembles with a larger volume. This indicates that in the
continuum limit, the SMOMðq; qÞ scheme is best described

TABLE XIII. Error budget without PT error for ZNDR
BK

ð3 GeVÞ on the 2 ensemble set (
 ¼ 2:13 243 lattices).

Scheme MOM SMOM ð��; ��Þ SMOM ð��; qÞ SMOM ðq; ��Þ SMOM ðq; qÞ
ZNDR
BK

ðGeVÞ 0.904 44 0.919 83 0.974 55 0.891 47 0.946 72

Stat 0.000 66 0.000 10 0.000 29 0.000 27 0.000 11

a�1 0.000 76 0.000 51 0.001 31 0.000 07 0.000 84

ms 0.003 47 0.001 81 0.001 64 0.001 48 0.000 63

V � A 0.002 03 0.000 03 0.000 12 0.000 09 0.000 12

Total 0.004 15 0.001 88 0.002 13 0.001 51 0.001 06

TABLE XII. Error budget without PT error for ZNDR
BK

ð2GeVÞ on the 2 ensemble set (
 ¼ 2:13 243 lattices).

Scheme MOM SMOM ð��; ��Þ SMOM ð��; qÞ SMOM ðq; ��Þ SMOM ðq; qÞ
ZNDR
BK

ð2 GeVÞ 0.925 78 0.937 31 1.013 50 0.899 36 0.976 21

Stat 0.000 28 0.000 10 0.000 32 0.000 27 0.000 11

a�1 0.000 49 0.000 64 0.002 25 0.000 13 0.001 40

ms 0.007 57 0.003 93 0.004 45 0.000 54 0.001 80

V � A 0.007 50 0.000 21 0.000 26 0.000 21 0.000 26

Total 0.010 67 0.003 99 0.005 00 0.000 65 0.002 30

TABLE XI. Error budget without PT error for ZNDR
BK

ð3 GeVÞ at 
 ¼ 2:25 (323 lattices).

Scheme MOM SMOM ð��; ��Þ SMOM ð��; qÞ SMOM ðq; ��Þ SMOM ðq; qÞ
ZNDR
BK

ð3 GeVÞ 0.934 53 0.942 84 0.992 52 0.916 81 0.966 98

Stat 0.000 30 0.000 17 0.000 34 0.000 38 0.000 13

a�1 0.000 58 0.000 49 0.001 37 0.000 04 0.000 86

ms 0.001 81 0.000 48 0.000 39 0.000 24 0.000 09

V � A 0.001 88 0.000 02 0.000 02 0.000 02 0.000 02

Total 0.002 69 0.000 70 0.001 47 0.000 46 0.000 88
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by the perturbative running, and we take the result in this
scheme as our central value. We note that of our schemes

Jð3Þðq;qÞ were closest to Jð3ÞNDR, and this is therefore consistent

with the small size of the perturbative correction needed to
change scheme. For the error, we take the difference be-
tween the two schemes that are best described by pertur-
bation theory in Sec. IVD3, namely, the difference
between the SMOMðq; qÞ and SMOMð��; ��Þ schemes.

We examined alternate strategies involving a weighted
average of the results in all the schemes. This selects the
schemes best described by perturbation theory, and

deweights those poorly described by perturbation theory.
Here the relative weight might be determined by the slope
of each scheme after removing perturbative running. We
find that in this case the overall error is slightly smaller
than that obtained from the difference of the results in the
SMOMðq; qÞ and SMOMð��; ��Þ schemes, and so we

adopt the latter as the more conservative error.

We also note from our tables that at the higher scale the

difference between schemes is smaller. For example, on

our finer lattice, i.e., closer to the continuum limit, we find

that the rms error between the different schemes is reduced
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FIG. 16 (color online). Mixing coefficient at 
 ¼ 2:25 for O1 ¼ OVVþAA and the operators O2 ¼ OVV�AA, O3 ¼ OSS�PP,
O4 ¼ OSSþPP, and O5 ¼ OTT . The data shown has been extrapolated to the chiral limit.
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FIG. 17 (color online). Continuum limit step scaling functions for all four SMOM schemes (blue) compared with
one-loop perturbation theory (black). The continuum limit is a simple linear extrapolation in a2. The right, s ¼ 1, point corresponds
to 3 GeV.
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from around 0.04 to 0.03 as we go from 2 to 3 GeV. At a
sufficiently high scale and in the continuum limit, all
schemes should give the same result. Since the difference
between schemes is a major systematic error and we be-
lieve we have good control over lattice artifacts by taking
the continuum limit, we prefer to compute ZBK

at the

higher scale of 3 GeV. The nonperturbative conversion
factor to go from 2 to 3 GeV in a variety of schemes will
be presented in a later section.

Finally, as a result of using a formulation of lattice QCD
with good chiral properties, we have no systematic error
associated with operator mixing, as we explicitly demon-
strate in the following subsection.

2. Operator mixing

The four-fermion operator OVVþAA renormalizes
multiplicatively when chiral symmetry is preserved. This
holds, for example, for lattice regularizations, which
preserve chiral symmetry and mass-independent renor-
malization schemes. In Ref. [28], it was shown that the
original RI-MOM procedure, with four identical momenta
in the four-point vertex function, does not lead to vanish-
ing mixing with the remaining elements of the basis of
dimension six operators. Already in Ref. [28], it was
pointed out that schemes with nonexceptional momentum
configurations p2

1 ¼ p2
2 ¼ ðp1 � p2Þ2 give mixings con-

sistent with zero. The application of momentum sources to
this problem dramatically decreases the statistical error on
the mixing coefficients. Therefore, we are able to give
more stringent bounds on the residual mixing, which is
expected to be of Oðam2

resÞ for domain wall fermions. In
Fig. 16, we present results for the mixing coefficient
ZVVþAA;X, where X ¼ VV � AA, SS� PP, SSþ PP,
or TT in the SMOM� ð��; ��Þ scheme. The other

SMOM schemes also show similarly small mixing
coefficients, while the mixing is artificially enhanced
through the pion pole contribution in the RI-MOM
scheme. Since the mixing coefficients are found to be at
least 4 orders of magnitude smaller than the multiplicative
factor Z11, we conclude that the mixing can be safely
neglected even at the high statistical accuracy reached in
our computation. In the following, we define the
renormalization factor for BK as the multiplicative Z
factor only.

3. Step scaling functions

Following Ref. [39], we can compute the step scaling
functions �BK

. In this reference, a comparison of the con-

tinuum nonperturbative step scaling functions with the
perturbative results was proposed as a means to identify

the ‘‘best’’ scheme for conversion to MS. It was observed
that the SMOMðq; qÞ scheme agreed very well with the
perturbative running. We also find here that this scheme
has the smallest residual slope in p2 after removing the
perturbative running.
Details of the step scaling scheme can be found in [39];

we briefly summarize them here. Using Eq. (89) in the
chiral limit on each ensemble, we have calculated
ZBK

ðp; aÞ for p in the range 2:0 GeV< p< 3:0 GeV.

Because of our twisted boundary conditions, we have
been able to choose the same momentum direction con-
sistently. Thus, renormalization constants at the same
physical scale on both lattices have the same Symanzik
expansion and we can perform the continuum extrapola-
tion of the ratio,

�BK
ðp; sp; aÞ ¼ ZBK

ðsp0; aÞ
ZBK

ðp0; aÞ (90)

where s is a scale factor between 1 and 1.5 and p0 ¼
2 GeV to obtain

lim
a!0

�BK
ðp; sp; aÞ ¼ �BK

ðp; spÞ ¼ ZBK
ðsp0Þ

ZBK
ðp0Þ : (91)

The present calculation marks an improvement over
Ref. [39] where the determination of the lattice spacing
was performed using fits to the static potential and was a
large source of statistical and systematic error. Here we use
the well determined values of the lattice spacing [19] on
these ensembles, which significantly reduces the error.
Figure 17 shows the step scaling functions for all four
SMOM schemes, and we confirm that the SMOMðq; qÞ
is very well described by perturbation theory. This moti-
vates us to use it as our central value. In these plots, we use

the opposite convention to [39] and plot Zð3s GeVÞ
Zð3 GeVÞ , where s

varies between 2
3 and 1. The values of �BK

ð2 GeV; 3 GeVÞ
and the corresponding error budgets are presented in
Table XIV.

TABLE XIV. Scaling factor �BK
ð2 GeV; 3 GeVÞ from 2 to 3 GeV for each scheme. The values are the reciprocal of the left most

point in Fig. 17. The error from the uncertainty in the lattice spacing is now folded into the statistical error.

Scheme MOM SMOM ð��; ��Þ SMOM ð��; qÞ SMOM ðq; ��Þ SMOM ðq; qÞ
�BK

ð2 GeV; 3 GeVÞ 0.984 57 0.983 46 0.937 83 1.008 93 0.961 89

Stat 0.003 52 0.000 91 0.001 54 0.001 86 0.000 73

ms 0.010 41 0.000 75 0.003 82 0.000 56 0.000 12

V � A 0.000 68 0.000 66 0.000 08 0.000 42 0.000 07

Total 0.011 01 0.001 35 0.004 12 0.001 99 0.000 75
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V. CHIRAL-CONTINUUM EXTRAPOLATION
STRATEGY

In Ref. [19], we perform a combined chiral-continuum
fit simultaneously to our 1 and 2 ensemble sets, allowing us
to extract the lattice spacing and physical quark masses
characterizing each ensemble set. An ensemble set is a
group of ensembles with the same value of 
. When
extrapolated to physical up/down and strange-quark
masses, determined via two constraints, we determined
the lattice spacing of each ensemble set using a third
constraint. Thus, with two ensemble sets, a total of six
constraints are required, and the relation of these con-
straints between the different ensemble sets determines
our chosen scaling trajectory to the continuum limit: in
principle we are free to choose three quantities or ratios as
having no a2 corrections in defining our scaling trajectory.

We summarize the chiral-continuum fit procedure and
the subsequent determination of the lattice scales and
physical quark masses below. Throughout, we denote
masses implicitly shifted by mres with a tilde as in ~ml;
these are analogous to a partial conservation of the axial
current mass, but as we have good chiral symmetry, the
adjustment is rather small.

A. Overview of method

In Ref. [19], we simultaneously performed a chiral-
continuum fit of the following five quantities: m�, mK,
m�, f�, and fK. After summarizing these global fits to
obtain lattice spacings and quark masses, we will then
perform a separate chiral-continuum fit for BK. We explore
two alternate sets of fit forms:

(i) The first form is obtained through a joint chiral and
a2 expansion at next-to-leading order in SUð2Þ chiral
perturbation theory (ChPT) and in a2. Throughout
our analyses, we use �� ¼ 1 GeV as the chiral

scale. For heavy-light quantities such as BK, mK,
and fK, we use SUð2Þ PQChPT to which the kaon
is coupled into the theory at leading order in the
nonrelativistic expansion [4].

(ii) The second form is obtained from a leading-order
analytic expansion about a nonzero unphysical pion
mass as advocated by Lellouch [46], and including
a2 corrections. The fit forms are linear in the quark
masses. By using this approach, we lose the ability
to take the chiral limit and only extrapolate to the
nonzero physical point.

B. Ideal trajectory to continuum limit

We must use six quantities to determine the scale,
strange mass, and the (degenerate) up/down mass for
each of the two lattice spacings. The discussion can be
simplified if we first consider an ideal case where we were
able to simulate at any quark mass. In this case, we would
tune the input quark masses on both lattices until we obtain

m�=m� and mK=m� simultaneously equal to their experi-
mentally observed values.
This would define a nonperturbative, hadronic mass

dependent renormalization condition, and the freedom
we hold in defining the trajectory to the continuum would
be absorbed by defining these quantities to be artifact-free.

C. Matching at unphysical quark mass

In practice, we are not yet able to simulate with the
physical quark masses and getting to the physical masses
involves some degree of interpolation or extrapolation.
However, the above strategy can be modified to identify
the mass parameters for each ensemble, which lie on the
particular scaling trajectory by requiring that a pair of mass
ratios take on convenient unphysical values rather than
‘‘real world’’ observed ratios.
For example, we can require that the ratiosmll=mhhh and

mhl=mhhh take the values given by one pair of input
quark masses that were used when generating a particular
ensemble. Here the masses mll, mhl, and mhhh are the
unphysical analogues of m�, mK and m� for our unphys-
ical choice of ml and mh. Then the pair of matching light
and heavy quark masses, (ml, mh), for a second ensemble
set with a different value of 
 can be obtained by inter-
polation in the light-quark mass ml. We also require a
matching value of mh on this second ensemble. As we
only used one mass value for the strange sea quark, we
apply reweighting to assign the heavy sea-quark mass the
value mh. This self-consistent heavy quark mass reweight-
ing and interpolation to an equal valence mass will be
performed iteratively.
We formulate our approach to deal with arbitrarily many


 values with ensemble set index e. We may then define a
lattice spacing ratio for each ensemble set e to the primary
ensemble set 1 from the ratio of hhh baryon masses:

Re
a ¼ ðmhhhÞ1

ðmhhhÞe ¼
a1

ae
; (92)

where this ratio is naturally 1 for e ¼ 1.
For the quark masses that yielded matched pseudoscalar

and hhh baryon masses, we characterize the additional
logarithmic dependence on a by defining the factors Ze

l

and Ze
h:

Ze
l ¼

ð ~mlÞ1
Re
að ~mlÞe (93)

Ze
h ¼

ð ~mhÞ1
Re
að ~mhÞe : (94)

As we approach the continuum limit, standard renor-
malized perturbation theory implies that physically equiva-
lent light and heavy quark masses will be related between
two
 values by the same renormalization factor. However,
for nonzero lattice spacing, we expect Ze

l � Ze
h. Further, as
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ae ! a1, these factors each approach unity. This implies
[19] that

Ze
h ¼ Ze

l ð1þ cm½ða1Þ2 � ðaeÞ2�Þ: (95)

While the coefficient cm must vanish as ml ! mh, we
have not written it as proportional to mh �ml because the
low energy matrix elements of the dimension 6 operators,
which give rise to these Oða2Þ corrections, will contain the
more complex infrared quark mass dependence of low
energy QCD. In fact, the difference between these two
factors is at or below the 1% level and, as can be seen
from Table XV, they were numerically indistinguishable in
our study [19]. Never the less, we treat them as two
independent quantities in our fits.

When performing an extrapolation in quark mass using
both of the available ensembles, it is convenient to employ
a mass renormalization scheme which is closely related to
the mass parameters used in those simulations. Thus, for
any simulated quark mass on any ensemble set e, we
introduce an equivalent, matched quark mass m1

f, ex-

pressed in lattice units on our 1 ensemble set:

m1
f � Ze

fR
e
am

e
f for f ¼ l or h: (96)

This m1
f represents a convenient but unconventional renor-

malization scheme where Zm is defined to be unity for our
finest lattice spacing. This noncanonical choice of renor-

malization scheme can of course be transformed toMS at a
later stage.

The matching prescription ensures that the trajectory to
the continuum is defined such that the masses of certain
simulated pionlike, kaonlike, and �-like particles are lat-
tice artifact-free. In principle, these states are only lattice
artifact-free at the specific simulated masses ml and mh

used to define the fixed factors Zl and Zh in Eq. (96).
However, in some neighborhood ð�ml

; �mh
Þ of this simula-

tion point, the variations in the factors Zl and Zh will be
sufficiently small to be neglected. Since Zl and Zh are
already themselves indistinguishable, we can safely ne-
glect the variations in Zl as ml varies between zero and
any of the (0.005, 0.01) and (0.004, 0.006, 0.008) quark
mass values in our two ensembles. Likewise, we will treat
Zh as constant for �mh

within 20% ofmh. Thus, by taking a

simulated pionlike object to be artifact-free for one of these

values of ml, we can view artifacts in all pions to be small,
even in the chiral limit.

D. SU(2) power-counting

As in [19], we view the light-quark mass and a2 expan-
sions as a double power series, and work only to next-to-
leading order (NLO) in this double series. We choose the
quark masses on each ensemble set such that the ratios of
some reference pseudoscalar masses to the hhh baryon
mass remain fixed. Consider the continuum SU(2) expres-
sion for the pion mass

m2
ll ¼ �l þ �l

�
16

f2
ðð2Lð2Þ

8 � Lð2Þ
5 Þ þ 2ð2Lð2Þ

6 � Lð2Þ
4 ÞÞ

þ 1

16�2f2�l log
�l

�2
�

�
; (97)

where all quantities are expressed in physical units and

�l ¼ 2B ~ml (98)

depends on the definition of the light-quark massml. When
we consider this in an expansion at nonzero lattice spacing,
we represent B and ~ml in our matched lattice scheme as

�l ¼ 2B1 ~m1
l

ða1Þ2 : (99)

As the low energy constant (LEC) B is scheme depen-
dent we have used our freedom to define a scheme where it
simply multiplies the matched bare quark mass on our 1
ensemble. Our matching at nonzero quark mass can be
introduced to the fit directly with no further a2 counter
terms as the leading-order a2 dependence away from our
match point has been argued above to be small. For B and
~m expressed in this scheme, there are also no order a2

counter terms.
In fact, we note that if we were to apply Eq. (97) in

independent fits to dimensionless masses on each ensemble
set, and if the NLO LEC’s turned out to be the same
(something that our combined fit constrains to be the
case), then our scaling trajectory would require �l to be
matched in the same way as our earlier matching strategy,
that is, �e

l ðae=me
hhhÞ2 would be required to be unchanged

along the trajectory.

TABLE XV. Values of the quark mass ratios Zl and Zh and the lattice spacing ratio Ra determined by matching at five points over
both ensemble sets. Quark masses are quoted without the additive mres correction.

M ðmlÞM ðmhÞM ðmlÞe ðmhÞe Zl Zh Ra

A 0.004 0.03 0.003 12(13) 0.038 04(79) 0.980(15) 0.977(11) 0.7623(71)

A 0.006 0.03 0.005 81(12) 0.038 29(51) 0.983(9) 0.975(7) 0.7591(46)

A 0.008 0.03 0.008 56(19) 0.038 56(63) 0.981(10) 0.973(8) 0.7556(58)

B 0.005 0.04 0.005 41(10) 0.031 36(48) 0.980(12) 0.976(8) 0.7604(55)

B 0.01 0.04 0.008 99(18) 0.030 78(56) 0.977(11) 0.969(9) 0.7520(69)
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These constraints of identical NLO LEC’s on both en-
sembles and fitting our data at the (simulated) match point
would induce the same relation between bare B’s on each
ensemble that arises naturally in our matching approach:

�l ¼ ða1Þ�2B1 ~m1
l ¼ ðaeÞ�2Be ~me

l (100)

and thus

B1 ¼ Be R
e
a

Ze
l

: (101)

Quantities not used to set quark masses and lattice
scales acquire a2 dependence at leading order but keep
only the continuum portions of next-to-leading order
mass-expansion terms. For example, the SU(2), partially
quenched, light pseudoscalar decay constant for a meson
composed of quarks with masses ml and mx is given by

fell ¼ f

�
1þ cf�ðaeÞ2 �

2ð�x þ �lÞ
ð32�2f2Þ log

�
�x þ �l

2�2
�

�

þ 16

f2
L4�l þ 4

f2
L5�x

�
: (102)

At fixed heavy quark mass, we take the partially quenched
light-quark mass dependence of the kaon mass and decay
constant as

m2
xh ¼ BðKÞð ~mhÞ ~mh

�
1þ �1ð ~mhÞ

f2
�l þ �1ð ~mhÞ

f2
�x

�
(103)

and

fxh ¼ fðKÞð ~mhÞf1þ CfðKÞa
2g þ fðKÞð ~mhÞ

�
þ�3ð ~mhÞ

f2
�l

þ �4ð ~mhÞ
f2

�x � 1

4�f2

�
�x þ �l

2
log

�x þ �l

2�2
�

þ �l � 2�x

4
log

�x

�2
�

��
: (104)

These formula have validity once the lattice results have
been reweighted so that both valence and sea heavy quark
masses take the value mh.

For the kaon bag parameter, we use

Bxh
K ¼ B0

K

�
1þ caa

2 þ c0�l

f2
þ �xc1

f2
� �l

32�2f2
log

�
�x

�2
�

��
:

(105)

E. Analytic expansions

We also consider first order Taylor expansions about a
nonzero quark mass ~mm, in the style of [46]. By using this
approach, we lose the ability to take the chiral limit and
only extrapolate to the nonzero physical point. In fact, our
ansatz for m� has a (small when fitted) constant term that
requires some form of chiral curvature (at smaller masses)
to satisfy Goldstone’s theorem. Again, we apply a power-
counting rule in a double expansion in �m and a2.

For the mass of the pion composed of valence quarks
with masses mx;my and as a function of light sea-quark

mass ml and fixed sea strange mass, we write the average

valence mass in a meson as ~mv ¼ ~mxþ ~my

2 and use the ansatz

m2
ll ¼ Cm�

0 þ Cm�

1 ð ~mv � ~mmÞ þ Cm�

2 ð ~ml � ~mmÞ: (106)

There is no Oða2Þ term at the match point and so no
correction to Cm�

0 . Thus, within our power counting we

could equivalently use

m2
ll ¼ Cm�

0 þ Cm�

1 ~mv þ Cm�

2 ~ml; (107)

where for convenience we redefine Cm�

0 between

Eqs. (106) and (107). For decay constants, which do not
vanish in the chiral limit, the Oða2Þ term is not sensitive to
the choice of expansion point:

fll ¼ Cf�
0 ½1þ Cfa

2� þ Cf�
1 ð ~mv � ~mmÞ þ Cf�

2 ð ~ml � ~mmÞ
(108)

� Cf�
0 ½1þ Cfa

2� þ Cf�
1 ~mv þ Cf�

2 ~ml; (109)

where again Cf�
0 has been redefined between Eqs. (108)

and (109). At fixed valence and sea strange mass my ¼
mh ¼ ms, we take the dependence on the light valence
quark mass mx and light sea-quark mass ml of the kaon
mass, kaon decay constant, and kaon bag parameter as

m2
xh ¼ CmK

0 þ CmK

1 ð ~mx � ~mmÞ þ CmK

2 ð ~ml � ~mmÞ (110)

� CmK

0 þ CmK

1 ~mx þ CmK

2 ~ml; (111)

fxh ¼ CfK
0 ½1þ CfKa

2� þ CfK
1 ð ~mx � ~mmÞ þ CfK

2 ð ~ml � ~mmÞ
� CfK

0 ½1þ CfKa
2� þ CfK

1 ~mx þ CfK
2 ~ml; (112)

Bxh
K ¼ c0ð1þ caa

2Þ þ clð ~ml � ~mmÞ þ cvð ~mx � ~mmÞ
� c0ð1þ caa

2Þ þ cl ~ml þ cv ~mx; (113)

where again the parameters CmK

0 , CfK
0 , and c0 have been

redefined between each pair of equations, and implicitly
depend on the strange-quark mass.

VI. CHIRAL-CONTINUUM EXTRAPOLATION
RESULTS

In this section we present the joint chiral-continuum
extrapolation of our data.

A. Fitting procedure

In Refs. [4,19], we performed correlated fits where the
correlation matrix is obtained by taking increasing num-
bers of the leading eigenvectors. We find no significant
difference over uncorrelated fit results within our limited
ability to estimate the correlation matrix. Hence for
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this analysis and those in Refs. [4,19], we use uncorrelated
fits.

In order to perform our fits, which include forms valid
only for fixed strange mass, we are faced with the problem
that the physical strange mass is an output of our calcu-
lation. Thus, the combined chiral-continuum fit procedure
is necessarily iterative. The details of the procedure are
documented in Ref. [19], and it suffices to note here that
the iterative process terminates when the fixed strange
mass forms produce a prediction for ms that is consistent
with the guess ms to which our data was interpolated.
When doing this, we use reweighting to adjust all pionic
observables to the current strange mass guess for each
ensemble. For kaon and � observables, a linear interpola-
tion between the (unreweighted) unitary measurement,
and a second valence strange (reweighted-to-be-unitary)
measurement suffices to obtain that observable for
~my ¼ ~mh ¼ ~m

guess
s .

B. Scaling analysis

As discussed in Sec. V, we match our lattice data using
ratios of hadronic masses m�

m�
and mK

m�
. We choose a specific

simulated value of ð ~ml; ~mhÞM on the ensemble set M to
which the other ensemble sets are matched. We refer to this
as the match point. The choice of the match point defines a
particular trajectory along which we approach the contin-
uum limit. Although the physical predictions do not de-
pend upon the particular trajectory, certain match points
are favorable due to the quality of the data at the match
point and the range over which the data must be interpo-
lated/extrapolated on the other ensemble sets to perform
this matching. The ideal point has as small of a statistical
error as possible and lies within the range of simulated data
on all of the matched ensemble sets, such that only a small
interpolation is required. In practice, the errors on the mass
ratios at the match point can be reduced by simultaneously
fitting to all partially quenched simulated data on the
ensemble setM and interpolating to the match point which
lies on the unitary curve. Further details of the procedure
are documented in [19].

As previously mentioned, the primary ensemble
set is chosen to be that with the finest lattice spacing;
our 323 � 64, a�1 ¼ 2:28 GeV lattice (ensemble 1).
As we have only one other ensemble set, we henceforth
drop the superscript on the lattice spacing and quark mass
ratios.

In Table XV, we give the values [19] for Zl, Zh, and Ra

obtained by using several match points on both ensemble
sets M 2 f1; 2g. Subject to the condition that we require a
match point within the range of simulated data, we can
discard the first and last entries. From the remaining, we
choose the values Zl ¼ 0:983ð9Þ, Zh ¼ 0:975ð7Þ, and
Ra ¼ 0:759ð5Þ from the second entry with M ¼ 1 and
ð ~ml; ~mhÞM ¼ ð0:006; 0:03Þ as our final values. The consis-
tency is excellent, and these are taken as input to our chiral-
continuum extrapolation for BK.

C. Combined analysis procedure for BK

In Ref. [19], we obtained the lattice spacings and physi-
cal light and strange-quark masses given in Table XVI
from our two combined analysis procedures. These are
taken as input to our fits to BK in the present calculation.
This table also contains the values of the leading-order
SUð2Þ ChPT LEC’s B and f obtained [19] from fitting m�

and f�, and which are used as input to our BK analysis in
order to reduce the number of degrees of freedom in the
NLO PQChPT fit form.
In principle, the matrix element fit could be included in

our main combined fit analysis, allowing these data to
constrain the ratio B=f2. In practice, however, this con-
straint is very weak as compared to those from m� and f�,
so the BK analysis can be decoupled from the main analy-
sis. On the second line of Table XVI, we have given the
lattice parameters obtained by an NLO PQChPT fit with
finite-volume effects included by correcting the chiral
logarithms using the corresponding finite-volume sum of
Bessel functions [47]. These are propagated through to our
analysis of the finite-volume corrections to BK.

TABLE XVI. Parameters of the 1 and 2 ensemble sets determined from a combined fit using the fit form given in the first column.
We also include the LO ChPT LEC’s B and f that are used to constrain the fits to BK.

Fit ða�1Þ1 ða�1Þ2 ðmphys
l Þ1 ðmphys

l Þ2 ðmphys
h Þ1 ðmphys

h Þ2 B(GeV) f(GeV)

NLO PQChPT 2.28(3) 1.73(2) 0.000 99(3) 0.001 33(4) 0.0278(7) 0.0376(11) 4.13(8) 0.107(2)

NLOPQChPTþ FV 2.28(3) 1.73(2) 0.001 01(3) 0.001 36(4) 0.0278(7) 0.0375(11) 4.04(7) 0.110(2)

LO Analytic 2.29(3) 1.74(2) 0.001 05(6) 0.001 40(9) 0.0277(7) 0.0374(11) 	 	 	 	 	 	

TABLE XVII. BMS
K ð2 GeVÞ as obtained by a combined fit to

the data at the physical strange-quark mass using an NLO
PQChPT fit form and a LO analytic fit form. The second line
contains the NLO PQChPT fit with finite-volume corrections
included, from which we estimate the finite-volume systematic
by comparing to the fit without corrections. Errors are statistical
only and do not include the error on the renormalization coef-
ficient. The �2 did not change between the 2 and 3 GeV match-
ing point.

Fit BMS
K ð2 GeVÞ BMS

K ð3 GeVÞ �2=dof

NLO PQChPT 0.544(5) 0.523(5) 0.53

NLOPQChPTþ FV 0.542(5) 0.521(5) 1.01

LO Analytic 0.557(5) 0.536(5) 0.17
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Our data are reweighted/interpolated to the physical
strange-quark mass prior to the fit, as discussed above.
The data are given in Tables V and VI. We fit this data
with both ChPT and analytic forms, Eqs. (105) and (113),
fitting the NLO PQChPT form of Eq. (105) both with and
without finite-volume corrections in order to estimate the
finite-volume systematic error.

Note that these equations are applied with strange-quark
mass fixed to its physical value having linearly interpolated
and reweighted the data to the physical strange-quark
mass.

We renormalize the BK data using the renormalization
constants determined in Sec. IVD prior to performing our

fit. Thus, the fit is performed separately for each of the
schemes SMOMðq; qÞ and SMOMð��; ��Þ, and for both 2
and 3 GeVmatching scales. The central value is taken from
the SMOMðq; qÞ scheme, and the SMOMð��; ��Þ contrib-
utes to determining the renormalization error.
Performing the fits, we obtain the results given in

Table XVII, where the quoted errors are statistical only.
Here we have also included an NLO PQChPT fit with
finite-volume corrections, which is used below to estimate
the finite-volume systematic. The fit parameters are given
in Tables XVIII and XIX. The uncorrelated �2=dof given
in Table XVII are acceptable for all three fit forms, and thus
our data does not distinguish the fit forms. This will be
reflected in our estimate of the chiral extrapolation error.
Figures 18 and 19 display the partially quenched

light-quark valence and sea mass dependence of both our
SU(2) and analytic fit forms to kaon matrix element data
with one valence quark mass set to the physical strange
mass, and the sea heavy quark mass reweighted to the
physical strange mass. Our previous work [4] contained
small indications in the corresponding plot for curvature
consistent with NLO ChPT. These have become less
pronounced in our doubled data set and also not supported
by the higher precision data from the second lattice spacing.

TABLE XVIII. Fit parameters of the NLO PQChPT fits to the BK matrix element, with and
without finite-volume corrections.

Parameter NLO PQChPT NLO PQChPTþ FV

2 GeV 3 GeV 2 GeV 3 GeV

B0
K 0.533(5) 0.513(5) 0.531(5) 0.511(5)

ca 0.06(4) 0.08(4) 0.05(4) 0.08(4)

c0 �0:0060ð8Þ �0:0060ð8Þ �0:0062ð8Þ �0:0062ð8Þ
c1 0.0061(3) 0.0062(3) 0.0071(4) 0.0071(4)

TABLE XIX. Fit parameters of the leading-order analytic fit to
the BK matrix element.

Parameter Result

2 GeV 3 GeV

c0 0.554(5) 0.534(5)

ca 0.06(4) 0.08(3)

cl 0.2(3) 0.2(3)

cv 0.9(1) 0.9(1)
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FIG. 18 (color online). Partially quenched light valence mass dependence of BK for the three (323) 1 ensembles (left panel) and two
(243) 2 ensembles (right panel) at a valence strange-quark mass fixed to be the physical strange mass, and after reweighting in the
heavier sea-quark mass to the physical strange mass. The overlaid curves are the partially quenched SU(2) chiral perturbation theory
expressions used in our fits.
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Figure 20 shows the continuum limit chiral extrapola-
tion, overlaid by the data corrected to the continuum limit
using the fit parameters describing a2 dependence.
Figure 21 shows the same fits overlaid with the uncorrected
data. By comparing these plots, the weak lattice spacing
dependence of the data is apparent.

D. Systematic errors on BK

Because of our combined analysis technique, and our
use of reweighting in the strange sea sector, we eliminate
systematic errors associated with discretization effects and
the untuned strange-quark mass that were present in our
previous analysis [3]. The remaining sources of systematic
error are those arising due to the chiral extrapolation,
finite-volume effects, and the renormalization. The
systematic errors on the renormalization coefficients

were discussed in Sec. IV. We discuss the remaining
contributions below.

1. Chiral fit systematics

In Refs. [4,19], we showed that a continuum fit to our
two lattices using NLO SUð2Þ PQChPT fit forms gives a
value for f� that is 
10% too low after finite-volume
effects are included. Although this is of the magnitude
expected for naturally sized next-to-next-to-leading order
(NNLO) contributions, we show in Ref. [48] that a full
NNLO fit to our data is heavily dependent on the priors
used to constrain the fit and thus has little predictive power.
We also considered an alternate fit form obtained from an
analytic expansion at leading order about a nonzero un-
physical pion mass, as advocated by Lellouch [46]. We are
able to fit all of our data successfully, and obtain a result
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FIG. 19 (color online). Partially quenched light valence mass dependence of BK for the three (323) 1 ensembles (left panel) and two
(243) 2 ensembles (right panel) at a valence strange-quark mass fixed to be the physical strange mass, and after reweighting in the
heavier sea-quark mass to the physical strange mass. The overlaid lines represent analytic fits to this data.
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FIG. 20 (color online). The continuum limit chiral extrapola-
tion obtained from our global fits using NLO SUð2Þ PQChPTand
LO analytic fits. The data is shown corrected to the continuum
limit using the Oða2Þ corrections obtained from both fit forms.
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FIG. 21 (color online). The continuum limit chiral extrapola-
tion obtained from our global fits using NLO SUð2Þ PQChPTand
LO analytic fits. As opposed to Fig. 20, the data plotted here has
not been corrected to the continuum limit. The fit curves plotted
are those performed to the continuum data as before.
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that is much closer to the known physical value for f�. We
observed that the difference between the analytic and the
ChPT fit results in this case provides a good estimate of the
systematic error associated with the chiral fit form [18,19].
We concluded that comparing ChPT and LO analytic fits is
likely a good, robust method of estimating the systematic
error for other quantities such as BK. Both approaches must
converge upon the physical value as the simulated quark
masses approach the physical point.

The result of the LO analytic fit to BK is given alongside
the NLO PQChPT results and those with NLO PQChPT
including finite-volume effects in Table XVII. To combine
these in a final prediction, we follow [19] and note that both
the analytic and finite-volume NLO PQChPT fits are rea-
sonable extrapolation methods that can be justified in dis-
tinct limiting cases: the analytic form is certainly the
correct approach when we have data sufficiently close to
the physical point regardless of whether we are in the chiral
regime, while the NLO form including finite-volume ef-
fects is also certainly correct when the data and physical
point lie within the chiral regime.

Given our experience with f�, and following the ap-
proach taken in [19], we take our central value as the
average of those obtained with the analytic extrapolation
form, and the finite volume corrected SU(2) NLO forms.
We take the difference between these to estimate a chiral fit
systematic error as ð�BKÞ� ¼ 0:014 (2.6%). We take the

full difference as the systematic and believe this is a
prudent and conservative approach.

Another reasonable data driven method would take half
the difference as the error estimate; this would assume that
the analytic extrapolation is a hard upper bound on the
mass dependence, and that the NLO form is a hard lower
bound—given the flexibility in unconstrained NNLO
ChPT forms this would appear to be too optimistic.

We also note that within the mass range of the data, our
SU(2) NLO fit estimates the biggest correction to be around
8% of the value in the two flavor chiral limit (0.56 vs 0.517).
Squaring this term would suggest a naive estimate of
NNLO effects at around 0.5%, which is substantially below
our more conservative chiral extrapolation error.

2. Finite-volume systematics

We estimate finite-volume corrections to our result from
finite-volume PQChPT. As shown in Ref. [4], these cor-
rections are obtained from the standard PQChPT forms by
replacing the NLO chiral logarithms with sums over modi-
fied Bessel functions of the second kind.

The result for this fit is given in Table XVII. Comparing
this to the uncorrected result, we estimate a finite-volume
error of ð�BKÞFV ¼ 0:002ð0:4%Þ.

E. Continuum prediction for BK

Combining our central value and the systematic uncer-
tainties discussed above, we quote a prediction for BK

using either the p2 ¼ �2 ¼ ð2GeVÞ2 renormalization
scale,

BMS
K ð2 GeVÞ ¼ 0:549ð5Þstatð15Þ�ð2ÞFVð21ÞNPR (114)

or the p2 ¼ �2 ¼ ð3 GeVÞ2 renormalization scale

BMS
K ð3 GeVÞ ¼ 0:529ð5Þstatð15Þ�ð2ÞFVð11ÞNPR: (115)

The latter is our preferred central value as our systematic
error for the renormalization is halved.
This can be converted to the common RGI scheme for

comparison and phenomenological application:

B̂ RGI
K ¼ 0:749ð7Þstatð21Þ�ð3ÞFVð15ÞNPR; (116)

and adding all sources of error in quadrature we obtain

B̂ RGI
K ¼ 0:749ð27Þcombined; (117)

corresponding to an overall error of 3.6%.

VI. CONCLUSIONS

In this paper, we have calculated BK to 3.6% precision
with 2þ 1 flavors of dynamical quarks and, for the first
time, in the continuum limit with a lattice action with good
chiral symmetry. The result is presented in Eq. (116) [or
equivalently in (117)].
Our calculation of this important quantity has exploited

several significant improvements in lattice techniques,
which we have been developing for more than a decade.
These include: (a) the use of domain wall fermions with
good chiral symmetry [6,49], (b) the implementation of
domain wall fermions in dynamical simulations with 2þ 1
flavors of light quarks [3,22–24,50–52], and (c) the use of
SU(2) ChPT for chiral extrapolations of 2þ 1 flavor simu-
lations, first exploited by the RBC-UKQCD Collaborations
[3,4].
The present calculation of BK includes a particularly

careful treatment of the renormalization. We have intro-
duced several new momentum renormalization schemes
(based on the original works of [26] and of [30] as ex-
plained in detail in Sec. IV), and our renormalization also
includes, for the first time, the improved scaling procedure
of [39].
The small increase in our central value for BK in this

work and in [18] compared to [3,4] has arisen partly from
significant improvements in our approach to renormaliza-
tion as well as from taking the continuum limit. The
difference is within the previously budgeted errors for
these sources, and a large component of this small shift
arises from taking the central value from a new, nonexcep-
tional momentum scheme using the perturbative results
derived in this paper.
Our result for BK is compared to other recent calcula-

tions in Table XX. Since all the results in this table, except
for those of Ref. [53] and the current work, used the
original RI-MOM scheme, there is a substantial correlation
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in the perturbative systematics between these five calcu-
lations. Thus, the additional renormalization schemes
introduced in this paper give added confidence to the
estimates of the systematic error from this source.

In the remainder of this section, we briefly discuss the
significance of the recent lattice results for BK and the
prospects for improving the precision still further.

A. Significance of lattice results of BK

Flavor physics will continue to be central to the explo-
ration of the limits of the standard model, to searches for
new physics and to the eventual understanding of the
fundamental theoretical framework of physics beyond
the standard model. An important tool in this endeavour
is the interpretation of experimental data in terms of the
unitarity triangle where, in general, the remarkable con-
sistency of the information from different processes places
significant constraints on the possible parameter space of
new models. Having said this, a number of tensions have
arisen in recent years; possible inconsistencies at a
1:5� 3� level [58–61] which certainly merit further
investigation. The lattice results for BK contribute to these
tensions as we now briefly explain.

Lattice calculations are necessary to evaluate the had-
ronic effects in tests of the unitarity of the CKMmatrix and
our results for BK, used in conjunction with the experi-
mental determination of �K, the indirect CP violation
parameter monitoring KL ! ��, are a major ingredient
in tests of the CKM paradigm [see Eq. (7)]. We illustrate
this here with one example, exploiting lattice inputs not
only for BK but also for the semileptonic B ! �,  and
B ! D, D� form factors (used to determine Vub=Vcb) and
the SU(3) breaking ratio, �, which contains the hadronic
effects in the ratio of the mixings of Bs mesons and Bd

mesons. With these three key lattice inputs a nice predic-
tion, sin2
 ¼ 0:75� 0:04 [58–60], emerges. This can be
compared with direct experimental measurements from
the time-dependent CP asymmetry in the golden mode,

Bd ! J=cKs which gives, sin2
J=cKs ¼ 0:681� 0:025

[2], which is within 2� of the standard model prediction
with the lattice input. A similar tension is found in
Refs. [5,62,63] who stress the need to include better ap-
proximations to the theoretical expression for �K now that
BK is known to such good precision. These improvements
include terms proportional to ImA0=ReA0 (where A0 is the
K ! �� amplitude with the two pions in a state with
isospin 0) and the recognition that the phase
arctanð2�MK=��Þ is not precisely equal to �=4 (�MK

and �� are the differences of the masses and widths of the
KL and KS mesons).
From the above discussion, it is clear that lattice calcu-

lations of weak matrix elements in general, and of BK in
particular, in conjunction with experiments, are providing
ever more precise tests of the CKM explanation for CP
violation. Of course, our ambitions do not stop here; even if
the small tension between the standard model prediction
for sinð2
Þ and its direct determination disappears on
closer scrutiny, theOð10%Þ difference in the central values
still leaves ample room for new physics, which we wish to
squeeze still further. In the next subsection, we discuss the
prospects for improved precision in the determination of
BK and of course it must be remembered that improve-
ments in the determination of other inputs, including � and
Vcb will also be necessary (recently it was shown that the
use of V4

cb with its significant error, can be replaced by

information from the leptonic B ! �� branching ratio and
lattice results on the decay constant fBd

and the mixing

parameter BBd
[64]).

B. Prospects for BK with 1% scale precision

It is interesting to analyze our error budget and to assess
what future gains in precision can be made in the determi-
nation of BK. In particular, we consider here what would be
required to obtain BK with 1% scale precision.
Currently, our dominant uncertainty is the 3% error

arising from the chiral extrapolation. This will be ad-
dressed by simulations at or near the physical quark
masses, some of which are presently being undertaken by
RBC and UKQCD. Although expensive, these are afford-
able, even with current computer technology. We can
therefore envisage these to be under control at the 1% level
in a few years.
The 2% renormalization error is partly associated with

the low scale at which we presently apply one-loop match-
ing and two-loop running to our operators. This uncertainty
can be reduced in two ways: first, the scale can be raised at
modest expense using a step scaling technique [39], per-
haps raising the matching scale from around 3 GeV to
approximately 10 GeV, reducing the �2

s error on our one-
loop matching from 2% to around 1%. A larger gain would
be obtained by extending the perturbative calculations
presented in this paper to the next order, leading to an
expected �3

s error of around 0.7%. The gain from step
scaling is of course increased by higher-order matching,

TABLE XX. A comparison of our result for BK with those of
other recent calculations with dynamical fermions. Here f
denotes the number of dynamical quark flavors. Where separate
errors are quoted, the first error is statistical and the second is
systematic.

Publication f B̂RGI
K

This work 2þ 1 0:749ð7Þð26Þ
Bae’10 [53] 2þ 1 0.724(12)(43)

RBC-UKQCD’09 [18] 2þ 1 0.737(26)

Aubin’09 [54] 2þ 1 0.724(8)(29)

RBC-UKQCD’07 [3] 2þ 1 0.720(13)(37)

ETMC’10 [55] 2 0.729(30)

ETMC’09 [56] 2 0.73(3)(3)

JLQCD’08 [57] 2 0.758(6)(71)
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and one might expect a step scaled matching to attain 0.2%
renormalization precision for an �3

s renormalization error.
Such a two-loop calculation has been performed for the
determination of light-quark masses [34,35] contributing
to the improved lattice determination of these quantities
[19]. Given the importance of a precise determination of
BK, we would hope and expect that the two-loop matching
calculation will be performed soon.

The remaining statistical and finite-volume errors are
small, and not unduly expensive to reduce still further as
this increases computational cost by only modest factors.

We conclude therefore that we can expect to determine
BK at the 1% scale over the next few years. What is perhaps
more challenging is for lattice simulations to contribute in
other ways to the determination of subdominant correc-
tions to the theoretical expression for �K, for example, the
long-distance contributions and the direct computation of
K ! �� decay amplitudes; the status of our endeavours in
this direction are summarized in [16,17].
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