
Possible deuteronlike molecular states composed of heavy baryons

Ning Lee,* Zhi-Gang Luo,† Xiao-Lin Chen,‡ and Shi-Lin Zhu§

Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
(Received 21 April 2011; published 25 July 2011)

We perform a systematic study of the possible loosely bound states composed of two charmed baryons

or a charmed baryon and an anticharmed baryon within the framework of the one-boson-exchange model.

We consider not only the � exchange but also the �, �,!,�, and � exchanges. The S�Dmixing effects

for the spin triplets are also taken into account. With the derived effective potentials, we calculate the

binding energies and rms radii for the systems �c�cð ��cÞ, �c�cð ��cÞ, �c�cð ��cÞ, �0
c�

0
cð ��0

cÞ, and

�c�cð ��cÞ. Our numerical results indicate that (1) the H-dibaryonlike state �c�c does not exist and

(2) there may exist four loosely bound deuteronlike states for the �c�c and �0
c�

0
c systems with small

binding energies and large rms radii.
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I. INTRODUCTION

Many so-called ‘‘XYZ’’ charmoniumlike states such as
Xð3872Þ, Zþð4430Þ, and Yð3940Þ have been observed by
the Belle, CDF, D0, and BABAR collaborations [1–4] dur-
ing the past few years. Despite the similar production
mechanism, some of these structures do not easily fit into
the conventional charmonium spectrum, which implies
other interpretations such as hybrid mesons, heavy meson
molecular states, etc. might be responsible for these new
states [5,6].

A natural idea is that some of the XYZ states near the
two heavy meson threshold may be bound states of a pair
consisting of a heavy meson and an antiheavy meson.
Actually, Rujula et al. applied this idea to explain
c ð4040Þ as a P-wave D� �D� bound resonance in the
1970s [7]. Törnqvist performed an intensive study of the
possible deuteronlike two-charm-meson bound states with
the one-pion-exchange (OPE) potential model in Ref. [8].
Recently, motivated by the controversy over the nature of
Xð3872Þ and Zþð4430Þ, some authors proposed Xð3872Þ
might be a D �D� bound state [9–13]. Our group has studied
the possible molecular structures composed of a pair of
heavy mesons in the framework of the one-boson-
exchange (OBE) model systematically [14,15]. There are
also many interesting investigations of other hadron
clusters [16–21].

The boson exchange models are very successful in de-
scribing nuclear force [22–24]. In particular, the deuteron
is a loosely bound state of a proton and a neutron, which
may be regarded as a hadronic molecular state. One may
wonder whether a pair of heavy baryons can form a deu-
teronlike bound state through the light meson exchange
mechanism. On the other hand, the large masses of the

heavy baryons reduce the kinetic of the systems, which
makes it easier to form bound states. Such a system is
approximately nonrelativistic. Therefore, it is very inter-
esting to study whether the OBE interactions are strong
enough to bind the two heavy baryons (dibaryon) or a
heavy baryon and an antibaryon (baryonium).
A heavy charmed baryon contains a charm quark and

two light quarks. The two light quarks form a diquark.
Heavy charmed baryons can be categorized by the flavor
wave function of the diquark, which forms a symmetric 6
or an antisymmetric �3 representation. For the ground heavy
baryon, the spin of the diquark is either 0 or 1, and the spin
of the baryon is either 1=2 or 3=2. The product of the
diquark flavor and spin wave functions of the ground
charmed baryon must be symmetric, and the functions
must correlate with each other. Thus the spin of the sextet
diquark is 1 while the spin of the antitriplet diquark is 0.
The ground charmed baryons are grouped into one anti-

triplet with spin 1=2 and two sextets with spin 1=2 and spin
3=2, respectively. These multiplets are usually denoted as
B�3,B6, andB

�
6 in the literature [25]. In the present work, we

study the charmed dibaryon and baryonium systems,

i.e. �c�cð ��cÞ, �c�cð ��cÞ, �c�cð ��cÞ, �0
c�

0
cð ��0

cÞ, and

�c�cð ��cÞ. Other configurations will be explored in a
future work. We first derive the effective potentials of these
systems. Then we calculate the binding energies and rms
radii to determine which system might be a loosely bound
molecular state.
This work is organized as follows. We present the for-

malism in Sec. II. In Sec. III, we discuss the extraction of
the coupling constants between the heavy baryons and light
mesons, and give the numerical results in Sec. IV. The last
section is a brief summary. Some useful formula and
figures are listed in the Appendix.

II. FORMALISM

In this section we will construct the wave functions and
derive the effective potentials.
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A. Wave functions

As illustrated in Fig. 1, the states �þ
c , �

þ
c , and �0

c

belong to the antitriplet B�3, while �þþ
c , �þ

c , �
0
c, �

0þ
c ,

�00
c , and �0

c are in sextet B6. Among them, �þ
c and �0

c

are isoscalars; f�þ
c ;�

0
cg and f�0þ

c ;�00
c g are isospin spinors;

and f�þþ
c ;�þ

c ;�
0
cg is an isovector. We denote these states

�c, �c, �c, �
0
c, and �c.

The wave function of a dibaryon is the product of its
isospin, spatial, and spin wave functions,

�½I;2Sþ1�
hh ��I

hh ��L
hh ��S

hh: (1)

We consider the isospin function �I
hh first. The isospin of

�c is 0, so �c�c has isospin I ¼ 0 and �I¼0
�c�c

¼ �þ
c �

þ
c ,

which is symmetric. For �c�c, the isospin is I ¼ 0 or 1,
and their corresponding wave functions are antisymmetric
and symmetric, respectively. �c�c has isospin 0, 1, or 2.
Their flavor wave functions can be constructed using
Clebsch-Gordan coefficients. �0

c�
0
c is the same as �c�c.

The isospin of the �c�c is 0. Because strong interactions
conserve isospin symmetry, the effective potentials do not
depend on the third components of the isospin. For ex-
ample, it is adequate to take the isospin function �þ

c �
þ
c

with I3 ¼ 1 when we derive the effective potential for
�I¼1

�c�c
, though the wave function 1ffiffi

2
p ð�þ

c �
0
c þ�0

c�
þ
c Þ in-

deed gives the same result. In the following, we show the
relevant isospin functions used in our calculation,

�I¼0
�c�c

¼ �þ
c �

þ
c ; (2)

�I¼0
�c�c

¼ 1ffiffiffi
2

p ð�þ
c �

0
c��0

c�
þ
c Þ; �I¼1

�c�c
¼�þ

c �
þ
c ; (3)

�I¼0
�c�c

¼ 1ffiffiffi
3

p ð�þþ
c �0

c � �þ
c �

þ
c þ �0

c�
þþ
c Þ;

�I¼1
�c�c

¼ 1ffiffiffi
2

p ð�þþ
c �þ

c � �þ
c �

þþ
c Þ;

�I¼2
�c�c

¼ �þþ
c �þþ

c ;

(4)

�I¼0
�0

c�
0
c
¼ 1ffiffiffi

2
p ð�0þ

c �00
c ��00

c �
0þ
c Þ; �I¼1

�0
c�

0
c
¼�0þ

c �0þ
c ; (5)

�I¼0
�c�c

¼ �0
c�

0
c: (6)

We are mainly interested in the ground states of dibary-
ons and baryonia where the spatial wave functions of these
states are symmetric. The tensor force in the effective
potentials mixes the S and D waves. Thus a physical
ground state is actually a superposition of the S and D
waves. This mixture fortunately does not affect the sym-
metries of the spatial wave functions. As a matter of fact,
for a dibaryon with a specific total spin J, we must add the
spins of its components to form S first and then couple S
and the relative orbit angular momentum L together to get
J ¼ Lþ S. ThisL� S coupling scheme leads to six S and
D wave states: 1S0,

3S1,
1D2,

3D1,
3D2, and

3D3. But the

tensor force only mixes states with the same S and J. In our
case we must deal with the 3S1-

3D1 mixing. After stripping
off the isospin function, the mixed wave function is

jc i ¼ RSðrÞj3S1i þ RDðrÞj3D1i; (7)

which will lead to coupled-channel Schrödinger equations
for the radial functions RSðrÞ and RDðrÞ. In short, for the
spatial wave functions, we will discuss the ground states in
1S0 and

3S1, and the latter mixes with 3D1.

Finally, we point out that the I and S of states in Eq. (1)
cannot be combined arbitrarily because the generalized
identity principle constricts the wave functions to be anti-

symmetric. It turns out that the survived states are �½0;1�
�c�c

,

�½0;3�
�c�c

, �½1;1�
�c�c

, �½0;1�
�c�c

, �½1;3�
�c�c

, �½2;1�
�c�c

, �½0;3�
�0

c�
0
c
, �½1;1�

�0
c�

0
c
, and

�½0;1�
�c�c

. For baryonia, there is no constraint on the wave

functions. So we need to take into account more states. The
wave functions of baryonia can be constructed in a similar
way. However, we can use the so-called ‘‘G-parity rule’’ to
derive the effective potentials for baryonia directly from
the corresponding potentials for dibaryons, and there is no
need to discuss them here now.

FIG. 1. The antitriplet and sextet. Here the brackets and parentheses represent antisymmetrization and symmetrization of the light
quarks, respectively.
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B. Lagrangians

We introduce the notations

�c ¼ �þ
c ; �c ¼ �þ

c

�0
c

� �
;

�c ¼
�
1ffiffiffi
2

p ð��þþ
c þ�0

cÞ; iffiffiffi
2

p ð��þþ
c ��0

cÞ;�þ
c

�
;

�0
c ¼ �0þ

c

�00
c

� �
; �c ¼ �0

c

(8)

to represent the corresponding baryon fields. The long-
range interactions are provided by the � and � meson
exchanges:

L� ¼ g��c�c

��ci�5��c � � þ g��c�c
ð�iÞ ��ci�5

��c � � þ g��0
c�

0
c

��0
ci�5��

0
c � �; (9)

L � ¼ g��c�c

��ci�5�c�þ g��c�c

��ci�5�c�

þ g��c�c

��c � i�5�c�þ g��0
c�

0
c

��0
ci�5�

0
c�

þ g��c�c

��ci�5�c�; (10)

where g��c�c
, g��c�c

, g��c�c
, etc. are the coupling con-

stants. � ¼ f�1; �2; �3g are the Pauli matrices, and � ¼
f 1ffiffi

2
p ð�þ þ ��Þ; iffiffi

2
p ð�þ � ��Þ; �0g are the � fields. The

vector meson exchange Lagrangians read

L�¼g��c�c

��c����c ���þf��c�c

2m�c

��c��	��c �@��	

þg��c�c
ð�iÞ ��c����c ���þf��c�c

2m�c

ð�iÞ ��c��	

��c �@��	þg��0
c�

0
c

��0
c����

0
c ���

þf��0
c�

0
c

2m�0
c

��0
c��	��

0
c �@��	; (11)

L! ¼ g!�c�c

��c���c!
� þ f!�c�c

2m�c

��c��	�c@
�!	

þ g!�c�c

��c���c!
� þ f!�c�c

2m�c

��c��	�c@
�!	

þ g!�c�c

��c�� � �c!
� þ f!�c�c

2m�c

��c��	 � �c@
�!	

þ g!�0
c�

0
c

��0
c���

0
c!

� þ f!�0
c�

0
c

2m�0
c

��0
c��	�

0
c@

�!	;

(12)

L� ¼ g��c�c

��c���c�
� þ f��c�c

2m�c

��c��	�c@
��	

þ g��0
c�

0
c

��0
c���

0
c�

� þ f��0
c�

0
c

2m�0
c

��0
c��	�

0
c@

��	

þ g��c�c

��c���c�
� þ f��c�c

2m�c

��c��	�c@
��	;

(13)

with � ¼ f 1ffiffi
2

p ð�þ þ ��Þ; iffiffi
2

p ð�þ � ��Þ; �0g. The � ex-

change Lagrangian is

L� ¼ g��c�c

��c�c�þ g��c�c

��c�c�þ g��c�c

��c ��c�

þ g��0
c�

0
c

��0
c�

0
c�þ g��c�c

��c�c�: (14)

There are 33 unknown coupling constants in the above
Lagrangians, which will be determined in Sec. III.

C. Effective potentials

To obtain the effective potentials, we calculate the T
matrices of the scattering processes, such as in Fig. 2, in
momentum space. Expanding the T matrices with external
momenta to the leading order, one gets [26]

VðrÞ ¼ 1

ð2�Þ3
Z

d3qe�iQ�rTðQÞF ðQÞ2; (15)

whereF ðQÞ is the form factor, with which the divergency in
the above integral is controlled, and the non-point-like
hadronic structures attached to each vertex are roughly taken
into account. Here we choose the monopole form factor

F ðQÞ ¼ �2 �m2

�2 �Q2
(16)

with Q ¼ fQ0;Qg and the cutoff �.
Generally speaking, a potential derived from the scat-

tering T matrix consists of the central term, the spin-spin
interaction term, the orbit-spin interaction term, and the
tensor force term, i.e.,

FIG. 2. Scattering processes of �c�c ! �c�c and �c
��c !

�c
��c. The Qs are the transformed four momenta.
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VðrÞ¼VCðrÞþVSSðrÞ�1 ��2þVLSðrÞL �SþVTðrÞS12ðr̂Þ;
(17)

where S12ðr̂Þ is the tensor force operator, S12ðr̂Þ ¼
3ð�1 � r̂Þð�2 � r̂Þ � �1 � �2. The effective potential of a
specific channel, for example �c�c ! �c�c shown in
Fig. 2, may contain contributions from the pseudoscalar,
vector, and scalar meson exchanges. We need to work them
out one by one and add them. The potentials with the

stripped isospin factors from the pseudoscalar, vector,
and scalar (� here) meson exchange are

Vaðr;
; hÞ ¼ Va
SSðr;
; hÞ�1 � �2 þ Va

Tðr;
; hÞS12ðr̂Þ;
Vbðr;�; hÞ ¼ Vb

Cðr;�; hÞ þ Vb
SSðr;�; hÞ�1 � �2

þ Vb
LSðr;�; hÞL � Sþ Vb

Tðr;�; hÞS12ðr̂Þ;
Vcðr;�; hÞ ¼ Vc

Cðr;�; hÞ þ Vc
LSðr;�; hÞL � S; (18)

where 
 ¼ �, �, � ¼ �, !, �, and

Va
SSðr;
;hÞ ¼�g2
hh

4�

m3



12m2
h

H1ð�;m
;rÞ; Va
Tðr;
;hÞ ¼

g2
hh
4�

m3



12m2
h

H3ð�;m
;rÞ;

Vb
Cðr;�;hÞ ¼

m�

4�

�
g2�hhH0ð�;m�;rÞ� ðg2�hhþ 4g�hhf�hhÞ m

2
�

8m2
h

H1ð�;m�;rÞ
�
;

Vb
SSðr;�;hÞ ¼� 1

4�
ðg�hhþf�hhÞ2

m3
�

6m2
h

H1ð�;m�;rÞ; Vb
LSðr;�;hÞ ¼� 1

4�
ð3g2�hhþ 4g�hhf�hhÞ

m3
�

2m2
h

H2ð�;m�;rÞ;

Vb
Tðr;�;hÞ ¼� 1

4�
ðg�hhþf�hhÞ2

m3
�

12m2
h

H3ð�;m�;rÞ; Vc
Cðr;�;hÞ ¼�m�

g2�hh
4�

�
H0ð�;m�;rÞþ m2

�

8m2
h

H1ð�;m�;rÞ
�
;

Vc
LSðr;�;hÞ ¼�m�

g2�hh
4�

m2
�

2m2
h

H2ð�;m�;rÞ: (19)

The definitions of the functionsH0,H1,H2, andH3 are given in the Appendix. From Eq. (18), one can see the tensor force
terms and spin-spin terms are from the pseudoscalar and vector meson exchanges while the central and obit-spin terms are
from the vector and scalar meson exchanges. Finally, the effective potential of the state hh is

VhhðrÞ ¼
X



Ca
Vaðr;
; hÞ þX
�

Cb�V
bðr;�; hÞ þ Cc�Vcðr;�; hÞ

¼
�X

�

Cb�V
b
Cðr;�; hÞ þ Cc�Vc

Cðr;�; hÞ
�
þ
�X




Ca
Va
SSðr;
; hÞ þ

X
�

Cb�V
b
SSðr;�; hÞ

�
�1 � �2

þ
�X

�

Cb�V
b
LSðr;�; hÞ þ Cc�Vc

LSðr;�; hÞ
�
L � Sþ

�X



Ca
Va
Tðr;
; hÞ þ

X
�

Cb�V
b
Tðr;�; hÞ

�
S12ðr̂Þ; (20)

where Ca
, Cb�, and Cc� are the isospin factors, which are
listed in Table I.

Given the effective potentialVhh, the potential forh �h,Vh �h,
can be obtained using theG-parity rule, which states that the
amplitude (or the effective potential) of the process A �A !
A �A with one-light-meson exchange is related to that of the
processAA ! AA bymultiplying the latter by a factor ð�ÞIG ,
where ð�ÞIG is the G parity of the exchanged light meson
[27]. The expression of Vh �h is the same as Eq. (20) but with
Vaðr;
; hÞ, Vbðr;�; hÞ, and Vcðr;�; hÞ replaced by
Vaðr;
; �hÞ, Vbðr;�; �hÞ, and Vcðr;�; �hÞ, respectively.

Vaðr;
; �hÞ ¼ ð�ÞIG½
�Vaðr;
; hÞ;
Vbðr;�; �hÞ ¼ ð�ÞIG½��Vbðr;�; hÞ;
Vcðr;�; �hÞ ¼ ð�ÞIG½��Vcðr;�; hÞ:

(21)

For example,

Vaðr;!; ��cÞ ¼ ð�1ÞVaðr;!;�cÞ; (22)

since the G parity of ! is negative. In other words, we can
still use the right-hand side of Eq. (20) to calculate Vh �h but
with the redefined isospin factors

Ca
 ! ð�ÞIG½
�Ca
; Cb� ! ð�ÞIG½��Cb�;
Cc� ! ð�ÞIG½��Cc�; (23)

which are listed in Table I, too.
The treatments of operators �1 � �2, L � S, and S12ðr̂Þ

are straightforward. For 1S0,

� 1 � �2 ¼ �3; L � S ¼ 0; S12ðr̂Þ ¼ 0; (24)

which lead to single-channel Shrödinger equations. But
for 3S1, because of mixing with 3D1, the above operators
should be represented in the fj3S1i; j3D1ig space, i.e.,
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�1 � �2 ¼
1 0

0 1

 !
; L � S ¼ 0 0

0 �3

 !
;

S12ðr̂Þ ¼ 0
ffiffiffi
8

p
ffiffiffi
8

p �2

 !
:

(25)

These representations lead to the coupled-channel
Shrödinger equations.

III. COUPLING CONSTANTS

It is difficult to extract the coupling constants in the
Lagrangians experimentally. We may estimate them using
the well-known nucleon-meson coupling constants as in-
puts with the help of the quark model. The details of this
method are provided in Ref. [28]. The one-boson exchange
Lagrangian at the quark level is

Lq ¼ g�qqð �ui�5u�
0 � �di�5d�

0Þ
þ g�qqð �ui�5u�þ �di�5d�� 2�si�5s�Þ
þ g�qqð �u��u�

0� � �d��d�
0�Þ

þ g!qqð �u��u!
� þ �d��d!

�Þ þ g�qq �s��s�
�

þ g�qqð �uu�þ �dd�þ �ss�Þ þ � � � ; (26)

where g�qq; g�qq; . . . ; g�qq are the coupling constants of

the light mesons and quarks. The vector meson terms in
this Lagrangian do not contain the anomalous magnetic
moment part because the constituent quarks are treated as
pointlike particles. At the hadronic level, for instance, the
nucleon-nucleon-meson interaction Lagrangian reads

LNN ¼ g�NN
�Ni�5�N � � þ g�NN

�Ni�5N�

þ g�NN
�N���N � �� þ f�NN

2mN

�N��	�N � @��	

þ g!NN
�N��N!� þ f!NN

2mN

�N��	N@�!	

þ g�NN
�NN�; (27)

where g�NN; g�NN; . . . ; g�NN are the coupling constants.

We calculate the matrix elements for a specific process,
both at the quark and hadronic levels and then match them.
In this way, we get relations between the two sets of
coupling constants,

g�NN ¼ 5

3
g�qq

mN

mq

; g�NN ¼ g�qq
mN

mq

;

g!NN ¼ 3g!qq;
g!NN þ f!NN

mN

¼ g!qq

mq

;

g�NN ¼ g�qq;
g�NN þ f�NN

mN

¼ 5

3

g�qq

mq

;

g�NN ¼ 3g�qq:

(28)

From these relations, we can see that g!NN and f!NN are
not independent. Neither are g�NN and f�NN. The constitu-

ent quark mass is about one-third of the nucleon mass.
Thus we have f!NN � 0 and f�NN � 4g�NN .

With the same prescription, we can obtain similar rela-
tions for heavy charmed baryons, which are collected in
the Appendix. Substituting the coupling constants at the
quark level with those from Eq. (28), we have

g��c�c
¼ 0; g��c�c

¼ 4

5
g�NN

m�c

mN

;

g��0
c�

0
c
¼ 2

5
g�NN

m�0
c

mN

;
(29)

g��c�c
¼0; g��c�c

¼0; g��c�c
¼4

3
g�NN

m�c

mN

;

g��0
c�

0
c
¼�2

3
g�NN

m�0
c

mN

; g��c�c
¼�8

3
g�NN

m�c

mN

;

(30)

g��c�c
¼2

3
g�NN; g��c�c

¼2

3
g�NN; g��c�c

¼2

3
g�NN;

g��0
c�

0
c
¼2

3
g�NN; g��c�c

¼2

3
g�NN; (31)

g!�c�c
¼2

3
g!NN; f!�c�c

¼�2

3
g!NN;

g!�c�c
¼1

3
g!NN; f!�c�c

¼�1

3
g!NN;

g!�c�c
¼2

3
g!NN; f!�c�c

¼2

3
g!NN

�
2
m�c

mN

�1

�
;

g!�0
c�

0
c
¼1

3
g!NN; f!�0

c�
0
c
¼1

3
g!NN

�
2
m�0

c

mN

�1

�
;

(32)

TABLE I. Isospin factors. The values in brackets for baryonia are derived by the G-parity rule.

�c�c½ ��c� �c�c½ ��c� �c�c½ ��c� �0
c�

0
c½ ��0

c� �c�c½ ��c�
I 0 0 1 0 1 2 0 1 0

Ca� �2½2� �1½1� 1½�1� �3½3� 1½�1�
Ca� 1[1] 1[1] 1[1] 1[1] 1[1] 1[1]

Cb� �3½�3� 1[1] �2½�2� �1½�1� 1[1] �3½�3� 1[1] 1[1]

Cb! 1½�1� 1½�1� 1½�1� 1½�1� 1½�1� 1½�1� 1½�1� 1½�1�
Cb� 1½�1� 1½�1� 1½�1� 1½�1� 1½�1�
Cc� 1[1] 1[1] 1[1] 1[1] 1[1] 1[1] 1[1] 1[1]
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g��c�c
¼g�NN; f��c�c

¼�1

5
ðg�NNþf�NNÞ;

g��c�c
¼2g�NN; f��c�c

¼2

5
ðg�NNþf�NNÞ

�
2
m�c

mN

�1

�
;

g��0
c�

0
c
¼g�NN; f��0

c�
0
c
¼1

5
ðg�NNþf�NNÞ

�
2
m�0

c

mN

�1

�
;

(33)

g��c�c
¼ ffiffiffi

2
p

g�NN; f��c�c
¼ �

ffiffiffi
2

p
5

ðg�NN þ f�NNÞ;
g��0

c�
0
c
¼ ffiffiffi

2
p

g�NN;

f��0
c�

0
c
¼

ffiffiffi
2

p
5

ðg�NN þ f�NNÞ
�
2
m�0

c

mN

� 1

�
;

g��c�c
¼ 2

ffiffiffi
2

p
g�NN;

f��c�c
¼ 2

ffiffiffi
2

p
5

ðg�NN þ f�NNÞ
�
2
m�c

mN

� 1

�
; (34)

where we have used mN � 3mq. The couplings of � and

heavy charmed baryons cannot be derived directly from the
results for nucleons. So in the right-hand side of Eq. (34),
we use the couplings of � and nucleons.

The above formulas relate the unknown coupling
constants for heavy charmed baryons to g�NN, g�NN ,

etc., which can be determined by fitting to experimental
data. We choose the values g�NN ¼ 13:07, g�NN ¼ 2:242,

g�NN ¼ 8:46, g!NN ¼ 15:85, f!NN=g!NN ¼ 0, g�NN ¼
3:25, and f�NN=g�NN ¼ 6:1 from Refs. [22,23,29] as in-

puts. In Table II, we list the numerical results of the
coupling constants of the heavy charmed baryons and light
mesons. One notices that the vector meson couplings

for �c�c and �c�c have opposite signs. They almost
cancel out and do not contribute to the tensor terms for
spin triplets. Thus in the following numerical analysis, we
omit the tensor forces of the spin triplets in the �c�c and
�c�c systems.

IV. NUMERICAL RESULTS

With the effective potentials and the coupling constants
derived in the previous sections, one can calculate the
binding energies and rms radii for every possible molecular
state numerically. Here we adopt the program FESSDE,
which is a FORTRAN routine, to solve problems of multi-
channel coupled ordinary differential equations [30].
Besides the coupling constants in Table II, we also need
heavy charmed baryon masses listed in Table III as inputs.
The typical value of this cutoff parameter for the deuteron
is 1.2–1.5 GeV [22]. In our case, the cutoff parameter � is
taken in the region 0.80–2.00 GeV. Such a region is broad
and reasonable enough to give us a clear picture of the
possibility of the heavy baryon molecules.

A. �c�c and �c�c systems

The total effective potential of �c�c arises from the �
and ! exchanges. We plot it with � ¼ 0:9 GeV in
Fig. 3(a), from which we can see that the ! exchange is
repulsive while the� exchange is attractive. Because of the
cancellation, the total potential is too shallow to bind two

�cs. In fact, we fail to find any bound solutions of �½0;1�
�c�c

even if one takes the deepest potential with � ¼ 0:9 GeV.
In other words, there does not exist a loosely bound state
for �c�c, which is the heavy analogue of the famous H
dibaryon [32–35] to some extent.

TABLE II. Numerical results of the coupling constants. The coupling constants with the � exchange are deduced from g�NN .

�c�c �c�c �c�c �0
c�

0
c �c�c


 g
�c�c
f
�c�c

g
�c�c
f
�c�c

g
�c�c
f
�c�c

g
�0
c�

0
c

f
�0
c�

0
c

g
�c�c
f
�c�c

� 0 27.36 14.36

� 0 0 7.82 �4:10 �17:19
� 5.64 5.64 5.64 5.64 5.64

! 10.57 �10:57 5.28 �5:28 10.57 44.67 5.28 23.72

� 3.25 �4:62 6.50 39.01 3.25 20.72

� 4.60 �6:53 4.60 29.30 9.19 61.94

TABLE III. Masses of heavy baryons and light mesons [31]. We use m�c
¼ 2469:3 MeV,

m�0
c
¼ 2576:7 MeV, and m� ¼ 138:1 MeV as numerical analysis inputs.

Baryon Mass (MeV) Baryon Mass (MeV) Meson Mass (MeV) Meson Mass (MeV)

�þ
c 2286.5 �c 2455 �	 139.6 � 775.5

�þ
c 2467.8 �0þ

c 2575.6 �0 135.0 ! 782.7

�0
c 2470.9 �00

c 2577.9 � 547.9 � 1019.5

�0
c 2695.2 � 600
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For the �c
��c system as shown in Fig. 3(b), both � and

! exchanges are attractive. They enhance each other and
lead to a very strong total interaction. From our results

listed in Table IV, the binding energies of the�c
��c system

could be rather large. For example, when we increase the
cutoff to� ¼ 1:10 GeV, the corresponding binding energy
is 142.19 MeV. The binding energies and rms radii of this
system are very sensitive to the cutoff, which seems to be a
general feature of the systems composed of one hadron and
one antihadron.

�0
c and �þ

c contain the s quark, and their isospin is
I ¼ 1=2. Besides the � and ! meson exchanges, the �

and � exchanges also contribute to the potentials for the

�c�cð ��cÞ systems. Figures 3(c) and 3(d) illustrate the total
potentials and the contributions from the light meson

exchanges for�½1;1�
�c�c

and�½0;3�
�c�c

. For�½1;1�
�c�c

, the attraction

arises from the � exchange. Because of the repulsion pro-
vided by the �, �, and ! exchange in the short range, the
total potential has a shallow well at r � 0:2 fm. However,
the � exchange almost does not contribute to the potential

of�½0;3�
�c�c

and the� exchange is attractive, which cancels the

repulsion of the � exchange. The total potential is about

2 times deeper than the total potential of �½1;1�
�c�c

.
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FIG. 3. The potentials of ��c�c
, ��c

��c
, ��c�c

, and ��c
��c
. The spin triplets have no S�D mixing because of the cancellations of

the coupling constants.

TABLE IV. Numerical results of the systems �c�c, �c
��c, �c�c, and �c

��c, where ‘‘� � �’’
means no bound state solutions. After neglecting the tensor force terms, the results of the spin
triplets are the same as those of the spin singlets.

� (GeV) E (MeV) rrms (fm) � (GeV) E (MeV) rrms (fm)

�½0;1�
�c�c

� � � �½0;1ð3Þ�
�c

��c
0.89 2.80 2.15

0.90 4.61 1.76

1.00 49.72 0.74

1.10 142.19 0.52

�½0;3�
�c�c

0.95 2.53 2.17 �½1;1�
�c�c

1.01 0.14 5.58

1.00 7.41 1.41 1.05 0.29 4.48

1.10 20.92 0.96 1.10 0.35 4.62

1.20 36.59 0.78 1.20 0.18 5.40

�½0;1ð3Þ�
�c

��c
0.87 1.48 2.72 �½1;1ð3Þ�

�c
��c

0.90 1.24 2.92

0.90 4.12 1.78 1.00 10.33 1.25

1.00 28.94 0.86 1.10 31.80 0.83

1.10 82.86 0.60 1.20 66.19 0.64
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In Table IV, one notices that the binding energy is only

hundreds of keV for �½1;1�
�c�c

when the cutoff varies from

1.01 GeV to 1.20 GeV. Moreover, the rms radius of this

bound state is very large. So the state�½1;1�
�c�c

is very loosely

bound if it really exists. The �½0;3�
�c�c

bound state may

also exist. Its binding energy and rms radius are
2.53–36.59 MeV and 2.17–0.78 fm, respectively, with
� ¼ 0:95–1:20 GeV.

As for the �c
��c systems, the potentials are very deep.

The contribution from the � exchange is negligible too, as
shown in Figs. 3(e) and 3(f). We find four bound state

solutions for these systems: �½0;1�
�c

��c
, �½0;3�

�c
��c
, �½1;1�

�c
��c
, and

�½1;3�
�c

��c
. Among them, the numerical results of �½0;3�

�c
��c

and

�½1;1�
� ��c

are almost the same as those of �½0;1�
� ��c

and �½1;3�
�c

��c
,

respectively. The binding energies and the rms radii of
these states are shown in Table IV. We can see that the
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FIG. 4. Potentials of ��c�c
, ��c

��c
, ��0

c�
0
c
, ��0

c
��0
c
, ��c�c

, and ��c
��c
.
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binding energy of �½0;1�
�c

��c
varies from 1.48 MeV to

82.86 MeV, whereas the rms radius reduces from 2.72 fm
to 0.60 fm when the cutoff is below 1.10 GeV. The situation

for �½1;3�
�c

��c
is qualitatively similar to that of �½0;1�

�c
��c
. They

may exist. But the binding energies appear a little large
and the rms radii too small when one takes � above
1.10 GeV.

B. �c�c, �
0
c�

0
c, and �c�c systems

For the �c�c system, all the �, �, �, !, and � ex-
changes contribute to the total potential. We give the
variation of the potentials with r in Figs. 4(a) and 4(b).

For �½0;1�
�c�c

, the potentials of the ! exchange and � ex-

change almost cancel out, and the � exchange gives a very
small contribution. So the total potential of this state

TABLE V. Numerical results of the �c�c system, where the symbol ‘‘�’’ means this state is
forbidden and ‘‘� � �’’ means no solutions.

� (GeV) E (MeV) rrms (fm) � (GeV) E (MeV) rrms (fm) PS: PD (%)

�½0;1�
�c�c

1.07 1.80 2.32 �½0;3�
�c�c

�
1.08 3.10 1.88

1.10 6.55 1.44

1.20 42.95 0.78

1.25 75.75 0.65

�½1;1�
�c�c

� �½1;3�
�c�c

1.05 0.11 5.94 98.11 1.89

1.47 2.03 2.48 94.21 5.79

1.50 2.52 2.27 93.79 6.21

1.80 31.35 0.76 91.41 8.59

�½2;1�
�c�c

� � � �½2;3�
�c�c

�

TABLE VI. Numerical results of the �c-
��c system. Results from the OBE and OPE alone are compared.

One boson exchange One pion exchange

�(GeV) E (MeV) rrms (fm) PS: PD(%) �(GeV) E (MeV) rrms(fm) PS : PD(%)

�½0;1�
�c

��c
0.97 0.86 3.76 � � �
0.98 3.03 2.21

1.00 18.43 1.01

1.05 175.56 0.41

�½0;3�
�c

��c
0.93 1.04 3.50 81.20 18.80 0.80 17.54 1.20 82.93 17.07

0.94 2.55 2.57 75.27 24.73 0.85 26.33 1.04 81.66 18.34

1.00 28.16 1.29 58.07 41.93 0.90 37.48 0.92 80.57 19.42

1.05 78.48 0.99 50.56 49.44 1.05 87.94 0.68 78.03 21.97

�½1;1�
�c

��c
0.93 0.75 3.77 � � �
0.94 2.54 2.27

0.98 32.28 0.80

1.00 66.97 0.60

�½1;3�
�c

��c
0.80 3.71 1.91 94.73 5.27 0.97 1.04 3.14 93.68 6.32

0.81 5.18 1.69 94.38 5.62 1.02 2.51 2.18 91.58 8.42

0.90 40.35 0.86 90.12 9.88 1.10 6.44 1.51 89.04 10.96

1.00 143.46 0.62 76.86 23.14 1.30 27.27 0.88 84.89 15.11

�½2;1�
�c

��c
0.80 24.87 0.85 0.75 2.49 1.98

0.85 49.30 0.67 0.80 5.95 1.38

0.90 90.04 0.55 0.90 18.30 0.88

0.95 149.66 0.46 1.10 72.23 0.51

�½2;3�
�c

��c
0.90 1.44 2.93 96.92 3.08 � � �
1.00 14.99 1.21 95.43 4.57

1.10 41.81 0.86 95.11 4.89

1.20 77.28 0.71 94.72 5.28
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mainly comes from the � and � exchanges, which account
for the long- and medium-range attractions, respectively.

There may exist a bound state �½0;1�
�c�c

; see Table V.

But for the other spin singlet, �½2;1�
�c�c

, the � exchange

provides only as small as 0.2 GeV attraction while the !
and � exchanges give strong repulsions in short-range r <

0:6 fm. We have not found any bound solutions for�½2;1�
�c�c

,

as shown in Table V. For the spin-triplet state �½1;3�
�c�c

, there

exist bound state solutions with binding energies between

0.11 MeV and 31.35 MeV when the cutoff lies between

1.05 GeVand 1.80 GeV. This state is the mixture of 3S1 and
3D1 due to the tensor force in the potential. From Table V,

one can see the S wave percentage is more than 90%.
There exist bound state solutions for all six states of

the �c
��c system. The potentials of the three spin singlets

are plotted in Figs. 4(c)–4(e). The attraction that binds the
baryonium mainly comes from the � and ! exchanges.

These contributions are of a relatively short range in
the region r < 0:6 fm. One may wonder whether the
annihilation of the heavy baryon and antibaryon might

play a role here. Thus the numerical results for �c
��c

with strong short-range attractions should be taken with
caution. This feature differs from the dibaryon systems
greatly.
In Table VI, for comparison, we also present the nu-

merical results with the � exchange only. It is very inter-
esting to investigate whether the long-range OPE potential
alone is strong enough to bind the baryonia and form
loosely bound molecular states. There do not exist bound

state solutions for �½0;1�
�c

��c
and �½1;1�

�c
��c
since the � exchange

is repulsive. In contrast, the attractions from the � ex-
change are strong enough to form baryonium bound states

for �½0;3�
�c

��c
, �½1;3�

�c
��c
, and �½2;1�

�c
��c
. We notice that the S�D

mixing effect for the spin triplets mentioned above is
stronger than that for the �c�c system.

TABLE VII. Numerical results of the �0
c�

0
c system.

� (GeV) E (MeV) rrms (fm) � (GeV) E (MeV) rrms (fm) PS : PD (%)

�½0;1�
�0

c�
0
c

� �½0;3�
�0

c�
0
c

0.95 1.22 3.03 97.88 2.12

0.98 2.44 2.29 97.45 2.55

1.00 3.41 2.01 97.26 2.74

1.20 15.43 1.16 96.74 3.26

1.30 21.50 1.03 96.83 3.17

�½1;1�
�0

c�
0
c

1.50 0.18 5.52 �½1;3�
�0

c�
0
c

�
1.65 1.24 3.08

1.70 1.83 2.64

1.80 3.42 2.08

1.90 5.58 1.74

TABLE VIII. Comparison of the numerical results of the system �0
c
��0
c in the OBE model and OPE model.

One boson exchanges One pion exchanges

� (GeV) E (MeV) rrms (fm) Ps : PD(%) � (GeV) E (MeV) rrms (fm) PS : PD (%)

�½0;1�
�0

c
��0
c

0.96 0.40 4.57 � � �
0.99 3.22 2.00

1.00 5.13 1.65

1.10 83.53 0.58

�½0;3�
�0

c
��0
c

0.80 3.82 1.86 96.33 3.67 1.15 0.77 3.42 94.89 5.11

0.90 19.40 1.04 94.34 5.66 1.20 1.89 2.35 93.01 6.99

1.00 59.74 0.74 90.03 9.97 1.40 12.69 1.10 88.10 11.90

1.05 90.87 0.66 86.20 13.80 1.50 22.91 0.88 86.44 13.56

�½1;1�
�0

c
��0
c

0.80 14.13 1.01 � � �
0.90 13.58 1.07

1.00 34.00 0.77

1.10 83.78 0.56

�½1;3�
�0

c
��0
c

0.90 0.56 3.99 99.76 0.24 � � �
1.00 7.53 1.41 99.59 0.41

1.10 22.97 0.94 99.58 0.42

1.20 43.80 0.76 99.58 0.42
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The�0
c�

0
cð ��0

cÞ systems are similar to�c�cð ��cÞ, and the
results are listed in Figs. 4(f)–4(h) and Tables VII and VIII.

Among the six bound states, �½1;1�
�0

c�
0
c
is the most interesting

one. As shown in Fig. 4(f), the � exchange does not con-
tribute to the total potential. The� exchange is repulsive. So
the dominant contributions are from the �, !, �, and �
exchanges, which lead to a deep well around r ¼ 0:6 fm
and a loosely bound state.Whenwe increase the cutoff from

1.50 GeV to 1.90 GeV, the binding energy of�½1;1�
�0

c�
0
c
varies

from 0.18MeV to 5.58MeV, and the rms radius varies from
5.52 fm to 1.74 fm. This implies the existence of this loosely
bound state. If we consider the � exchange alone, only the

�½0;3�
�0

c
��0
c
state is bound. The percentage of the 3S1 component

is more than 86% when 1:15 GeV<�< 1:50 GeV, as
shown in Table VIII.

The �c�cð ��cÞ case is quite simple. Only the �, �, and
� exchanges contribute to the total potentials. The shape of

the potential of �½0;1�
�c�c

is similar to that of �½1;1�
�0

c�
0
c
. The

binding energy of this state is very small. For the spin-

triplet �c
��c system, its S wave percentage is more than

99% (see Table IX). In other words, the S�D mixing
effect is tiny for this system.

We give a brief comparison of our results with those of
Refs. [36,37] in Table X. In Ref. [36], Fröemel et al.
deduced the nucleon-hyperon and hyperon-hyperon poten-
tials by scaling the nucleon-nucleon potentials. With
the nucleon-nucleon potentials from different models,
they discussed possible molecular states such as �ccN,

�c�cc, �c�c, etc. The second column of Table X shows
the binding energies corresponding to different models,
while the last column shows the relevant results of this
work. One can see that the results of Ref. [36] depend on
models, while our results are sensitive to the cutoff �.

V. CONCLUSIONS

The one-boson-exchange model is very successful in the
description of the deuteron, which may be regarded as a
loosely bound molecular system of the neutron and proton.
It is very interesting to extend the same framework to
investigate the possible molecular states composed of a
pair of heavy baryons. With heavier mass and reduced
kinetic energy, such a system is nonrelativistic. We expect
that the OBE framework also works in the study of the
heavy dibaryon system.
On the other hand, one should be cautious when extend-

ing the OBE framework to study the heavy baryonium
system. The difficulty lies in the lack of reliable knowledge
of the short-range interaction due to the heavy baryon
and antibaryon annihilation. However, there may exist a
loosely bound heavy baryonium state when one turns off
the short-range interaction and considers only the long-
range one-pion-exchange potential. Such a case is particu-
larly interesting. This long-range OPE attraction may lead
to a bump, cusp, or some enhancement structure in the
heavy baryon and antibaryon invariant mass spectrum
when they are produced in the eþe� annihilation or B
decay process, etc.

TABLE IX. Numerical results of the �c�c and �c
��c systems.

� (GeV) E (MeV) rrms (fm) � (GeV) E (MeV) rrms (fm) PS : PD (%)

�½0;1�
�c�c

0.96 1.07 3.04 �½0;3�
�c�c

�
0.98 2.67 2.08

1.00 4.51 1.69

1.20 5.92 1.59

1.70 19.88 1.15

0.90 13.12 1.06 �½0;3�
�c

��c
0.80 6.92 1.53 99.64 0.06

0.97 4.34 1.70 0.88 3.05 1.98 99.96 0.04

�½0;1�
�c

��c
1.00 5.01 1.62 1.00 9.77 1.23 99.90 0.10

1.10 20.96 0.94 1.10 26.22 0.86 99.79 0.21

1.20 108.50 0.48 1.20 47.23 0.72 99.53 0.47

TABLE X. The comparison of the binding energies of the �0�0 and �c�c systems in this work with those in Ref. [36]. The unit is
MeV. Here ‘‘� � �’’ means there is no bound state and ‘‘*’’ represents unrealistically deep bindings (1–10 GeV).

Models Nijm93 NijmI NijmII AV18 AV80 AV60 AV40 AVX0 AV20 AV10 This work

½�0
c�

0
c�I¼0 � � � * 71.0 457.0 � � � 0.7 24.5 9.5 12.8 � � � 1.22–21.50

½�c�c�I¼2 66.6 � � � � � � 41.1 � � � � � � � � � � � � � � � 0.7 � � �
½�c�c�I¼1 � � � * 53.7 � � � � � � � � � 7.3 2.8 8.3 0.7 0.11–31.35

½�c�c�I¼0 * * 285.8 * 16.1 10.8 87.4 53.3 58.5 0.7 1.80–75.75
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In this work, we have discussed the possible exis-

tence of the �c�cð ��cÞ, �c�cð ��cÞ, �c�cð ��cÞ,
�0

c�
0
cð ��0

cÞ, and �c�cð ��cÞ molecular states. We
consider both the long-range contributions from the
pseudoscalar meson exchanges and the short- and
medium-range contributions from the vector and scalar
meson exchanges.

Within our formalism, the heavy analogue of the H

dibaryon �½0;1�
�c�c

does not exist, though its potential is

attractive. However, the �½0;1�
�c

��c
and �½0;3�

�c
��c

bound states

might exist. For the �c�c system, there exists a loosely

bound state �½1;1�
�c�c

with a very small binding energy and a

very large rms radius around 5 fm. The spin-triplet state

�½0;3�
�c�c

may also exist. Its binding energy and rms radius

vary rapidly with increasing cutoff �. The qualitative

properties of �½0;1�
�c

��c
and �½1;3�

�c
��c

are similar to those of

�½0;1�
�c

��c
. They could exist but the binding energies and rms

radii are unfortunately very sensitive to the values of the
cutoff parameter.

For the �c�c, �c
��c, �

0
c�

0
c, �

0
c
��0
c, �c�c, and �c

��c

systems, the tensor forces lead to the S�D wave mixing.

Most likely, only the �c�c molecules �½0;1�
�c�c

and �½1;3�
�c�c

exist. For the �c
��c system, the ! and � exchanges are

crucial to form the bound states �½0;1�
�c

��c
, �½1;1�

�c
��c
, and�½2;3�

�c
��c
.

If one considers the � exchange only for the�0
c
��0
c system,

there may exist one bound state �½0;3�
�0

c
��0
c

.

The states �½0;3�
�c�c

and �½0;3�
�0

c�
0
c
are very interesting. They

are similar to the deuteron. In particular,�½0;3�
�c�c

and�½0;3�
�0

c�
0
c

have the same quantum numbers as the deuteron. For

�½0;3�
�c�c

, the S�D mixing is negligible, whereas for the

deuteron such an effect can make the percentage of the D
wave up to 4.25%–6.5% [22,24,38]. The D wave percent-

age of �½0;3�
�0

c�
0
c
is 2.12%–3.17%.

The other two states �½1;1�
�c�c

and �½1;1�
�0

c�
0
c
are very loosely

bound S wave states. Remember that the binding energy of
the deuteron is about 2.22 MeV [39] with a rms radius of
rrms � 1:96 fm [40]. The binding energy and rms radius

of �½1;1�
�0

c�
0
c
are quite close to those of the deuteron. In

contrast, the state �½1;1�
�c�c

is much more loosely bound. Its

binding energy is only a tenth of that of the deuteron.
However, the binding mechanisms for the deuteron

and the above four bound states are very different. For
the deuteron, the attraction is from the � and vector
exchanges. But for these four states, the � exchange con-
tribution is very small. Either the � (for �c�c) or vector
meson (for�0

c�
0
c) exchange provides enough attractions to

bind the two heavy baryons.
Although very difficult, it may be possible to produce

the charmed dibaryons at the Relativistic Heavy Ion

Collider and LHC. Once produced, the states �c�c and
�0

c�
0
c are stable since �c and�

0
c decay either via weak or

electromagnetic interaction with a lifetime around 10�15 s
[31]. On the other hand, �c mainly decays into �þ

c �.
However, its width is only 2.2 MeV [31]. The relatively
long lifetime of �c allows the formation of the molecular

states �½0;1�
�c�c

and �½0;1�
�c�c

. These states may decay into

�c�
þ
c � or �þ

c �
þ
c �� if the binding energies are less

than 131 MeV or 62 MeV, respectively. Another very
interesting decay mode is �ccN, with a decay momentum
around 100 MeV. In addition, a baryonium can decay into
one charmonium and some light mesons. In most cases,
such a decay mode may be kinetically allowed. These
decay patterns are characteristic and useful to the future
experimental search of these baryonium states.
Up to now, many charmoniumlike XYZ states have been

observed experimentally. Some of them are close to the
two-charmed-meson threshold. Moreover, the Belle
Collaboration observed a near-threshold enhancement in

the eþe� ! �c
��c initial-state radiation process with a

mass and width of m ¼ ð4634þ8
�7ðstatÞþ5

�8ðsysÞÞ MeV=c2

and �tot ¼ ð92þ40
�24ðstatÞþ10

�21ðsysÞÞ MeV, respectively [41].

The BABAR Collaboration also studied the correlated

leading �c
��c production [42]. Our investigation indicates

that there does exist a strong attraction through the

� and ! exchange in the �c
��c channel, which mimics

the correlated two-pion and three-pion exchange to some
extent.
Recently, the ALICE Collaboration observed the pro-

duction of nuclei and antinuclei in pp collisions at the
LHC [43]. A significant number of light nuclei and
antinuclei such as (anti)deuterons, (anti)tritons, (anti)
Helium3, and possibly (anti)hypertritons with high sta-
tistics of over 350 M events were produced. Hopefully,
the heavy dibaryons and baryonia may also be produced
at the LHC. The baryonia may also be studied at other
facilities such as PANDA, J-Parc, and Super-B factories
in the future.
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APPENDIX

1. The functions H0, H1, H2, and H3

The functions H0, H1, H2, and H3 are defined as [17]
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H0ð�; m; rÞ ¼ 1

mr
ðe�mr � e��rÞ ��2 �m2

2m�
e��r; H1ð�; m; rÞ ¼ � 1

mr
ðe�mr � e��rÞ þ�

�2 �m2

2m3
e��r;

H2ð�; m; rÞ ¼
�
1þ 1

mr

�
e�mr

m2r2
�
�
1þ 1

�r

�
�

m

e��r

m2r2
��2 �m2

2m2

e��r

mr
;

H3ð�; m; rÞ ¼
�
1þ 3

mr
þ 3

m2r2

�
e�mr

mr
�
�
1þ 3

�r
þ 3

�2r2

�
�2

m2

e��r

mr
��2 �m2

2m2
ð1þ�rÞ e

��r

mr
:

(A1)

With Fourier transformations we have
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FIG. 5. Dependence of the binding energy on the cutoff. In panels (f) and (i), only one-pion contributions are included.
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1

m2 þQ2
! m

4�
H0ð�; m; rÞ; Q2

m2 þQ2
! m3

4�
H1ð�; m; rÞ; Q

m2 þQ2
! im3r

4�
H2ð�; m; rÞ;

QiQj

m2 þQ2
! � m3

12�

�
H3ð�; m; rÞ

�
3
rirj

r2
� �ij

�
�H1ð�; m; rÞ�ij

�
: (A2)

B. The coupling constants of the heavy baryons and light mesons

In the quark model we have

g��c�c
¼ 0; g��c�c

¼ 4

3
g�qq

m�c

mq

; g��0
c�

0
c
¼ 2

3
g�qq

m�0
c

mq

; g��c�c
¼ 0; g��c�c

¼ 0; g��c�c
¼ 4

3
g�qq

m�c

mq

;

g��0
c�

0
c
¼�2

3
g�qq

m�0
c

mq

; g��c�c
¼�8

3
g�qq

m�c

mq

; g��c�c
¼ g�qq; f��c�c

¼�g�qq; g��c�c
¼ 2g�qq;

f��c�c
¼ 2g�qq

�
2

3

m�c

mq

� 1

�
; g��0

c�
0
c
¼ g�qq; f��0

c�
0
c
¼ g�qq

�
2

3

m�0
c

mq

� 1

�
; g!�c�c

¼ 2g!qq; f!�c�c
¼�2g!qq;

g!�c�c
¼ g!qq; f!�c�c

¼�g!qq; g!�c�c
¼ 2g!qq; f!�c�c

¼ 2g!qq

�
2

3

m�c

mq

� 1

�
; g!�0

c�
0
c
¼ g!qq;

f!�0
c�

0
c
¼ g!qq

�
2

3

m�0
c

mq

� 1

�
; g��c�c

¼ g�qq; f��c�c
¼�g�qq; g��0

c�
0
c
¼ g�qq; f��0

c�
0
c
¼ g�qq

�
2

3

m�0
c

mq

� 1

�
;

g��c�c
¼ 2g�qq; f��c�c

¼ 2g�qq

�
2

3

m�c

mq

� 1

�
; g��c�c

¼ 2g�qq; g��c�c
¼ 2g�qq;

g��c�c
¼ 2g�qq; g��0

c�
0
c
¼ 2g�qq; g��c�c

¼ 2g�qq: (A3)

Because nucleons do not interact directly with the � meson in the quark model, we cannot get g�qq in this way. However,
using the SUð3Þ flavor symmetry, we have g�qq ¼

ffiffiffi
2

p
g�qq. Since g�qq is related to g�NN , all coupling constants of heavy

charmed baryons and � can be expressed in terms of g�NN .

C. The dependence of the binding energy on the cutoff

Finally, we plot the variations of the binding energies with the cutoff in Fig. 5.
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