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The increase of the measured hadronic total cross sections at the highest energies is empirically

described by the squared log of center-of-mass energy
ffiffiffi
s
p

as �tot ’ Blog2s, consistent with the energy

dependence of the Froissart unitarity bound. The coefficient B is argued to have a universal value, but this

is not proved directly from QCD. In the previous tests of this universality, the pð �pÞp, ��p, and K�p
forward scatterings were analyzed independently and found to be consistent with Bpp ’ B�p ’ BKp,

although the determined value of BKp had large uncertainty. In the present work, we have further analyzed

forward K�p scattering to obtain a more exact value of BKp. Making use of continuous-moment sum rules

we have fully exploited the information of low-energy scattering data to predict the high-energy behavior

of the amplitude through duality. The estimation of BKp is improved remarkably, and our result strongly

supports the universality of B.
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I. INTRODUCTION AND SUMMARY

The increase of total cross sections �tot in a high-energy
region is described [1] by the squared log of center-of-mass
energy

ffiffiffi
s
p

as �tot ’ Blog2s consistent with the energy
dependence of the Froissart unitarity bound [2]. The
COMPETE Collaboration has further assumed �tot ’
Blog2ðs=s0Þ to apply to all hadron total cross sections
with a universal value of B [3]. The universality of B was
theoretically anticipated in Refs. [4,5] and recently in-
ferred from a color glass condensate [6,7] of QCD.
However, there is still no rigorous proof based on QCD.

In a previous work [8], to test this universality empiri-
cally, the pð �pÞp, ��p, and K�p forward scattering am-
plitudes were analyzed, and the values of B, denoted,
respectively, as Bpp, B�p, and BKp, were estimated inde-

pendently. The resulting values were consistent with the
universality, Bpp ’ B�p ’ BKp, although there was still a

rather large uncertainty in BKp, BKp ¼ 0:354� 0:099 mb.

In the present work, to reduce the uncertainty of BKp we

have refined the analysis of forward K�p scattering. By
employing continuous-moment sum rules (CMSRs) [9–12]
for the crossing-even amplitude, we have fully exploited
the information of low-energy scattering data to predict the
high-energy behavior of �tot through duality. We use two
CMSRs with parameters � ¼ �1, �3, and following
Ref. [12], the estimated values of the cross-section inte-
grals are treated as data points. The unphysical region of
the integral is problematic. The pole of �ð1405Þ in the
unphysical region gives a relatively large contribution in
K�p amplitude. We estimate its contribution by the
coupled-channel study by A.D. Martin [13]. The �tot and

� ratios ( ¼ Ref=Imf) of K�p forward amplitudes in a
high-energy region are fit simultaneously with two
CMSRs’ data points. The resulting value isBKp ¼ 0:328�
0:045 mb. The error is improved remarkably, less than half
of the previous estimate. By comparing with previously
determined values of Bpp and B�p, the universality, BKp ’
B�p ’ Bpp, is strongly supported.

II. FORMULAS

We inherit the notation and definitions from a previous
work [8]: �ðkÞ is the energy (momentum) of the kaon beam

in a laboratory system, � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

K

q
, where mK is the

mass of K�. It is related to the center-of-mass energyffiffiffi
s
p

by

s ¼ M2 þm2
K þ 2M�: (1)

The K�p forward amplitudes are denoted as fK
�pð�Þ.

The total cross sections �K�p
tot are given by ImfK

�pð�Þ ¼
ðk=4�Þ�K�p

tot through an optical theorem. The crossing-

even/odd amplitudes fð�Þð�Þ are given by fð�Þð�Þ ¼
ðfK�pð�Þ � fK

þpð�ÞÞ=2. The fðþÞð�Þ is related to the

A0ð�; tÞ amplitude at t ¼ 0 [12] as fðþÞð�Þ ¼ A0ð�; t ¼
0Þ=4�. Real and imaginary parts of fð�Þð�Þ are assumed
to take the forms [8]

ImfðþÞas ¼ �

m2
K

�
c2log

2 �

mK

þc1 log
�

mK

þc0

�
þ�P0

mK

�
�

mK

�
�P0

;

(2)

Im fð�Þas ¼ �V

mK

�
�

mK

�
�V

; (3)
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Re fðþÞas ¼ ��

2m2
K

�
2c2 log

�

mK

þ c1

�
� �P0

mK

�
�

mK

�
�P0

� cot
��P0

2
þ fðþÞð0Þ; (4)

Re fð�Þas ¼ �V

mK

�
�

mK

�
�V

tan
��V

2
; (5)

in the asymptotic high-energy region, where we assume

ImfðþÞ is given by log2� (and log�) terms in addition to the
ordinary Pomeron (c0) term and Reggeon (�P0) term.

Similarly Imfð�Þ is given by exchange of �-, !-meson
trajectories in Regge theory with degenerate trajectory
intercepts assumed. Their intercepts are taken to be an

empirical value �P0 ’ �V ’ 0:5. The real parts of fð�Þas

are obtained from their imaginary parts by using crossing

symmetry, fð�Þð��R � i�Þ ¼ �fð�Þð�R þ i�Þ, except for
a subtraction constant fðþÞð0Þ. There is a total of six

parameters: c2;1;0, �P0;V , f
ðþÞð0Þ. The c2 term in ImfðþÞas

dominates �tot in the high-energy-region and it is related to
BKp by

BKp ¼ 4�c2=m
2
K: (6)

III. CONTINUOUS-MOMENT SUM RULES

We can exploit the low-energy scattering data to predict
the amplitudes in the high-energy region by using CMSRs
[11]. In Ref. [12,14] a compact form of CMSRs is given in
�N scattering, whereRegge-pole contributions are parame-
trized in a form satisfying crossing symmetry and conve-
nient for CMSRs. The crossing-evenA0ð�; tÞ amplitudewas

taken to be A0ð�;tÞ¼P
i¼P;P0;P00 ½��ið�2

0��2Þ�i=2� in the

asymptotic energy region � � �1. Here �0 is the normal
threshold �0 ¼ 	þ t=ð4MÞ, where 	ðMÞ is the charged
pion (proton) mass, and (�2

0 � �2) is analytically continued

to ð�2 � �2
0Þe�i� in � > �0 for A

0ð�; tÞ to have the correct

phase factor of Reggeon-exchange amplitudes. The finite-
energy sum rule for �A0ð�; tÞ is given by

Z �1

�0

d�� Im½ð�2
0 � �2Þ�ð�þ1Þ=2A0�

¼ X
i¼P;P0;P00

�i

ð�2
1 � �2

0Þð�i��þ1Þ=2 sin½�2 ð�i � �� 1Þ�
�i � �þ 1

;

(7)

where � is a continuous parameter and the nucleon pole
term contribution should be added to the left-hand side
(LHS).

If we know completely the scattering amplitudes in the
low-energy region from experiments, the high-energy
amplitudes are predicted via CMSRs through analyticity.
In Ref. [12], by using the CERN results on �N scatterings

up to 2 GeV, the low-energy integrals on the LHS of
Eq. (7) were evaluated in the region 0 � �t < 1 GeV2

and 0ð�1Þ � � � �5 for t ¼ 0ðt < 0Þ in steps of 0.5.
These numbers were treated as data points, and simulta-
neously fit as data to the Reggeon parametrization of the
asymptotic high-energy region.
This method can be applied to the analysis of forward

K�p scattering. Our fðþÞð�Þ amplitude corresponds to
A0=ð4�Þ with t ¼ 0, and the CMSR is given by

Z �1

0
d�� Im½ðm2

K � �2Þ�ð�þ1Þ=2fðþÞð�Þ�

¼
Z �1

0
d�� Im½ðm2

K � �2Þ�ð�þ1Þ=2fðþÞas ð�Þ�: (8)

The LHS should be evaluated from low-energy experimen-
tal data, while the right-hand side (RHS) is analytically
calculated by using the formulas (2) and (4).

If we take nonodd values of �, RefðþÞð�Þ data in the low-
energy region are necessary as inputs. However, experi-
mental data [15] of Refð�Þ (or � ratios) forK�p are poorly
known for k � 5 GeV. In this situation we are forced to
select � as odd integers; specifically we take � ¼ �1, �3.
The CMSRs with � ¼ �1, �3 are equivalent to the

n ¼ 1, 3 moment sum rule [10],

2

�

Z �1

0
d��n ImfðþÞð�Þ ¼ 2

�

Z �1

0
d��n ImfðþÞas ð�Þ; (9)

where 2
� is from our convention. The LHS of Eq. (9) is

evaluated in the next section.

IV. EVALUATION OF INTEGRALS FROM
EXPERIMENTAL DATA

The LHS of Eq. (9) is obtained by averaging the inte-

grals of ImfK
þp and ImfK

�p, which are evaluated sepa-
rately from experimental data.
The Kþp channel is exotic and it has no contribution

below threshold, � < mK. Thus, its integral region ismK to
�1. By changing the variable from � to k, the relevant
integral is given by

2

�

Z �1

0
d��n ImfK

þp ¼ 2

�

Z ��1

0
dkk�n�1 k

4�
�Kþp

tot ; (10)

where ��1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
1 �m2

K

q
, which is taken to be some value in

the asymptotic high-energy region. We take ��1 ¼ 5 GeV.
Actually the integral of the RHS of Eq. (10) is estimated by
dividing its region into two parts: In the low-energy part,
from k ¼ 0 to kd, there are many data points [15]. They are
connected by straight lines and the area of this polygonal
line graph can be regarded as the relevant integral. In high-
energy part, from kd to ��1, we use the phenomenological fit
used in our previous work [8]. The dividing momentum kd
is taken to be 3 GeV. As a result we obtain
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2

�

Z �1

0
d��n ImfK

þp¼ 2

�

Z kd

0
dk			þ 2

�

Z ��1

kd

dk			¼
�
20:348ð41Þþ72:435ð184Þ¼692:795ð189ÞGeV
115:15ð27Þþ1294:90ð3:48Þ¼1410:05ð3:49ÞGeV3 (11)

for n ¼ 1, 3, respectively.
On the other hand, the K�p amplitude includes Born

terms of �0, �0 poles, which correspond to the nucleon
pole term in the �N amplitude. K�p is an exothermic
reaction with open channels, �� and ��, below thresh-
old which give contributions to ImfK

�pð�Þ in unphysical
regions, ��� � � � mK and ��� � � � mK, respec-
tively, where ���=��� is the ��=�� threshold energy,
���=�� ¼ ½ðM�0=�0 þ	Þ2 �M2 �m2

K�=ð2MÞ. A large

contribution from I ¼ 0 �ð1405Þ is expected to be in
the unphysical region. In order to estimate these contri-
butions we adopt a coupled-channel analysis by A.D.
Martin [13]. In his analysis the cross sections of K�p!
K�p, �K0n, ��, ��0; K0

2p! K0
1p, ��þ; �totðK0

2pÞ; and
RefK

�p;K�n were reproduced successfully. Martin in-
cluded a correction from Coulomb scattering following
the scheme of Dalitz and Tuan [16] for channels like
K�p, which gives a fairly large effect in a very low
energy region. Here we use the purely strong-interaction
part of Martin’s amplitude to estimate the unphysical
region contribution. We consider that this is the most
reliable way to estimate the unphysical region. The rele-
vant channels are the three I ¼ 1 channels �KN, ��, ��
and the two I ¼ 0 channels �KN, ��. The S-wave I ¼
1ð0Þ scattering amplitudes TI¼1ðTI¼0Þ are parametrized
by the K matirix [M matrix] as TI¼1 ¼ Kð1� iqKÞ�1
[TI¼0 ¼ ðM� iqÞ�1], where q is a diagonal matrix of
the channel c.m. momenta denoted as q ¼
diagfp; p�; p�gðdiagfp; p�gÞ. The real symmetric 3-by-3
matrix K is taken to be constant, including six parame-
ters. The M matrix is taken to be an effective range form,
M ¼ AþRp2, which makes it possible to describe the
�ð1405Þ resonance. Here p is the �KN c.m. momentum
which is continued below threshold as p ¼ ijpj. Real

symmteric 2-by-2 matrices A, R are taken to be constant,
and M includes six parameters.
By using the elements of K andM, the inverse of I ¼ 1,

0 �KN scattering amplitudes TI¼1;0
KK is given explicitly [17]

by

ðTI¼1;0
KK Þ�1 ¼ A�1I¼1;0 þ ip;

AI¼1 ¼ KKK þ 1

B1

ðKK�B2 þ KK�B3Þ;
B1 ¼ ð1� ip�K��Þð1� ip�K��Þ þ p�p�K

2
��;

B2 ¼ p�p�ðKK�K�� � KK�K��Þ þ ip�KK�;

B3 ¼ p�p�ðKK�K�� � KK�K��Þ þ ip�KK�;

A�1I¼0 ¼ MKK �
M2

K�

M�� � ip�

; (12)

where the subscript KK means a (1,1) element correspond-
ing to �KN ! �KN. Other subscripts are used similarly.
AI ¼ aI þ ibI are the S-wave �KN scattering lengths and
MKK ¼ AKK þ RKKp

2, etc. The best-fit values of the rele-
vant 12 parameters are given [18] with errors in Ref. [13].
Our K�p forward amplitude fK

�pð�Þ is related [19] to
the TI

KK by

fK
�pð�Þ ¼

ffiffiffi
s
p
2M
½TI¼0

KK þ TI¼1
KK �: (13)

There are no �K�p
tot data reported below k � ks ¼

0:245 GeV by the Particle Data Group [15]. The ImfK
�p

obtained by Martin is also utilized in this energy region

mK � � � �s where �s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2s þm2

K

q
.

The relevant integral is evaluated as follows:

2

�

Z �1

0
�n ImfK

�pð�Þd� ¼ X
R¼�0;�0

g2R
M

�n
B;Rð�MR þMþ �B;RÞ þ 2

�

Z �s

���

d� 	 	 	 þ 2

�

Z kd

ks

dk 	 	 	 þ 2

�

Z ��1

kd

dk 	 	 	

¼
� ð�0:106� 0:060Þ þ ð0:508� 0:095Þ þ ð35:481� 0:069Þ þ ð108:499� 0:405Þ
ð�0:0004� 0:0010Þ þ ð0:110� 0:017Þ þ ð191:28� 0:54Þ þ ð1928:04� 7:46Þ (14)

¼
�
144:382� 0:426 GeV n ¼ 1
2119:43� 7:48 GeV3 n ¼ 3;

(15)

where �B;R ¼ ðM2
R �M2 �m2

KÞ=ð2MÞ. The first bracket
of Eq. (14) is the Born term, which is estimated by using
g2
�0 ¼ 13:7� 1:9 and g2

�0 ¼ 0. The error comes from the
upper limit of g2

�0 < 3:7� 1:3 [13]. The second bracket,
corresponding to the integral region ��� � � � �s, is
also estimated by Eq. (13) of Martin’s amplitude. The
error comes from RKK ¼ 0:41� 0:10 fm [13], which
gives the largest uncertainty among all the parameters.

The third and fourth brackets are estimated from the
polygonal line graph and phenomenological fit [8], re-
spectively. For n ¼ 1 a small but sizable contribution
comes from the first term and second term. The corre-
sponding errors affect the final value of Eq. (15) but they
are not the main sources of its error. For n ¼ 3 the first
and second terms are both negligible. Thus, the uncer-
tainty from the unphysical region, especially from the
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�ð1405Þ pole, is considered to be insignificant in the use
of the values of Eq. (15).

By averaging Eqs. (11) and (15) we obtain

2

�

Z �1

0
�n ImfðþÞð�Þd�¼

�
118:589�0:233GeV
1764:74�4:13GeV3 (16)

for n ¼ 1, 3, respectively. These two values are treated as
low-energy data points and they are fit simultaneously with
the data in the asymptotic high-energy region.

V. RESULTS AND CONCLUDING REMARKS

The �K�p
tot , �Kþp

tot , �K�p, and �Kþp (more precisely [20]

RefK
�p, and RefK

þp) with k � 5 GeV, which are given in
Ref. [15], are fit by using the formula in Sec. II. Thenumber

of parameters is six: c2;1;0, �P0;V , f
ðþÞð0Þ. We fit to the

CMSR data points of n ¼ 1, 3 (16) simultaneously. We
considered three cases: (i) the case including a n ¼ 1 datum
of (16), (ii) the case including a n ¼ 3 datum of (16), and
(iii) the case including both n ¼ 1, 3 data of (16). The re-
sults are compared with (iv) the case with no use of CMSRs
and also our previous analysis [Ishida and Igi (II) [8] ].
The best-fit parameters and 
2 values are given in

Table I.
All fits are successful (
2= deg :freedom< 1). The best-

fit 
2 values of (i), (ii), and (iii) are almost the same as case
(iv) with no use of CMSRs, suggesting that the CMSR
works well in the fit. Results of the best fit in case (iii) are
shown in Figs. 1 and 2.
The error of c2 in case (iii) is much smaller than in case

(iv), and is greatly improved from our previous analysis II
[8]. Correspondingly the parameter BKp associated with

the ln2s dependence is given by

Present result ðiiiÞ Previous analysis II ½8�
c2 ¼ 0:016 34� 0:002 23  0:017 57� 0:004 95

BKp ¼ 0:328� 0:045 mb  0:354� 0:099 mb

(17)

TABLE I. Best-fit parameters and 
2: �K�p
tot and RefK

�p in k � 5 GeV are fit simultaneously with (i) n ¼ 1 CMSR datum,
(ii) n ¼ 3 CMSR datum, (iii) n ¼ 1 and 3 CMSR data. The results are compared with case (iv) with no CMSR data and with the

previous analysis [8], where �K�p
tot in k � 20 GeV and RefK

�p in k � 5 GeV are fit using the finite-energy sum rule with the region of
the integral 5 � k � 20 GeV as a constraint.

Case c2 c1 c0 �P0 �V fðþÞð0Þ 
2=ðND � NP � 1Þ
(i) n ¼ 1 0.01652(224) �0:1241 1.152 0.2702 0.5741 1.180 143:21=ð165� 6� 1Þ
(ii) n ¼ 3 0.01724(256) �0:1339 1.188 0.2110 0.5736 1.609 143:54=ð165� 6� 1Þ
(iii) n ¼ 1, 3 both 0.01634(223) �0:1221 1.146 0.2736 0.5737 1.178 144:05=ð166� 6� 1Þ
(iv) no CMSR 0.01522(385) �0:1065 1.088 0.3726 0.5749 2.104 143:04=ð164� 6� 1Þ
II [8] 0.01757(495) �0:1388 1.207 0.1840 0.5684 1.660 63:80=ð111� 5� 1Þ

0.1 1 10 100 1000 GeV
k10

20

30

40

50

60

mb

FIG. 1 (color online). Results of the fit to �K�p
tot ðmbÞ. Upper

(blue) data represent K�p and lower (black) data are Kþp. The
horizontal arrow represents the energy region of the fit to the
asymptotic amplitude. The solid curves are the asymptotic
Reggeon amplitudes, which are extrapolated down through the
resonance region.

1 10 100GeV
k0.6

0.4

0.2

0.0

0.2

0.4

0.6

FIG. 2 (color online). Results of the fit to �K�p. The solid
(blue) data points represent K�p and the open (black) data
points are Kþp. The horizontal arrow represents the energy
region of the fit to the asymptotic amplitude.
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There are several comments that should be added: (i) In
the present analysis we take ��1 ¼ 5 GeV, and the �tot

and Ref data in k � ��1 are fit. The results are almost
independent of the choice of ��1. If we take ��1 ¼ 4 GeV
and the CMSRs with � ¼ �1,�3 together with the data of
k � 4 GeV are fit simultaneously, we obtain the result
BKp ¼ 0:311� 0:039 mb, which is almost the same result

as Eq. (17). (ii) In our previous analysis [8], ��1 ¼ 20 GeV
was taken, and the data of � in k � 20 GeV and RefðkÞ in

k � 5 GeVwere fit. The n ¼ 1 integral with ��1 ¼ 20 GeV
on the LHS of (11) [which is obtained as 6802.61
(10.90) GeV] is fit simultaneously to the data of the same
energy regions as the previous analysis [8]. The resulting
value is BKp ¼ 0:360� 0:110 mb, which is almost the

same as II [8], BKp ¼ 0:354� 0:099 mb, so no improve-

ment is obtained in this method. Hence we have adopted a
different energy region in the present analysis.
The obtained value of BKp together with the previous

estimates of B�p and Bpp in Ref. [8] are shown graphically

in Fig. 3 compared with the case with no use of sum rules.
Our results strongly suggest the universality of the coeffi-
cient B. It should be noted that the inclusion of low-energy
data through the CMSRs is essential in reaching this con-
clusion, especially that BKp ’ B�p as shown in the present

work. Our conclusion is that the B does not depend on the
flavor content of the particles scattered.
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