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We consider the exclusive decays B ! Dð�Þ‘ �� and study the effect of non-V � A structures on the

observables. We extend the standard model hadronic current by additional right-handed vector as well as

left- and right-handed scalar and tensor contributions and calculate the decay rates including the

perturbative corrections up to order �s. Using the data of the exclusive semileptonic b ! c decays and

recent calculations of the form factors at the nonrecoil point, we discuss the constraints to the wrong-

helicity admixtures in the hadronic current.
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I. INTRODUCTION

The V � A structure of the charged currents is consid-
ered a firmly established fact in weak interaction physics.
The evidence for V � A is very strong for the leptonic
couplings, e.g. by the measurement of the Michel parame-
ters of the muon decay. However, this is not as clear for the
hadronic currents due to our inability to perform a precise
calculation of the hadronic matrix elements. Consequently,
it is hard to exclude admixtures of different helicities in
hadronic charged currents.

Over the last ten years, heavy-quark symmetries became
a very useful tool in the calculation of hadronic matrix
elements involving heavy quarks. In particular, they may
help to perform the analogue of a Michel parameter analy-
sis for the hadronic charged currents. Making use of the
detailed data from the flavor factories, the semileptonic
heavy-quark decays may serve as a sensitive test for pos-
sible ‘‘wrong-helicity’’ contributions.

In a recent analysis, we extracted limits on a right-
handed admixture from the wealth of data on inclusive
semileptonic decays [1]. Despite the large amount of data
for the inclusive semileptonic decays and the precise
theoretical tools, it turns out that the exclusive decays

B ! Dð�Þ‘ �� can be much more sensitive to wrong-helicity
admixtures than the inclusive decays.

In this paper we expand on this idea, including also scalar
and tensor components for the hadronic current. The
method we propose can be most easily explained in the

Isgur-Wise limit for the decays B ! Dð�Þ‘ ��, where only a
single form factor appears, of which the normalization is
known. Starting from this limit, the corrections may be
considered and themethod can be systematically improved.

Beyond the Isgur-Wise limit a large number of form
factors appears, most of which are not well studied.
However, based on the detailed analysis of the vector and
axial-vector form factors through lattice and QCD sum rule
calculations, one may perform a stringent test at least for a
possible right-handed admixture.
The paper is organized as follows. In the next section

we study a possible new physics contribution in the Isgur-
Wise limit to demonstrate how the proposed method
works. After that we will calculate the corresponding
radiative corrections, followed by a section dealing with
the calculation of bounds on right-handed admixtures re-
garding the contemporary experimental results as well as
lattice and nonlattice calculations to be able to provide a
comparison to the standard model results. Finally we dis-
cuss our results and give a prospect into possible additional
measurements.

II. NEW PHYSICS CONTRIBUTIONS
IN THE ISGUR-WISE LIMIT

As has been pointed out above, the V � A structure of
the leptonic current is well established and hence we do not
modify this current. However, the hadronic current may
contain a contribution from ‘‘new physics’’ and hence the
effective Hamiltonian to be considered is

Heff ¼ 4GFVcbffiffiffi
2

p Jh;�ð �e��PL�eÞ; (1)

where Jh;� is the generalized hadronic current and PL;R ¼
ð1� �5Þ=2 is the projector of negative/positive chirality.
The modifications in the hadronic current can be consid-
ered on the basis of an effective field theory approach and
one obtains (see eg. [2])
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Jh;� ¼ cL �c��PLbþ cR �c��PRbþ gL �cðiD$�ÞPLb

þ gR �cðiD$�ÞPRbþ dLi@
�ð �ci���PLbÞ

þ dRi@
�ð �ci���PRbÞ; (2)

where D� is the QCD covariant derivative and fD
$

�g ¼
fðD�gÞ � ðD�fÞg represents the left and right derivatives.

Note that the first line in (2) corresponds to dimension-3
operators with dimensionless couplings cL and cR, while
the second and third lines are dimension-4 operators with
dimensionful couplings gL=R and dL=R. There are two other
dimension-4 operators of the form ðmb þmcÞ �c��b and

ðmb �mcÞ �c���5b, which are related by the Gordon

identities

ðmb þmcÞ �c��b ¼ �ciD
$

�bþ i@�ð �cð�i���ÞbÞ; (3)

� ðmb �mcÞ �c���
5b ¼ �ciD

$
��

5bþ i@�ð �cð�i���Þ�5bÞ:
(4)

Hence these operators are redundant and do not need to be
considered separately as it has been done in [2]. Likewise,
the pseudotensor is not independent of the tensor due to the
relation

�c����5b ¼ � i

2
����� �c�

��b; (5)

but it is convenient to keep this operator explicitly.
From the effective field theory analysis performed in [2],

all these operators originate from dimension-6 operators
parametrizing physics beyond the standard model. From
this, one obtains

cL � 1SM þO
�
v2

�2

�
; cR �O

�
v2

�2

�
;

gL=R; dL=R � 1

v
O
�
v2

�2

�
;

(6)

where � is the scale of ‘‘new physics’’ and v is the
electroweak vacuum expectation value.

We shall use this hadronic current to evaluate the semi-

leptonic widths for B ! Dð�Þ‘ ��. We first study the Isgur-
Wise limit where the relevant kinematic quantity is the
product of the four velocities of the initial and final state
hadrons

w ¼ v � v0 ¼ m2
B þm2

Dð�Þ � q2

2mBmDð�Þ
; (7)

where q2 � ðp� p0Þ2, and p and p0 refer to the four-

momenta of the B and Dð�Þ mesons, respectively. The
differential exclusive decay rates for the D and D� mesons
can, as usual, be expressed in terms of the hadronic form
factors GðwÞ and F ðwÞ, respectively. Thus, the differential
decay rates read

d�

dw
¼ G0ðwÞjVcbj2 w� 1

wþ 1
ð1þ rÞ2jGðwÞj2; (8)

d��

dw
¼ G�

0ðwÞjVcbj2jF ðwÞj2; (9)

where we defined the factors

Gð�Þ
0 ðwÞ ¼ G2

Fm
5
B

48�3
r3ð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � 1

p
ðwþ 1Þ2; (10)

containing the kinematical and normalization coefficients
to streamline the notation and rð�Þ ¼ mDð�Þ=mB. The form

factors F ðwÞ and GðwÞ are related to matrix elements of
the hadronic current, which in our case also contains the
new physics effects represented by the couplings cR, dL=R,
and gL=R.
The Isgur-Wise limit is taken by letting mb, mc ! 1

with mc=mb �Oð1Þ. In this case, both the charm and the
bottom quark in the hadronic current have to be replaced
by static quarks hv0;c and hv;b; to leading order, the had-

ronic current matches onto

Jh;� ¼ cL �hv0;c��PLhv;b þ cR �hv0;c��PRhv;b

þ gLðmbv� þmcv
0
�Þ �hv0;cPLhv;b

þ gRðmbv� þmcv
0
�Þ �hv0;cPRhv;b

þ dLðmbv
� �mcv

0�Þð �hv0;ci���PLhv;bÞ
þ dRðmbv

� �mcv
0�Þð �hv0;ci���PRhv;bÞ; (11)

and all the relevant matrix elements can be expressed in
terms of the Isgur-Wise function 	ðwÞ [3–5], which is
normalized to 	ð1Þ � 1 at zero recoil

hDðv0Þj �hv0;chv;bjBðvÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p ¼ ð1þ wÞ	ðwÞ; (12)

hDðv0Þj �hv0;c�
�hv;bjBðvÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mBmD
p ¼ ðvþ v0Þ�	ðwÞ; (13)

hDðv0Þj �hv0;c�
��hv;bjBðvÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mBmD
p ¼ iðv0

�v��v0
�v�Þ	ðwÞ; (14)

for the B ! D‘ �� decay and

hD�ðv0; �Þj �hv0;c�5hv;bjBðvÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p ¼ ð�� � vÞ	ðwÞ; (15)

hD�ðv0;�Þj �hv0;c�
�hv;bjBðvÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mBmD�
p ¼ i"�������v0

�v�	ðwÞ; (16)

hD�ðv0; �Þj �hv0;c�
��5hv;bjBðvÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mBmD�
p

¼ ½ð1þ wÞ��� þ v�ðv � ��Þ�	ðwÞ; (17)
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hD�ðv0; �Þj �hv0;c�
��hv;bjBðvÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mBmD�
p ¼ "��
���
ðv0 þ vÞ�	ðwÞ

(18)

for the �B ! D�‘ �� decay. The decay rate for the semi-

leptonic �B ! Dð�Þ‘ �� decays in the Isgur-Wise limit can
thus be expressed solely in terms of the Isgur-Wise func-
tion, even in the presence of ‘‘new physics.’’ The form
factors become

jGðwÞj2 ¼ wþ 1

w� 1
ð1þ rÞ�2AðwÞj	ðwÞj2; (19)

jF ðwÞj2 ¼ ðBTðwÞ þBLðwÞÞj	ðwÞj2; (20)

where we have separated the rate for B ! D� into the
contributions for longitudinally and transversely polarized
D� mesons. Hence we end up with

d�B!D‘ ��

dw
¼ G0ðwÞjVcbj2AðwÞj	ðwÞj2; (21)

d�B!D�
T‘ ��

dw
¼ G�

0ðwÞjVcbj2BTðwÞj	ðwÞj2; (22)

d�B!D�
L‘ ��

dw
¼ G�

0ðwÞjVcbj2BLðwÞj	ðwÞj2; (23)

d�B!D�‘ ��

dw
¼G�

0ðwÞjVcbj2½BTðwÞþBLðwÞ�j	ðwÞj2; (24)

where the coefficient functionsAðwÞ,BT , andBL contain
the dependence on the new physics couplings:

AðwÞ ¼ w� 1

wþ 1
½cþð1þ rÞ �mBdþðr2 � 2rwþ 1Þ

þ 2mBrgþðwþ 1Þ�2; (25)

BTðwÞ ¼ 2½1� 2r�wþ ðr�Þ2�
�

�
½c� þ d�mBðr� � 1Þ�2

þ w� 1

wþ 1
½cþ þ dþmBðr� þ 1Þ�2

�
; (26)

BLðwÞ ¼ fc�ðr� � 1Þ þ 2g�mBr�ðw� 1Þ
þ d�mB½ðr�Þ2 � 2r�wþ 1�g2; (27)

where we define the combinations of coupling constants

c	�ðcL	cRÞ; d	�ðdL	dRÞ; g	�ðgL	gRÞ: (28)

The expressions of the standard model are retrieved by
setting c	 ¼ 1 and all other couplings zero, and we recover
the standard model case as

A SMðwÞ ¼ w� 1

wþ 1
ð1þ rÞ2; (29)

B T
SMðwÞ ¼

4w

wþ 1
½1� 2r�wþ r2��; (30)

B L
SMðwÞ ¼ ðr� � 1Þ2: (31)

In the context of the extraction of jVcbj from exclusive
decays, the measured w spectrum is extrapolated to w ¼ 1
and hence one studies the observables

MðwÞ ¼ d�B!D‘ ��

dw

1

G0

1

ASMðwÞ ; (32)

M�
TðwÞ ¼

d�B!D�
T‘ ��

dw

1

G�
0

1

BT
SMðwÞ

; (33)

M�
LðwÞ ¼

d�B!D�
L‘ ��

dw

1

G�
0

1

BL
SMðwÞ

; (34)

M�ðwÞ ¼ d�B!D�‘ ��

dw

1

G�
0

1

BL
SMðwÞ þBT

SMðwÞ
: (35)

These observables become in the standard model in all
three cases just jVcbj2j	ðwÞj2. Extrapolating MðwÞ and/or
M�ðwÞ to the zero-recoil point w ¼ 1 and making use of
the normalization of the Isgur-Wise function allows us to
extract the jVcbj model independently. Expanding around
w ¼ 1 and using

	ðwÞ ¼ 	ð1Þ½1� �2
IWðw� 1Þ þ . . .�; (36)

we may also obtain information on the slope of the Isgur-
Wise function by performing the corresponding expansion
of the expressions (32)–(35). In the standard model we
obtain

�2
IW ¼ � 1

2Mð1Þ
@MðwÞ
@w

��������w¼1

¼ � 1

2M�
Tð1Þ

@M�
TðwÞ
@w

��������w¼1

¼ � 1

2M�
Lð1Þ

@M�
LðwÞ
@w

��������w¼1

¼ � 1

2M�ð1Þ
@M�ðwÞ
@w

��������w¼1
: (37)

However, the presence of the new physics contributions
will change these relations and allows us to reinterpret the
measured observables in terms of a possible ‘‘new phys-
ics’’ contribution. In fact, inserting the general expressions
into (32)–(35), we get
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MðwÞ ¼ AðwÞ
ASMðwÞ jVcbj2j	ðwÞj2; (38)

M�
TðwÞ ¼

BTðwÞ
BT

SMðwÞ
jVcbj2j	ðwÞj2; (39)

M�
LðwÞ ¼

BLðwÞ
BL

SMðwÞ
jVcbj2j	ðwÞj2; (40)

M�ðwÞ ¼ BTðwÞ þBLðwÞ
BT

SMðwÞ þBL
SMðwÞ

jVcbj2j	ðwÞj2: (41)

At the zero-recoil point w ¼ 1 this becomes

Mð1Þ ¼ jVcbj2j	ð1Þj2

�
�
cþ �mBdþ

ðr� 1Þ2
rþ 1

þ 4mBgþ
r

rþ 1

�
2
; (42)

M�
Tð1Þ ¼ jVcbj2j	ð1Þj2½c� þ ðr� � 1ÞmBd��2

¼ M�
Lð1Þ ¼ M�ð1Þ; (43)

leading to

� 1

2Mð1Þ
@MðwÞ
@w

��������w¼1
¼ �2

IW þ 2rmBðdþ þ gþÞ
mBdþðr� 1Þ2 � ðrþ 1Þcþ � 4rmBgþ

; (44)

� 1

2M�
Tð1Þ

@M�
TðwÞ
@w

��������w¼1
¼ �2

IW þ 1

4

�
1�

�
cþ þ ðr� þ 1ÞmBdþ
c� þ ðr� � 1ÞmBd�

�
2
�
; (45)

� 1

2M�
Lð1Þ

@M�
LðwÞ
@w

��������w¼1
¼ �2

IW � 2r�mBðd� � d�Þ
ðr� � 1Þðc� þ ðr� � 1Þd�Þ ; (46)

� 1

2M�ð1Þ
@M�ðwÞ
@w

��������w¼1
¼ �2

IW þ 1

6

�
1�

�
cþ þ dþmBðr� þ 1Þ
c� þ d�mBðr� � 1Þ

�
2 þ 4mBr�ðd� � g�Þ

ðr� � 1Þ½c� þ d�mBðr� � 1Þ�
�
; (47)

when we calculate the slopes. Note that the current
analyses are performed for the total B ! D�‘ �� rate with-
out the decomposition into longitudinal and transversal
polarizations.

III. RADIATIVE CORRECTIONS

Up to this point we have been relying on the Isgur-Wise
limit. However, from lattice as well as from QCD sum rule
studies we know that the relations obtained in the infinite
mass limit may have corrections of the order of 10%,
making a sensitive test on the basis of the formulas in the
last section impossible.

The first class of corrections are the perturbative QCD
corrections that break the Isgur-Wise symmetry. The
dimension-3 operators, i.e. the vector �c��b and the

axial-vector �c���5b, are both conserved in the massless

lepton limit and hence do not have an anomalous dimen-
sion. The dimension-4 operators

O S ¼ �ciD
$

�b; (48)

O PS ¼ �ciD
$

��
5b; (49)

O T ¼ i@� �cð�i���Þb; (50)

O PT ¼ i@� �cð�i���Þ�5b; (51)

mix under renomalization and also have anomalous dimen-
sions [2]. Note thatOT andOPT are not independent due to
the relation ����5 ¼ i

2 ������
��. However, for our pur-

poses it is useful to keep both operators.
Gathering the four operators and the coupling constants

in columns

~Oð�Þ ¼

OSð�Þ
OPSð�Þ
OTð�Þ
OPTð�Þ

0
BBBBB@

1
CCCCCA;

~Gð�Þ ¼

gSð�Þ
gPSð�Þ
gTð�Þ
gPTð�Þ

0
BBBBB@

1
CCCCCA ¼

gLð�Þ þ gRð�Þ
gRð�Þ � gLð�Þ
dLð�Þ þ dRð�Þ
dRð�Þ � dLð�Þ

0
BBBBB@

1
CCCCCA; (52)

we can write the hadronic current (2) as

Jh;� ¼ cL �c��PLbþ cR �c��PRbþ ~Gð�Þ � ~Oð�Þ: (53)

The one-loop anomalous dimension matrix can be cal-
culated and becomes
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� ¼ �s

4�
CF

6 0 4 0
0 6 0 4
0 0 2 0
0 0 0 2

0
BBB@

1
CCCA (54)

and the solution of the renormalization group equation can be written as

gSð�Þ
gPSð�Þ
gTð�Þ
gPTð�Þ

0
BBB@

1
CCCA ¼

gSð�Þ
�
�sð�Þ
�sð�Þ

�
3CF=�0

gPSð�Þ
�
�sð�Þ
�sð�Þ

�
3CF=�0

�
gTð�Þ þ gSð�Þ

��
�sð�Þ
�sð�Þ

�
2CF=�0 � 1

���
�sð�Þ
�sð�Þ

�
CF=�0

�
gPTð�Þ þ gSð�Þ

��
�sð�Þ
�sð�Þ

�
2CF=�0 � 1

���
�sð�Þ
�sð�Þ

�
CF=�0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: (55)

Note that his result is compatible with the Gordon identi-
ties (3) and (4). The left-hand side of these identities only
has the anomalous dimension of the masses

�
@

@�
mð�Þ ¼ mð�Þ�mð�sð�ÞÞ (56)

with �m ¼ 6�sCF=ð4�Þ, and hence we may check

�mðmb þmcÞ �c��b ¼ � �
OSð�Þ

0
OTð�Þ

0

0
BBB@

1
CCCA

¼ 6�s

4�
CF½ �ciD$�bþ i@�ð �cð�i���ÞbÞ�

(57)

and likewise for the axial vector.
The � dependence of the operators has to be cancelled

by the corresponding dependence of the matrix elements of
the operators. Here we focus on the matrix elements at the
specific kinematic point v ¼ v0 or w ¼ 1. At this point, all
possible Dirac structures can be expressed in terms of the
four matrices [6]

1 ¼ 1

2
ð1þ vÞ; s� ¼ 1

4
ð1þ vÞ���5ð1þ vÞ (58)

with v � s ¼ 0. To this end, we can write

hcðpc ¼ mcvÞj �c��bjbðpb ¼ mbvÞi ¼ 
Vv� �ucðvÞubðvÞ;
(59)

hcðpc¼mcvÞj �c���5bjbðpb¼mbvÞi¼
A �ucðvÞs�ubðvÞ;
(60)

while out of the dimension-4 operators we have a priori
four additional matrix elements. The matrix element ofOT

vanishes at nonrecoil, while the one of OPT does not. We
choose to use OS and OPS, which have nonvanishing
matrix elements at w ¼ 1,

hcðpc ¼ mcvÞj �ciD$�bjbðpb ¼ mbvÞij�
¼ v� �ucðvÞubðvÞðmb þmcÞ
Sð�Þ; (61)

hcðpc ¼ mcvÞj �ciD$��
5bjbðpb ¼ mbvÞij�

¼ �ucðvÞs�ubðvÞðmb �mcÞ
PSð�Þ: (62)

The matrix element of the nonvanishing pseudotensor
operator OPT can, according to the Gordon identity (4),
be expressed through the axial vector times (mb �mc)

masses in the corresponding MS scheme. Thus it can be
expressed by

hcðpc ¼ mcvÞji@�ð �cð�i���Þ�5bÞjbðpb ¼ mbvÞij�
¼ �ucðvÞs�ubðvÞðmb �mcÞ
PTð�Þ (63)

¼ �ð �mb � �mcÞð
A þ 
PSÞ �ucðvÞs�ubðvÞ: (64)

The matrix elements of the vector and axial-vector currents
are known at two loops in the full phase space, while the
matrix elements of the dimension-4 currents are calculated
here only at the nonrecoil point w ¼ 1. The result is


A ¼ 1þ �s

4�
CF

�
�8þ 3

mb þmc

mb �mc

log
mb

mc

�
; (65)


V ¼ 1þ �s

4�
CF

�
�6þ 3

mb þmc

mb �mc

log
mb

mc

�
; (66)


Sð�Þ ¼ 1þ �s

4�
CF

�
�
�3 log

�
�2

mbmc

�
þ 6

m2
b þm2

c

m2
b �m2

c

log
mb

mc

� 10

�
;

(67)


PSð�Þ¼ �s

4�
CF

�
�2log

�
�2

mbmc

�
þ2

mbþmc

mb�mc

log
mb

mc

�4

�
;

(68)
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PTð�Þ ¼ 1þ �s

4�
CF

�
�
� log

�
�2

mbmc

�
þ 4

mb þmc

mb �mc

log
mb

mc

� 8

�
:

(69)

Note that the difference in j
PS þ 
Aj � j
PTj in (64) is

due to the �s pieces of the MS masses. It is easy to check
that the � dependence cancels between the matrix ele-
ments and the Wilson coefficients in the order �s.
However, the renormalization group flow resums poten-
tially large logarithms of the form ð�s=�Þnlnnð�2=�2Þ,
and hence there will be a residual � dependence.
Looking at the structure of the matrix element coefficients

Xð�Þ, X 2 fA;V; S; PS; PTg, of the dimension-4 opera-
tors, a natural choice is �2

0 ¼ mbmc, and hence we insert

this scale for our numerical study. This includes that the
couplings generated at some high scale � have to be
evolved down to this small scale.

Numerically we obtain for the 
Xð�Þ using the values
mb ¼ 4:2 GeV, mc ¼ 1:3 GeV (and thus �0 

2:34 GeV), and CF ¼ 4=3 as well as �sð�0Þ 
 0:281 [7]
for Nf ¼ 3,


V 
 1þ 0:0713�s 
 1:02; (70a)


A 
 1� 0:1409�s 
 0:96; (70b)


Sð�0Þ 
 1� 0:1562�s 
 0:96; (70c)


PSð�0Þ 
 0þ 0:0476�s 
 0:01; (70d)


PTð�0Þ 
 1þ 0:0951�s 
 1:03: (70e)

Comparing the results for the vector and axial-vector co-
efficients Eqs. (70a) and (70b), respectively, with the form
factors Gð1Þ and F ð1Þ from lattice or nonlattice calcula-
tions, as discussed in more detail in the next section, the
results from our calculation can be assumed as a first
approximation for these form factors. Following the same
line, the results of Eqs. (70c)–(70e) can be considered as
first approximations for scalar, pseudoscalar, and pseudo-
tensor form factors values at the nonrecoil point.

IV. CONSTRAINTS ON RIGHT-HANDED
ADMIXTURES

In this section we shall discuss the bounds on possible
admixtures to the standard model current. In contrast to
Sec. II we will perform the analysis not in the Isgur-Wise
limit, and hence we have to deal with the form factor values
at zero recoil. From lattice simulations as well as from
QCD sum rules we know the normalizations for the vector-
and the axial-vector form factors, and hence we can—off
the Isgur-Wise limit—only study a possible right-handed
admixture to the weak hadronic currents, which shows up
to be the best candidate for sizable contributions [8]. To be
able to extract the strength of the right-handed admixture in
the weak currents of exclusive decays, we start from the

exclusive differential decay rates (8) and (9) of the D and
D� mesons, respectively. All information about the right-
handed admixture is contained in the form factors F ðwÞ
and GðwÞ. Like for the Isgur-Wise function 	ðwÞ, we may
extrapolate the form factors to the point w ¼ 1 and per-
form an expansion around this point to express the value
for any other w by a small correction of order �QCD=mQ,

where we use mQ generically for mb or mc respectively.

The form factors F ðwÞ and GðwÞ can be expanded as

F ðwÞ¼F ð1Þ½1��2�ðw�1Þþc�ðw�1Þ2þ . . .�; (71)

G ðwÞ ¼ Gð1Þ½1� �2ðw� 1Þ þ cðw� 1Þ2 þ . . .�; (72)

where the slopes

�2� ¼ � 1

F ð1Þ
@F ðwÞ
@w

��������w¼1
; (73)

�2 ¼ � 1

Gð1Þ
@GðwÞ
@w

��������w¼1
; (74)

describing the linear corrections as well as higher order
corrections c and c� introducing a possible correction
induced by a nonzero curvature. Note that the slopes differ
from �IW in the Isgur-Wise limit introduced in Sec. II,
since they include the contributions from the coefficient
functions AðwÞ for the B ! D� decay and BTðwÞ and
BLðwÞ for the B ! D decay, respectively. Thus, if we
evaluate the expansions (71) and (72) up to the first order
of magnitude, the whole information on the right-handed
admixtures is contained in the slopes. Additionally we find
the � and �� to differ from each other, such that we have
the opportunity to calculate a constraint on the right-
handed admixture by comparing the slopes of the two
decay modes. For the �B ! D�‘ �� decay this implies

�2� ¼ �2
SM þ R2

1ð1Þ
6

�
1�

�
cþ
c�

�
2
�
; (75)

where �SM denotes the terms known from the standard
model. In contrast to that the value for � concerning
B ! D‘ �� is left untouched, since the axial-vector compo-
nent vanishes by parity reasons, as implied by (12)–(18).
Therefore, we may set � � �SM and obtain

�
cþ
c�

�
2 ¼ 1–6

�2� � �2

R2
1ð1Þ

(76)

as a measure for the strength of the right-handed admix-
ture. Here R1ðwÞ � hVðwÞ=hA1

ðwÞ is defined by the ratio of
the vector form factor hvðwÞ and one of the axial-vector
form factors hA1

ðwÞ in the B ! D� transition [9]. The usual
full QCD definitions for the heavy to heavy form factors
can be found e.g. in [10]. In the Isgur-Wise limit used in
this paper positive corrections from unity to this ratio can
be computed [9]. Then we are left with small perturbative
as well as nonperturbative uncertainties, because when
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using this ratio some of the theoretical uncertainties drop
out; R1 is a well defined theoretical quantity. Thus it can be
used to make reliable predictions. In particular since we
have factored out the well-known normalization of the
form factor, it is convenient to express our result for the
slope in terms of this precisely known ratio.

Using the averaged results

R1 ¼ 1:41	 0:049; R2 ¼ 0:844	 0:027; (77)

�2 ¼ 1:18	 0:06; �2� ¼ 1:24	 0:04; (78)

from the Heavy Flavor Averaging Group [11] we obtain

cþ
c�

¼ 0:90	 0:09; (79)

as an estimate for the strength of the right-handed admix-
ture. Note that we have not included any possible correla-
tions between the errors, but rather made a naive estimation
of the error bars.

Another constraint is given by the fact that for the non-
recoil point w ¼ 1 the B ! D‘ �� transition is completely
dominated by the vector current, while in contrast to that
the B ! D�‘ �� transition is proportional to the axial-vector
current. Thus, if we include a right-handed admixture, it is
contained in the current experimental results [11], such that
we obtain

cþjVcbjGð1Þ ¼ ð42:3	 1:5Þ � 10�3; (80)

c�jVcbjF ð1Þ ¼ ð36:04	 0:52Þ � 10�3: (81)

Using lattice data [12–14],

G ð1Þ¼ 1:074	0:024; F ð1Þ¼ 0:908	0:017; (82)

we find
cþ
c�

¼ 0:99	 0:05; (83)

while a calculation using the nonlattice values [15,16]

G ð1Þ ¼ 1:02	 0:04; F ð1Þ ¼ 0:86	 0:02; (84)

gives us
cþ
c�

¼ 0:99	 0:06; (85)

which is in both cases compatible with the standard model
value cþ=c� � 1. Again we have calculated the errors
using the assumption that no sizable correlations between
the experimental measurements and the theoretical values
occur.

V. SUMMARYAND CONCLUSIONS

While the left-handedness of the weak interaction is in
good agreement with the data taken from purely left-
handed leptonic processes [17,18], the situation for
the hadronic interactions is still unclear. On general

grounds one would not expect new physics to show up in
a charged current interaction, but this may as well be a
false prejudice. In this paper we have computed the effect
of nonstandard couplings for the exclusive semileptonic
�B ! Dð�Þ‘ �� transition, which have been introduced in
the same way we used for the inclusive semileptonic
�B ! Xc‘ �� decays in [2] using operators of higher dimen-
sions using the most general possible parametrization. The
corresponding dimension-6 operators then allow new phys-
ics effects in charged currents in the hadronic current,
while the leptonic current is left untouched.
Applying the extended hadronic current including the

standard left-handed coupling as well as the additional
right-handed coupling and right- and left-handed vector
and scalar couplings, we have calculated the differential
decay rates d�=dw in the Isgur-Wise limit. Therefore, we
have introduced new hadronic form factors corresponding
to the Dirac-structure of the currents. The calculation of the
differential decay rate also provides us with information
about the slopes � and �� describing the deviation of the
differential rate from the zero-recoil point at w ¼ 1.
The main corrections are the perturbative QCD effects,

which are sizable and have to be taken into account.
Because of the vanishing anomalous dimension of the
left- and the right-handed currents, the QCD effects are
finite for these currents; however, additional work is re-
quired to compute the virtual corrections to the scalar and
tensor currents, which renormalize under QCD.Within this
paper we have computed the vertex corrections for each
occurring current up to one-loop order including new
quark-quark-gluon-boson vertices stemming from the
(pseudo)scalar components. Yet the unknown form factors
normalizations are still missing and have to be obtained by
other methods in order to include these additional struc-
tures, which however are believed to be suppressed.
Comparing the calculated slopes using experimental as

well as lattice and nonlattice data, we have been able to
calculate bounds on right-handed admixtures. The com-
parison of the slopes for B ! D and B ! D� decays gives
us the result cþ=c� ¼ 0:90	 0:09 using only experimen-
tal data. Furthermore, we have used the opportunity to
calculate by comparing the experimental results with lat-
tice and nonlattice data. Here we obtain cþ=c� ¼ 0:99	
0:05 for lattice and cþ=c� ¼ 0:99	 0:06 for nonlattice
data. Thus all results are in good agreement with each other
and with the purely left-handed standard model current,
where cþ ¼ c� ¼ 1.
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