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We derive the effective action of the hard large-x valence charges up to fourth order in their density.

Such non-Gaussian weight functionals contribute at leading order in Nc to the connected two-gluon

production diagrams that determine di-hadron correlations. The corresponding diagrams are not neces-

sarily (highly) suppressed by the density of valence charges since their infrared divergences differ from

those obtained in a Gaussian theory. Therefore, it appears prudent to include such higher dimensional

operators when determining initial ensembles for nonlinear evolution of higher n-point functions of

Wilson lines.
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I. INTRODUCTION

(Multi-) Particle production cross sections in hadronic
collisions at high energies are related to expectation values
of traces of products of Wilson lines which resum multiple
scattering and high gluon density effects. The evolution of
such operator expectation values is described by the
JIMWLK functional renormalization group equation [1].
In the large-Nc limit, and in a Gaussian approximation for
the effective action, they reduce to the Balitsky-Kovchegov
equation [2] for the dipole forward scattering amplitude.

The high-energy evolution equations require initial con-
ditions at a rapidity Y ¼ logx0=x ¼ 0 (x0 is often assumed
to be about 10�2). They have been derived by McLerran
and Venugopalan [3] in the limit of an infinitely large
nucleus. In the MV model, the large-x valence charges
act as recoilless sources for the soft, small-x gluon fields.
As A ! 1 then, the variance of the ‘‘valence’’ charge

density �A1=3 grows large and the distribution of color
charges should be Gaussian,

SMV ¼
Z

d2x?
tr�2ðx?Þ

�2
¼

Z
d2x?

�ab�aðx?Þ�bðx?Þ
2�2

;

�2 � g2A

�R2
: (1)

It should be noted that high-multiplicity proton-proton
collisions may also correspond to unusually high valence
charge densities (see, for example, Ref. [4]) and so would
also be described effectively by this action with Aeff � 1.

Nevertheless, in reality the mass number A, respectively,
the number of valence charges is finite, in particular, in
(high-multiplicity) pp as well as peripheral AA collisions.
It is therefore interesting to consider extensions of the
MV-model action involving higher powers of the color
charge density. In fact, Jeon and Venugopalan have derived
[5] an ‘‘odderon’’ operator contribution�dabc�a�b�c=�3,
where the cubic coupling �3 � g3ðA=�R2Þ2. Below, we
shall show that at quartic order in � a contribution

�ab�cd�a�b�c�d=�4 to the effective action arises, with
�4 � g4ðA=�R2Þ3.
Our motivation derives from the recent observation of a

‘‘ridge’’ in two-particle correlations from high-multiplicity
pp [6] as well as heavy-ion collisions [7]. The ridge
refers to a correlation that extends over several units1 of
(relative) rapidity for particles with similar azimuthal
angle, �� � �. For high-multiplicity pp collisions atffiffiffi
s

p ¼ 7 TeV the CMS Collaboration found that the ampli-
tude of the ridge correlation peaks about transverse mo-
menta on the order of 2–3 GeV, a semihard scale.
Reference [8] argued that within the framework of high-
energy evolution this effect would correspond to produc-
tion of two small-x gluons with relative rapidity �y * 1
from two evolution ladders that connect to the same large-x
sources [10,11].
With a Gaussian action one finds that the two-particle

distribution minus the product of two single-particle dis-
tributions,

h dN2

d2pdypd
2qdyq

i
h dN
d2pdyp

ih dN
d2qdyq

i � 1� 1

N2
c � 1

(2)

is suppressed by a factor 1=ðN2
c � 1Þ relative to the un-

correlated part h dN
d2pdyp

ih dN
d2qdyq

i. At this subleading order in

Nc, however, Gaussian factorization of the four-point func-
tion that determines (2) is violated by JIMWLK evolution
[12].
This problem could be cured by a dynamically generated

correlation length (in the transverse plane) of small-x gluon
fields [13]. For a discussion of how color charge correla-
tions develop as a hadron or nucleus is boosted to high
rapidity we refer the reader to Ref. [14]. Averaging of
n-point functions of Wilson lines with a local Gaussian

1It is presently not known whether the correlation simply
satisfies boost invariance or whether it diminishes for rapidity
intervals on the order of 1=�s [8,9].
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would not apply when those n points are within one
correlation length of each other and consequently a
connected contribution should arise at leading order in
Nc [13]. This can be seen also from a model that assumes
splitting of the four-point function into two-point functions
(‘‘ladders’’) with nonzero individual transverse momenta
[15].

Here, we show that a non-Gaussian initial distribution of
valence charge naturally arises when A <1 and that it
leads to particle correlations at leading order in Nc.
Furthermore, we show that the infrared behavior of the
leading connected two-particle production diagram is dif-
ferent from the case of a quadratic action. This fact may
affect the relative A dependence of the correlations result-
ing from the quadratic vs the higher-order terms in the
action.

We focus on the kinematic regime where the transverse
momenta p, q of the two produced gluons are somewhat
larger than but on the order of the scale where evolution in
rapidity is nonlinear. For a proton, this so-called saturation
scale QsðxÞ is expected to be on the order of 1 GeVat x �
a few times 10�4, on average; high-multiplicity collisions
should correspond to configurations with significantly
higher parton densities. For nuclei, the valence charge

density should be boosted by a factor of �A1=3. In this
kinematic regime, the transverse momenta of the produced
gluons are, to a significant part, due to the intrinsic trans-
verse momentum from the small-x evolution ladders.
Further, the relative azimuthal angle of p and q is taken
to be small, �� � �.

When logp2=Q2
s � 1 and logq2=Q2

s � 1 the situation
is different. This case has been analyzed within the double-
logarithmic approximation in Ref. [16]. They show that
here a single ‘‘flip’’ (or ‘‘recombination’’) between the two
evolution ladders is suppressed and that two such flips are
required, one below and the other above the rapidities of
the produced dijets. At very high energies such flips be-
tween ladders may occur at a hard transverse momentum
scale not too far from the hard dijet vertices themselves
[16].

II. DERIVATION OF THE EFFECTIVE ACTION
BEYOND QUADRATIC ORDER

In this section we derive the form of the effective action
for a system of k � 1 valence quarks in SU(3) following
the methods developed in [5]. One considers a ‘‘random
walk’’ of (fundamental) SU(3) color charges in the space of
representations ðm; nÞ; the integers m, n are also often
denoted as Dynkin labels. The probability of ending up
in a particular representation ðm; nÞ when multiplying the
fundamental representation (1, 0) with itself k times can be
obtained through recursion relations, see Ref. [5], and
defines the effective action via Pðm; nÞ ¼ expð�Sðm; nÞÞ.
In terms of the multiplicity NðkÞ

m;n of a representation
[i.e. how many times ðm; nÞ appears in ð1; 0Þk] and its

dimension dm;n ¼ ðmþ 1Þðnþ 1Þðmþ nþ 2Þ=2 one has

Pðm; nÞ ¼ dm;nN
ðkÞ
m;n that is given by [5]

e�S � dm;nN
ðkÞ
m;n

¼ dm;n½GðkÞ
m;n þGðkÞ

mþ3;n þGðkÞ
m;nþ3 �GðkÞ

mþ2;n�1

�GðkÞ
m�1;nþ2 �GðkÞ

mþ2;nþ2� (3)

with

GðkÞ
m;n ¼ k!

ðkþ2mþn
3 Þ!ðk�mþn

3 Þ!ðk�m�2n
3 Þ! : (4)

We are interested in the representation with the largest
weight and so consider the limit k � m; n � 1. Thus,
we expand the factorials in each G in powers of 1=k up
to and including order �1=k3 using Stirling’s series. The
leading terms of the form �mjnlþ1�j=kl can be written as

Sðm; n; kÞ ’ Nc

k
C2ðm; nÞ � 1

3

�
Nc

k

�
2
C3ðm; nÞ

þ 1

6

�
Nc

k

�
3
C4ðm; nÞ; (5)

where C2, C3, C4 are the Casimir operators for the repre-
sentation ðm; nÞ given in the Appendix. We have verified
Eq. (5) also by explicit calculation for Nc ¼ 4 and Nc ¼ 5
but refrain from listing the corresponding expressions for
the Casimirs.
Before we rewrite the action Sðm; n; kÞ in terms of the

color charges �, it is perhaps useful to remind the reader of
this derivation and to illustrate it in the simpler case of
SU(2) spins [5]. In this case, the representation R is labeled
by one index, l, and there is only one independent Casimir
defined as C2ðRÞ1R ¼ �abLa

RL
b
R ¼ L2

R, where La
R are the

generators of the representation R. For a large representa-
tion we have C2 ¼ ‘ð‘þ 1Þ ’ ‘2 as the quadratic Casimir.
One can then write ‘2 ¼ ‘i‘i where ‘i is a vector describ-
ing spin and express the action in terms of invariants
formed by multiplying ‘i’s (in this example, there is only
one invariant, ‘2) as S ’ Nc‘

2=k. For large ‘, one introdu-
ces a classical charge density per unit transverse area,
�iðxÞ ¼ g‘i=�2x. Next, k is expressed in terms of number
of valence quarks in a nucleus as k ¼ NcA�

2x=�R2,
which then leads to

S ¼ Nc

k
‘2 ’

Z
d2x

�a�a

2�2
(6)

with �2 � g2A
2�R2 .

We start by defining the Casimirs for generalNc in terms
of the generators Tai

R of the representation R,

CnðRÞ1R � Fa1;���;an
R Ta1

R � � �Tan
R ; (7)

where 1R is the unit matrix in the representation R. Taking
the trace of both sides gives CnðRÞ, the nth Casimir of the
representation R:
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CnðRÞ ¼ 1

dR
Fa1;���;an
R trTa1

R � � �Tan
R : (8)

The color tensors Fa1;���;an
R are the most general color

invariant tensors one can construct out of the SUðNcÞ
orthonormal basis tensors. For example, Fa1;a2

R ¼ �a1;a2

for n ¼ 2, while for n ¼ 4 these basis tensors are given
by �ab�cd plus permutations, dabedcde plus permutations,
and dabefcde plus permutations. More explicitly,

C2ðRÞ ¼ 1

dR
�ab trTa

RT
b
R;

C3ðRÞ ¼ 1

dR
dabc trTa

RT
b
RT

c
R;

C4ðRÞ ¼ 1

dR
½�ð�ab�cd þ �ac�bd þ �ad�bcÞ

þ �ðdabedcde þ dacedbde þ dadedbceÞ�
	 trTa

RT
b
RT

c
RT

d
R: (9)

Because the number of independent Casimirs of SUðNcÞ is
equal to its rank, Nc � 1, there are only two independent
Casimirs for SU(3). These are usually taken to be C2 and
C3. This can be seen explicitly by noting that for Nc ¼ 3
one has the constraint

dabedcde þ dacedbde þ dadedbce

¼ 1
3ð�ab�cd þ �ac�bd þ �ad�bcÞ (10)

and 3�þ � ¼ 1 so that the quartic Casimir can be written
as the square of the quadratic invariant. To proceed, we
write the action in terms of Qa, a N2

c � 1 dimensional
vector related to the second Casimir via jQj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

QaQa
p �ffiffiffiffiffiffi

C2

p
; the vectorQa is analogous to the angular momentum

vector ‘a in our SU(2) example from above:

S ’
�
Nc

k
QaQa �

�
Nc

k

�
2 dabc

3
QaQbQc þ

�
Nc

k

�
3

	 �ab�cd þ �ac�bd þ �ad�bc

18
QaQbQcQd

�

We then follow McLerran-Venugopalan and define the
color charge per unit area�a � gQa=�2x to finally arrive at

S½�ðxÞ� ’
Z

d2x

�
�ab�a�b

2�2
� dabc�a�b�c

�3

þ �ab�cd þ �ac�bd þ �ad�bc

�4

�a�b�c�d

�
:

(11)

To write the action in this form we have used Eq. (10) and

k ¼ NcA
�2x
�R2 . This assumes that the large-x sources corre-

spond to NcA valence quarks. On the other hand, if initial
conditions for small-x evolution are set at, say, x0 ¼ 0:01
then the number of valence charges would be bigger
although still parametrically proportional to A and to Nc.

The couplings in this action are given by, parametrically,

�2 � g2A

2�R2
�Oðg2A1=3Þ; (12)

�3 � 3
g3A2

ð�R2Þ2 �Oðg3A2=3Þ; (13)

�4 � 18
g4A3

ð�R2Þ3 �Oðg4AÞ: (14)

The non-Gaussian terms in the action thus involve addi-

tional inverse powers of gA1=3. Also, the expressions from
above are obtained by averaging over the transverse (im-
pact parameter) plane; at a fixed distance b from the center
of a nucleus one should replace A=�R2 by the thickness
function TðbÞ.
In what follows we restrict our discussion to the action

(11) as appropriate for Nc ¼ 3 colors. This action is
coupled to the soft gauge fields [1]. At leading order and
in the classical approximation this leads to the relation (19)
below.

III. TWO-POINT FUNCTION AND
UNINTEGRATED GLUON DISTRIBUTION

In order to compute the contribution of the quartic term
to a physical observable, such as single-inclusive hadron
production in the forward region [17], one needs to per-
form the color averaging of the dipole operator with this
new action: within the Glauber-Mueller approach the ex-

pectation value of the full dipole operator htrVxV
y
y i, where

V denotes a Wilson line, resums multiple scattering effects
on a dense target [2]. This can in principle be done nu-
merically using lattice gauge theory methods [18].
Nevertheless, it is useful to consider a limit where this
expectation value can be evaluated analytically, such as the
dilute limit of the dipole cross section given by the two-
point function of color charges. This limit is relevant for
deep-inelastic scattering at high Q2 � Q2

sðxÞ and for high
transverse momentum particle production in hadronic col-
lisions p? � QsðxÞ;QsðxÞ denotes the so-called saturation
scale where nonlinear contributions become important.
Even in the dilute limit, where the Wilson lines are

expanded to linear order in the charge density �, one
cannot perform the integration over � analytically when
the action is not quadratic. We therefore resort to a pertur-
bative expansion in 1=�4 and keep only the first term in the
expansion of the exponential of the quartic term. We then
compute the two-point function of the color charge density
of hard sources that is related to the unintegrated gluon
distribution. To first nontrivial order in 1=�4,

hO½��i �
R
D�O½��e�SG½��½1� 1

�4

R
d2u�a

u�
a
u�

b
u�

b
u�R

D�e�SG½��½1� 1
�4

R
d2u�a

u�
a
u�

b
u�

b
u�

:

(15)
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Here, SG denotes the Gaussian action. For the two-point
function O ¼ �a

x�
b
y , the possible contractions are shown

diagrammatically in Fig. 1; for the denominator of Eq. (15)
one amputates the points x and y. We compute the func-
tional integral in lattice regularization, i.e. we approximate
the two-dimensional transverse space by a lattice with Ns

sites of area �2x. The two-point function becomes2

h�a
x�

b
yi¼�2

�ab�xy

�2x

	 1��4

�4
ðN2

cþ1ÞðN2
c�1Þ Ns

�2x
�4�4

�4
ðN2

cþ1Þ 1
�2x

1��4

�4
ðN2

cþ1ÞðN2
c�1Þ Ns

�2x

:

(16)

The disconnected contribution exhibits both a UV
(�2x ! 0) as well as an IR (Ns ! 1) divergence but
appears both in the numerator and in the denominator
and so cancels as usual. The third term in the numerator
is due to the tadpole diagram from Fig. 1 that renormalizes
the ‘‘bare’’ parameter �2:

~� 2 � �2

�
1� 4

�4

�4

N2
c þ 1

�2x

�
: (17)

This renormalization of �2 will be applied to all diagrams
to absorb the insertion of a tadpole into any line.

Thus, the two-point function now reads (in continuum
notation)

h�a
x�

b
yi ¼ ~�2�ab�ðx� yÞ $ h�
aðkÞ�bðk0Þi

¼ ~�2�abð2�Þ2�ðk� k0Þ: (18)

To relate (18) to the unintegrated gluon distribution we
note that at leading order and in covariant gauge the field
generated by a fast particle moving in the positive z direc-
tion is related to the charge density by

A�ðxÞ � ��þ�ðxÞ ¼ g��þ�ðx�Þ 1

r2
?
�ðxÞ; (19)

where again x denotes a transverse coordinate. This field
also satisfies A� ¼ 0 and so the only nonvanishing field
strength is Fþi ¼ �@i�. In momentum space we have the

relation k2�ðkÞ ¼ g�ðkÞ. Thus, we define the unintegrated
gluon distribution �ðk2Þ � k2hFþiFþii via

h�
aðkÞ�bðk0Þi¼ 1

�s

�ab

N2
c�1

ð2�Þ3�ðk�k0Þ�ðk2Þ: (20)

With this convention, �ðk2Þ ¼ �sðN2
c � 1Þ ~�2=ð2�Þ.

IV. FOUR-POINT FUNCTION

The four-point function to first nontrivial order in 1=�4

is given by

h�a
x�

b
y�

c
u�

d
vi

�
R
D�e�SG½���a

x�
b
y�

c
u�

d
v½1� 1

�4

R
d2w�a

w�
a
w�

b
w�

b
w�R

D�e�SG½��½1� 1
�4

R
d2w�a

w�
a
w�

b
w�

b
w�

:

(21)

The different type of contractions that arise at this order are
shown in Fig. 2. Equation (21) then gives

h�a
x�

b
y�

c
u�

d
vi

¼ 1

1��4

�4
ðN2

cþ1ÞðN2
c�1Þ Ns

�2x

�
�4

ð�2xÞ2 ð�
ab�xy�

cd�uv

þ�ac�xu�
bd�yvþ�ad�xv�

bc�yuÞ

	
�
1��4

�4

ðN2
cþ1ÞðN2

c�1Þ Ns

�2x
�8

�4

�4

ðN2
cþ1Þ 1

�2x

�

�8
�8

�4

1

ð�2xÞ3 ð�
ab�cdþ�ac�bdþ�ad�bcÞ�xy�xu�uv

�
:

(22)

The third line in this expression corresponds to the sum of
the first three diagrams shown in Fig. 2: the second term
due to the disconnected diagram again cancels against the
overall normalization factor once the latter is expanded to
leading order in 1=�4. Also, the third term from the third
line is again absorbed into the renormalized value of �2 as

in (17). In fact such a factor of 1� 16 �4

�4
ðN2

c þ 1Þ 1
�2x

appears at order 1=�2
4 from diagrams of the type shown

in Fig. 3 that induce the shift �8 ! ~�8 in the last line of
Eq. (22). Thus, the four-point function to order 1=�4 finally
becomes (switching again from lattice to continuum nota-
tion)

h�a
x�

b
y�

c
u�

d
vi

¼ ~�4

�
�ab�cd�ðx�yÞ�ðu�vÞ

�
1�8

~�4

�4

�ðx�uÞ
�

þ�ac�bd�ðx�uÞ�ðy�vÞ
�
1�8

~�4

�4

�ðx�yÞ
�

þ�ad�bc�ðx�vÞ�ðy�uÞ
�
1�8

~�4

�4

�ðx�yÞ
��

: (23)

In momentum space,

FIG. 1. Two-point function at leading order in 1=�4.

2The right-hand side of this expression is to be understood in
lattice notation: x and y are discrete points and �xy is a
Kronecker symbol.
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h�
aðk1Þ�
bðk2Þ�cðk3Þ�dðk4Þi
¼ ð2�Þ4 ~�4

�
�ab�cd�ðk1 þ k2Þ�ðk3 þ k4Þ

þ �ac�bd�ðk1 � k3Þ�ðk2 � k4Þ
þ �ad�bc�ðk1 � k4Þ�ðk2 � k3Þ

� 2

�2

~�4

�4

ð�ab�cd þ �ac�bd þ �ad�bcÞ

	 �ðk1 þ k2 � k3 � k4Þ
�
: (24)

V. CORRELATED TWO-GLUON PRODUCTION

We now turn to the color factor for correlated production
of two gluons as illustrated in Fig. 4. We focus, in particu-
lar, on the so-called ridge kinematics where the gluons are
separated by a rapidity interval �	 * 1 but where their
transverse momenta are nearly parallel so that their relative
azimuth �� � �. We assume that in this kinematic re-
gime the dominant contribution arises from a process

where the small-x gluons are produced from two separate
ladders that connect to the same hard sources [10].
It was pointed out in Ref. [12] that the cross section for

this process involves a product of two four-point functions
(projectile and target, respectively) such as the one dis-
cussed above. Further, for a Gaussian action the correlated
contribution that is left over after one subtracts the square
of the single-inclusive cross section is suppressed by
�1=N2

c .
The diagram from Fig. 4 corresponds to [12]

feaa0fe0bb0fecc0fe0dd0 h�
aðk2Þ�
bðk4Þ�cðk1Þ�dðk3Þi
	 h�
a0 ðp� k2Þ�
b0 ðq� k4Þ�c0 ðp� k1Þ�d0 ðq� k3Þi

(25)

with e and e0, respectively, the color indices of the two
produced gluons; the ladder momenta ki will be integrated
over. The (squared) single-inclusive cross section is ob-
tained from

feaa0fe0bb0fecc0fe0dd0 h�
aðk2Þ�cðk1Þih�
bðk4Þ�dðk3Þi
	 h�
a0 ðp� k2Þ�c0 ðp� k1Þih�
b0 ðq� k4Þ�d0

	 ðq� k3Þi ¼ ð2�Þ4N2
cðN2

c � 1Þ2ð�R2Þ2 ~�8

	 �ðk1 � k2Þ�ðk3 � k4Þ: (26)

Translational invariance in the transverse plane brings
along a factor of �ðk ¼ 0Þ ¼ �R2=ð2�Þ2 for each of the
two produced gluons. Using (12) the prefactor is of order

FIG. 3. Diagram at order 1=�2
4 that renormalizes �2 in the

connected contribution to the four-point function.

FIG. 2. Four-point function at leading order in 1=�4.

FIG. 4. Correlated production of two gluons with small relative azimuth, �� � �.
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ðsingle inclusiveÞ2 � N2
cðN2

c � 1Þ2ð�R2Þ2
�
g2A

�R2

�
4

� ðgA1=3Þ8N2
cðN2

c � 1Þ2: (27)

The remaining contractions in Eq. (25) generate con-
nected diagrams corresponding to correlated production.
In the limit �4 ! 1 they are suppressed by a factor
1=ðN2

c � 1Þ. For example, for the diagram from Fig. 5,

feaa0fe0bb0fecc0fe0dd0 h�
aðk2Þ�dðk3Þih�
bðk4Þ�cðk1Þi
	 h�
a0 ðp� k2Þ�c0 ðp� k1Þih�
b0 ðq� k4Þ�d0 ðq� k3Þi

¼ ð2�Þ6N2
cðN2

c � 1Þ�R2 ~�8�ðk1 � k2Þ�ðk3 � k4Þ
	 �ðk1 � k4Þ: (28)

Because of the additional � function as compared to
Eq. (26) there is, of course, only one single independent
ladder momentum to integrate over. This diagram will
therefore depend on the relative azimuthal angle between
p and q; it is proportional to

Fig :5� N2
cðN2

c � 1Þ�R2 ~�8

p2q2

Z dk2

k4
1

ðp� kÞ2
1

ðq� kÞ2 :
(29)

Its contribution is maximal at �� ¼ 0 and minimal at
�� ¼ �=2 [8]. Also, the integral is quadratically diver-
gent from the region k2 � p2, q2, and k� p� q. If a
fixed nonperturbative cutoff �2 is used, then this contribu-

tion is �A2, i.e., suppressed by �A�2=3 as compared to
uncorrelated production, Eq. (27). On the other hand, if
such cutoff is in fact provided by the nonlinear saturation

scale [10],Q2
s � A1=3, then (28) is of order�A5=3, down by

A�1 as compared to uncorrelated production.3

For finite �4, however, we can see from Eqs. (23) and
(24) that the term��ac�bd produces the same overall color
factor as the square of the single-inclusive cross section.
The leading order (in 1=�4) connected contribution of
order N2

cðN2
c � 1Þ2 to (25) is shown diagrammatically in

Fig. 6 and is given by4

� 2ð2�Þ8 2

�2

~�8

�4

~�4�ac�bd�a0c0�b0d0feaa0fe0bb0fecc0fe0dd0

	 �ðk1 � k2Þ�ðk3 � k4Þ�ðk1 þ k3 � k2 � k4Þ

¼ �ð2�Þ6 4

�2
N2

cðN2
c � 1Þ2�R2 ~�12

�4

�ðk1 � k2Þ
	 �ðk3 � k4Þ: (30)

The contribution from this diagram to the two-particle
spectrum is

��N2
cðN2

c � 1Þ2�R2 ~�12

�4

1

p2q2

Z dk2

k2
1

ðp� kÞ2

	
Z dk02

k02
1

ðq� k0Þ2�� N2
cðN2

c � 1Þ2�R2 ~�12

�4

�
1

p2q2

�
2

	 log
p2

�2
log

q2

�2
: (31)

FIG. 5. Two-gluon production diagram that gives an angular
collimation about �� ¼ 0 over several units in relative rapidity,
jyp � yqj * 1 (the so-called ridge) [8]. Such diagrams arise from

a Gaussian action and only involve the two-point function
(unintegrated gluon distribution); they are suppressed by
�1=ðN2

c � 1Þ relative to uncorrelated production.

FIG. 6 (color online). Diagram for correlated two-gluon pro-
duction from the quartic action. This contribution is of the same
order in g2 and A as that from Fig. 5 but enhanced by a factor of
N2

c � 1.

3Note that in practice this �1=A suppression of the correlated
contribution is usually removed by multiplying with the multi-
plicity per unit rapidity, dN=dy.

4The overall factor of 2 accounts for projectile $ target flip.
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Thus, this contribution is independent of the azimuthal
angle �� between p and q. Also, its sensitivity to the
infrared cutoff is only logarithmic and would therefore not
modify the A dependence of the prefactor.

From (12) then the prefactor of (30) is of order

Fig:6� N2
cðN2

c � 1Þ2�R2

�
g2A

�R2

�
6 1

g4

�
�R2

A

�
3

� g8A5=3N2
cðN2

c � 1Þ2: (32)

This is of the same order in g2 and Nc as the uncorrelated
contribution (27) but suppressed by one power of the mass
number A. However, it is more relevant to compare the
contribution from the quartic interaction to the correlation,
Eq. (32), to that from the Gaussian action, Eq. (29). If the
latter is cut off at a constant, A-independent scale�2 then it

is parametrically enhanced by a factor of A1=3 and the
corrections from the quartic term in the action can be
computed perturbatively (near A ¼ 1) by an expansion
in 1=�4 (as we have done). One may expect that such

corrections are large when A1=3 ’ 6 since they are en-
hanced by a factor of N2

c � 1.

On the other hand, if the infrared cutoff�Q2
s � A1=3 then

the non-Gaussian action generates ‘‘corrections’’ to two-
particle correlations that appear at the same order inA as the
contribution from the Gaussian action (up to logarithms of
A); in addition, those corrections are enhanced by a large
color factor N2

c � 1. This case requires a nonperturbative
calculation of the correlation to all orders in 1=�4.

We conclude this section by noting that the odderon
operator can also contribute to the connected two-particle
production cross section at order�1=�2

3. This contribution

is obtained by expanding the exponential of the odderon
operator to second order. Performing the averaging of the
four-point function shown in Fig. 7 over the hard color
sources like in Eq. (21) results in five Wick contractions
and is of order �10=�2

3. Multiplying by the leading ��0
3

contribution from the target side gives, in all,

þ �R2N2
cðN2

c � 1Þ
�
Nc � 4

Nc

�
~�14

�2
3

�þg8A5=3N2
cðN2

c � 1Þ

	
�
Nc � 4

Nc

�
: (33)

This is of the same order in A as the contribution �1=�4

from Eq. (32) although it is suppressed by one power ofNc.
It appears sensible that numerical solutions of JIMWLK
evolution also include the odderon operator in the action
for the initial condition. On the other hand, terms of order
��6 do not matter for the four-point function (they do
matter for the six-point function and higher), they simply
renormalize �4.

VI. SUMMARY

In summary, we have computed corrections to the qua-
dratic MV-model action up to quartic order in the density
of hard (large-x) sources. Such terms are accompanied by

additional powers of 1=gA1=3. This action could be em-
ployed to determine initial conditions for the JIMWLK
high-energy evolution of various n-point operator expec-
tation values. We have motivated this by showing that at
leading order in the quartic coupling this action gives a
connected contribution to two-gluon production (i.e., to
correlations) already at leading order in Nc, enhanced by a
factor of N2

c � 1 over the connected contribution from a
(local) quadratic action. Such non-Gaussian actions may
also be important for applications to dijet production
with transverse momenta not very far above the saturation
scale [19].
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APPENDIX

In this appendix we illustrate how one can express the
values of various Casimirs in terms of the Dynkin labels n
and m of SU(3). The representation ðm; nÞ is reached by
multiplying the (1, 0) fundamental representation k times.
The correspondingYoung tableau thus has k boxes inN ¼ 3
rows. The first row has h1 ¼ mþ nþ ðk�m� 2nÞ=3
boxes; the second row has h2 ¼ nþ ðk�m� 2nÞ=3
boxes; and the last row has h3 ¼ ðk�m� 2nÞ=3 boxes.
It is useful to define the set n0i for the UðNÞ group from

these ‘‘row lengths’’ hi via n
0
i ¼ hi þ ðN þ 1Þ=2� i:

FIG. 7. Connected contribution to the four-point function at
order 1=�2

3.
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n01 ¼ mþ nþ k�m� 2n

3
þ 2� 1 ¼ kþ 2mþ n

3
þ 1;

(A1)

n02 ¼ nþ k�m� 2n

3
þ 2� 2 ¼ k�mþ n

3
; (A2)

n03 ¼
k�m� 2n

3
þ 2� 3 ¼ k�m� 2n

3
� 1; (A3)

X
i

n0i ¼ k: (A4)

To pass from U(3) to SU(3) one needs to shift ni ¼ n0i �P
jn

0
j=N to get

n1 ¼ 2mþ n

3
þ 1; (A5)

n2 ¼ �mþ n

3
; (A6)

n3 ¼ �m� 2n

3
� 1: (A7)

Therefore,

X
i

n2i ¼
2

3
ðm2 þ n2 þmnÞ þ 2ðmþ nþ 1Þ; (A8)

X
i

n4i ¼
2

9
ð3þm2 þ n2 þ 3nþ 3mþmnÞ2: (A9)

The quadratic casimir is constructed from ni via [20]
5

C2ðm; nÞ ¼ X
i

n2i �
NðN2 � 1Þ

12

¼ 1

3
ðm2 þ n2 þmnÞ þ ðmþ nÞ: (A10)

For a single quark corresponding to the fundamental rep-
resentation (m ¼ 1, n ¼ 0) of QCD, we get C2 ¼ ðN2

c �
1Þ=ð2NcÞ ¼ 4=3.

To compute the cubic Casimir we require the set of
li ¼ ni þ ðN � 1Þ=2,

l1 ¼ 2mþ n

3
þ 2; (A11)

l2 ¼ �mþ n

3
þ 1; (A12)

l3 ¼ �m� 2n

3
; (A13)

X
i

li ¼ N; (A14)

X
i

l2i ¼ N þX
i

n2i

¼ 2

3
ðm2 þ n2 þmnÞ þ 2ðmþ nÞ þ 5; (A15)

X
i<j

lilj ¼ l1ðl2 þ l3Þ þ l2l3

¼ 2� 2mþ n

3
� 4m2 þ n2 þ 4mn

9

� 3mþ 6n� nmþ 2n2 �m2

9
(A16)

¼2�m2þn2þmnþ3mþ3n

3
; (A17)

X
i

l3i ¼
2m3 � 2n3 þ 3m2n� 3mn2

9
þ 3m2 þ n2 þ 2mn

þ 7mþ 5nþ 9:

(A18)

These can then be used to construct the cubic Casimir
following [20] and lead to

C3ðm; nÞ � 1

18
ðmþ 2nþ 3Þðnþ 2mþ 3Þðm� nÞ:

(A19)

Constructing C4ðm; nÞ requires the vectors n4i and can be
done similarly to C2ðm; nÞ; this leads to
C4ðm; nÞ � 1

9ðm4 þ n4 þ 2mn3 þ 2m3nþ 3m2n2Þ
þ 2

3ðm3 þ n3 þ 2m2nþ 2mn2Þ
þ 1

6ð5m2 þ 5n2 þ 11mnÞ � 1
2ðmþ nÞ: (A20)

5Note that their normalization of the generators is different
from ours so that their expressions for the Casimirs need to be
divided by 2.
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