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We suggest the idea, supported by concrete calculations within chiral models, that the critical end point

of the phase diagram of quantum chromodynamics with three colors can be detected, by means of lattice

simulations of grand-canonical ensembles with a chiral chemical potential, �5, conjugated to chiral

charge density. In fact, we show that a continuation of the critical end point of the phase diagram of

quantum chromodynamics at finite chemical potential, �, to a critical end point in the temperature-chiral

chemical potential plane, is possible. This study paves the way for the mapping of the phases of quantum

chromodynamics at finite �, by means of the phases of a fictitious theory in which � is replaced by �5.
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I. INTRODUCTION

The critical end point (CP) of quantum chromodynamics
(QCD) [1] is one of the most important aspects of the phase
diagram of strongly interacting matter. It is thus not sur-
prising that an intense experimental activity is nowadays
dedicated to the detection of such a point, which involves
the large facilities at RHIC and LHC; moreover, further
experiments are expected after the development of FAIR at
GSI. Several theoretical signatures of CP have been sug-
gested [2,3]. Despite the importance of CP, a firm theoreti-
cal evidence of its existence is still missing. In fact, the sign
problem makes the lattice Monte Carlo simulations diffi-
cult, if not impossible, in the large baryon-chemical poten-
tial (�) region for Nc ¼ 3 [4]; see [5] for a recent review.
Therefore, it has not yet been possible to prove unambig-
uously the existence and the location of CP starting from
first principles simulations of grand-canonical ensembles.
The strong coupling expansion of lattice QCD [6,7] seems
promising. Even more, the predictions of effective models
are spread in the T–� plane; see for example [8,9].

An interesting overcoming of the sign problem for the
quest of CP is offered by analytic continuation of data
obtained at imaginary chemical potential, �I [10–12].
Recent promising analysis shows that it might be possible
to continue the critical line from the region of imaginary�
to that of real � [13], pinning down the critical point.
Another fruitful approach is given by simulations at finite
isospin chemical potential, ��; see for example [14–16].
Even in this case, a critical end point there appears before
the transition to the pion condensed phase. The latter point
has been overlooked and it has not yet been detected by
mean field model calculations; hence it certainly deserves
further study. It is also worth citing the possibility to
perform simulations in canonical, rather than grand-
canonical, ensembles. Preliminary results in this direction
have been presented recently in [17]. On the purely theo-
retical side, it has been suggested very recently [18] that
the use of orbifold equivalence in the large Nc approxima-

tion of QCD can lead to relations between the coordinates
of CP at finite chemical potential, with those at finite
isospin chemical potential.
In this paper, we suggest a new, theoretical way to detect

the CP, by means of lattice simulations withNc ¼ 3, which
can be considered as an alternative to the �I technique. In
order to accomplish this important program, we suggest
simulating QCD with a chiral chemical potential, �5,
conjugated to the chiral charge density, n5 ¼ nR � nL;
see [19–22] for previous studies. Our idea, supported by
concrete calculations within microscopic effective models,
is that CP can be continued to a critical end point at�5 � 0
and � ¼ 0, that we denote by CP5, the latter being acces-
sible to Nc ¼ 3 lattice QCD simulations of grand-
canonical ensembles [19]. Therefore, the detection of the
former end point via lattice simulations can be considered
as a signal of the existence of the latter. To facilitate
exposition, we introduce the symbol W 5 to denote the
world with � ¼ 0, �5 � 0. On the other hand, we will use
the symbol W to denote the world with �5 ¼ 0, and
which corresponds to the physical universe.
The model calculations, in particular the ones based on

the Nambu-Jona-Lasinio model with the Polyakov loop
[23] (PNJL model in the following) with tree-level cou-
pling among chiral condensate and Polyakov loop [24],
give numerical relations among the coordinates of CP5 and
those of CP. In particular, the critical temperature turns out
to be almost unaffected by the process of continuation; the
critical value of the chemical potential, �c, on the other
hand turns out to be almost half of the critical chiral
chemical potential, �5c.
Before discussing our results, it is important to say more

about the chiral chemical potential. In particular, we are
aware that W 5 should be considered as a fictional uni-
verse. As a matter of fact,�5 cannot be considered as a true
chemical potential because, in the confinement phase, the
chiral condensate h �qqi mixes left- and right-handed com-
ponents of the quark field, leading to nonconservation of
n5. This statement is true also in the quark-gluon-plasma
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phase, where the chiral condensate is much smaller than its
value in the confinement phase; in this case, the noncon-
servation of n5 is much softer, and mainly due to the bare
quark mass, m � T with T corresponding to the tempera-
ture of the heat bath in which the fields live. Therefore, the
point of view that we adopt in this paper is to consider �5

as a mere mathematical artifice. However, W 5 with Nc ¼
3 can be simulated on the lattice. Therefore, for the con-
tinuity property cited above, it is worth studying it by
grand-canonical ensemble simulations: it might furnish
evidence of the existence of the critical end point in the
real world. Furthermore, once CP5 is detected, it might be
possible to make use of lattice simulations to detect in-
homogeneous phases [25,26], which could develop around
CP5, as a continuation of those which develop at CP. The
results would then be of vital importance to understand, for
example, the inner structure of compact stellar objects.
For the aforementioned reasons, this study is very far
from being of purely academic or theoretical interest.

II. CHIRAL MODELS

Because of its nonperturbative nature, we cannot make
first principles calculations within QCD in the regimes
which we are interested in, namely, moderate T, �, and
�5. Hence we need to rely on some effective model, which
is built in order to respect (at least some of) the symmetries
of the QCD action. To this end, we make use of the
celebrated quark-meson model [27], and of the Nambu-
Jona-Lasinio model [28] (see [29] for reviews) improved
with the Polyakov loop [23], dubbed the PNJL model,
which have been used many times in recent years to
describe successfully the thermodynamics of QCD with
two and two-plus-one flavors; see [24,30–37] and referen-
ces therein. They are interesting because they allow for a
self-consistent description of spontaneous chiral symmetry
breaking; even more, in the case where the model is
improved with the Polyakov loop, it allows for a simulta-
neous computation of quantities sensible to confinement
and chiral symmetry breaking.

In this section we describe both of the models. We first
discuss the quark-meson model that we use in our compu-
tation, which is simpler to implement because we take its
simplest version, without the complications due to the
finite value of the quark masses and the Polyakov loop.
This is a useful preparation to the more important case of
the PNJL model, which is more trustworthy quantitatively
because it is tuned to reproduce lattice data at zero and
imaginary chemical potential.

A. Quark-meson model

The quark-meson (QM) model consists of the Oð4Þ
linear sigma model coupled to dynamical quarks via a
Yukawa-type interaction. The Lagrangian density is given
by

L ¼ �q½i@��� � gð�þ i�5� � �Þ þ�5�
0�5 þ��0�q

þ 1

2
ð@��Þ2 þ 1

2
ð@��Þ2 �Uð�;�Þ: (1)

In the above equation, q corresponds to a quark field in the
fundamental representation of color group SUð3Þ and fla-
vor group SUð2Þ; and � and � correspond to the scalar
singlet and the pseudoscalar isotriplet fields, respectively.
We have a introduced chemical potential for the quark
number density, �, and a pseudochemical potential con-
jugated to chirality imbalance, �5.
We explain in some detail the physical meaning of the

latter. The quantity conjugated to �5, namely, the chiral
charge density, is given by n5 ¼ nR � nL, and represents
the difference in densities of the right- and left-handed
quarks. At finite �5, a chirality imbalance is created,
namely n5 � 0. For example, in the massless limit and at
zero baryon-chemical potential one has [19]

n5 ¼ �3
5

3�2
þ�5T

2

3
: (2)

If quark mass (bare or constituent) is taken into account,
the relation n5ð�5Þ cannot be found analytically in the
general case, and a numerical investigation is needed; see
for example [20]. The imbalance of chiral density can be
created by instanton/sphaleron transition in QCD; see [19]
and references therein. As a matter of fact, nonperturbative
background gluon configurations with nonzero winding
number, QW , change the chirality of quarks according to
the Ward identity,

dn5
dt

¼ � g2Nf

16�2

Z
d3xFa

��
~F
��
a ¼ � QW

2Nf

: (3)

As a consequence, the addition of �5 to the Lagrangian
density of the chiral models mimics the instanton/
sphaleron induced chirality transitions.
The potential U describes tree-level interactions among

the meson fields. In this paper, we restrict ourselves to the
QM model in the chiral limit for simplicity, and take

Uð�;�Þ ¼ �

4
ð�2 þ �2 � v2Þ2; (4)

which is invariant under the chiral group.
We work in the one-loop approximation, which amounts

to considering mesons as classical fields, and integrating
only over fermions in the generating functional of the
theory to obtain the quantum effective potential (QEP).
In the integration process, the meson fields are fixed to
their classical expectation values, h�i ¼ 0 and h�i � 0.
The physical value of h�i will be then determined by
minimization of the QEP. The field � has the quantum
numbers of the QCD chiral condensate, h �qqi. Hence its
nonvanishing expectation value breaks chiral symmetry
spontaneously, mimicking the chiral symmetry breaking
of the QCD vacuum.
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The one-loop QEP in the presence of �5 has been
discussed several times [19–21]. The addition of the
�-dependence is a textbook matter. The final result is

V ¼ U� NcNf

X
s¼�1

Z d3p

ð2�Þ3 !s �
NcNf

�

X
s¼�1

Z d3p

ð2�Þ3

� logð1þ e��ð!s��ÞÞ � NcNf

�

X
s¼�1

Z d3p

ð2�Þ3
� logð1þ e��ð!sþ�ÞÞ; (5)

where

!s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpjs��5Þ2 þm2

q

q
(6)

corresponds to the pole of the quark propagator, and
mq ¼ g� is the constituent quark mass; finally, the index

s denotes the helicity projection.
In the right-hand side of the first line of Eq. (5) the

momentum integral corresponds to the vacuum quark fluc-
tuations contribution to the QEP. It is divergent, and it gives
a contribution at T ¼ 0 and �5 � 0. For our purposes, it is
enough to treat the model as an effective description of the
infrared regime of QCD. Therefore we treat the divergence
phenomenologically, introducing a momentum cutoff, M,
in the vacuum term. This is equivalent to introducing a
momentum-dependent quark mass, which is nonzero and
constant for momenta lower than the cutoff, and zero for
larger values of momenta, thus realizing a rough approxi-
mation of the effective (momentum-dependent and
ultraviolet-suppressed) quark mass of full QCD [38].

The parameters of the model are tuned as in [9]. They
are chosen in order to satisfy the requirements that � ¼ f�
in the vacuum,

@V

@�

���������¼f�

¼ 0; (7)

and m� ¼ 700 MeV, where

@2V

@�2

���������¼f�

¼ m2
�: (8)

Moreover, the constituent quark mass in the vacuum
is fixed to the value mq ¼ 335 MeV, which allows one

to fix the numerical value of g ¼ mq=f� with

f� ¼ 92:4 MeV. Finally, the ultraviolet cutoff is taken as
M ¼ 600 MeV. This procedure fixes � ¼ 2:73 and v2 ¼
�ð617:7 MeVÞ2.

B. PNJL model

In the PNJL model, quark propagation in the medium is
described by the following Lagrangian density:

L ¼ �qði��D� �mÞqþLI; (9)

here q is the quark Dirac spinor in the fundamental
representation of the flavor SUð2Þ and the color group; �

correspond to the Pauli matrices in flavor space. A sum
over color and flavor is understood. The covariant deriva-
tive embeds the QCD coupling with the background gluon
field which is related to the Polyakov loop; see below.
Furthermore, we have defined

LI ¼ G½ð �qqÞ2 þ ði �q�5�qÞ2�: (10)

One advantage to using the PNJL model is that it has
access to the expectation value of the Polyakov loop, that
we denote by L, which is sensible to confinement or
deconfinement properties of a given phase. In order to
compute L we introduce a static, homogeneous, and
Euclidean background temporal gluon field, A0 ¼ iA4 ¼
i�aA

a
4 , coupled minimally to the quarks via the QCD

covariant derivative [23]. Then

L ¼ 1

3
Trc expði��aA

a
4Þ; (11)

where � ¼ 1=T. In the Polyakov gauge, which is conve-
nient for this study, A0 ¼ i�3	þ i�8	

8; moreover, for
simplicity we take L ¼ Ly from the beginning as in [30],
which implies A8

4 ¼ 0. We have then

L ¼ 1þ 2 cosð�	Þ
3

: (12)

For our purpose, that is mainly the location of the critical
end point, we expect that the approximation L ¼ Ly is
sufficient; as a matter of fact, we have verified that in this
case we reproduce, at finite �, the location of the critical
end point obtained in [24], where the same parametrization
of the model is used, and where L � Ly from the
beginning.
In our computation we follow the idea implemented in

[24], which brings to a Polyakov-loop-dependent coupling
constant,

G ¼ g½1� 
1LL
y � 
2ðL3 þ ðLyÞ3Þ�: (13)

The ansatz in the above equation was inspired by [39,40] in
which it was shown explicitly that the NJL vertex can be
derived in the infrared limit of QCD, it has a nonlocal
structure, and it acquires a nontrivial dependence on the
phase of the Polyakov loop. We refer to [24] for a more
detailed discussion. This idea has been analyzed recently in
[41], where the effect of the confinement order parameter on
the four-fermion interactions and their renormalization-
group fixed-point structure has been investigated. The nu-
merical values of
1 and
2 have been fixed in [24] by a best
fit of the available lattice data at zero and imaginary chemical
potential of Refs. [42,43]. In particular, the fitted data are the
critical temperature at zero chemical potential, and the de-
pendence of the Roberge-Weiss end point on the bare quark
mass. The best-fit procedure leads to
1 ¼ 
2 � 
 ¼ 0:2�
0:05, within the hard cutoff regularization scheme, which is
the same scheme that we adopt in this paper.
In the one-loop approximation, the effective potential of

this model is given by
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V ¼ UðL; Ly; TÞ þ �2

G
� NcNf

X
s¼�1

Z d3p

ð2�Þ3 !s

� NcNf

�

X
s¼�1

Z d3p

ð2�Þ3 logðFþF�Þ; (14)

where

F� ¼ 1þ 3Le��ð!s��Þ þ 3Lye�2�ð!s��Þ þ e�3�ð!s��Þ;
(15)

Fþ ¼ 1þ 3Lye��ð!sþ�Þ þ 3Le�2�ð!sþ�Þ þ e�3�ð!sþ�Þ

(16)

denote the statistical confining thermal contributions to
the effective potential; !s is still given by Eq. (6), with
mq ¼ m� 2�. Once again the vacuum fluctuation term is

regularized by means of an ultraviolet cutoff, that we
denote by M. The relation between the chiral condensate
and � in the PNJL model is � ¼ 2Gh �qqi.

We notice that in this case we take quarks with a finite
bare mass, which will be fixed by requiring that the pion
mass in the vacuum is in agreement with its experimental
value. We also notice that the PNJLmodel considered here,
which is dubbed extended-PNJL in [24], has been tuned in
order to reproduce quantitatively the lattice QCD thermo-
dynamics at zero and imaginary quark chemical potential.
Hence, it represents a faithful description of QCD, in terms
of collective degrees of freedom related to chiral symmetry
breaking and deconfinement.

The potential termU in Eq. (14) is built by hand in order
to reproduce the pure gluonic lattice data withNc ¼ 3 [30].
We adopt the following logarithmic form:

U½L; �L; T� ¼ T4

�
�aðTÞ

2
�LLþ bðTÞ ln½1� 6 �LL

þ 4ð �L3 þ L3Þ � 3ð �LLÞ2�
�
; (17)

with three model parameters (one of four is constrained by
the Stefan-Boltzmann limit),

aðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2
; bðTÞ ¼ b3

�
T0

T

�
3
:

(18)

The standard choice of the parameters reads a0 ¼ 3:51,
a1 ¼ �2:47, a2 ¼ 15:2, and b3 ¼ �1:75. The parameter
T0 in Eq. (17) sets the deconfinement scale in the pure
gauge theory. In the absence of dynamical fermions,
one has T0 ¼ 270 MeV. However, dynamical fermions
induce a dependence of this parameter on the number of
active flavors [34]. For the case of two light flavors
in which we are interested here, we take T0 ¼ 190 MeV
as in [24]. Also for the remaining parameters we follow
[24] and take M ¼ 631:5 MeV, m ¼ 5:5 MeV, and
G ¼ 5:498� 10�6 MeV�2.

III. CRITICAL END POINT AT ZERO
CHEMICAL POTENTIAL

In Fig. 1 we plot the phase diagram of the chiral models
in the �5–T plane, for the case � ¼ 0. It is obtained by a
minimization procedure of the full potential (5) for the QM
model, and (14) for the case of the PNJL model.
In the case of the QM model, the critical temperature Tc

is identified with the one at which h�iT¼Tc
¼ 0. For the

PNJL model, since chiral symmetry is broken explicitly by
the quark mass and the phase transitions are replaced by
crossovers, we identify the critical temperature with that at
which dL=dT is maximum.We have checked that the latter
deviates from that at which jd�=dTj is maximum only by a
few MeV, in the whole range of parameters studied. Even
in this case, with an abuse of nomenclature, we dub the
pseudocritical lines as second order and first order, as in the
case of the QM model. It is clear from the context that,
whenever we talk about the PNJL model, the term second
order transition has to be taken as a synonym of smooth
crossover; similarly, the term first order transition is a
synonym of discontinuous jump of the order parameters.

CP5

SB Phase

SR Phase

2nd order

1st order

QM

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

5 Tc
0

T
c

T
c

0

CP5

Confinement Phase

QGP Phase

2nd order
1st order

PNJL

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

5 Tc
0

T
c

T
c

0

FIG. 1 (color online). Upper panel: phase diagram of the QM
model in the �5–T plane. The dot-dashed line corresponds to the
second order chiral phase transition; and the solid line denotes
the first order phase transition. The orange dot is the critical end
point. The scale T0

c ¼ 174:1 MeV corresponds to the critical
temperature at �5 ¼ 0. Lower panel: phase diagram of the PNJL
model. Line conventions are the same as in the upper panel. The
scale T0

c ¼ 173:9 MeV corresponds to the critical temperature at
�5 ¼ 0.
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In the case of the QM model, the data about the con-
densates as a function of temperature at �5 � 0 have been
presented in the literature [21], therefore their reproduction
in this paper would be just of academic interest; hence we
skip this step here. Our focus is the discussion of the
critical end point and of its evolution from W 5 to W ;
hence we focus on CP5 and CP.

In both panels of Fig. 1, the gray dashed line corresponds
to the second order chiral phase transition in the case of the
QM model, or to a smooth crossover in the case of the
PNJL model. The solid line, on the other hand, denotes
the first order transition. The dot corresponds to CP5. In the
following, we label the coordinates of CP5 by ð�5c; T5cÞ.
For the case of the QM model, since we do not have any
information about confining-deconfining property of a
given phase, we can label the phases of the model only
in terms of the chiral symmetry. We call the phase below
the critical line the chiral symmetry broken phase; simi-
larly, above the critical line, chiral symmetry is restored,
hence we call this phase the chiral symmetry restored
phase. It is then natural that CP5 in this case is a chiral
critical end point.

For the case of the PNJL model, on the other hand, we
have access to the chiral condensate and to the Polyakov
loop expectation value. As a consequence, we can label
the phases of the model in terms both of confining proper-
ties and of chiral symmetry. In the model at hand, because
of the entanglement in Eq. (13), the deconfinement and
chiral symmetry restoration crossovers take place simulta-
neously both at a value of �5. This is proved by our data
about � and L; see Fig. 2 in which we plot the chiral
condensate (upper panel) and the expectation value of the
Polyakov loop (lower panel) as a function of temperature,
for several values of �5. In [19] the two crossovers joined
only for �5 >�5c. Our results are a natural consequence
of the entanglement vertex in Eq. (13), which was ne-
glected in [20].

It is useful to stress that in the PNJL model we are
discussing crossovers. Because of the crossover nature of
the phenomena, a unique definition of the critical tempera-
tures is not available; in this paper we have used the
definition which is easiest to implement, namely, the study
of the peaks of the derivatives of the order parameters. We
dub these quantities as effective susceptibilities. Within
numerical error, we find that the peaks for the effective
susceptibilities of the Polyakov loop and of the chiral
condensate coincide in temperature, within a few MeV.
We cannot exclude that using different definitions for the
pseudocritical temperatures, like the identification of the
crossovers with the peaks of true susceptibilities, the for-
mer can be shifted by some MeV, leading eventually to
a larger split of the deconfinement and the crossover
temperatures. However, the qualitative picture should not
be modified drastically, as previous studies within the
PNJL model have shown.

Because of this peculiarity of the PNJL model, at the
pseudocritical line both deconfinement and chiral restora-
tion crossovers take place. Hence the region below the
pseudocritical line is characterized by confinement and
spontaneous breaking of chiral symmetry; we label this
phase as the confinement phase. On the other hand, the
phase above the critical line is identified with the quark-
gluon-plasma phase. In this case, CP5 is both chiral and
deconfinement critical end point.
For what concerns the coordinates of CP5, in the case of

the QM model we find

�
�5c

T0
c

;
Tc

T0
c

�
¼ ð2:16; 0:78Þ; CP5ðQMÞ; (19)

where T0
c ¼ 174:1 MeV is the chiral symmetry restoration

temperature at � ¼ �5 ¼ 0. Moreover, for the PNJL
model we find

�
�5c

T0
c

;
Tc

T0
c

�
¼ ð1:73; 0:96Þ; CP5ðPNJLÞ; (20)

5 400 MeV
5 300 MeV
5 200 MeV

5 0

0.7 0.8 0.9 1.0 1.1
0.0

0.2

0.4

0.6

0.8

1.0

T Tc
0

0
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5 300 MeV
5 200 MeV

5 0

0.7 0.8 0.9 1.0 1.1
0.0

0.2

0.4

0.6

0.8

T Tc
0

L

FIG. 2 (color online). Upper panel: chiral condensate in the
PNJL model, normalized to the value at zero temperature, as a
function of temperature for several values of �5. The black solid
line corresponds to the case �5 ¼ 0; the orange dashed line to
�5 ¼ 200 MeV; the gray dotted line to �5 ¼ 300 MeV; and the
indigo dot-dashed line to �5 ¼ 400 MeV. Lower panel: expec-
tation value of the Polyakov loop as a function of temperature,
for several values of �5. Dashing and color conventions are the
same as in the upper panel.
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where T0
c ¼ 173:9 MeV is the deconfinement temperature

at � ¼ �5 ¼ 0.

IV. CRITICAL END POINT AT FINITE
CHEMICAL POTENTIAL

Next we turn to discuss the more general case with both
�5 and � different from zero. Our scope is to show that, at
least within the models, CP naturally evolves into CP5.
Hence the latter, if detected on the lattice, can be consid-
ered as the benchmark of the former. In particular the PNJL
model, which is in quantitative agreement with the lattice
at zero chemical potential, gives a numerical relation
among the coordinates of CP and CP5, which might be
taken as a guide to estimate the coordinates of CP in QCD,
once CP5 is detected.

In Fig. 3 we collect our data on the critical point of the
phase diagram in the ���5 � T space, in the case of the
PNJL model (for the QM model we obtain similar results).
The orange solid line is the union of the critical points
computed self-consistently at several values of �: at any
value of �, a point on the line corresponds to the critical
point of the phase diagram in the�5–T plane. Thus the line
pictorially describes the evolution of the critical point of
the chiral model at hand, from CP to CP5. In Fig. 4 we
plot a projection of Fig. 3 onto the �–�5 plane, for the
PNJL model. The indigo solid line corresponds to the
�5-coordinate of the critical end point. The critical tem-
perature is not so much affected when we continue CP5 to
CP (we measure a change approximately equal to the 3%),
therefore the projection in the �–T plane is redundant.

At �5 ¼ 0, the critical point is found at the following
coordinates:

�
�c

T0
c

;
Tc

T0
c

�
¼ ð0:92; 0:93Þ; CPðPNJLÞ; (21)

which correspond to �c � 160 MeV and Tc � 165 MeV,
in agreement with the results of [24]. Similarly for the case
of the QM model we find

�
�c

T0
c

;
Tc

T0
c

�
¼ ð1:58; 0:49Þ; CPðQMÞ: (22)

The natural question which arises is: suppose a grand-
canonical ensemble simulation finds CP5; then, how can
the coordinates of the latter point help to locate CP? We
can an answer to this important question within the PNJL
model. Our numerical results, Eqs. (20) and (21), suggest
the following relations:

�c

�5c
� 0:53;

Tc

T5c

� 0:97; ðPNJLÞ: (23)

Within the QM model we obtain similar relations, but in
our opinion, those in (23) are more trustworthy quantita-
tively because the PNJL model has been tuned to be in
quantitative agreement with lattice data at zero as well as
imaginary chemical potential [24], a characteristic which is
not satisfied by the QM model used here.
The model predictions (23) relate the coordinates of CP

to those of CP5. In particular, it is interesting that the
critical temperature is almost unchanged in the continu-
ation of CP to CP5. Of course, since these results are
deduced by a model, it is extremely interesting and im-
portant to study how Eq. (23) is affected by varying pa-
rameters like the bare quark mass, or the number of active
flavors. This observation opens the possibility to develop
further nonacademic model studies of the problem that we
discuss in this paper.

V. DISCUSSION

In this section we summarize briefly the results obtained,
and discuss their conceptual relevance, and potential ap-
plications to the lattice as well.
Our main goal is to show that the continuation of

the critical end point of the QCD phase diagram, CP, to a
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fictitious critical end point, CP5, belonging to a phase
diagram in the �5–T plane, is reasonable. Here �5 corre-
sponds to the chiral chemical potential, which is conju-
gated to the chiral density imbalance, n5 ¼ nR � nL. As
we have already stressed, strictly speaking �5 should be
regarded as a pseudochemical potential: quark condensate
in the confinement phase induces a mix among left- and
right-handed quark field components. As a consequence,
the conjugated quantity to �5, namely, the chiral charge
density, is not conserved. Hence, it is legitimate to consider
�5 as a mere mathematical artifact, and the world in which
� is replaced by �5, that we have called W 5, as an
artificial universe, not necessarily related to the physical
world. This is the point of view that we adopt in this paper.

However, even accepting this minimalist point of view,
W 5 has the quality that it can be simulated on a lattice.
Indeed, the sign problem which affects simulations of
three-color QCD at finite chemical potential does not affect
QCD inW 5 [19]. Thus, it is possible to check whetherCP5
there exists or not, within first principles calculations. If
lattice simulations find CP5, our result suggests the sim-
plest interpretation: CP5 would be nothing but the continu-
ation of the critical point which there exists in QCD. Hence
we suggest interpreting CP5, if found, as a signal of the
existence of the critical point in QCD. The coordinates of
CP are related to those of CP5 by Eq. (23).

Furthermore, it is extremely intriguing, theoretically
speaking, that the critical end point CP5 that we find in
this study, which confirms the findings of previous studies
obtained within different models, is the analytic continu-
ation of the critical end point, CP, of the theory at finite
quark chemical potential.

As anticipated, previous studies [20,21] have already
discussed the possible appearance of CP5. In particular,
in [20] a PNJL model in a strong magnetic background,
without entanglement vertex [see Eq. (13)] has been con-
sidered. In that context, the chiral chemical potential was
introduced to mimic the presence of chirality imbalance
induced by instantons and sphaleron transitions in the hot
QCD medium. Quantitatively, our results on the critical
end point are in agreement with those of [20].

In [21], the phase diagram in the �5–T plane has been
computed within the QM model improved with the
Polyakov loop. The models considered here and in [21]
are different: the zero point energy is not taken into ac-
count in [21], and on the other hand we do not include the
Polyakov loop in our QM model calculations. For these
reasons, it is not necessary to have a quantitative agreement
among our results and those of [21]. On the contrary, it is
important to notice that the qualitative picture is the same,
namely, the existence of a critical end point in the �5–T
plane.

In both of the aforementioned studies, the quark chemi-
cal potential � has not been taken into account. Therefore,
the possibility to continue CP5 to CP, which is the main

idea of the study illustrated in this paper, was not consid-
ered in those references.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have suggested the possibility of con-
tinuation of the critical end point of the phase diagram
of Nc ¼ 3 QCD, CP, to a critical end point dubbed CP5
belonging to a fictional world, W 5, in which the quark
number chemical potential is replaced by a pseudochem-
ical potential, �5, conjugated to the chiral charge density,
n5. The universeW 5 has the merit that it can be simulated
on the lattice [19] for Nc ¼ 3. This suggestion is based on
concrete calculations within chiral models. In particular,
we have used the PNJL model with an entanglement
vertex, introduced in [24], which offers a description of
the QCD thermodynamics in terms of collective degrees of
freedom, which is in quantitative agreement with lattice
data at zero and imaginary chemical potential.
Our main idea is that simulations in W 5 might reveal

the existence of a critical end point, CP5, in the phase
diagram. Then, this critical point might be interpreted as
the continuation of the critical point which is expected to
belong to the phase diagram of real QCD, because of the
continuity summarized in Fig. 3. Hence it would be an
indirect evidence of the existence of the critical point in
real QCD. Moreover, numerical predictions of the model,
which connect CP to CP5, are in Eq. (23). For these
reasons, the interest of the present study is very far from
being only academic or purely theoretical. Our result paves
the way for the mapping of the phases of quantum chro-
modynamics at finite �, by virtue of the phases of a
fictitious theory in which � is replaced by �5.
In our calculations there are some factors thatwe have not

included for simplicity, and that might be interesting to
include in more complete calculations (massive quarks,
vector interactions, just to cite a couple of examples). In
view of a possible mapping of the phase diagram of QCD
using simulations of grand-canonical ensembles in W 5, it
is of great interest to extend the analysis of [25,26] about
inhomogeneous condensates, to CP5. Moreover, in our
opinion it is important to understand quantitatively how
the numerical predictions of the model, namely, Eq. (23),
are affected by varying the quark masses and introducing a
third flavor. We plan to report on these topics in the future.
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