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Parity-violating electron-deuteron scattering can potentially provide a clean access to electroweak

couplings that are sensitive to physics beyond the standard model. However, hadronic effects can

contaminate their extraction from high-precision measurements. Power-suppressed contributions are

one of the main sources of uncertainties along with charge-symmetry violating effects in leading-twist

parton densities. In this work we calculate the twist-four correlation functions contributing to the left-right

polarization asymmetry making use of nucleon multiparton light-cone wave functions.

DOI: 10.1103/PhysRevD.84.014010 PACS numbers: 12.38.Bx, 13.60.Hb, 13.88.+e

I. INTRODUCTION

Even after decades of experimental studies, deep inelas-
tic scattering (DIS) remains one of the most powerful tools
for unraveling the partonic structure of nucleons and nu-
clei. DIS also allows for systematic searches for physics
beyond the standard model. Parity violation in DIS
(PV-DIS) at medium energies is particularly sensitive to
effects of new physics. Historically, this process played an
important role in verifying the standard model [1,2]. Today
the search for new physics motivates a number of ongoing
and planned experiments [3–9]. The physics reason for this
great interest is that within the standard model the
Weinberg angle �W should show a highly nontrivial char-
acteristic scale dependence, which can be mapped out by
combining experiments at different momentum scales. The
SoLID experiment at JLab [10,11] (see also [12,13]) will
be especially sensitive to the poorly measured weak neutral
coupling constants C2q in the low-energy electroweak

Lagrangian

L PV ¼ GFffiffiffi
2

p ½ �e���5eðC1u �u��uþ C1d
�d��dÞ

þ �e��eðC2u �u���5uþ C2d
�d���5dÞ�: (1)

To analyze the theoretical situation, effects of new phys-
ics are parameterized by �Ci� [14] according to C1� ¼
2geAg

�
V þ �C1� and C2� ¼ 2geVg

�
A þ �C2�, where the

standard model coupling constants are gfV;A¼QL
wf�QR

wf

in terms of the left and right (� ¼ L, R) weak charges

Q�
w;f ¼ T3ðf�Þ �QðfÞsin2�W: (2)

The (�Ci�) are inaccessible in other measurements, which
gives PV-DIS its unique quality.

The projected sensitivity of the SoLID experiment for an
asymmetry discussed below is �A=A ¼ �0:005ðstatÞ at an
average Q2 of 3:3 GeV2 and an average x of hxi ¼ 0:34,
which sets the scale for the size of acceptable theoretical
uncertainties. At this level of precision several sources of
systematic uncertainties can hamper a precise determina-
tion of the Ci�, as discussed recently in Refs. [15,16]. Some
of themost relevant are uncertainties in leading-twist parton
distributions functions, in particular, charge-symmetry vio-
lation (CSV), contributions from higher-twist correlation
functions, and kinematical target-mass corrections. Far
from being a nuisance, higher-twist correlations encode
very interesting and yet little known information on hadron
structure. Therefore, all cases in which leading-twist con-
tributions are absent or reduced, such that one has a good
chance to determine higher-twist ones, are of great interest.
If the relevant higher-twist contributions are measurable
with a given experimental sensitivity, as we will claim
they are not in this case, one is in a win-win situation:
PV-DIS can be regarded either as a tool for finding new
physics, in case the effects of the latter are prominent, or it
can be seen as a venue to access unknown aspects of strong
interaction physics.
Parity-violating weak interactions give rise to an asym-

metry in the inclusive cross sections for scattering of left-
and right-handed electrons off a deuteron

ARL ¼ d�R � d�L

d�R þ d�L
: (3)

This is the main medium-energy observable in PV-DIS that
will be scrutinized at Jefferson Lab [10–12]. Among all
uncertainties of the theoretical prediction of this asymme-
try we will focus on the power-suppressed contributions.
Two recent studies of it reached somewhat different con-
clusions [15,16]. Our results turn out to be very similar to
those from [15].
It was demonstrated by Bjorken andWolfenstein [17,18]

that twist-four corrections to the asymmetry are due to a
single (nonlocal) four-quark operator. The first estimates of
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the matrix element of the spin-two part of this operator
were obtained in the framework of the MIT bag model
[19,20]. This technique was extended in Ref. [15] to
include the effects of higher spin operators. It was found
that their effect is negligible within the model used.
Renormalon analysis offers yet another technique for mod-
eling the momentum fraction dependence of certain
higher-twist matrix elements [21,22]. These renormalon-
based studies demonstrate [21] that higher-twist correla-
tion functions (involving two quarks and a gluon) tend to
grow at large x, i.e., like ð1� xÞ�1, in qualitative agree-
ment with experimental measurements of electroweak
structure functions [23]. However, the four-quark operators
we consider are free from ultraviolet renormalons [24] and
thus this approach is not applicable. The absence of renor-
malon contributions might explain the qualitatively differ-
ent behavior of such correlators and gluonic ones. In this
work we calculate twist-four corrections employing a
model for the nucleon wave functions in the light-cone
formalism that was proposed by [25–27].

The paper is organized as follows: Section II contains
basic definitions and notations. In Sec. III we give a de-
tailed discussion of power corrections to the asymmetry (3)
. In Sec. IV the necessary ingredients of the light-cone
formalism are given. Results of our calculation and our
prediction for the twist-four corrections to the asymmetry
are collected in Sec. V. Finally we give our conclusions.
Two appendices contain technical details and formulas left
out in the body of the paper.

II. PRELIMINARIES

Let us briefly discuss the physical observables wewill be
analyzing below. The cross section for polarized electron
scattering off an unpolarized deuteron target, with kine-
matics shown in Fig. 1, is given by the sum of three terms

d�L=R ¼ d�L=R
ee þ d�L=R

ww þ 2d�L=R
ew ; (4)

which describe the contributions due to the electromag-
netic and weak interactions and their interference. Each
term is a function of the standard kinematical variables

Q2¼�q2; �¼ðp �qÞ; x¼Q2

2�
; y¼ðp �qÞ

ðp �kÞ : (5)

Each term in Eq. (4) is given by the convolution of a
leptonic and hadronic tensor. This reads in the laboratory
frame

d�L=R
ab

d�dk00
¼ k00

k0
AabðQ2ÞðLL=R

ab Þ��W
��
ab ; (6)

where the repeated Latin indices imply summation over
electromagnetic and weak exchanges a; b ¼ ðe; wÞ. The
coefficients

AeeðQ2Þ¼2�2

Q4
; AewðQ2Þ¼

ffiffiffi
2

p
GF�

�Q2
; AwwðQ2Þ¼G2

F

�2

encode the products of gauge boson propagators and inter-
action strengths. The leptonic tensor admits the conven-
tional form

ðLL=R
ab Þ�� ¼ QL=R

a QL=R
b ‘L=R�� ; (7)

which is a product of the electromagnetic (weak) charge

[28] QL=R
eðwÞ for the left (right) handed electron

QL=R
e ¼ �1; QL

w ¼ �1
2 þ sin2�W; QR

w ¼ sin2�W;

and

‘L=R�� ¼ k�k
0
� þ k0�k� � g��ðk � k0Þ � i"��	�k

	k0�: (8)

The hadronic tensorW��
ab is the deuteron matrix element of

the product of currents

W
��
ab ðp; qÞ ¼

1

8�MD

Z
d4zeiq�zhDðpÞjfj�a ðzÞj�bð0Þ

þ j�b ðzÞj�að0ÞgjDðpÞi;
where MD is the deuteron mass and averaging over deu-
teron polarizations is implied. The electromagnetic and
neutral quark current are defined as [cf. Eq. (2)]

j
�
e ¼ �qQ��q; j

�
w ¼ �qL
3�

�qL � sin2�Wj
�
e ; (10)

where q ¼ ðu; dÞ. It was demonstrated by Bjorken [17]
that if one assumes valence quark dominance in the region
x > 0:4 and neglects all sea quark and isospin breaking
effects (which should be justified for large virtual massQ2),
the asymmetry (3) becomes free of hadronic physics con-
taminations and is given by the Cahn-Gilman formula [2]

ARL¼� GFQ
2

2
ffiffiffi
2

p
��

9

10

��
1�20

9
sin2�W

�

þð1�4sin2�WÞ1�ð1�yÞ2
1þð1�yÞ2

�
: (11)FIG. 1. Kinematics in deep inelastic deuteron-electron

scattering.
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New physics is best parameterized by allowing for non-
standard values for the coefficients Ci�, which are reintro-
duced in Eq. (11) by replacing

1� 20
9 sin

2�W ! �2
3ð2C1u � C1dÞ;

1� 4sin2�W ! �2
3ð2C2u � C2dÞ:

However, the assumptions leading to vanishing hadronic
effects are only valid approximately and have to be aban-
doned in the analysis of high-precision experiments. The
main hadronic effects are caused by CSV and power-
suppressed correlators. The central point behind our
work, and that of others, is that these effects have a strong
x dependence which allows, if precisely known, to isolate
and subtract them and thus to increase the sensitivity of
experiments like SoLID to new physics. Thus one has to go
beyond leading approximations and has to take into ac-
count higher-order electroweak effects, sea quark effects,
target mass, and higher-twist corrections at least at a level
matching the accuracy of experimental measurements.

CSV arises from isospin violation of u and d quark
distributions in the proton and neutron, i.e., by �u ¼ up �
dn � 0 and �d ¼ dp � un � 0. Modern global analysis of

parton distribution functions incorporate CSV effects,
which are found to become more significant as x decreases
[29], RCSV � ð�u� �dÞ=ðuþ dÞ � ð1� xÞ4 ffiffiffi

x
p

. CSV ef-
fects might explain a significant fraction of the discrepancy
between the NuTeV results [30] and predictions based on
the standard model and isospin symmetry.

The other source of corrections are power-suppressed
contributions from multiparticle correlation functions.
Obviously the nucleon wave function is a complex state
containing many highly entangled Fock states, only par-
tially characterized by parton distribution functions. The
isolation and determination of specific multiple-field cor-
relators is the logical next step to exploring hadrons and is
therefore of great interest in its own right. In contrast to
mere one-particle probability distributions, they contain
information on relative phases. As they are typically power
suppressed, high luminosity experiments at medium-large
Q2 are needed to extract them. These are requirements that
are perfectly fit by Jefferson Lab, especially after the
energy upgrade.

III. TWIST-FOUR CORRECTIONS

In the region of low transferred momentum Q2 � M2
W

one has d�ww � d�ew � d�ee and the asymmetry takes
the form

ARL ¼ d�R
ew � d�L

ew

d�ee

; (12)

where we took into account that d�L
ee ¼ d�R

ee � d�ee.
Introducing the scalar, isovector, and axial isovector

currents

S�¼ 1
2
�q��q; V�¼ �q��
3q; A�¼ �q���5


3q; (13)

one can represent the electromagnetic (weak) hadronic
tensors as follows:

W
��
ee ðp; qÞ ¼ W

��
V ðp; qÞ þ 1

9W
��
S ðp; qÞ;

W
��
ew ðp; qÞ ¼ ð12 � sin2�ÞW��

V ðp; qÞ � 1
9sin

2�W
��
S ðp; qÞ

� 1
2W

��
A ðp; qÞ; (14)

where

W
��
V ðp; qÞ ¼ 1

4�MD

Z
d4zeiq�zhDðpÞjV�ðzÞV�ð0ÞjDðpÞi;

W
��
S ðp; qÞ ¼ 1

4�MD

Z
d4zeiq�zhDðpÞjS�ðzÞS�ð0ÞjDðpÞi;

W��
A ðp; qÞ ¼ 1

8�MD

Z
d4zeiq�zhDðpÞjA�ðzÞV�ð0Þ

þ V�ðzÞA�ð0ÞjDðpÞi: (15)

Here we took into account that the deuteron matrix ele-
ments of nonsinglet terms, i.e., involving the product of
isovector and isosinglet currents VS and AS, vanish by
isospin symmetry since the deuteron is an isoscalar state.
Keeping only twist-two terms in the operator product
expansion expansion of the hadronic tensors (15), one
arrives at the Cahn-Gilman formula (11); the first and the
second term in the square brackets in (11) arise from
vector-vector (Wv

ew) and axial-vector (Wa
ew) correlators,

respectively. The corrections to the Cahn-Gilman formula
can be parameterized as follows:

ARL ¼ � GFQ
2

2
ffiffiffi
2

p
��

3

5

�
~a1 þ ~a2

1� ð1� yÞ2
1þ ð1� yÞ2

�
; (16)

where (i ¼ 1, 2)

~a i ¼ �ð2Ciu � CidÞ½1þ Ri�: (17)

Here the functions Ri (i ¼ 1, 2) alluded to before receive
contributions from several sources of hadronic effects. The
precision measurement of the mixing angle at lowQ2 gives
sin2�W ’ 0:2397 [5]. Thus the axial current contribution
(~a2) to the asymmetry is relatively small, and we will focus
on the calculation of twist-four corrections to ~a1. They can
be easily identified. Indeed, neglecting effects of isospin
breaking one gets (see Ref. [17])

hDjS�ðzÞS�ð0Þ � V�ðzÞV�ð0ÞjDi
¼ 1

2hDj �uðzÞ��uðzÞ �dð0Þ��dð0Þ þ ðu $ dÞjDi: (18)

The expansion of the operator at the right-hand side of this
equation starts from twist four. In terms of

W��
ud ðp;qÞ¼

1

8�MD

Z
d4zeiq�zhDðpÞj �uðzÞ��uðzÞ �dð0Þ��dð0Þ

þðu$dÞjDðpÞi (19)

we define the structure functions Fa
i¼1;2 as coefficients in

the tensor decomposition
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MDW
��
a ðp; qÞ ¼

�
�g�� þ q�q�

q2

�
Fa
1 þ

1

�

�
p� � ðpqÞ

q2
q�
�

�
�
p� � ðpqÞ

q2
q�
�
Fa
2 ; (20)

where the index runs over a ¼ V, S, ud. The twist-four
contribution to R1 takes the form

Rtw-4
1 ¼ � 1

10ð1� 20
9 sin

2�WÞ
F ud

F S
; (21)

where

F a ¼ xyFa
1 �

�
1� 1

y
þ xMD

2E

�
Fa
2 : (22)

Keeping in F S and F ud the dominant contributions only,
i.e., twist-two and twist-four, respectively, and taking into
account that they both satisfy the Callan-Gross relation
F2 ¼ 2xF1, one finds

F ud

F S
’ Fud

1

FS
1

: (23)

The expression for FS
1 at lowest order of perturbation

theory is given by the sum of parton densities in the
deuteron

FS
1 ðxÞ ¼ 1

8½uDðxÞ þ dDðxÞ þ �uDðxÞ þ �dDðxÞ�; (24)

where as usual �qDðxÞ ¼ �qDð�xÞ. The quark distribution
functions are defined by the matrix elements of nonlocal
light-cone operators,

hDj �qðzÞzqð�zÞjDi ¼ 2ðp � zÞ
Z 1

�1
dxe2iðp�zÞxqDðxÞ: (25)

To evaluate Fud
1 we represent the hadronic tensor W��

ud via

the dispersion relation as a time-ordered product of
electroweak currents

W��
ud ðp;qÞ¼ Im

�
i

4�MD

Z
d4zeiq�zhDðpÞjTf �uðzÞ��uðzÞ �dð0Þ

���dð0Þþðu$dÞgjDðpÞi� (26)

and make use of the operator product expansion [31]

Tf �uðzÞ��uðzÞ �dð�zÞ��dð�zÞ þ ðu $ dÞgtw-4

¼ �s

16�i

�
� logz2@�@�

Z 1

0
du

�u

u2
QðuzÞ

þ 1

z2
S����z

�@�
Z 1

0

du

u
QðuzÞ

�
; (27)

where S���� ¼ g��g�� þ g��g�� � g��g��.

The operator Q (Q2 in the notations of Ref. [31]) is
given by the following expression:

QðzÞ¼ i
Z 1

�1
dv

Z v

�1
dt½��

12�
�
34QVð1;v;t;�1Þ

þ�þ
12�

þ
34QAð1;v;t;�1Þ�þðz$�zÞ: (28)

Here

QAðaÞ ¼ ð �uða1zÞtaz�5uða2zÞÞð �dða3zÞtaz�5dða4zÞÞ;
QVðaÞ ¼ ð �uða1zÞtazuða2zÞÞð �dða3zÞtazdða4zÞÞ;

(29)

and ��
ik ¼ ð1� PikÞ, where Pik is the permutation opera-

tor, e.g., P12QVða1; a2; a3; a4Þ ¼ QVða2; a1; a3; a4Þ. For
later convenience we rewrite (28) as follows:

QðzÞ¼ i
Z 1

�1
dv

Z v

�1
dt½Q̂þð1;v;t;�1Þ�Q̂�ð1;v;t;�1Þ�;

(30)

where

Q̂þðaÞ ¼ ð1þ P12P34Þð1þ P14P23ÞQþðaÞ;
Q̂�ðaÞ ¼ ðP12 þ P34Þð1þ P14P23ÞQ�ðaÞ

(31)

and

Q�ðaÞ ¼ QVðaÞ �QAðaÞ: (32)

Let us define the twist-four distribution ~QDðxÞ as a deu-
teron matrix element of the operator Q

hDjQðzÞjDi ¼ i
Z 1

�1
dxe2iðp�zÞx ~QDðxÞ: (33)

It follows from (28) and (32) that ~QDðxÞ is an even
function of x with vanishing first moment,Z 1

�1
dx ~QDðxÞ ¼ 0:

Inserting (27) and (28) into (26) one finds after some
algebra

Fud
1 ðxÞ ¼ ��s�

4Q2
x ~QDðxÞ: (34)

Then, keeping in FS
1 the valence quark contribution only

we obtain the following expression for the twist-four cor-
rection to the asymmetry:

Rtw-4
1 ¼ 1

Q2

�s�

5ð1� 20
9 sin

2�WÞ
x ~QDðxÞ

uDðxÞ þ dDðxÞ : (35)

The deuteron is a weakly coupled state of the proton and
neutron with the binding energy EB ’ 2:2 MeV. In the
incoherent impulse approximation its hadronic tensor in
the deuteron’s rest frame can be represented as [32]

WD
��ðp; qÞ ’

Z d3ps

ð2�Þ3Eps
=MN

jfðpsÞj2ðWðpÞ
��ðp� ps; qÞ

þWðnÞ
��ðp� ps; qÞÞ; (36)

where ps ¼ ðEps
;psÞ and the integration is performed over

the spectator three-momentum ps, see Fig. 1. Here fðpsÞ is
the deuteron wave function in its rest frame, normalized as

½ð2�Þ�3
R
d3psjfðpsÞj2 ¼ 1� and WðpðnÞÞ

�� are the proton
(neutron) hadronic tensors. The function fðpsÞ is strongly
peaked at ps ¼ 0 [32]. Thus one can simplify the above
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expression by neglecting terms of order �jpsj=MN and
higher under the integral. Then one finds

WD
��ðp; qÞ ’ WðpÞ

��ðp=2; qÞ þWðnÞ
��ðp=2; qÞ; (37)

and as a consequence d�d ’ d�p þ d�n. Then Eq. (37)

yields the following relation between the structure func-
tions of deuteron and nucleons,

Fd
2 ðx=2Þ ’ Fp

2 ðxÞ þ Fn
2 ðxÞ:

It turns out that this approximation overestimates the
deuteron structure function by 5	 10% [32,33]. This is
acceptable for our purposes. For the parton densities
the corresponding relation reads (cf. Eqs. (47) and (48) in
Ref. [15])

1
2qDðx=2Þ ’ qpðxÞ þ qnðxÞ: (38)

Similarly, defining the proton (neutron) twist-four distri-
butions by

hNjQðzÞjNi ¼ i
Z 1

�1
dxe2iðp�zÞx ~QpðxÞ (39)

one gets for the deuteron twist-four function ~QDðxÞ
1
4
~QDðx=2Þ ¼ ~QpðxÞ þ ~QnðxÞ ¼ 2 ~QpðxÞ: (40)

Here we took into account that ~QpðxÞ ¼ ~QnðxÞ due to

isospin symmetry.
We also define the nucleon twist-four distribution

Q�ð�Þ [and similarly Q̂�ð�Þ] by

hNjQ�ðaÞjNi ¼ ðp � zÞ2
Z

D�e
�iðp�zÞP

k

ak�k

Q�ð�Þ; (41)

where � cumulatively denotes the array of four variables
� ¼ ð�1; �2; �3; �4Þ and the integration measure stands for
D� ¼ Q

4
k¼1 d�k�ðPi�iÞ. Then it follows from Eq. (30)

that

~QpðxÞ¼
Z D�

�2�3ð�2þ�3Þfð�2þ�3Þ�ðxþ�1þ�2Þ

��3�ðxþ�1Þ��2�ð�4�xÞg½Q̂þð�Þ�Q̂�ð�Þ�:
(42)

IV. NUCLEON LIGHT-CONE WAVE FUNCTIONS

Our lack of information on the magnitude of higher-
twist matrix elements is the main obstacle for a quantitative
analysis of power-suppressed contributions to hadronic
cross sections. Hadron structure models provide estimates
for the size of nonperturbative matrix elements, but their
predictions vary strongly. This is understandable in view of
the fact that confinement is incorporated rather differently.
The first estimates of twist-four corrections to the asym-
metry (3) were obtained within theMIT bag model [19,20],
which incorporates confinement quite ad hoc (see also

Refs. [15,34] for recent developments). In this work we
use another approach, the light-cone formalism [35], for
the evaluation of twist-four corrections.
In the light-cone formalism the nucleon is represented

by a superposition of multiparton Fock state wave func-
tions. The latter are functions of the parton longitudinal
momentum fractions xi, transverse momenta k?i, and par-
ton helicities. The light-cone wave functions (LCWFs) are
eigenfunctions of the QCD Hamiltonian quantized in the
light-cone gauge [36,37]. Models for LCWFs of various
degree of sophistication have been considered in different
contexts in the vast literature on the subject, see, e.g.,
Refs. [25,26,35,38–41]. In this work we will follow the
formalism developed in Refs. [25–27,38] and will take into
account only the lowest components of the nucleon
LCWFs: the three-quark and three-quark-gluon compo-
nent. The details of the light-cone formalism relevant for
our further discussion are collected in Appendix A.
The three-quark component of the nucleon state is

parameterized in terms of corresponding LCWF �ð0Þ
123 as

follows:

jp;þi3q ¼ � 
ijkffiffiffi
6

p
Z
½DX�3�ð0Þ

123ðXÞðuyi"ð1Þuyj#ð2Þdyk"ð3Þ

� uyi"ð1Þdyj#ð2Þuyk"ð3ÞÞj0i: (43)

Here and below for notational simplicity arguments like ‘

in uyi"ð‘Þ, stand for the collection of all relevant arguments,

i.e., uy"ið‘Þ ¼ uy"iðx‘; k?‘Þ. The creation (annihilation) op-

erators of a quark with helicity � and momentum p satisfy
the commutation relation (A10). As usual, the momentum
fraction xi is defined as the ratio of the longitudinal (i.e.,
‘‘þ’’) momentum of the ith parton and the one of the
nucleon. The integration measure has the following form:

½DX�N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 . . . xN

p ½dx�N½d2k?�N;

½dx�N ¼ YN
i¼1

dxi�

�
1�X

xi

�
;

½d2k?�N ¼ 1

ð16�3ÞN�1

YN
i¼1

d2k?i�
ð2Þ
�X

k?i

�
:

(44)

Here we accept the Bolz-Kroll Ansatz [25] for the func-

tion �ð0Þ
123

�ð0Þ
123 ¼

fN

4
ffiffiffi
6

p �ðx1; x2; x3Þ�3ða3; xi; k?iÞ: (45)

The transverse momentum dependence is encoded in the
function �N

�NðaN;xi;k?iÞ¼ð16�2a2NÞN�1

x1x2 .. .xN
exp

�
�a2N

X
i

k2?i=xi

�
; (46)

which is normalized such that
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Z
½d2k?�N�NðaN; xi;k?iÞ ¼ 1;

Z
½d2k?�N�2

NðaN; xi;k?iÞ ¼ 	N

x1 . . . xN
;

(47)

where 	N ¼ ð8�2a2NÞN�1. The function �ðxiÞ, entering
(45), depends only on the longitudinal momentum frac-
tions of constituent partons and coincides with the leading-
twist, i.e., twist-three, nucleon distribution amplitude de-
fined at the low-energy scale �0 ¼ 1 GeV. We use the
following Ansatz for �ðxÞ [25]:

�ðx1; x2; x3Þ ¼ 60x1x2x3ð1þ 3x1Þ; (48)

which emerges from the truncation of the conformal partial
wave expansion after the lowest few terms. The normal-
ization constant fN in Eq. (45) is determined by the matrix
element of the corresponding local three-quark operator.
The analysis within the framework of QCD sum rules [42]
yields in the following estimate for fN [43–47] at the scale
�0 ¼ 1 GeV

fN ¼ ð5:0� 0:5Þ � 10�3 GeV2: (49)

On the other hand, the parameter a3 determines the smear-
ing of the wave function in the transverse plane and, e.g.,
the average quark transverse momentum. Following
Ref. [27] we take a3 ¼ 0:73 GeV�1 in our estimates.
With this set of parameters, the contribution of the three-
quark Fock state to the norm of the nucleon state is about
17%,

P3q ¼ 435

112
f2N	3 ’ 0:17: (50)

The four-parton quark-gluon contributions with zero an-
gular momentum to the nucleon states have the following
form [27]:

jp;þiuudg# ¼ 
ijk
Z
½DX�4�#

1234ðXÞaa;y# ð4Þ
� ½tau"ð1Þ�yi uyj"ð2ÞÞdyk"ð3Þj0i;

jp;þiuudg" ¼ 
ijk
Z
½DX�4f�"ð1Þ

1234ðXÞ½tau#ð1Þ�yi
� ðuyj"ð2Þdyk#ð3Þ � dyj"ð2Þuyk#ð3ÞÞaa;y" ð4Þ
þ�"ð2Þ

1234ðXÞuyi#ð1Þð½tau#ð2Þ�yj dyk"ð3Þ
� ½tad#ð2Þ�yj uyk"ð3ÞÞaa;y" ð4Þgj0i; (51)

where the four-parton LCWFs are again taken in the Bolz-
Kroll form

�#
1234 ¼

1ffiffiffiffiffiffiffiffi
2x4

p �gðx1; x2; x3; x4Þ�4ðag; xi; k?iÞ;

�"ð1Þ
1234 ¼

1ffiffiffiffiffiffiffiffi
2x4

p c ð1Þ
g ðx1; x2; x3; x4Þ�4ðag; xi;k?iÞ;

�"ð2Þ
1234 ¼

1ffiffiffiffiffiffiffiffi
2x4

p c ð2Þ
g ðx1; x2; x3; x4Þ�4ðag; xi;k?iÞ:

(52)

The functions �g, c ðiÞ
g that depend on the light-cone

momentum fractions of the partons can be expressed in
terms of the twist-four quark-gluon nucleon distribution
amplitudes �g

4 , �
g
4 , �

g
4 introduced in Ref. [48]. Keeping

only the lowest terms in the conformal expansion of the
corresponding distribution amplitudes one arrives at the
following expressions [27]:

g�gðx1; x2; x3; x4Þ ¼ �210mN�
g
1x1x2x3x

2
4;

gc ð1Þ
g ðx1; x2; x3; x4Þ ¼ �105mNð�g

2 þ �g
3Þx1x2x3x24;

gc ð2Þ
g ðx1; x2; x3; x4Þ ¼ �105mNð�g

2 � �g
3Þx1x2x3x24:

(53)

The sum rule technique was found to give the following
estimates for the coupling constants �g

k at low-energy scale

1 GeV [27]

�g
1 ¼ ð2:6� 1:2Þ � 10�3 GeV2;

�g
2 ¼ ð2:3� 0:7Þ � 10�3 GeV2;

�g
3 ¼ ð0:54� 0:21Þ � 10�3 GeV2:

(54)

We choose ag ¼ a3=2
1=6 ¼ 0:65 GeV�1 and �s ¼ 0:5 at

the scale 1 GeV, which results in the following probabil-
ities for the quark-gluon components within the nucleon
state [27]

Pg# ¼
35

8g2
m2

N	4ð�g
1Þ2 ’ 0:15;

Pg" ¼
105

16g2
m2

N	4½ð�g
2Þ2 þ ð�g

3Þ2� ’ 0:185:

(55)

V. RESULTS AND DISCUSSION

Now that we have models for the nucleon LCWFs,
it is straightforward to evaluate the matrix elements of
the four-fermion operators Q� and constrain the momen-
tum fraction dependence of the corresponding higher-twist

correlator ~QðpÞ. The distributions Q�ð�Þ defined by
Eq. (32) possess the following support properties:

Q�ð�Þ ¼ �ð��1Þ�ð��3Þ�ð�2Þ�ð�4Þ�ð1� �2 � �4Þ
� q�ð��1; �2;��3; �4Þ: (56)

Here the functions q�ð�Þ are expressed in terms of inte-
grals involving the nucleon wave functions; see
Appendix B for explicit formulas, while below we quote
expressions which correspond to the Ansätze (48) and (53).
The structure of the Fock expansion corresponds to the

BELITSKY, MANASHOV, AND SCHÄFER PHYSICAL REVIEW D 84, 014010 (2011)

014010-6



decomposition of the twist-four distributions q� into the
following three components:

q�ð�Þ ¼ q3q� ð�Þ þ q
g#
�ð�Þ þ q

g"
�ð�Þ: (57)

Each term in this sum corresponds to the contribution of
the pertinent multiparton component of the nucleon wave
function, i.e., three-quark and quark-gluon, respectively.
Making use of the results derived in the previous section,
one finds the following explicit momentum fraction depen-

dence for the distributions q3q� ,

q3q� ð�Þ¼c3q�1ð�Þ½ð4�3ð�2þ�4ÞÞ2þð5�3�3Þð5�3�4Þ�;
q3qþ ð�Þ¼c3q�1ð�Þð1þ3�1Þð1þ3�2Þ; (58)

where

�1ð�Þ ¼ �1�2�3�4

1� �2 � �4

�2 þ �4

; (59)

and the overall normalization constant being

c3q ¼ P3q

560

87�2a23
: (60)

For the four-parton quark-gluon functions q
g"
�, q

g#
� one

gets

q
g"
�ð�Þ ¼ c�g"�2ð�Þ; q

g#
�ð�Þ ¼ c�g#�2ð�Þ; (61)

where

�2ð�Þ ¼ �1ð�Þð1� �2 � �4Þ3 (62)

and

cþg" ¼ Pg"
560

�2a2g

�
1� 5

3

�2
3

�2
2 þ �2

3

�
;

c�g" ¼ �Pg"
700

�2a2g

�
1þ �3

�2
2 þ �2

3

�
6

5
�2 � 4

3
�3

��
;

cþg# ¼ Pg#
280

�2a2g
;

(63)

while c�g# ¼ 0.

Furthermore, making use of Eq. (42) one obtains after
some algebra the following representation for the function
~QpðxÞ, x > 0:

~QpðxÞ ¼ �2
Z 1�x

0
d�

�
1

�
logðx=�Þq̂þðx; �; �; xÞ þ 1

xþ �

�Z xþ�

0

d�

�

�
xþ �

�� �
ðq̂þðx; �; �; xþ �� �Þ � �

�
q̂þðx; �; �; xÞÞ

� q̂�ðx; �; �; xþ �� �Þ
�
þ 1

2

Z 1�x��

0

d�

�

��
xþ �

�
þ �

�þ x

�
q̂þð�þ x; �; �; �þ xÞ þ

�
1þ �

�þ x

xþ �

�

�

� q̂�ð�þ x; �; �; �þ xÞ
���

; (64)

where

q̂�ð�Þ ¼ 1
2ð1þ P14P23Þð1þ P13P24Þq�ð�Þ: (65)

Performing the final integration is straightforward and one
can obtain a closed analytical form of ~QpðxÞ (however, the
resulting expression is quite long and in order to save space
it will not be displayed here). The twist-four distribution is
displayed in the upper panel of Fig. 2. The dashed and
dotted lines correspond to its three-quark and quark-gluon
components, respectively. Both of them exhibit a global
minimum at x ’ 0:4. In the lower panel of Fig. 2, we blow
up its high-x region to demonstrate the node structure of
the three-quark contribution. As x ! 1 the four-parton
quark-gluon component of ~QpðxÞ is suppressed by the
decay factor ð1� xÞ3 with respect to the three-quark com-
ponent. At the same time the twist-four distribution ~QpðxÞ
is enhanced in comparison with the twist-two parton den-
sities calculated within the same model, ~QpðxÞ=upðxÞ �
logð1� xÞ for x ! 1.

Our predictions for the twist-four correction Rtw-4
1 to the

Cahn-Gilman formula is shown in Fig. 3. In order to make

an comparison with the results of Ref. [15] easier, we
display Rtw-4

1 for Q2 ¼ 4, 6, 8, 10, 12 GeV2. It turns out

that our prediction for Rtw-4
1 is roughly twice as large as

that of Ref. [15] with the minimum of the function being
slightly shifted towards lower x0 (i.e., from x0 ’ 0:7 to
x0 ’ 0:6). Note that the x dependence of the twist-four
contribution is much better determined than its normaliza-
tion: The three-quark component of the nucleon wave
functions is constrained by the existing experimental
data (parton densities and nucleon form factor, [25]), but
the Ansatz (53) for the quark-gluon wave functions
has to be regarded as an exploratory estimate (see
Ref. [27] for a discussion). Nevertheless, since for large
x0 the contribution due to the quark-gluon components of
the wave functions are strongly suppressed, see Fig. 2,
we believe that for x0>0:7 our estimate for Rtw-4

1 ðx0Þ
should be rather accurate. That is, the function R1ðx0Þ
has to change sign around x0 � 0:8. We also checked that
our result, once we compute its Mellin moments, are in
good agreement with earlier calculations of higher-twist
corrections to the first moments of structure functions
[19,20].

TWIST-FOUR CORRECTIONS TO PARITY-VIOLATING . . . PHYSICAL REVIEW D 84, 014010 (2011)

014010-7



VI. CONCLUSION

Parity-violating deep inelastic scattering is a process of
fundamental importance and, therefore, will be investi-
gated by ever more precise experiments. It is sensitive to

physics beyond the standard model as well as to specific
aspects of strong interaction dynamics, encoded in higher-
twist correlators. To disentangle both, the x dependence of
the twist-four contribution must be known precisely, which
seems to be in reach with present-day techniques. The task
of determining these higher-twist contributions has a cer-
tain urgency in view of the upcoming JLab experiment
SoLID [10]. In the current study we calculated the twist-
four correction to the leading contribution ~a1 to the parity-
violating asymmetry by determining matrix elements of
light-cone four-quark operators [17]. We found that within
the framework of light-cone wave functions, the estimate
for twist-four correlation functions has similar features as
found in a recent calculation within the MIT bag model
[15]. The size of the correction R1 is about twice as large in
our calculation and the form differs slightly, but these
differences might well reflect the present-day theoretical
uncertainties of such calculations. The size of the twist-
four correction we obtain is borderline. It has to be taken
into account to improve the sensitivity of SoLID for new
physics, but it does not seem to be large enough for SoLID
to test our prediction. However, as mapping out the running
of sin2�W is a fundamentally important experiment, we are
optimistic that still more precise experiments will be per-
formed in the future, which should then be sensitive
enough to observe the higher-twist contributions we
analyzed.
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APPENDIX A: LIGHT-CONE EXPANSION

In this appendix, in order to make the paper self-
consistent, we spell out our notations and conventions
that we used to perform calculations of hadronic matrix
elements in the body of the paper.
For an arbitrary four-vector a�, we define the light-cone

coordinates as

aþ ¼ 1ffiffiffi
2

p ða0 þ a3Þ; a� ¼ 1ffiffiffi
2

p ða0 � a3Þ;

a ¼ a1 þ ia2; �a ¼ a1 � ia2:
(A1)

We find it convenient to pass from four-dimensional vec-
tors to two-dimensional matrix notations for all tensors.
For a vector a� we introduce the matrix a ¼ a��

�, where

�� ¼ ðI; ~�Þ,

a� _� ¼ a��
�
� _� ¼

ffiffiffi
2

p
a� � �a

�a
ffiffiffi
2

p
aþ

 !
� _�

: (A2)

FIG. 2 (color online). The nucleon twist-four distribution
~QðpÞðxÞ multiplied by a23 (solid line). The dashed and dotted

lines show the contribution of three-quark and quark-gluon
wave functions, respectively. The lower panel is a blowup of
the high x region.

FIG. 3 (color online). The estimate Rtw-4
1 as a function of the

Bjorken x for different values of Q2. The curves from the bottom
to top correspond to the values Q2 ¼ 4, 6, 8, 10, 12 GeV2,
respectively. The experimental accuracy of SoLID is �0:005
for Rtw�4

1 at an average Q2 of 3:3 GeV2 and hxi ¼ 0:34.
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In the Weil representation the Dirac � matrices has the
form

�0¼ 0 I
I 0

� �
; �i¼ 0 �i

��i 0

� �
; �5¼ �I 0

0 I

� �
;

with �5 ¼ i�0�1�2�3. In the two-component notation the
Dirac spinors read

q ¼ q#
q"

� �
; �q ¼ qy�0 ¼ ð �q#; �q"Þ; (A3)

where q"ð#Þ ¼ 1
2 ð1� �5Þq are components with positive/

negative helicity, respectively. The two independent light-
like vectors

n� ¼ 1ffiffiffi
2

p ð1; 0; 0;�1Þ; ~n� ¼ 1ffiffiffi
2

p ð1; 0; 0; 1Þ; (A4)

n2 ¼ ~n2 ¼ 0, n � ~n ¼ 1 can be parameterized in terms of
two auxiliary Weil spinors:

n� _� ¼ ��
�� _�; ~n� _� ¼ �� �� _�; (A5)

which read explicitly

�� ¼ 21=4
�1

0

 !
; �� ¼ 21=4

0

1

 !
;

�� _� ¼ 21=4
�1

0

 !
; �� _� ¼ 21=4

0

1

 !
:

(A6)

The following rules allow one to raise and lower spinor
indices

��¼
����; ��¼��
��; �� _�¼ �� _�

_� _�; �� _�¼
 _� _�

��
_�;

with the antisymmetric Levi-Civita tensor having only the
following nonzero components:


12 ¼ 
12 ¼ �
 _1 _2 ¼ �

_1 _2 ¼ 1:

The auxiliary spinors � and � are normalized as

ð��Þ ¼ ���� ¼ �ð��Þ ¼ � ffiffiffi
2

p
;

ð �� ��Þ ¼ �� _�
�� _� ¼ �ð �� ��Þ ¼ þ ffiffiffi

2
p (A7)

and are used to project out the ‘‘plus’’ and ‘‘minus’’
components of the fields. For fermions, we define

cþ¼��c �; c�¼��c �; ��þ¼ �� _�
�� _�; ���¼ �� _� �� _�:

(A8)

In the same fashion the light-cone decomposition of a
vector (e.g., gluon) field takes the form

A� _� ¼ A���
�� _� þ Aþ�� �� _� þ

�Affiffiffi
2

p �� �� _� þ Affiffiffi
2

p ��
�� _�:

The plus spinor fields cþ, ��þ and transverse gluon fields
A, �A are assumed to be the dynamical degrees of freedom

in the light-cone quantization framework. While the minus
fields c�, ���, A� can be expressed in terms of these with
the help of equations of motion. Finally, we use the gauge
Aþ ¼ 0.
The good components of the quark field have the follow-

ing canonical expansion:

q#þðxÞ ¼
Z dpþffiffiffiffiffiffiffiffiffi

2pþ
p d2p?

ð2�Þ3 �ðpþÞ½e�ip�xb#ðpÞ þ eþip�xdy" ðpÞ�;

q"þðxÞ ¼
Z dpþffiffiffiffiffiffiffiffiffi

2pþ
p d2p?

ð2�Þ3 �ðpþÞ½e�ip�xb"ðpÞ þ eþip�xdy# ðpÞ�;

(A9)

in terms of the annihilation operators of quark and anti-
quark of positive (negative) helicity b"ð#Þ, d"ð#Þ, respectively.
They obey the standard anticommutation relations

fb�ðpÞ;by�0 ðp0Þg¼ fd�ðpÞ;dy�0 ðp0Þg
¼2pþð2�Þ3��;�0�ðpþ�p0þÞ�ð2Þðp?�p0

?Þ:
(A10)

Similarly the expansion for the dynamical transversely
polarized gluon fields A and �A reads

�AðxÞ ¼ ffiffiffi
2

p Z dkþ
2kþ

d2k?
ð2�Þ3 �ðkþÞ½e

�ik�xa"ðkÞ þ eþik�xay# ðkÞ�;

AðxÞ ¼ ffiffiffi
2

p Z dkþ
2kþ

d2k?
ð2�Þ3 �ðkþÞ½e

�ik�xa#ðkÞ þ eþik�xay" ðkÞ�:
(A11)

Here and below A ¼ P
at

aAa are matrices in the funda-
mental representation of SUð3Þ, and ta are the usual gen-
erators, normalized as trðtatbÞ ¼ 1

2�
ab. The creation and

annihilation operators obey the commutation relation

½ab�ðpÞ; ðab0�0 ðp0ÞÞy� ¼ 2pþð2�Þ3��;�0�bb0�ðpþ � p0þÞ
� �ð2Þðp? � p0

?Þ: (A12)

As mentioned above, bad (i.e., minus) components can be
expressed in terms of the dynamical fields using QCD
equations of motion.

APPENDIX B: DISTRIBUTIONS q�
As discussed in Sec. V, we represent the twist-four

distributions q�ð�Þ as shown in Eq. (57). We remind the
reader that the arguments � ¼ ð�1; �2; �3; �4Þ are subject to
the constraints, 0 
 �i 
 1 and �1 þ �3 ¼ �2 þ �4. A

straightforward calculation of its components q3q� ð�Þ,
q
g#
�ð�Þ, qg"�ð�Þ, arising from three- and four-parton Fock

states of the nucleon, yields the following expressions in
terms of the LCWFs introduced in the main text,
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q3qþ ð�Þ ¼ � 4

9

ð�a3fNÞ2
ð�2 þ �4Þð1� �2 � �4Þ�ð�1; 1� �1 � �3; �3Þ�ð�2; 1� �2 � �4; �4Þ;

q3q� ð�Þ ¼ � 4

9

ð�a3fNÞ2
ð�2 þ �4Þð1� �2 � �4Þ f�ð1� �1 � �3; �1; �3Þ�ð1� �2 � �4; �2; �4Þ þ ð�ð�1; �3; 1� �1 � �3Þ

þ�ð1� �1 � �3; �3; �1ÞÞð�ð�2; �4; 1� �2 � �4Þ þ�ð1� �2 � �4; �4; �2ÞÞg; (B1)

where � is given by Eq. (48). Next, we got that q
g#�ð�Þ ¼ 0 and

q
g#
þð�Þ ¼

32ð8�2a2gÞ2
3ð�2 þ �4Þ

Z 1

0

dx2
x2

dx4
x24

�ð1� �2 � �4 � x2 � x4Þ
�
�gð�1; x2; �3; x4Þ

�
�gðx2; �2; �4; x4Þ þ 1

4
�gð�2; x2; �4; x4Þ

�

þ�gðx2; �1; �3; x4Þ½�gð�2; x2; �4; x4Þ � 2�gðx2; �2; �4; x4Þ�
�
: (B2)

Finally,

q
g"
þð�Þ ¼

8ð8�2a2gÞ2
3ð�2 þ �4Þ

Z 1

0

dx2
x2

dx4
x24

�ð1� �2 � �4 � x2 � x4Þfc ð1Þ
g ð�1; x2; �3; x4Þ½c ð1Þ

g ð�2; x2; �4; x4Þ

þ 5c ð2Þ
g ð�2; �4; x2; x4Þ� þ c ð2Þ

g ð�1; �3; x2; x4Þ½c ð2Þ
g ð�2; �4; x2; x4Þ þ 5c ð1Þ

g ð�2; x2; �4; x4Þ�g;

q
g"�ð�Þ ¼ 32ð8�2a2gÞ2

3ð�2 þ �4Þ
Z 1

0

dx2
x2

dx4
x24

�ð1� �2 � �4 � x2 � x4Þ
�
c gð�1; x2; �3; x4Þ

�
c gðx2; �2; �4; x4Þ þ 1

4
c gð�2; x2; �4; x4Þ

�

þ c gðx2; �1; �3; x4Þ½c gð�2; x2; �4; x4Þ � 2c gðx2; �2; �4; x4Þ� �
�
c ð1Þ

g ðx2; �2; �4; x4Þ � 1

4
c ð2Þ

g ðx2; �4; �2; x4Þ
�

� c ð2Þ
g ðx2; �3; �1; x4Þ � c ð1Þ

g ðx2; �1; �3; x4Þ½c ð2Þ
g ðx2; �4; �2; x4Þ þ 2c ð1Þ

g ðx2; �2; �4; x4Þ�
�
; (B3)

where

c gðx1; x2; x3; x4Þ ¼ c ð1Þ
g ðx1; x2; x3; x4Þ � c ð2Þ

g ðx3; x1; x2; x4Þ:
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