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5Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo,
Via Cintia, Edificio 6, 80126 Napoli, Italy, and Istituto Nazionale di Fisica Nucleare, Sezione di Napoli

6Al-Farabi Kazak National University, 480012 Almaty, Kazakhstan
(Received 21 April 2011; published 6 July 2011)

We further explore the consequences of treating the Xð3872Þ meson as a tetraquark bound state by

analyzing its one-photon decay X ! �þ J=c in the framework of our approach developed in previous

papers which incorporates quark confinement in an effective way. To introduce electromagnetism we

gauge a nonlocal effective Lagrangian describing the interaction of the Xð3872Þ meson with its four

constituent quarks by using the P-exponential path-independent formalism. We calculate the matrix

element of the transition X ! �þ J=c and prove its gauge invariance. We evaluate the X ! �þ J=c

decay width and the longitudinal/transverse composition of the J=c in this decay. For a reasonable value

of the size parameter of the Xð3872Þ meson we find consistency with the available experimental data. We

also calculate the helicity and multipole amplitudes of the process, and describe how they can be obtained

from the covariant transition amplitude by covariant projection.
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I. INTRODUCTION

This paper is a direct continuation of our previous
work [1] where we have analyzed the strong decays of
the charmonium–like state Xð3872Þ in the framework of
our relativistic constituent quark model which includes
infrared confinement in an effective way [2]. In our ap-
proach the Xð3872Þ meson is interpreted as a tetraquark
state with the quantum numbers JPC ¼ 1þþ as in [3]. In
this paper we analyze the one-photon decay X ! �þ J=c
in the same tetraquark picture. The electromagnetic inter-
action is incorporated into our relativistic nonlocal effec-
tive Lagrangian in a gauge invariant way using the
P-exponential path-independent formalism.

We begin by collecting the experimental data relevant
for our purposes. A narrow charmonium–like state
Xð3872Þ was observed in 2003 in the exclusive decay
process B� ! K��þ��J=c [4]. The Xð3872Þ decays
into �þ��J=c and has a mass of mX ¼ 3872:0�
0:6ðstatÞ � 0:5ðsystÞ very close to the mD0 þmD�0 ¼
3871:81� 0:25 mass threshold [5]. Its width was found
to be less than 2.3 MeVat 90% confidence level. The state
was confirmed in B-decays by the BABAR experiment [6]
and in p �p production by the Tevatron experiments CDF [7]
and D0 [8]. The most precise measurement up to now was
done in [9] with mX ¼ 3871:61� 0:16� 0:19. The new
average mass given in [7] is

mX ¼ 3871:51� 0:22 MeV: (1)

The Belle Collaboration has reported [10] evidence
for the decay modes Xð3872Þ ! �þ J=c and to
X ! �þ���0J=c :

BðB ! XKÞ �BðX ! �þ J=c Þ
¼ ð1:8� 0:6ðstatÞ � 0:1ðsystÞÞ � 10�6;

�ðX ! �þ J=c Þ
�ðX ! �þ��J=c Þ ¼ 0:14� 0:05;

BðX ! �þ���0J=c Þ
BðX ! �þ��J=c Þ ¼ 1:0� 0:4ðstatÞ � 0:3ðsystÞ: (2)

These observations imply strong isospin violation be-
cause the three-pion decay proceeds via an intermediate !
meson with isospin 0 whereas the two-pion decay proceeds
via the intermediate � meson with isospin 1. It is evident
that the two-pion decay via the intermediate � meson is
very difficult to explain by using an interpretation of the
Xð3872Þ as a simple c �c charmonium state with isospin 0.
In an analysis of Bþ ! J=c�Kþ decays, the BABAR

Collaboration [11] found evidence for the radiative decay
Xð3872Þ ! �þ J=c with a statistical significance of
3:4�. They reported the following values for the product
of branching fractions

B ðBþ ! XKþÞ �BðX ! �þ J=c Þ
¼ ð3:3� 1:0ðstatÞ � 0:3ðsystÞÞ � 10�6: (3)

The Belle Collaboration reported [12] the first observa-
tion of a near-threshold enhancement in the D0 �D0�0
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system from B ! D0 �D0�0K. The enhancement peaks at a
mass ofM ¼ 3875:2� 0:7þ0:3

�1:6 � 0:8 MeV. The branching
fraction for events in the peak is

B ðB ! D0 �D0�0KÞ ¼ ð1:22� 0:31þ0:23
�0:30Þ � 10�4: (4)

All available experimental data up to 2007 were ana-
lyzed in [13]. The authors found that [13]

BðBþ ! XKþÞ ¼ 1:30þ0:20
�0:34 � 10�4;

�ðX ! �þ J=c Þ
�ðX ! �þ��J=c Þ ¼ 0:22� 0:06:

(5)

The BABAR Collaboration found evidence for the de-
cays X ! �þ J=c and X ! �þ c ð2SÞ in their data
sample of the B ! c �c�K decays. The measured products
of branching fractions are [14]

B ðB� ! XK�Þ �BðX ! �þ J=c Þ
¼ ð2:8� 0:8ðstatÞ � 0:1ðsystÞÞ � 10�6;

BðB� ! XK�Þ �BðX ! �þ c ð2SÞÞ
¼ ð9:5� 2:7ðstatÞ � 0:6ðsystÞÞ � 10�6:

(6)

There have been many theoretical attempts to unravel
the structure of the Xð3872Þ and its decays. Many of the
theoretical predictions for the decay Xð3872Þ ! �þ J=c
published up to now are very model dependent. We men-
tion some of them in turn.

All possible 1D and 2P c �c assignments for the Xð3872Þ
were considered in [15]. The authors obtained E1 radiative
widths for decays into charmonium c �c states as well as for
some strong decays taking the experimental mass as input.
The conclusion was that many of the possible JPC assign-
ments can be eliminated due to the smallness of the ob-
served total width. The suggestion was that radiative
transitions could be used to test the remaining JPC

assignments.
Some tests of the hypothesis that the Xð3872Þ is a

weakly bound D0 �D0� molecule state were suggested in
[16]. It was proposed that measuring the 3�J=c , �þ
J=c , �þ c 0, �KK�, and �� decay modes of the X will
serve as a definitive diagnostic tool to confirm or to rule out
the molecule hypothesis.

Assuming that the Xð3872Þ state has the structure

ðD0 �D0� �D0� �D0Þ= ffiffiffi
2

p
with quantum numbers JPC ¼

1þþ, the Xð3872Þ ! �þ J=c decay width was calculated
using a phenomenological Lagrangian approach [17]. The
calculated value of the radiative decay width varied
from 125 KeV to 250 KeV depending on the model
parameters.

QCD sum rules were used in [18] to calculate the width
of the radiative decay of the meson Xð3872Þ, which was
assumed to be a mixture between charmonium and exotic

molecular ½c �q�½q �c� states with JPC ¼ 1þþ. In a small
range for the values of the mixing angle, one obtains

�ðX ! �þ J=c Þ
�ðX ! J=c�þ��Þ ¼ 0:19� 0:13: (7)

Our paper is organized as follows. In Sec. II we gauge a
nonlocal effective Lagrangian describing the interaction of
the Xð3872Þmeson with its constituent quarks by using the
P-exponential path-independent formalism developed in
[19,20]. In Sec. III we calculate the matrix element of the
radiative transition X ! �þ J=c and prove its gauge
invariance analytically. In Sec. IV we present the results
of our numerical analysis. First, we check numerically that
the final amplitude is gauge invariant. Second, we intro-
duce infrared confinement as was done in our previous
papers Refs. [1,2] and evaluate the X ! �þ J=c decay
width. Finally, in Sec. V we summarize our results. In an
Appendix we describe how the two helicity or the two
multipole amplitudes of the process can be obtained from
the gauge invariant transition amplitude by covariant
projection.

II. THEORETICAL FRAMEWORK

The effective interaction Lagrangians describing the
coupling of the charmonium-like meson such as the
Xð3872Þ to four quarks, and the coupling of the charmo-
nium J=c state to its two constituent quarks are written in
the form (see Ref. [1])

Lint¼gXXq�ðxÞ�J�Xq
ðxÞþgJ=c J=c �ðxÞ�J�J=c ðxÞ

ðq¼u;dÞ: (8)

The nonlocal interpolating quark currents read

J�Xq
ðxÞ¼

Z
dx1 .. .

Z
dx4�

�
x�X4

i¼1

wixi

�
�X

�X
i<j

ðxi�xjÞ2
�

� 1ffiffiffi
2

p "abc"decf½qaðx4ÞC�5cbðx1Þ�

�½ �qdðx3Þ��C �ceðx2Þ�þð�5$��Þg;
w1¼w2¼ mc

2ðmqþmcÞ�
wc

2
;

w3¼w4¼
mq

2ðmqþmcÞ�
wq

2
;

J
�
J=c ðyÞ¼

Z
dy1

Z
dy2�

�
y�1

2
ðy1þy2Þ

�

��J=c ððy1�y2Þ2Þ �caðy1Þ��caðy2Þ: (9)

The matrix C ¼ �0�2 is related to the charge conjuga-
tion matrix: C ¼ Cy ¼ C�1 ¼ �CT , C�TC�1 ¼ ��,
(‘‘þ’’ for � ¼ S, P, A and ‘‘�’’ for � ¼ V, T). We follow
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[3] and take the tetraquark state to be a linear superposition
of the Xu and Xd states according to

Xl � Xlow ¼ Xu cos�þ Xd sin�;

Xh � Xhigh ¼ �Xu sin�þ Xd cos�:
(10)

The coupling constant gX in Eq. (8) will be determined
from the compositeness condition ZH ¼ 0 (see e.g.
Refs. [21,22]). The compositeness condition requires that
the renormalization constant ZH of the elementary meson
X is set to zero, i.e.

ZH ¼ 1��0
Hðp2

H ¼ m2
HÞ ¼ 0; (11)

where �Xðp2Þ is the scalar part of the meson mass
operator and the prime stands for the derivative w.r.t. p2

H.

For the spin one states Xð3872Þ and J=c the compositeness
condition reads

���
V ðpÞ ¼ g���Vðp2Þ þ p�p��ð1Þ

V ðp2Þ;

�Vðp2Þ ¼ 1

3

�
g�� �

p�p�

p2

�
���

V ðpÞ:
(12)

The X meson mass operator can be calculated from the
self-energy three-loop sunrise-type diagram with four
quark-antiquark propagators. The calculation is described
in more detail in Ref. [1].
As in the case of baryons composed of three quarks it is

convenient to transform to Jacobi coordinates in the inte-
grals of Eq. (9). In the case of four quarks one has

x1 ¼ xþ 2w2 þ w3 þ w4

2
ffiffiffi
2

p �1 � w3 � w4

2
ffiffiffi
2

p �2 þ w3 þ w4

2
�3 � xþ X3

j¼1

c1j�j;

x2 ¼ x� 2w1 þ w3 þ w4

2
ffiffiffi
2

p �1 � w3 � w4

2
ffiffiffi
2

p �2 þ w3 þ w4

2
�3 � xþ X3

j¼1

c2j�j;

x3 ¼ x� w1 � w2

2
ffiffiffi
2

p �1 þ w1 þ w2 þ 2w4

2
ffiffiffi
2

p �2 � w1 þ w2

2
�3 � xþ X3

j¼1

c3j�j;

x4 ¼ x� w1 � w2

2
ffiffiffi
2

p �1 � w1 þ w2 þ 2w3

2
ffiffiffi
2

p �2 � w1 þ w2

2
�3 � xþ X3

j¼1

c4j�j;

(13)

where x ¼ P
4
i¼1 xiwi and

P
1�i<j�4ðxi � xjÞ2 ¼

P
3
i¼1 �

2
i .

The inverse transformation reads

�1 ¼
ffiffiffi
2

p ðx1 � x2Þ;
�2 ¼

ffiffiffi
2

p ðx3 � x4Þ;
�3 ¼ x1 þ x2 � x3 � x4:

In the case of two quarks as e.g. in the J=c case one has

y1 ¼ yþ 1

2
�; y2 ¼ y� 1

2
�: (14)

One then has

J�Xq
ðxÞ ¼

Z
d ~��Xð ~�2ÞJ�4qðx1; . . . ; x4Þ;

J�4qðx1; . . . ; x4Þ ¼
1ffiffiffi
2

p "abc"decf½qaðx4ÞC�5cbðx1Þ�

� ½ �qdðx3Þ��C �ceðx2Þ� þ ð�5 $ ��Þg;
J
�
J=c ðyÞ ¼

Z
d��J=c ð�2ÞJ�2qðy1; y2Þ;

J
�
2qðy1; y2Þ ¼ �caðy1Þ��caðy2Þ; (15)

where d ~� ¼ d�1d�2d�3 and ~�2 ¼ �2
1 þ �2

2 þ �2
3. The

Jacobian is absorbed into the coupling gX.
The gauge invariant interaction of a bound quark state

with the electromagnetic field has been described in some
detail in Ref. [19]. For comprehensive purposes we recall
some of the key points of the gauging process. Since the
Xð3872Þ and J=c mesons are neutral mesons we will
discuss the charged quarks only. The free Lagrangian of
quarks is gauged in the standard manner by using minimal
substitution:

@�q!ð@�� ieqA
�Þq; @� �q!ð@�þ ieqA

�Þ �q; (16)

where eq is the quark’s charge (eu ¼ 2
3 e, ed ¼ � 1

3 e, etc.).

Minimal substitution gives us the first piece of the electro-
magnetic interaction Lagrangian

Lemð1Þ
int ðxÞ¼X

q

eqA�ðxÞJ�q ðxÞ; J�q ðxÞ¼ �qðxÞ��qðxÞ: (17)

In order to guarantee gauge invariance of the nonlocal
strong interaction Lagrangian, one multiplies each quark
field qðxiÞ in the relevant quark current J�ðxÞ given by
Eq. (15) by a gauge field exponential according to
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qðxiÞ ! e�ieqIðxi;x;PÞqðxiÞ;
�qðxiÞ ! eieqIðxi;x;PÞ �qðxiÞ;

Iðxi; x; PÞ ¼
Z xi

x
dz�A

�ðzÞ:
(18)

where P is the path taken from x to xi. It is readily seen that
the full Lagrangian Eq. (8) is invariant under the local
gauge transformations

qðxiÞ ! eieqfðxiÞqðxiÞ;
�qðxiÞ ! e�ieqfðxiÞ �qðxiÞ;

A�ðzÞ ! A�ðzÞ þ @�fðzÞ; so that

Iðxi; x; PÞ ! Iðxi; x; PÞ þ fðxiÞ � fðxÞ:

(19)

The second term of the electromagnetic interaction
Lagrangian Lem

int;2 arises when one expands the gauge ex-

ponential in powers of A� up to the order of perturbation

theory that one is considering. Superficially the results
appear to depend on the path P which connects the end-
points in the path integral in Eq. (18). However, one needs
to know only derivatives of the path integrals when
doing the perturbative expansion. One can make use of
the formalism developed in [20] which is based on

the path-independent definition of the derivative of
Iðx; y; PÞ:

lim
dx�!0

dx�
@

@x�
Iðx; y; PÞ ¼ lim

dx�!0
½Iðxþ dx; y; P0Þ

� Iðx; y; PÞ�; (20)

where the path P0 is obtained from P by shifting the
endpoint x by dx. Use of the definition (20) leads to the
key rule

@

@x�
Iðx; y; PÞ ¼ A�ðxÞ (21)

which states that the derivative of the path integral
Iðx; y; PÞ does not depend on the path P originally used
in the definition. The nonminimal substitution (18) is there-
fore completely equivalent to the minimal prescription as is
evident from the identities (20) or (21). The method of
deriving Feynman rules for the nonlocal coupling of had-
rons to photons and quarks was worked out before in
Refs. [19,20] and will be discussed in the next section
where we apply the formalism to the physical processes
considered in this paper.
Expanding the Lagrangian up to the first order in A� one

obtains

Lemð2Þ
int ðxÞ ¼ gXXq�ðxÞ � J�Xq�emðxÞ þ gJ=c J=c �ðxÞ � J�J=c�emðxÞ ðq ¼ u; dÞ;

J�Xq�em ¼
Z

d ~��Xð ~�2ÞJ�4qðx1; . . . ; x4Þfieq½Ix3x � Ix4x � þ iec½Ix2x � Ix1x �g;

J
�
J=c�em ¼

Z
d��J=c ð�2ÞJ�2qðx1; x2Þiec½Ix1x � Ix2x �; Ixix � Iðxi; x; PÞ:

(22)

In order to use the key rule Eq. (21) we take the Fourier-transforms for the vertex functions � and quark fields q

�Xð ~�2Þ ¼
Z d4 ~!

ð2�Þ4
~�Xð� ~!2Þe�i ~� ~! ¼ ~�Xð ~@2�Þ�ð4Þð ~�Þ; �J=c ð�2Þ ¼

Z d4!

ð2�Þ4
~�J=c ð�!2Þe�i�! ¼ ~�J=c ð@2�Þ�ð4Þð�Þ;

qðxiÞ ¼
Z d4pi

ð2�Þ4 e
�ipixi ~qðpiÞ; �qðxiÞ ¼

Z d4pi

ð2�Þ4 e
ipixi~�qðpiÞ: (23)

One then writes down

J�Xq�em ¼ Y4
i¼1

Z d4pi

ð2�Þ4
~J�4qðp1; . . . ; p4Þ

Z
d ~��ð4Þð ~�Þ ~�Xð ~@2�Þe�iðp1x1�p2x2�p3x3þp4x4Þfieq½Ix3x � Ix4x � þ iec½Ix2x � Ix1x �g

¼ Y4
i¼1

Z d4pi

ð2�Þ4
~J
�
4qðp1; . . . ; p4Þe�iðp1�p2�p3þp4Þx

Z
d ~��ð4Þð ~�Þe�i ~� ~! ~�Xð ~D2

�Þfieq½Ix3x � Ix4x � þ iec½Ix2x � Ix1x �g;

J
�
J=c�em ¼ Y2

i¼1

Z d4pi

ð2�Þ4
~J
�
2qðp1; p2Þ

Z
d��ð4Þð�Þ ~�J=c ð@2�Þeiðp1x1�p2x2Þiec½Ix1x � Ix2x �

¼ Y2
i¼1

Z d4pi

ð2�Þ4
~J�2qðp1; p2Þeiðp1�p2Þx

Z
d��ð4Þð�Þeip� ~�J=c ðD2

�Þiec½Ix1x � Ix2x �;

D
�
�i
¼ @

�
�i
� i!

�
i ; D

�
� ¼ @

�
� þ ip�; (24)

where
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!1 ¼ c11p1 � c21p2 � c31p3 þ c41p4; !2 ¼ c12p1 � c22p2 � c32p3 þ c42p4;

!3 ¼ c13p1 � c23p2 � c33p3 þ c43p4; p ¼ 1

2
ðp1 þ p2Þ:

(25)

Finally, we employ a convenient identity which was proven in [19]. The identity reads

FðD2
�j
ÞIxix ¼

Z 1

0
d	F0ð	D2

�j
� ð1� 	Þ!2

j Þcijð@��j
A�ðxiÞ � 2i!�

j A�ðxiÞÞ þ Fð�!2
j ÞIxix : (26)

The identity holds for any function FðzÞ that is analytical at z ¼ 0.
One obtains

J�Xq�emðxÞ ¼
Y4
i¼1

Z
d4xi

Z
d4yJ�4qðx1; . . . ; x4ÞA�ðyÞE�

Xðx; x1; . . . ; x4; yÞ;

E
�
Xðx; x1; . . . ; x4; yÞ ¼

Y4
i¼1

Z d4pi

ð2�Þ4
Z d4r

ð2�Þ4 e
�ip1ðx�x1Þþip2ðx�x2Þþip3ðx�x3Þ�ip4ðx�x4Þ�irðx�yÞ ~E�

Xðp1; . . . ; p4; rÞ;

~E
�
Xðp1; . . . ; p4; rÞ ¼

Z 1

0
d	

X3
j¼1

fec½� ~�0
Xð�z1jÞl�1j þ ~�0

Xð�z2jÞl�2j� þ eq½� ~�0
Xð�z4jÞl�4j

þ ~�0
Xð�z3jÞl�3j�glij ¼ cijðcijrþ 2!jÞ; ði ¼ 1; . . . ; 4; j ¼ 1; . . . ; 3Þ;

zi1 ¼ 	ðci1rþ!1Þ2 þ ð1� 	Þ!2
1 þ!2

2 þ!2
3;

zi2 ¼ ðci1rþ!1Þ2 þ 	ðci2rþ!2Þ2 þ ð1� 	Þ!2
2 þ!2

3;

zi3 ¼ ðci1rþ!1Þ2 þ ðci2rþ!2Þ2 þ 	ðci3rþ!3Þ2 þ ð1� 	Þ!2
3:

(27)

J�J=c�emðyÞ ¼
Z

d4y1
Z

d4y2
Z

d4zJ�2qðy1; y2ÞA�ðzÞE�
J=c ðy; y1; y2; zÞ;

E�
J=c ðy; y1; y2; zÞ ¼

Z d4p1

ð2�Þ4
Z d4p2

ð2�Þ4
Z d4q

ð2�Þ4 e
�ip1ðy1�yÞþip2ðy2�yÞþiqðz�yÞ ~E�

J=c ðp1; p2; qÞ;

~E
�
J=c ðp1; p2; qÞ ¼ ec

Z 1

0
d	f� ~�0

J=c ð�z�Þl�� � ~�0
J=c ð�zþÞl�þg;

z	 ¼ 	ðp	 1

2
qÞ � ð1� 	Þp2;

l	 ¼ p	 1

4
q;

p ¼ 1

2
ðp1 þ p2Þ:

(28)

For calculational convenience we will choose a simple Gaussian form for the vertex function ��Xð��2Þ. The minus sign
in the argument of the Gaussian function is chosen to emphasize that we are working in Minkowski space. One has

��Xð��2Þ ¼ expð�2=�2
XÞ (29)

where the parameter �X characterizes the size of the X meson. Since�2 turns into��2 in Euclidean space the form (29)
has the appropriate falloff behavior in the Euclidean region. We emphasize that any choice for�X is appropriate as long as
it falls off sufficiently fast in the ultraviolet region of Euclidean space to render the corresponding Feynman diagrams
ultraviolet finite. As mentioned before we shall choose a Gaussian form for �X in our numerical calculation for
calculational convenience.

III. MATRIX ELEMENT FOR THE DECAY X ! �þ J=c

The matrix element of the decay Xð3872Þ ! �þ J=c can be calculated from the Feynman diagrams shown in Fig. 1.
The invariant matrix element for the decay is given by

MðXqðpÞ ! J=c ðq1Þ�ðq2ÞÞ ¼ ið2�Þ4�ð4Þðp� q1 � q2Þ"�X"��"�J=cT���ðq1; q2Þ; (30)

where
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T���ðq1;q2Þ¼
X

i¼a;b;c;d

TðiÞ
���ðq1;q2Þ;

TðaÞ
���¼6

ffiffiffi
2

p
gXgJ=c eq

Z d4k1
ð2�Þ4i

Z d4k2
ð2�Þ4i

~�Xð�K2
aÞ ~�J=c

�
�
�
k1þ1

2
q1

�
2
�

�1

2
tr½�5Scðk1Þ��Scðk1þq1Þ��Sqðk2Þ��Sqðk2þq2Þ�ð�5$��Þ�;

K2
a¼1

2

�
k1þ1

2
q1

�
2þ1

2

�
k2þ1

2
q2

�
2þ1

4
ðwqq1�wcq2Þ2;

TðbÞ
���¼6

ffiffiffi
2

p
gXgJ=c

Z d4k1
ð2�Þ4i

Z d4k2
ð2�Þ4i

~�J=c

�
�
�
k2þ1

2
q1

�
2
�
~EX�ðp1;...;p4;rÞ

�1

2
tr½�5Sqðk1Þ��Scðk2Þ��Scðk2þq1Þ�ð�5$��Þ�;

p1¼k2; p2¼k2þq1; p3¼p4¼�k1; r¼�q2;

TðcÞ
���¼6

ffiffiffi
2

p
gXgJ=c ec

Z d4k1
ð2�Þ4i

Z d4k2
ð2�Þ4i

~�Xð�K2
cÞ ~�J=c

�
�
�
k2þq2þ1

2
q1

�
2
�

�1

2
tr½�5Sqðk1Þ��Scðk2Þ��Scðk2þq2Þ��Scðk2þpÞ�ð�5$��Þ�;

K2
c¼1

2
k21þ

1

2

�
k2þ1

2
p

�
2þ1

4
w2

qp
2;

TðdÞ
���¼6

ffiffiffi
2

p
gXgJ=c ec

Z d4k1
ð2�Þ4i

Z d4k2
ð2�Þ4i

~�Xð�K2
cÞ ~EJ=c�ðp1;p2;qÞ12 tr½��Sqðk1Þ�5Scðk2Þ��Scðk2þpÞ�ð�5$��Þ�;

p1¼�k2�p; p2¼�k2; q¼�q2:

We have analytically checked on the gauge invariance
of the unintegrated transition matrix element by
contraction with the photon momentum q2 which yields
q
�
2T���ðq1; q2Þ ¼ 0 using the identities

Sðk2Þq2Sðk2 þ q2Þ ¼ Sðk2 þ q2Þ � Sðk2Þ;Z 1

0
d	 ~�0ð�	a� ð1� 	ÞbÞða� bÞ ¼ ~�ð�bÞ � ~�ð�aÞ:

IV. NUMERICAL RESULTS

The evaluation of the loop integrals in Eq. (30) proceeds
as described in our previous paper [1]. If one takes the on-
mass shell conditions into account

"
�
Xp� ¼ 0; "�J=c q1� ¼ 0; "

�
�q2� ¼ 0 (31)

one can write down five seemingly independent Lorentz
structures

T���ðq1; q2Þ ¼ "q2���ðq1 � q2ÞW1 þ "q1q2��q1�W2

þ "q1q2��q2�W3 þ "q1q2��q1�W4

þ "q1���ðq1 � q2ÞW5: (32)

Using the gauge invariance condition

q
�
2T��� ¼ ðq1 � q2Þ"q1q2��ðW4 þW5Þ ¼ 0 (33)

one has W4 ¼ �W5 which reduces the set of independent
covariants to four:

FIG. 1 (color online). Feynman diagrams describing the decay
X ! �þ J=c .
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T���ðq1; q2Þ
¼ ðq1 � q2Þ"q2���W1 þ "q1q2��q1�W2 þ "q1q2��q2�W3

þ ð"q1q2��q1� � ðq1 � q2Þ"q1���ÞW4: (34)

The gauge invariance condition W4 ¼ �W5 provides for a
numerical check on the gauge invariance of our calculation
as described further on.

However, there are two nontrivial relations among the
four covariants which can be derived by noting [23] that
the tensor

T�½�1�2�3�4�5� ¼ g��1
"�2�3�4�5

þ cycl:ð�1�2�3�4�5Þ (35)

vanishes in four dimensions since it is totally antisymmet-
ric in the five indices ð�1; �2; �3; �4; �5Þ. Upon contraction
with q

�
1 q

�1

1 q�22 and q
�
2 q

�1

1 q�22 one finds (between polariza-
tion vectors)

q21"q2���þ"q1q2��q1�þð"q1q2��q1��ðq1 �q2Þ"q1���Þ¼0;

(36)

ðq1 � q2Þ"q2��� � "q1q2��q1� � "q1q2��q2� ¼ 0: (37)

The two conditions reduce the set of independent cova-
riants to two. This is the appropriate number of indepen-
dent covariants since the photon transition is described by
two independent amplitudes as e.g. by the E1 and M2
transition amplitudes.

Using the two constraint Eqs. (36) and (37) the expan-
sion (34) can be written in the form

T��� ¼
�
W1 þW3 �

m2
J=c

ðq1 � q2ÞW4

�
"q1q2��q2�

þ
�
W1 þW2 �

�
1þ m2

J=c

ðq1 � q2Þ
�
W4

�
"q1q2��q1�:

(38)

By comparing with the corresponding expressions in the
Appendix one notes that the first and second terms in (38)
describe transitions into the longitudinal and transverse
components of the J=c .

The quantities Wi are represented by the four-fold in-
tegrals

Wi ¼
Z 1

0
dt

Z 1

0
d3
Fiðt; 
1; 
2; 
3Þ; (39)

where we have suppressed the additional dependence of
the integrand Fi on the set of variables p2, q21, q

2
2; mq, mc,

sX, sJ=c with sX ¼ 1=�2
X and sJ=c ¼ 1=�2

J=c . The inte-

grals in Eq. (39) have branch points at p2 ¼ 4ðmq þmcÞ2
[diagram in Fig. 1(a)] and at p2 ¼ 4m2

c [diagrams in
Figs. 1(b)–1(d)]. At these points the integrals become non-
analytical in the conventional sense when t ! 1. In order

to check on the gauge invariance of the amplitude
T���ðq1; q2Þ, we have taken the X-meson momentum

squared to be below the closest unitarity threshold, i.e.
p2 < 4m2

c. We have checked explicitly that, for
mX ¼ 3:1 GeV and mJ=c ¼ 2:9 GeV, the gauge condition

W4 ¼ �W5 is numerically satisfied to very high accuracy.
Note that the gauge invariance condition is independent of
the overall couplings gX and gJ=c and thus the numerical

check can be done irrelevant of their values.
In the next step we introduce an infrared cutoff 1=�2 on

the upper limit of the t-integration in Eq. (39). In this
manner one removes all possible nonanalytic structures
and thereby one obtains entire functions for the amplitudes,
i.e. one has effectively instituted quark confinement, see
Refs. [1,2]. The value of � ¼ 181 MeV was found by
fitting the calculated basic quantities to the experimental
data. However, for such a value of � the contributions
coming from the bubble diagrams in Figs. 1(b)–1(d)
blow up at p2 ¼ m2

X compared with the contribution
from the diagram Fig. 1(a). The bubble diagrams are
needed only to guarantee the gauge invariance of the
matrix element. For physical applications one should take
into account only the gauge invariant part of the diagram
Fig. 1(a).
It is convenient to present the decay width via helicity or

multipole amplitudes. The projection of the Lorentz am-
plitudes to the helicity amplitudes is given in Appendix.
One has

�ðX ! �J=c Þ ¼ 1

12�

j ~q2j
m2

X

ðjHLj2 þ jHTj2Þ

¼ 1

12�

j ~q2j
m2

X

ðjAE1j2 þ jAM2j2Þ; (40)

where the helicity amplitudes HL and HT are expressed in
terms of the Lorentz amplitudes as

HL ¼ i
m2

X

mJ=c

j ~q2j2
�
W1 þW3 �

m2
J=c

mXj ~q2jW4

�
;

HT ¼ �imXj ~q2j2
�
W1 þW2 �

�
1þ m2

J=c

mXj ~q2j
�
W4

�
;

j ~q2j ¼
m2

X �m2
J=c

2mX

:

(41)

The E1 and M2 multipole amplitudes are obtained via

AE1=M2 ¼ ðHL 	HTÞ=
ffiffiffi
2

p
. If we choose �X ¼ 3:0 GeV

for the size parameter of the Xð3872Þ we obtain
AM2=AE1 ¼ 0:11, i.e. the electric multipole amplitude
AE1 dominates the transition, as expected. Nevertheless
our predicted angular decay distribution Wð#Þ 
 1�
0:52cos2# differs noticeably from its form Wð#Þ 
 1�
0:333cos2# for E1 dominance. It would be interesting to
experimentally check on this prediction of our tetraquark
model.
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In Fig. 2 we show a plot of the size parameter depen-
dence of the decay width �ðXl ! J=c þ �Þ together with
the decay width �ðXl ! J=c þ 2�Þ taken from [1]. We
correct an error of Ref. [1] in the normalization condition
of the X meson, which led to a & 30% underestimate
of the strong decay widths. Both decay widths become
smaller as the size parameter increases. Note that the
radiative decay width for Xh ¼ �Xu sin�þ Xd cos� is
almost an order of magnitude smaller than that for
Xl ¼ Xu cos�þ Xd sin�. If one takes �X 2 ð3; 4Þ GeV
with the central value �X ¼ 3:5 GeV then our prediction
for the ratio of widths reads

�ðXl ! �þ J=c Þ
�ðXl ! J=c þ 2�Þ

��������theor
¼ 0:15� 0:03 (42)

which fits very well the experimental data from the Belle
Collaboration [10].

�ðX!�þJ=c Þ
�ðX!J=c 2�Þ ¼

�
0:14�0:05 Belle ½10�
0:22�0:06 Babar½13� : (43)

V. SUMMARYAND CONCLUSION

We have used our relativistic constituent quark model
which includes infrared confinement in an effective way to
calculate the radiative decay X ! �þ J=c . We take the
Xð3872Þ meson to be a tetraquark state with the quantum
numbers JPC ¼ 1þþ. In order to introduce electromagnetic
interactions we have gauged a nonlocal effective
Lagrangian which describes the interaction of the
Xð3872Þ meson with its four constituent quarks by using

the P-exponential path-independent formalism. We have
calculated the matrix element of the transition X ! �þ
J=c and have shown its gauge invariance. We have
evaluated the X ! �þ J=c decay width and the polar-
ization of the J=c in the decay. The calculated decay
width is consistent with the available experimental data
for reasonable values of the size parameter of the Xð3872Þ
meson.
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APPENDIX A: HELICITYAND MULTIPOLE
AMPLITUDES

The material presented in this Appendix is adapted from
similar material written down in [24] in a slightly different
context. There are two independent helicity amplitudes
H�X ;���J=c

which we denote by Hiði ¼ L; TÞ according to

the helicity of the final meson state J=c , where �J=c ¼ 0

and �J=c ¼ �1 stand for the longitudinal and transverse

helicities of the J=c . From parity one has Hþ;�0 ¼
�H�;þ0 ¼ HL and H0;þþ ¼ �H0;�� ¼ HT .

We seek a covariant representation for the longitudinal
and transverse projectors IP

���
L;T which, when applied to the

transition amplitude T���, project onto the helicity ampli-

tudes HL;T according to

Hi ¼ IP
���
i T���; ði ¼ L; TÞ: (A1)

The projectors are defined by

IP
���
L ¼1

2
ð"�X ðþÞ �"y�� ð�Þ�"

�
X ð�Þ �"y�� ðþÞÞ"y�J=c ð0Þ;

IP���
T ¼1

2
"�X ð0Þð �"y�� ðþÞ"y�J=c ðþÞ� �"y�� ð�Þ"y�J=c ð�ÞÞ;

(A2)

where we use the Jacob-Wick convention for the helicity
polarization four-vectors as written down in [25]. The
z-direction is defined by the momentum of the J=c . The
bars in the polarization four-vectors �"

�
�ð��Þ of the photon

are a reminder that the photon helicities are defined relative
to the negative z-direction. In the present context it is
important to take into account both parity configurations
related by a helicity reflection in the definition of Eq. (A2).
In explicit form one has in the X-rest frame

2.5 3 3.5 4

Λ
X

 (GeV)

0

0.1

0.2

Γ(X -> J/ψ + 2π),  MeV

Γ(X -> J/ψ + γ),  MeV

FIG. 2 (color online). The dependence of the decay widths
�ðXl ! �þ J=c Þ and �ðXl ! J=c 2�Þ on the size parameter
�X.
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"X�ð�Þ ¼ 1ffiffiffi
2

p ð0;�1; i; 0Þ;

p� ¼ ðmX; 0; 0; 0Þ;
"X�ð0Þ ¼ ð0; 0; 0;�1Þ;

"yJ=c�ð�Þ ¼ 1ffiffiffi
2

p ð0;�1;�i; 0Þ;

q�1 ¼
�m2

X þm2
J=c

2mX

; 0; 0; j ~q2j
�
;

"yJ=c�ð0Þ ¼
1

mJ=c

�
j ~q2j; 0; 0;�

m2
X þm2

J=c

2mX

�
;

�"y��ð�Þ ¼ 1ffiffiffi
2

p ð0;	1;�i; 0Þ;

q�2 ¼ j ~q2jð1; 0; 0;�1Þ:

(A3)

A convenient covariant representation of the projectors can
be obtained in the form

IP
���
i ¼ h

�0�0�0
i S

ð1Þ�
X �0 ðpÞð�g

�
�0 ÞSð1Þ�J=c �0 ðq1Þ; (A4)

where

h���
L ¼ i

2

mJ=c

ðq1 � q2Þ2
"��q1q2q�2 ;

h���
T ¼ � i

2

mX

ðq1 � q2Þ2
q�2 "

��q1q2 ;

(A5)

and where the massive propagator functions are given by
(V ¼ X, J=c )

Sð1Þ�V �0 ðpVÞ ¼ �g��0 þ p�
VpV�0

m2
V

: (A6)

The massive propagator functions are needed in the pro-
jectors Eq. (A4) to project out the appropriate three-
dimensional subspaces in the respective rest systems of
the spin 1 particles. For the photon one exploits the gauge
freedom to write the propagator function as ð�g

�
�0 Þ. Note

that the compact form (A4) is only obtained if one uses the

summed form (A2). The projection operators are orthonor-

mal in the sense that IP
���
i IPyj��� ¼ � 1

2�ij.

The angular decay distribution in the decay Xð3872Þ !
�þ J=c ð! ‘þ‘�Þ is given by

d�

d cos#
¼ BRðJ=c ! ‘þ‘�Þ 1

4�

1

2SX þ 1

j ~q2j
m2

X

�
�
3

4
sin2#jHLj2 þ 3

8
ð1þ cos2#ÞjHTj2

�
; (A7)

where # is the polar angle of either of the leptons ‘�
relative to the original flight direction of the J=c , all in
the rest system of the J=c .
One can alternatively describe the transition in terms of

the two multipole amplitudes AE1 and AM2. The multipole
amplitudes are related to the helicity amplitudes via [26]

AE1 ¼ 1ffiffiffi
2

p ðHL �HTÞ; AM2 ¼ 1ffiffiffi
2

p ðHL þHTÞ: (A8)

The corresponding projectors onto the multipole ampli-
tudes are given by

IP���
E1 ¼ 1ffiffiffi

2
p ðIP���

L � IP���
T Þ;

IP���
M2 ¼ 1ffiffiffi

2
p ðIP���

L þ IP���
T Þ:

(A9)

In Table I we have summarized the helicity and multi-
pole amplitudes resulting from the relevant projections of
the basic covariants Eq. (32). The entries can be seen to
satisfy the constraint equations Eqs. (36) and (37). The
multipole amplitudes AE1;M2 calculated from the gauge

invariant structures KðiÞ
��� (i ¼ 2, 4, 5, 6) show the

appropriate lowest-order power behavior AE1 
 j ~q2j and
AM2 
 j ~q2j2.
The leading j ~q2j contribution to the angular decay dis-

tribution proportional to jAE1j2 is thus given byWðcos#Þ /
ð3� cos2#Þ. The next-to-leading contribution propor-
tional to 2RðAE1A

�
M2Þ is down by one power of j ~q2j. The

nonleading angular distribution is given by Wðcos#Þ /
ð1� 3cos2#Þ (in the same units).

TABLE I. Helicity and multipole projections of the basic tensors KðiÞ
���. The tensors K

ðiÞ
��� (i ¼ 2, 4, 5, 6) are gauge invariant. They

satisfy q
�
2K

ðiÞ
��� ¼ 0.

i KðiÞ
��� HðiÞ

L ¼ IP
���
L KðiÞ

��� HðiÞ
T ¼ IP

���
T KðiÞ

��� AðiÞ
E1 ¼ IP

���
E1 KðiÞ

��� AðiÞ
M2 ¼ IP

���
M2 KðiÞ

���

1 "���q1 imJ=c �i
m2

Xþm2
J=c

2mX

iffiffi
2

p ðmXþmJ=c Þ2
2mX

� iffiffi
2

p 2mX

ðmXþmJ=c Þ2 j ~q2j2
2 q1�"��q1q2 0 imXj ~q2j2 � iffiffi

2
p mXj ~q2j2 iffiffi

2
p mXj ~q2j2

3 q1�"��q1q2 0 0 0 0

4 q2�"��q1q2 i
m2

X

mJ=c
j ~q2j2 0 iffiffi

2
p m2

X

mJ=c
j ~q2j2 iffiffi

2
p m2

X

mJ=c
j ~q2j2

5 "���q2 i mX

mJ=c
j ~q2j �ij ~q2j iffiffi

2
p mXþmJ=c

mJ=c
j ~q2j iffiffi

2
p 2mX

mJ=c ðmXþmJ=c Þ j ~q2j2

6 Kð3Þ
��� � ðq1q2ÞKð1Þ

��� �imXmJ=c j ~q2j i
m2

Xþm2
J=c

2 j ~q2j � iffiffi
2

p ðmXþmJ=c Þ2
2 j ~q2j iffiffi

2
p 2m2

X

ðmXþmJ=c Þ2 j ~q2j3
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