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We further explore the consequences of treating the X(3872) meson as a tetraquark bound state by

analyzing its one-photon decay X — y + J/4 in the framework of our approach developed in previous
papers which incorporates quark confinement in an effective way. To introduce electromagnetism we
gauge a nonlocal effective Lagrangian describing the interaction of the X(3872) meson with its four
constituent quarks by using the P-exponential path-independent formalism. We calculate the matrix

element of the transition X — y + J/¢ and prove its gauge invariance. We evaluate the X — y + J/¢

decay width and the longitudinal/transverse composition of the J/ ¢ in this decay. For a reasonable value
of the size parameter of the X(3872) meson we find consistency with the available experimental data. We
also calculate the helicity and multipole amplitudes of the process, and describe how they can be obtained
from the covariant transition amplitude by covariant projection.
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I. INTRODUCTION

This paper is a direct continuation of our previous
work [1] where we have analyzed the strong decays of
the charmonium-like state X(3872) in the framework of
our relativistic constituent quark model which includes
infrared confinement in an effective way [2]. In our ap-
proach the X(3872) meson is interpreted as a tetraquark
state with the quantum numbers J°¢ = 177" as in [3]. In
this paper we analyze the one-photon decay X — y + J/ s
in the same tetraquark picture. The electromagnetic inter-
action is incorporated into our relativistic nonlocal effec-
tive Lagrangian in a gauge invariant way using the
P-exponential path-independent formalism.

We begin by collecting the experimental data relevant
for our purposes. A narrow charmonium-like state
X(3872) was observed in 2003 in the exclusive decay
process B — K*wt 7~ J/y [4]. The X(3872) decays
into wt7~J/¢ and has a mass of my = 3872.0 +
0.6(stat) = 0.5(syst) very close to the mpo + mpyo =
3871.81 = 0.25 mass threshold [5]. Its width was found
to be less than 2.3 MeV at 90% confidence level. The state
was confirmed in B-decays by the BABAR experiment [6]
and in p p production by the Tevatron experiments CDF [7]
and DO [8]. The most precise measurement up to now was
done in [9] with my = 3871.61 = 0.16 = 0.19. The new
average mass given in [7] is

my = 3871.51 £ 0.22 MeV. (1)
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The Belle Collaboration has reported [10] evidence
for the decay modes X(3872) — y +J/¢ and to
X—ata 7T/

B(B— XK) - BX—vy+J/ih)
= (1.8 * 0.6(stat) = 0.1(syst)) X 1079,
IX—y+J/¢)
I'X - atm J/¢)
BX — ata 7T/ )
BX— mraJ/y)

= 0.14 £ 0.05,

= 1.0 = 0.4(stat) = 0.3(syst). (2)

These observations imply strong isospin violation be-
cause the three-pion decay proceeds via an intermediate w
meson with isospin 0 whereas the two-pion decay proceeds
via the intermediate p meson with isospin 1. It is evident
that the two-pion decay via the intermediate p meson is
very difficult to explain by using an interpretation of the
X(3872) as a simple ¢¢ charmonium state with isospin 0.

In an analysis of BY — J/¢yK™ decays, the BABAR
Collaboration [11] found evidence for the radiative decay
X(3872) — y +J/¢ with a statistical significance of
3.40. They reported the following values for the product
of branching fractions

BBt —>XK") - BX— v+ J/)
= (3.3 = 1.0(stat) = 0.3(syst)) X 1076, (3)

The Belle Collaboration reported [12] the first obse_:rva-
tion of a near-threshold enhancement in the D°D°#0
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system from B — D°D°7°K. The enhancement peaks at a
mass of M = 3875.2 = 0.77%3 = 0.8 MeV. The branching
fraction for events in the peak is

B(B— D'D°7K) = (1.22 £ 0.317033) X 107%.  (4)

All available experimental data up to 2007 were ana-
lyzed in [13]. The authors found that [13]

B(BT — XK*) = 1.307020 x 1074,
X —y+J/¢)
I''X —atm J/¢)

o)
= 0.22 = 0.06.

The BABAR Collaboration found evidence for the de-
cays X —> vy +J/¢ and X — y + (2S5) in their data
sample of the B — ccyK decays. The measured products
of branching fractions are [14]

BB —> XK*)-BX—y+J/h)

= (2.8 = 0.8(stat) * 0.1(syst)) X 1076,
B(B* — XK*)- B(X — y + $(25))

= (9.5 + 2.7(stat) * 0.6(syst)) X 1076,

(6)

There have been many theoretical attempts to unravel
the structure of the X(3872) and its decays. Many of the
theoretical predictions for the decay X(3872) — y + J/ i
published up to now are very model dependent. We men-
tion some of them in turn.

All possible 1D and 2P c¢ assignments for the X(3872)
were considered in [15]. The authors obtained E1 radiative
widths for decays into charmonium c¢ states as well as for
some strong decays taking the experimental mass as input.
The conclusion was that many of the possible JP€ assign-
ments can be eliminated due to the smallness of the ob-
served total width. The suggestion was that radiative
transitions could be used to test the remaining JPC
assignments.

Some tests of the hypothesis that the X(3872) is a
weakly bound D°D% molecule state were suggested in
[16]. It was proposed that measuring the 37J/¢, y +
J/¢, v+ ', KK*, and 7p decay modes of the X will
serve as a definitive diagnostic tool to confirm or to rule out
the molecule hypothesis.

Assuming that the X(3872) state has the structure
(D°D% — D**P%) /42 with quantum numbers JPC =
177", the X(3872) — y + J/¢ decay width was calculated
using a phenomenological Lagrangian approach [17]. The
calculated value of the radiative decay width varied
from 125 KeV to 250 KeV depending on the model
parameters.

QCD sum rules were used in [18] to calculate the width
of the radiative decay of the meson X(3872), which was
assumed to be a mixture between charmonium and exotic
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molecular [cg][¢c] states with JPC =17%. In a small
range for the values of the mixing angle, one obtains
X —y+J/¢)
I'X—J/yata™)

=0.19 = 0.13. (7)

Our paper is organized as follows. In Sec. II we gauge a
nonlocal effective Lagrangian describing the interaction of
the X(3872) meson with its constituent quarks by using the
P-exponential path-independent formalism developed in
[19,20]. In Sec. III we calculate the matrix element of the
radiative transition X — y 4+ J/¢ and prove its gauge
invariance analytically. In Sec. IV we present the results
of our numerical analysis. First, we check numerically that
the final amplitude is gauge invariant. Second, we intro-
duce infrared confinement as was done in our previous
papers Refs. [1,2] and evaluate the X — y + J/ i decay
width. Finally, in Sec. V we summarize our results. In an
Appendix we describe how the two helicity or the two
multipole amplitudes of the process can be obtained from
the gauge invariant transition amplitude by covariant
projection.

II. THEORETICAL FRAMEWORK

The effective interaction Lagrangians describing the
coupling of the charmonium-like meson such as the
X(3872) to four quarks, and the coupling of the charmo-
nium J/ ¢ state to its two constituent quarks are written in
the form (see Ref. [1])

£int:gXXqM(x)~J;(Lq(x) +gj/,/,-]/lﬁy(x)']¢/l/,(x)
(q=u.d). ®

The nonlocal interpolating quark currents read

J;‘éq(x)=fdxl...fdx45<x—gwixi)q)x(Z(xi_xj)Q)

i<j
1
X =& upe€aecilqa(x4)Cycp(x
\/5 b d{[Q(4) Y b(l)]

X[3a(x3)y#CE,(x2) ]+ (¥° = y#)},

mC WC

Wl = W2 =757’
2(m,+m;) 2
m w

Wy =, = q ="

2(m,+m,) T2

Jf/lp(y):'/dhfd)’ﬁ(y—%(h "‘h))
XDy (v = y2))Ea (1) v*ca()- )

The matrix C = y°y? is related to the charge conjuga-
tion matrix: C=Ct=cCc"!'= -7, cI'’c™! = =T,
(“+7forl’'=S,P,Aand “—" for ' = V, T). We follow
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[3] and take the tetraquark state to be a linear superposition
of the X, and X, states according to

X; = Xjow = X, cosf + X, sind,
Xh = Xhigh = _Xu sinf + Xd cosé.

(10)

The coupling constant gy in Eq. (8) will be determined
from the compositeness condition Zy =0 (see e.g.
Refs. [21,22]). The compositeness condition requires that
the renormalization constant Zy of the elementary meson
X is set to zero, i.e.

Zy = 1= yy(p} = m}) =0, (11)

where Ily(p?) is the scalar part of the meson mass
operator and the prime stands for the derivative w.r.t. pZ,.
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For the spin one states X(3872) and J/ ¢ the compositeness
condition reads

1147 (p) = g* Ty (p?) + p*p*T1Y (p?),

i N (12)
Iy (p?) = §<gw - p‘;f )H’V’“ (p).

The X meson mass operator can be calculated from the
self-energy three-loop sunrise-type diagram with four
quark-antiquark propagators. The calculation is described
in more detail in Ref. [1].

As in the case of baryons composed of three quarks it is
convenient to transform to Jacobi coordinates in the inte-
grals of Eq. (9). In the case of four quarks one has

2W2+W3+W4 W3 — Wy W3+W4 n 3
X1 =X P11~ P2 p3 =X CLjpPj
22 22 2 =T
2W1+W3+W4 W3 — Wy W3+W4 o + 3
X2 =X = p1r— P2 p3 =X C2iP >
22 22 2 P
(13)
Wi — Wy Wi + %) + 2W4 Wi + %) - + 3
X3 = X P P2~ pP3 =X C3;P
22 22 2 =Tl
Wi — Wy wi + wy + 2wy wytwy, +i
X4 =X — - - =X CajP
4 22 P 22 P2 ) P3 4jPj

where x = 3.1, x;w; and i=icj=alxi — ) =3 pi.

The inverse transformation reads
p1= \/E(xl — X2),
P2 = \/z(x3 — Xy),
pP3 = X T X3 — X3 — Xy

In the case of two quarks as e.g. in the J/ i case one has

1 1
=y+—p, =y——p. 14
yI=ytoe 2=V TSP (14)

One then has
1 ) = [ apos(pat o ox)

T xg) = %sabcsdec{[qauncfcb(xl)]
X [G4(3)y*CE ()] + (7 = y*)},
I, = fdpq)J/(p(pz)JéLq(yl,yz),

S5,V ¥2) = Cay)y*ea(ya), (15)

j=1

where dp = dp,dp,dp; and p* = p? + p3 + p3. The
Jacobian is absorbed into the coupling gx.

The gauge invariant interaction of a bound quark state
with the electromagnetic field has been described in some
detail in Ref. [19]. For comprehensive purposes we recall
some of the key points of the gauging process. Since the
X(3872) and J/¢ mesons are neutral mesons we will
discuss the charged quarks only. The free Lagrangian of
quarks is gauged in the standard manner by using minimal
substitution:

Itg— (I* —ie,AM)g,  I*G— (9" +ie, AM)G,  (16)

where e, is the quark’s charge (e, = %e, eq = — %e, etc.).
Minimal substitution gives us the first piece of the electro-

magnetic interaction Lagrangian

LV () =N e, A, (I ),  THx) =Gy qk). (17)
q

In order to guarantee gauge invariance of the nonlocal
strong interaction Lagrangian, one multiplies each quark
field g(x;) in the relevant quark current J#(x) given by
Eq. (15) by a gauge field exponential according to
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gl) = e g (x,),
q(x;) = et xPg(x,), (18)
I(x;, x, P) = j}([ dz,A*(2).
X
where P is the path taken from x to x;. It is readily seen that

the full Lagrangian Eq. (8) is invariant under the local
gauge transformations

q(x;) = e'a/ig(x;),
g(x;) — e~ g(xy), (19)
Ak(z) = Ak(z) + 9* f(2),
I(x;, x, P) = I(x;, x, P) + f(x;) — f(x).

so that

The second term of the electromagnetic interaction
Lagrangian L7, arises when one expands the gauge ex-
ponential in powers of A, up to the order of perturbation
theory that one is considering. Superficially the results
appear to depend on the path P which connects the end-
points in the path integral in Eq. (18). However, one needs
to know only derivatives of the path integrals when
doing the perturbative expansion. One can make use of
the formalism developed in [20] which is based on

LD () = gxXyu () TE o) + g7y /10, (0) - TY - (0)
T = [dpOsGII 1l LI = 1)+ e L1 = 12,

Tgeom = [ dp®1pa o) 0y i 13 = 17
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the path-independent definition of the derivative of
I(x, y, P):

0
1 M = 1i + !
hmodx pyer I(x, y, P) d}lc}lm_'o[l (x +dx, y, P')

dxH*—

—1(x,y, P)], (20)

where the path P’ is obtained from P by shifting the
endpoint x by dx. Use of the definition (20) leads to the
key rule

d
ﬁl(x:)@ P) =A,u,(x) (21)

which states that the derivative of the path integral
I(x, y, P) does not depend on the path P originally used
in the definition. The nonminimal substitution (18) is there-
fore completely equivalent to the minimal prescription as is
evident from the identities (20) or (21). The method of
deriving Feynman rules for the nonlocal coupling of had-
rons to photons and quarks was worked out before in
Refs. [19,20] and will be discussed in the next section
where we apply the formalism to the physical processes
considered in this paper.

Expanding the Lagrangian up to the first order in A* one
obtains

(g = u,d),
(22)

I;Ci = I(xl', X, P)

In order to use the key rule Eq. (21) we take the Fourier-transforms for the vertex functions ® and quark fields ¢

d*o

d*w

Px(7) = | G (8NP0 = dx(GONE) Ryy(0?) = [ G By wt)enire = By (23)8(0),
d*p;, . _ d*p; . .
aw) = [ s alp), at) = [ Ger ). 3)

One then writes down
4 4
d*p; -
M _ i Fu
Jquem ,l:! f(27)4 J4q(l71, .

4 d4p,-

. pa) f dp W (p)Dy(3y)e Prximpeempntradfie [1F — [¥] + ie [1? — 1]}

-T1 T (pry ..., pae i pmptpas [ dpoD(p)e POy (B2)ie, (I — V] + ie [17 — 1),

i=1 Q2m)*

J,U-

2m)*

2 4
'p; 5 % (91— poxa) :
—— l_[f ’ qu(pn,pz)fdp5(4)(p)®f/¢(3%)el(”‘*‘ r®ie [I3' — 1]
i=1

2 4
d [ 1 — i 3 . X Xo
=TT [ G575 pev s [ apst(preiredy y (Dpie i — r2),
i=1

Y N Y I
Dy, = 0dp, — iw}, Dy, = 9, +ip*,

where

(24)
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W = C1 Py T P2 T C31P3 T Capa Wy = C12P1 ~ CnP2 T CxnP3 T Cypa 25)
1
w3 = C13P1 ~ C3P2 ~ C33P3 T Ca3Pa, p= §(P1 + p2).
Finally, we employ a convenient identity which was proven in [19]. The identity reads
F(D} )L = [O drF'(rDy, — (1 — T)@})c;(9) A, (x;) — 2iwYA,(x,)) + F(—w))Iy. (26)
The identity holds for any function F(z) that is analytical at z = 0.
One obtains
4
J;fq_em(X) = l_[ jd“xi fd4y1fq(x1, o XA, (ER (X Xy, . Xy, ),
i=1
P (e d4pl —ipi(x—x))Fips(x—xy) +ips(x—x3)—ips(x—x4)—ir(x—y) [P
oo = I [ e S Exlpveeerpat)
- 1 - - -
E4(pryeeo par) = [O dr S le [ B~z I, + B(—2a)I2)] + e [~ Fh(—zy)IE o
j=1
7z = 1lepr + 0)? + (1 — 1ot + 03 + vl
Zn = (cpr + w))? + m(cpr + w2)* + (1 — 1w3 + w3,
zin = (cr + 0)? + (cpr + wy)? + 7(ciar + w3)* + (1 — 7)w3.
I e ) = jd“y1 jd“yzfd“ZJz”q(yl,yz)Ap(z)Eﬁ/v,(y;ypyz, 2),
d4pl d4p2 d q . . ~
E° V1 Vo, Z) = e~ P10 =y)+ipa(y2—y) +iglz—y) fP Dy ),
Y1 ¥, 2) om ) amt ) Grr 50 (P1. P2, Q) (28)

~ 1 ~ ~
By (oo paa) = e [ drl= @, (-2 = ) (21}
_1
zz=1lp¥59) — (U -7p?

1
_qy

o= p T
B P+4

1
= _(p, + py).
p 2(171 P2)

For calculational convenience we will choose a simple Gaussian form for the vertex function ®(—?). The minus sign
in the argument of the Gaussian function is chosen to emphasize that we are working in Minkowski space. One has

Dy (—Q?) = exp(Q?/A%) (29)

where the parameter Ay characterizes the size of the X meson. Since 2 turns into —)? in Euclidean space the form (29)
has the appropriate falloff behavior in the Euclidean region. We emphasize that any choice for ®y is appropriate as long as
it falls off sufficiently fast in the ultraviolet region of Euclidean space to render the corresponding Feynman diagrams
ultraviolet finite. As mentioned before we shall choose a Gaussian form for @y in our numerical calculation for

calculational convenience.
III. MATRIX ELEMENT FOR THE DECAY X — y + J/ ¢

The matrix element of the decay X(3872) — y + J/ ¢ can be calculated from the Feynman diagrams shown in Fig. 1.
The invariant matrix element for the decay is given by

M(Xy(p) = J/¥(a1)¥(q)) = iQm*8“(p — g1 — @)ekevel,, Tup(ar @), (30)

where
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T/.va(ql! Q2)= Z Tl(lf)PV(QI’ QZ)’
i=a,b,c,d

&k, [ d*k,

Tip=6V28xg e, | o
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oKD~ (ki +50))

1
thr[yssc(kl)YVSc(kl 1)V uSq(k2)y S (ka + q2) — (¥s=v,)],

1

K2—1<k + )2+1(k +] )2+1( - )?
a=5\% 2Q1 S\ *2 2612 4Wq611 Weq2)™,

d*k d*k, - 1 \2\-
Tﬁf;)w=6\/58ng/¢;[—(277)21.[—(zﬂ)iiqh/.p(_(kz "‘—lh) >Exp(P1,~-~,P4y r)

1
XEtr[YSSq(kl)’}/MSC(kZ)’yVSC(kZ + ('Il) - (75 - 7’#)]’

Pi1=ky pr=kytqy,

,ELCI)W 6\/_8Xg1/¢€

Qm*i) Cm)*i

pP3=ps=—k;, r=—q,

d*k d*k - 1 \2
: /( 2 q)X(—Kg)‘I)J/L//(_(kz"‘C]z"‘ECIl) )

1
><5tr[YSSq(kl)'}/,LLSc(kZ)'YpSc(kZ + Q2)YVSc(k2 + p) - (75 - 7#)],

1 1 1 \2 1

() \/— d4k1
T,u,pV 6 2ngJ/l/IeC (27T)4
pi=—ka=p, pr=—ky qg=—¢q».

We have analytically checked on the gauge invariance
of the unintegrated transition matrix element by
contraction with the photon momentum ¢, which yields
45T ,,,(q1, q2) = 0 using the identities

I/ : I/

()

FIG. 1 (color online).
X—y+J/.

Feynman diagrams describing the decay

d*k
_/-(277)2 Dy (— K)EJ/¢p(P1 D2 q ) tr[)/ﬂ k) ysS (k) y,Sc(ky+ p) = (ys=v,)],

S(k2)G2S(ky + q2) = S(ky + q5) — S(ky),

j‘ dr® (=7a — (1 = D)b)(a — b) = B(—b) — D(—a).
0

IV. NUMERICAL RESULTS

The evaluation of the loop integrals in Eq. (30) proceeds
as described in our previous paper [1]. If one takes the on-
mass shell conditions into account

8;]7# =0, 8}}/¢QIV =0, 8§q2p =0 (31)

one can write down five seemingly independent Lorentz
structures

qu,uvp(‘h : QZ)WI + Sq]qzquly,WZ
t 84,0092 W3 T €4,0,u091,Wa

+ & “q2)Ws. (32)

T,upv(‘ll: 612) =

S

Using the gauge invariance condition

qIZJT,LLpV = (5]1 : qZ)Sqlqz,uv(W4 + WS) =0 (33)

one has W, = — W5 which reduces the set of independent
covariants to four:
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T,upV(QI! CIZ)
= (a1 42)€4000p W1 T €4,4,0p01. W2 + €4,0,19920 W3

+ (Sq]qz,u,vqu) - (QI ' qZ)Squ,Vp)Wét' (34)

The gauge invariance condition W, = — W; provides for a
numerical check on the gauge invariance of our calculation
as described further on.

However, there are two nontrivial relations among the
four covariants which can be derived by noting [23] that
the tensor

T

ulvivavsvavs] = g,u,v, 81/21/31/41/5 + CyCI'(Vl Vrv3 V4V5) (35)
vanishes in four dimensions since it is totally antisymmet-
ric in the five indices (v, v,, 3, V4, ¥5). Upon contraction

with ¢)'q" g5* and g5 q}' g5 one finds (between polariza-
tion Vectors)

+e +(8 _(Ch 'q2)8q1,u7/p)=0;

(36)

2
drEqpvp T Eq1qvp91p q1g:0v91p

(@1 92)80,u0p ~ Eq,qmp 10 ~ Eqiqupdor = 0. (37)

The two conditions reduce the set of independent cova-
riants to two. This is the appropriate number of indepen-
dent covariants since the photon transition is described by
two independent amplitudes as e.g. by the E1 and M2
transition amplitudes.

Using the two constraint Eqgs. (36) and (37) the expan-
sion (34) can be written in the form

Typv

2

m
= (W] + W3 - J/'J/
q1° 92)

J/w
+ <W1 + W2 - (1 + (ql qz)) ) q1q2qu1;L'

(38)

W4)8q1qzuﬁ‘ﬁv

By comparing with the corresponding expressions in the
Appendix one notes that the first and second terms in (38)
describe transitions into the longitudinal and transverse
components of the J/ .

The quantities W; are represented by the four-fold in-
tegrals

0 1
wi=[Tar [ @pri BB 39)

where we have suppressed the additional dependence of
the integrand F; on the set of variables p?, g3, ¢3; mgy, m,
sx» ;4 With sy = 1/A% and s5;/, = 1/A1/¢ The 1nte-
grals in Eq. (39) have branch points at p*> = = 4(m, + m,)?
[diagram in Fig. 1(a)] and at p> = 4m? [diagrams in
Figs. 1(b)-1(d)]. At these points the integrals become non-
analytical in the conventional sense when ¢t — oo. In order
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to check on the gauge invariance of the amplitude
T,p»(q1, q2), we have taken the X-meson momentum
squared to be below the closest unitarity threshold, i.e.
p> <4m?. We have checked explicitly that, for
myx = 3.1 GeV and m;,, = 2.9 GeV, the gauge condition
W, = —Ws is numerically satisfied to very high accuracy.
Note that the gauge invariance condition is independent of
the overall couplings gy and g,/, and thus the numerical
check can be done irrelevant of their values.

In the next step we introduce an infrared cutoff 1/A? on
the upper limit of the z-integration in Eq. (39). In this
manner one removes all possible nonanalytic structures
and thereby one obtains entire functions for the amplitudes,
i.e. one has effectively instituted quark confinement, see
Refs. [1,2]. The value of A = 181 MeV was found by
fitting the calculated basic quantities to the experimental
data. However, for such a value of A the contributions
coming from the bubble diagrams in Figs. 1(b)-1(d)
blow up at p* = m% compared with the contribution
from the diagram Fig. 1(a). The bubble diagrams are
needed only to guarantee the gauge invariance of the
matrix element. For physical applications one should take
into account only the gauge invariant part of the diagram
Fig. 1(a).

It is convenient to present the decay width via helicity or
multipole amplitudes. The projection of the Lorentz am-
plitudes to the helicity amplitudes is given in Appendix.
One has

1
0= 30/0) = 13 B+ V)
1 g,

=5 —(|A51|2 + [Apnl?),

T 2w (40)

where the helicity amplitudes H; and Hy are expressed in
terms of the Lorentz amplitudes as

_ my - 2 J/l//

HL =1 |612| [Wl + W3 | |W4]

my/y mxlq>

. =D my,y (41)
HT = _lmxlqzl [Wl + W2 - (1 + m |§2|)W4],

X
) m% — miw
1Gal = =5 %
my

The E1 and M2 multipole amplitudes are obtained via
Apiyp = (H, + Hy;)/\2. If we choose Ay = 3.0 GeV
for the size parameter of the X(3872) we obtain
Aya/Ap = 0.11, ie. the electric multipole amplitude
Ag; dominates the transition, as expected. Nevertheless
our predicted angular decay distribution W(9) ~ 1 —
0.52cos? differs noticeably from its form W(9) ~ 1 —
0.333cos?® for E1 dominance. It would be interesting to
experimentally check on this prediction of our tetraquark
model.
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FIG. 2 (color online). The dependence of the decay widths
I'X, — y+J/) and T'(X; — J/y27) on the size parameter

AX.

In Fig. 2 we show a plot of the size parameter depen-
dence of the decay width I'(X; — J/¢ + vy) together with
the decay width I'(X; — J/¢ + 27) taken from [1]. We
correct an error of Ref. [1] in the normalization condition
of the X meson, which led to a = 30% underestimate
of the strong decay widths. Both decay widths become
smaller as the size parameter increases. Note that the
radiative decay width for X, = —X, sinf + X, cosé is
almost an order of magnitude smaller than that for
X; = X, cosf + X, sinf. If one takes Ay € (3,4) GeV
with the central value Ay = 3.5 GeV then our prediction
for the ratio of widths reads

X, —y+J/)

X, = 1/ 4 +2m) =0.15 £0.03 (42)

theor

which fits very well the experimental data from the Belle
Collaboration [10].
IFX—y+J/¢) {O.l4i 0.05 Belle[10] “3)

T(X—J/¢2m) 10.22+0.06 Babar[13]

V. SUMMARY AND CONCLUSION

We have used our relativistic constituent quark model
which includes infrared confinement in an effective way to
calculate the radiative decay X — vy + J/ . We take the
X(3872) meson to be a tetraquark state with the quantum
numbers J'¢ = 1*"_ In order to introduce electromagnetic
interactions we have gauged a nonlocal effective
Lagrangian which describes the interaction of the
X(3872) meson with its four constituent quarks by using

PHYSICAL REVIEW D 84, 014006 (2011)

the P-exponential path-independent formalism. We have
calculated the matrix element of the transition X — y +
J/¢ and have shown its gauge invariance. We have
evaluated the X — y + J/ decay width and the polar-
ization of the J/¢ in the decay. The calculated decay
width is consistent with the available experimental data
for reasonable values of the size parameter of the X(3872)
meson.
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APPENDIX A: HELICITY AND MULTIPOLE
AMPLITUDES

The material presented in this Appendix is adapted from
similar material written down in [24] in a slightly different
context. There are two independent helicity amplitudes
H),.a,2,, Which we denote by H,(i = L, T) according to
the helicity of the final meson state J/ s, where A/, = 0
and A;/, = *1 stand for the longitudinal and transverse
helicities of the J/¢. From parity one has H.._, =
—H_.,y=Hpand Hy ., = —Hy,__ = Hj.

We seek a covariant representation for the longitudinal
and transverse projectors IP;'%” which, when applied to the
transition amplitude T, ,,, project onto the helicity ampli-

tudes H; y according to

H; =1P/""T,,,, i=LT). (A1)
The projectors are defined by
IP,U«PV:l By TPy _ om(_ —’rp_|_ tv 0
L 2(8)(( )Sy ( ) Sx( )81/ ( ))81/¢( )’
| . . (A2)
PP = ek (O (1), () = 8 (e, (),

where we use the Jacob-Wick convention for the helicity
polarization four-vectors as written down in [25]. The
z-direction is defined by the momentum of the J/ . The
bars in the polarization four-vectors 53(/\),) of the photon
are a reminder that the photon helicities are defined relative
to the negative z-direction. In the present context it is
important to take into account both parity configurations
related by a helicity reflection in the definition of Eq. (A2).
In explicit form one has in the X-rest frame

014006-8



ONE-PHOTON DECAY OF THE TETRAQUARK STATE .

TABLE I.
satisfy ¢4 K\, = 0.

PHYSICAL REVIEW D 84, 014006 (2011)

Hehc1ty and multipole projections of the basic tensors K upv- The tensors Kﬁi),,,, (i=2,4,5, 6) are gauge invariant. They

i Kiupv HY =W Kypy  HY =TPR""Kiy A = PR K Al = P Koy
. . m3+m i (my+my,)? i
1 SILPWZl lmj/l/’ 1 XZmXJN’ TE XZm;N’ - T X*”U/‘,,)Z |Q2|
2 ql,u,spllqlqz 0 ile‘;le _jimxlgﬂz 7-mx|CI2|
3 d1p€pvqiq 0 0 0 0
. H’l 2 i Wl i
4 420€ upq,q, mlf‘l’ |q2| 0 7‘ m];(,/ |q2| T m,/,/ |C]2|
_z i mxtm > i 2my > 12
> Enpra: s 12! 14| Bl 7 ml‘m
6 Kb~ (@192KL)) - 13| e g o e | Tl
wpr = \d192) B ppv imxmy;y\q> i— 5 75 (my g7 142
1 . summed form (A2). The projection operators are orthonor-
exu(*) = 55 (0:21,4,0) 1in th that IP***1PT = —15
V2 mal in the sense tha jupy = ~ 30
% = (my;0,0,0), The angular+de£:a}f d1§tr1but10n in the decay X(3872) —
v+ J/(— €7€7) is given by
dr 1 (}
1 (A3) = _=BR(J/¢p — £ 4)— 2
t _ ] W )
Sj/lpy(i) - ﬁ(()’il) 13 0)) dCOS”l? dar ZSX +1 mX

2 2
my + m; .
qf = (TM;O, 0, |612|),
X

1 mX + mj/l/l
0 0,0 ————
o0 = (12 S lt),
1
éyp(i) = E(O; :ly _i) 0))
= 1¢,1(1;0,0, —1).

A convenient covariant representation of the projectors can
be obtained in the form

PEPY = Rl SE () (=208 (ar),  (Ad)
where
pror — L Msﬂpqlthqi”
2(q1 g2 (A5)
) m
piey — _ ° —Xq/igpvqlqz’
2(q1-q2* "

and where the massive propagator functions are given by

V=XJ/¢)

(e PVPva
sy e

Vv

LPv) = —g% + (A6)

The massive propagator functions are needed in the pro-
jectors Eq. (A4) to project out the appropriate three-
dimensional subspaces in the respective rest systems of
the spin 1 particles. For the photon one exploits the gauge
freedom to write the propagator function as (—gl’j ;). Note

that the compact form (A4) is only obtained if one uses the

x G Sin29|H, | + g(l N 00521?)|HT|2), (A7)

where 9 is the polar angle of either of the leptons €*
relative to the original flight direction of the J/ ¢, all in
the rest system of the J/ .

One can alternatively describe the transition in terms of
the two multipole amplitudes Ag; and A,;,. The multipole
amplitudes are related to the helicity amplitudes via [26]

1 1
\/—-Z-(HL \/—-2-(HL + Hr). (A8)

The corresponding projectors onto the multipole ampli-

Ap = — Hy), Awp =

tudes are given by
1
PP = —(IP1F" — 1PLFY),
El N A T (A9)
1
IPYLY = —(IP/*” + IPR"7).

NGl

In Table I we have summarized the helicity and multi-
pole amplitudes resulting from the relevant projections of
the basic covariants Eq. (32). The entries can be seen to
satisfy the constraint equations Egs. (36) and (37). The
multipole amplitudes AEl uo calculated from the gauge
2, 4, 5, 6) show the
~1g,| and

invariant structures K\ ,Lp,, (i=
appropriate lowest-order power behavior Ag
Az ~ 1ol

The leading |g,| contribution to the angular decay dis-
tribution proportional to |Ag |? is thus given by W(cos®) «
(3 — cos’®). The next-to-leading contribution propor-
tional to 2R (Ag,A},,) is down by one power of |g,|. The
nonleading angular distribution is given by W(cost) o«
(1 — 3cos??) (in the same units).
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