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The Roper resonance is considered as a mixed state of a three-quark core configuration and a hadron-

molecular component N þ �. Based on this ansatz we study electroproduction of the Roper resonance.

The strong and electromagnetic couplings induced by the quark core are calculated in the 3P0 model. The

contribution of the vector-meson cloud to the electromagnetic transition is given in the framework of the

vector-meson dominance model. Results are compared with the recent JLab electroproduction data.
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I. INTRODUCTION

The structure issue of the lowest lying nucleon resonance
Nð1440Þ with JP ¼ 1

2
þ (the Roper resonance P11 or simply

R) has been a long standing problem of hadron physics. One
of the indication that the inner structure of the Roper is
possibly more complicated than the structure of the other
lightest baryons was obtained some time ago in the frame-
work of the constituent quark model (CQM). It was found
(see, e.g., [1]) that the observed mass of the Roper reso-
nance is much too low and the decaywidth is too largewhen
compared to the predicted values of the CQM.

The simplest description of the Roper consists of the
three-quark ð3qÞ configuration sp2½3�X, i.e., the first (2S)
radial excitation of the nucleon ground state s3½3�X, but it
fails to explain either the large decay width �R ’ 300 MeV
or the branching ratios for the �N (55%–75%) and �N
(5%–20%) decay channels [2,3]. Evaluation of these val-
ues in the framework of the CQM is often based on the
elementary-emission model (EEM) with single-particle
quark-meson (or quark-gamma) couplings qq�, qq�,
qq�, etc. The calculation of decay widths (or of the elec-
troproduction cross section at small virtuality of the photon
with Q2 ’ 0) results in anomalous small values. These
underestimates can especially be traced to the strict re-
quirement of orthogonality for the ground (0S) and excited
state (2S) radial wave functions of the N and R states
belonging to the quark configurations with the same spin-
isospin (S ¼ 1=2, T ¼ 1=2) and symmetry (½3�ST½3�X)
quantum numbers. To overcome this discrepancy it is
suggested that either the Roper is not an ordinary 3q state
or the ‘‘true’’ transition operators have a more complicated
form than the single-particle operators used in calculations.

Quark models with Goldstone boson interactions [4] can
explain why the mass of the Roper resonance is shifted to
the observed value including the correct level ordering. But

these models still fail to get the strong decay widths and
electromagnetic couplings under control.
On the experimental side there has been noticeable

progress in the experimental study of the Roper resonance
in the last decade. The Roper resonance has been studied in
� [5] and �� [6] electroproduction processes on the
proton with the polarized electron beam at the JLab
(CLAS Collaboration) followed by a combined analysis
of pion- and photo-induced reactions made by CB-ELSA
and the A2-TAPS Collaborations [3]. These recent data
present new possibilities for the study of the lightest
baryon resonances.
Several models for the description of the Roper reso-

nance electroexcitation were proposed during the last three
decades [7–16] (see the review [17] for a detailed discus-
sion). Now model predictions can be compared with the
new high-quality photo- and electroproduction data
[3,5,6], and updated versions [18–20] of the most realistic
models give a good description of the data at intermediate
values of 1:5 & Q2 & 4 GeV2. However, in the ‘‘soft’’
region, i.e., at low values of Q2 (0 � Q2 & 1–1:5 GeV2),
the data differ qualitatively from the theoretical predic-
tions: the experimental helicity amplitude A1=2 changes

sign at Q2 � 0:5 GeV2 and it is large and negative at the
photon point Q2 ¼ 0. Theoretical predictions for A1=2 are

large and positive at Q2 � 0:5 GeV2 and quickly go to a
small negative (or zero) value at the photon point.
For pion electroproduction in the resonance region W ’

mR the behavior of the transverse helicity amplitude A1=2

near the photon point Q2 * 0 is most sensitive to the soft
component of the resonance state, i.e., to the possible
contribution of the meson cloud. Electroproduction ampli-
tudes in this kinematical region are successfully analyzed
in terms of the dynamical coupled channel model [21,22],
which is used at the Excited Baryon Analysis Center at
JLab (see, e.g., [23]). The detailed description of the
low-Q2 CLAS p�þ�� data [24] was obtained in
Ref. [6] on the basis of JLab-Moscow model [25,26] with
taking into account the �� channel along with additional
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contact terms and the direct 2� production. The contribu-
tion of the meson (pion) cloud to the Roper resonance mass
was recently calculated in Refs. [27,28].

As a result, there are essentially two comprehensive
theoretical approaches to the Roper electroproduction on
the market. One of them (the coupled channel model of the
meson cloud [6,21–23]) is only successful in the soft
region 0 � Q2 & 1 GeV2 and the other one [the light front
(LF) three-quark model [12,18] or the covariant quark
spectator model [19] ] is compatible with data in the hard
region 1:5 & Q2 & 4 GeV2.

Universal, but more phenomenological approaches
which pretend to cover both regions of Q2 were also
suggested (see, e.g., Refs. [15,20]). In Ref. [15] a 3qþ
�qq approach was suggested using the 3P0 model [7] and

vector-meson dominance (VMD) in combination with the
EEM. In Ref. [20] a generalization of the cloudy bag model
[29] was used for the case of the open inelastic channels
�� and �N in combination with a phenomenological
strong background interaction.

In such combined approaches two types of electromag-
netic transition operators are used, the operator designed for
the softQ2 region and one for hard values ofQ2. However,
in the transition amplitude they are summed for any value of
Q2. For example, in the generalized 3P0 þ EEM approach

[15] the transition operator includes the sumof two vertices,
schematically sketched in Figs. 1(a) and 1(b).

In the present paper we follow a more physical concept
(see, e.g., Ref. [30] where the constituent quark and parton
approaches to the�qq vertex are discussed in the context of
the nucleon electromagnetic form factors). We can con-
sider that the diagram in Fig. 1(a) represents the unknown
large-distance physics described by a phenomenological
model (the 3P0 model in our case), which is adjusted to

low-energy data (i.e. meson-nucleon coupling constants
�NN, �NN, magnetic moments, and decay widths). In
the hard Q2 region these contributions become less impor-
tant and an adequate description of the electromagnetic
transition will be given by the diagram in Fig. 1(b). In this
case the unknown short-range physics is encoded by the
adjusted parameters of a parton model. In the region of
moderate values of Q2 (1:5 & Q2 & 4 GeV2) we can con-
sider the constituent quarks as partons and corresponding
unknown short-range physics can be included in a few
constituent quark parameters (such as quark form factors

given by the intermediate vector mesons in the VMDmodel
and scale parameters of quark configurations in the bary-
ons). In this case it is not necessary to sum the contributions
of the two diagrams in Fig. 1. Instead it would be desirable
to use some mechanism for a smooth transition from one
regime to the other.
In our opinion such a mechanism can be described in

general by a smooth transition from a typical hadron radius
bV � 0:5 fm of the vector meson in the CQM to a pointlike
vector meson bV ¼ 0 corresponding to the quark-parton
picture sketched in Fig. 1(b). Here we use the approxima-

tion bVðQ2Þ ¼ bVð0Þe�Q2=�2
, where � ’ 1–2 GeV corre-

sponds to the lowest characteristic value of Q2 where the
parton model phenomenology in deep inelastic ep scatter-
ing sets in.
Another important issue related to the Roper resonance

is a possible combined structure of this state which implies
a virtual hadron-hadron component (e.g. �N or/and ��)
[31] in addition to the radially excited three-quark struc-
ture. Here we consider an admixture of the hadronic mo-
lecular state N þ � in an effective description of such a
component. We also consider to what degree such a com-
bined structure for the Roper is compatible with the new
high-quality data of JLab.

II. COMPOSITE STRUCTURE
OF THE ROPER RESONANCE

We consider the Roper resonance (R) as a superposition
of the radially excited three-quark configuration 3q� and
the hadron molecule component N þ � as

jRi ¼ cos�j3q�i þ sin�jN þ �i; (1)

where � is the mixing angle between the 3q� and the
hadronic component: cos2� and sin2� represent the prob-
abilities to find a 3q� and hadronic configuration, respec-
tively. The parameter � is adjusted to optimize the
description of data on the Roper resonance electroproduc-
tion. The limiting case of cos� ¼ 1 corresponds to the pure
3q� interpretation of R, while the value cos� ¼ 0 corre-
sponds to the situation, where R is a pure loose bound state
of N þ � (analogous to the deuteron-bound state of proton
and neutron). Note, in a first step we simplify the model by
reducing it to two independent (decoupled) systems, R1 ¼
3q� and R2 ¼ N þ �, and do not consider the full coupled
channel problem. Moreover, we consider the dynamics of
the R1 component in the framework of the nonrelativistic
3P0 model (see, e.g., Refs. [7,32]), while the dynamics of

the R2 component is considered in the framework of the
hadronic molecular approach [33] which is manifestly
Lorentz invariant. In the future we intend to improve the
description of the R1 component by applying a relativistic
quark model.
First, we briefly outline the basic notions of the 3P0

model. The effective interaction term of the 3P0 model

[32,34] is set up as
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FIG. 1. Diagrams of (a) soft (nonlocal) and (b) hard (local)
coupling of vector mesons to the nucleon quark core.
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Heff
q ¼ gq

Z
d3x �c qc q; gq ¼ 2mq�; (2)

where � is dimensionless constant. It can be considered as
a static variant of the coupling �0 �qðxÞqðxÞSðxÞ where the
external field SðxÞ represents some scalar combination of
gluon fields in the hadron. At low energy, where the
dynamics is ruled by nonperturbative QCD, we pass to
an effective description in terms of constituent quarks
c qðxÞ and substitute a constant for the field SðxÞ.
Apart from some drawbacks [see, e.g., Eqs. (B2) and

(B3) in Appendix B], the 3P0 model [32,35,36] is a good

phenomenological method for the evaluation of hadron
transitions [37–40] on the basis of the quark model starting
from Eq. (2) with a single strength parameter �. The
interaction term (2) gives rise to Feynman amplitudes for
the �qq pair creation (annihilation)

ð2�Þ3�ð3Þðp4 þ p5ÞiMeff
fi

¼ hq;p4; �4jh �q;p5; �5ji
Z

d3xLeff
q ðxÞj0i; (3)

which are used here for the calculation of meson-baryon
couplings. The quark is labeled by its 3-momentum p4 and
spin projection �4 (for simplicity the isospin projection t4
and the color are omitted), similarly for the antiquark. For
the numbering of the quarks see Fig. 1 (or Fig. 8 in
Appendix B).

The corresponding nonrelativistic interaction term Veff
q

is defined as

Teff
fi ¼ nrhq;p4; �4jnrh �q;p5; �5jVeff

q j0i ¼: 1

2mq

Meff
fi ; (4)

where a noncovariant normalization

nrhp; �jp0; �0inr ¼ ð2�Þ3�ð3Þðp� p0Þ��;�0 (5)

is implied instead of the covariant one of Eq. (3).
Substitution of the nonrelativistic reduction of the effec-

tive interaction (2) into Eqs. (3) and (4) leads to the
expression

Veff
q ¼: gq

2mq

ð�1Þ1��5�t5

�
1

2
��5

��������� � ðp4 � p5Þ
��������12�4

�

�
�
1

2
� t5

��������12 t4
�
ð2�Þ3�ð3Þðp4 þ p5Þ; (6)

which is the nonrelativistic analogue of the �qq pair creation
(annihilation) operator.

The description of the hadronicN þ � component of the
Roper resonance is based on the compositeness condition
[41,42]. This condition implies that the renormalization
constant of the hadron wave function is set equal to zero or
that the hadron exists as a bound state of its constituents
only. In the case of mixed states (as in the present situation
where the Roper is a superposition of the 3q� and N þ �
components) the amplitude for the N þ � component is

defined by the parameter sin�. The compositeness condi-
tion was originally applied to the study of the deuteron as a
bound state of proton and neutron [41]. Then it was ex-
tensively used in low-energy hadron phenomenology as the
master equation for the treatment of mesons and baryons as
bound states of light and heavy constituent quarks (see,
e.g., Refs. [42,43]). By constructing a phenomenological
Lagrangian including the couplings of the bound state to its
constituents and of the constituents to other particles in the
possible decay channels we calculated hadronic-loop dia-
grams describing different decays of the molecular states
(see details in [33]).
In the present case the R2 ! N þ � coupling is fixed

from the compositeness condition

ZR ¼ 1� �0
N�ðpÞjp¼mR

¼ 0; (7)

where �N�ðpÞ is the mass operator of the N� bound state
(Fig. 2), calculated with the use of the phenomenological
Lagrangian

Lstr
R ðxÞ¼gR�N �RðxÞ

Z
dy�Rðy2ÞNðxþw�NyÞ�ðx�wN�yÞ

þH:c:; (8)

where wij ¼ mi=ðmi þmjÞ. Here�Rðy2Þ is the correlation
function describing the distribution of N� inside R, which
depends on the Jacobi coordinate y. Its Fourier transform
used in the calculations has the form of a ‘‘modified’’
Gaussian, i.e., the Gaussian multiplied by a polynomial.
In Euclidean space it may be written as

~�Rð�k2EÞ ¼
�
1� 	

k2E
�2

M

�
exp

�
� k2E
�2

M

�
; (9)

where kE is the Euclidean momentum. This presents a kind
of generalization of the nonrelativistic quark model wave
function to the 4-dimensional case. But the relativistic
parameters 	 and�M should differ from the corresponding
nonrelativistic ones. Here �M is the molecular size pa-
rameter and 	 is a free parameter which should be fixed by
the orthogonality condition, i.e., hNjRi ¼ 0.

III. ROPER ELECTROPRODUCTION

The diagrams which contribute to the Roper resonance
electroproduction are shown in Fig. 1 (contribution of the
3q� component) and Fig. 3 (contribution of the hadronic
N� component). In the following we discuss the separate

R

σ

R
N

FIG. 2. The N� loop diagram contributing to the Roper mass
operator.
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contributions of the structure components of the Roper
resonance.

A. Contribution of the 3q� component

The contribution of the 3q� component to the hadronic
current of the Roper electroproduction is generally given as

J� ¼ hRjj�q jNi ¼: hR;p0; S0z; T0
zjj�q jN;p; Sz; Tzi: (10)

The current j
�
q is derived by starting from the vector-meson

absorption amplitudes described in the 3P0 model

Tqð	Þ
VþN!R ¼ 3nrhR; 0; S0z; T0

zjVeff
q jN;�q; Sz; Tzi

� jV;q; 	V; tVinr (11)

[see Appendix B for details] and use of the VMD mecha-
nism in the photon-quark coupling:

e
ð	Þ� J� ¼ e

2

X
V¼�;!

Mqð	Þ
VþN!R

gVNN

M2
V

Q2 þM2
V

: (12)

The vector-meson-nucleon coupling constant gVNN is cal-
culated in the 3P0 model [see Appendix B] and we use

Mqð	Þ
VþN!R ¼ 2mM

ffiffiffiffiffiffiffiffiffiffi
2MV

p
Tqð	Þ
VþN!R by taking into account a

noncovariant normalization (5) in Eq. (11). MV is the
vector-meson mass approximated as MV ¼ M� � M!; p,

Sz, Tz (p
0, S0z, T0

z) and q, 	�, t� are the 3-momentum, spin,

and isospin projections of the nucleon (the Roper) and of
the vector meson, respectively. For convenience we choose
the photon momentum as q� ¼ ðq0; 0; 0; jqjÞ.

After substitution of the quark substructure (see
Appendix A 2) for jNi, jRi, and jVi into Eqs. (10)–(12)
and with a simple algebra (here we usemq ¼ mN=3 for the

quark mass), the current matrix element is deduced in the
form

J�
ð	Þ� ¼
ffiffiffi
3

p
2

�
nðyoÞ
nðyÞ

�
3=2

e��ðyÞq2b2=6 M2
V

Q2 þM2
V

�
	�
1þ �z

2

�
T
�S0z;Sz

��

ð	Þ0 þ q � �ð	Þ

2mNnðyÞ
�
p2ðy;q2Þ

þ p0ðyÞ q � �ð	Þ
2mNnðyÞ

�
�
�
1þ 5�z

2

�
T

�
�
i½� � q� � 
ð	Þ

2mN

�
S
p2ðy;q2Þ



: (13)

We use the notation

h� � �iS ¼ h12S0zj � � � j12Szi; h� � �iT ¼ h12T0
zj � � � j12Tzi;

for the spin and isospin matrix elements, respectively,


ð	Þ� ¼ f
ð	Þ0 ; �ð	Þg is the photon polarization vector and

n, � , p0;2 are polynomials in y ¼ bV=b and q2:

nðyÞ¼ 1þ2

3
y2; �ðyÞ¼ 1þ 5

6y
2

n
; p0ðyÞ¼ 4

3

1þy2

n
;

p2ðy;q2Þ¼ 2

3

y2

n
�
�
1þy2

n

�
2q2b2

9
: (14)

The transverse (	 ¼ �1) and longitudinal (	 ¼ 0) helicity
amplitudes for electroproduction of the Roper resonance
on the proton (Tz ¼ 1=2) are defined by the matrix
elements (13) for 	 ¼ þ1 and 0 respectively [10,12,19]

A1=2 ¼
ffiffiffiffiffiffiffiffiffiffi
2�


qR

s �
R; 0;þ 1

2

��������j�q 
ðþÞ
�

��������N;�q;� 1

2

�
;

S1=2 ¼
ffiffiffiffiffiffiffiffiffiffi
2�


qR

s �
R; 0;þ 1

2

��������j�q 
ð0Þ�

��������N;�q;þ 1

2

� jqj
Q

; (15)

where 
 ¼ 1=137 is the fine-structure constant. We
introduce

qR ¼ m2
R �m2

N

2mR

(16)

for the threshold value of the photon 3-momentum for
Roper electroproduction.
In the rest frame of the Roper resonance (the c.m. frame

of ��N collision) the absolute value of the transferred
3-momentum q in Eqs. (15) is defined by

q 2 ¼ Q2 þ
�
Q2 þm2

N �m2
R

2mR

�
2
: (17)

Note that in the region of 0:5 & Q2 & 1:5 GeV2 the c.m.
frame is very close to the Breit frame, i.e.,Q2 � q2, which
is very convenient for comparison of our q2-dependent
results with the relativistic Q2-dependent ones (substitu-
tion of q2 ! Q2 does not really change our results if one
considers the region 0:5 & Q2 & 1:5 GeV2).
We have several remarks regarding current conservation

connected to the gauge symmetry of theory. The current
conservation condition q�J

� ¼ 0 for the matrix elements

+ +
N R

γ*
γ * γ *

N R N R

σσσ

NNN

+

γ *

σ

N
N R +

N

σ

N R

γ *
(c)(b)(a)

(d) (e)

FIG. 3. N� hadronic-loop diagrams contributing to the Roper
electroproduction: the triangle diagram (a), the bubble diagrams
(b) and (c), the pole diagrams (d) and (e).
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(10) is not automatically satisfied for the VMD amplitudes.
To provide q�J

� ¼ 0 for a transition current in the VMD

amplitudes one needs the conservation of the neutral
vector-meson currents @�JV� ¼ 0 [44]. In our model these

currents JV� are expressed via the amplitudes (11) for which

the relation J0 ¼ jqj
q0
J3 is not exactly satisfied.

One can try to construct the electromagnetic current

using the transverse projector g��
? ¼ g�� þ q�q�

Q2 . This

projector does not change the A1=2 amplitude, but could

lead to some corrections for the components J0 and J3.
However, the expression for S1=2 in Eq. (15) is invariant

with respect to such corrections because of the contraction
of the current matrix elements with the longitudinal polar-
ization vector


ð0Þ� ¼
	jqj
Q

; 0; 0;
q0
Q



: (18)

Some problem appears in a small region near the photon
point with Q2 ¼ 0 where the last factor for S1=2 in ex-

pression (15) shows singular behavior. In this region we
use the following trick. We start from the exact equality

J0 ¼ J3 at Q2 ¼ 0 (19)

which follows from the Ward identity at the photon point
where q0 ¼ jqj. Note that at Q2 ¼ 0 we really have J0 �
J3 if we use the realistic parameters of the CQM for the
wave functions of baryons and mesons. Thus, it is not
difficult to transform the approximate equality J0 � J3 to
the exact one of Eq. (19) by slightly varying one of the free
parameters of the CQM (e.g. the radius bR of the quark
core of the Roper resonance which is not strictly fixed
otherwise). The constraint (19) imposed on the parameters
of the quark wave functions in the 3P0 amplitudes only

stabilizes the behavior of S1=2 near the photon point Q2 &
0:2–0:3 GeV2 and does not give pronounced effects for

S1=2 in the remaining region for Q2, where jqj
Q � 1.

Our results for the helicity amplitudes are

A1=2 ¼ �
ffiffiffiffiffiffiffiffiffiffi
2�


qR

s ffiffiffi
3

p
2

�ph�þi
�
yRnðy0Þ
Nðy; yRÞ

�
3=2

� M2
V

Q2 þM2
V

e�~�ðy;yRÞðq2b2Þ=6 jqj
2mN

P2ðy; yR;q2Þ
(20)

and

S1=2 ¼ �
ffiffiffiffiffiffiffiffiffiffi
2�


qR

s ffiffiffi
3

p
2

�
yRnðy0Þ
Nðy; yRÞ

�
3=2 M2

V

Q2 þM2
V

e�~�ðy;yRÞq2b2=6

� q2

Q2

	�
1þ q0ð32 y2R � 1

2Þ
2mNNðy; yRÞ

�
P2ðy; yR;q2Þ

þ q0
2mNNðy; yRÞP0ðy; yRÞ



; (21)

where y 	 yðQ2Þ ¼ y0 expð�Q2=�2Þ. We also take into
account a possible difference of the R-resonance radius
bR and the one of the nucleon, which is b, by introducing
the ratio yR ¼ bR=b which does not depend on Q2. As a
result the polynomials (14) become yR-dependent N, P0;2,
~� [see Eqs. (B17) and (B18) in Appendix B] and only for
yR ¼ 1 they are identical with n, p0;2, � :

nðyÞ ¼ Nðy; yR ¼ 1Þ; p2ðy;q2Þ ¼ P2ðy; yR ¼ 1;q2Þ;
p0ðyÞ ¼ P0ðy; yR ¼ 1Þ; �ðyÞ ¼ ~�ðy; yR ¼ 1Þ: (22)

The vector-meson contribution to the amplitude at high
Q2 should also contain contributions of vector mesons of
higher mass MV * 2M�. Following the work [30] we use

the approximation

M2
V

Q2þM2
V

¼x
M2

�

Q2þM2
�

þð1�xÞ 4M2
�

Q2þ4M2
�

; x¼0:7; (23)

which we have checked in the description of the nucleon
magnetic form factor.
Note the matrix element (10) for the diagonal transition

N þ �� ! N has the same form as Eq. (13) excluding the

algebraic factor
ffiffi
3

p
2 and the polynomial p2 which should be

changed to 1. In the static limit jqj; q0 ! 0 this expression
defines the charge and the magnetic moment of the nucleon
(for mq ¼ mN=3)

ê¼e
Iþ�z
2

; �̂¼�N

Iþ5�z
2

; �N ¼ e

2mN

: (24)

The values of �p and �n are reproduced with an accuracy

of about 10%. Moreover, at low and moderate values ofQ2

this amplitude describes the nucleon magnetic form factor
GM with a reasonable accuracy (see Fig. 4). Such an

0 1 2 3

Q
2
 (GeV

2
/c

2
)

0

0.2

0.4

0.6

0.8

1

G
p M

/µ
p

FIG. 4. Normalized magnetic form factor of the proton
Gp

M=�p in the modified 3P0 model with a Q2-dependent

vector-meson radius and the VMD approach to the qq� inter-
action (dashed line). Here we use the same set of parameters as
in the N ! R vertex of Fig. 6(a). For comparison, the dipole
approximation is also shown (solid line).
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accuracy is sufficient (at least in the region Q2 &
1–1:5 GeV2) for the present calculation of the Roper elec-
troproduction amplitudes.

For the nondiagonal process N þ �� ! R the matrix
element (13) defines ‘‘the transition magnetic moment’’
in the limit jqj; q0 ! qR (i.e. at the photon point):

�̂N!R ¼ � e

2mN

ðI þ 5�zÞ
2

ffiffiffi
3

p
2

exp½��ðy0Þq2
Rb

2=6�

�
�

2y20=3

1þ 2y20=3
�
�

1þ y20
1þ 2y20=3

�
2 q2

Rb
2

9

�
: (25)

The quantity �̂N!R gives the value (apart from a kinemati-

cal factor h�þi
ffiffiffiffiffiffiffiffiffiffiffi
qR=2

p
) of the transverse helicity amplitude

A1=2 at the photon point. The first term in the square

brackets of the right-hand side of Eq. (25)

ZV ¼ 2y20=3

1þ 2y20=3
; y0 ¼ bV=b (26)

[or the first term of the polynomial p2 in Eq. (14)] is
present because of the nonlocality of the Vqq interaction
defined by Eq. (11). There the operator Veff

q leads to an

insertion of the inner �qqwave function of the vector meson
into the Vqq vertex.

The size of the nonlocal region is defined by the spatial
scale of the meson wave function. For a pointlike vector
meson (bV ¼ 0) the value of ZV reduces to zero, and the
matrix element for the transition N þ ��

T ! R reduces to
the matrix element of the EEM with a local Vqq vertex.
The EEM matrix element vanishes in the limit jqj ! 0, as
it should because of the orthogonality of the spatial parts of
the wave functions of N and R.

Such behavior of the A1=2 amplitude near the photon

point Q2 ¼ 0 is characteristic of all the models which start
from local �qq or Vqq vertices at high Q2 and continue to
use such interaction in the soft region of smallQ2 & 6=b2V ,
where the electromagnetic interaction is modified by the
inner structure of vector mesons as �qq bound states.

As a result, in models with a local operator for the �qq
(or Vqq) interaction (see, e.g., the relativistic models
[10–12,19,45]) the transverse helicity amplitude A1=2 van-

ishes in the limit Q2 ! 0 [or it approaches a small value
which is defined by the second term in the last line of
Eq. (25) modified by relativistic corrections].

The importance of the nonlocality of the Vqq interaction
in the description of Roper electroproduction near the
photon point was first noted by the authors of the 3P0

model [7]. In Ref. [15] this nonlocal 3P0 interaction was

used for the calculation of the helicity amplitudes on
the basis of a dynamical quark model of baryons.
Unfortunately, the authors of [15] have only used a trivial
sum of 3P0 and EEM interaction terms (a ‘‘generalized

EEM’’). With this ansatz they describe both the low- and
high-Q2 amplitudes with a common mechanism, and the

same quark dynamics was used for both the nucleon and
the Roper resonance.
Now it becomes evident that intermediate meson-baryon

states (‘‘hadron loops’’) can play a considerable role in the
quark dynamics of excited baryons, and such meson-
baryon states should be taken into account (see, e.g.,
Ref. [46,47]). Since the resonance pole of the Roper [2]
1365–i95 MeV is rather close to the N þ � threshold the
intermediate N þ � configuration will play a more impor-
tant role in the inner dynamics of the Roper as compared,
for example, to the case of the nucleon.
In our opinion, a first step in the study of the nontrivial

inner structure of the Roper resonance could be an evalu-
ation on the basis of the recent CLAS data [5], where a
nonvanishing probability for a possible N þ � component
of the Roper is compatible with the data.

B. Contribution of the hadronic Nþ � component

The hadronic N� loop diagrams contributing to the
Roper electroexcitation are shown in Fig. 3. The RN�
vertex is defined by the nonlocal Lagrangian LR of
Eq. (8). For the NN� vertex we use a similar nonlocal
Lagrangian with the correlation function �Nðy2Þ,

LN ¼gNN��ðxÞ
Z
dy�Nðy2Þ �Nðxþy=2ÞNðx�y=2Þ; (27)

where gNN� is the NN� coupling constant; ~�Nð�k2EÞ ¼
expð� k2E

�2
N

Þ is the Fourier transform of �Nðy2Þ in Euclidean

space with �N ¼ 0:7–1 GeV.
The electromagnetic interaction Lagrangian contains

two pieces

L em
int ¼ Lemð1Þ

int þLemð2Þ
int ; (28)

which are generated after the inclusion of photons. The first

term Lemð1Þ
int is standard and is obtained by minimal sub-

stitution in the free Lagrangian of the proton and charged
Roper resonance:

@�B ! ð@� � ieBA
�ÞB; (29)

where B stands for p, Rþ and eB is the electric charge of

the field B. The interaction Lagrangian Lemð1Þ
int reads

Lemð1Þ
int ðxÞ ¼ eB �BðxÞABðxÞ: (30)

The second electromagnetic interaction term Lemð2Þ
int is

generated when the nonlocal Lagrangians (8) and (27)
are gauged. The gauging proceeds in a way suggested
and extensively used in Refs. [43,48,49]. In order to guar-
antee local Uð1Þ gauge invariance of the strong interaction
Lagrangian one multiplies each charged field in (8) and

(27) with a gauge field exponential e�ieBIðy;x;PÞ. The
exponent contains the term
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Iðy; x; PÞ ¼
Z y

x
dz�A

�ðzÞ; (31)

where P is the path of integration from x to y. Then we
obtain

Lstrþemð2Þ
R ðxÞ¼gR�N �R0ðxÞ

Z
dy�Rðy2Þnðxþw�NyÞ

��ðx�wN�yÞþgR�N �RþðxÞ
Z
dy�Rðy2Þe�iepIðxþw�Ny;x;PÞ

�pðxþw�NyÞ�ðx�wN�yÞþH:c: (32)

and

Lstrþemð2Þ
N ðxÞ¼gNN��ðxÞ

Z
dy�Nðy2Þ

�
�n

�
xþy

2

�
n

�
x�y

2

�

þ �p

�
xþy

2

�
e�iepIðx�ðy=2Þ;xþðy=2Þ;PÞp

�
x�y

2

��
:

(33)

An expansion of the gauge exponential up to terms linear in

A� leads to Lemð2Þ
int .

The full Lagrangian consistently generates the required
matrix element of the electroexcitation amplitude which is
linked to coming the hadronic molecular component of the
Roper. Because of gauge invariance the electromagnetic
vertex function ��ðp; p0Þ is orthogonal to the photon

momentum q���ðp; p0Þ ¼ 0. As a result, the vertex func-

tion ��ðp; p0Þ is given by the sum of the gauge-invariant

pieces of the triangle (�), the bubble (bub), and the pole
(pol) diagrams, while the non gauge-invariant parts of
these diagrams cancel in the sum:

��ðp; p0Þ ¼ �?
�;�ðp; p0Þ þ�?

�;bubðp; p0Þ þ�?
�;polðp; p0Þ:

(34)

The contribution of each diagram can be split into a gauge-
invariant piece and a reminder term, which is not gauge
invariant, by introducing the decomposition

�� ¼ �?
� þ q�

q

q2
; pi� ¼ p?

i� þ q�
piq

q2
; (35)

with �?
�q

� ¼ 0, p?
i�q

� ¼ 0, where pi is p or p0. The
vertex function �?

�ðp1; p2Þ can then be expressed in terms

of �?
� and p?

i�.

In the case of the triangle diagram of Fig. 3(a) we
include the q2 dependence of the photon-nucleon vertices
in correspondence with data. Taking into account the
nucleon structure the ep �p�

�
?p vertex is modified as

�N

�
��
?F

N
1 ðq2Þ þ i

���q�
2mN

FN
2 ðq2Þ

�
N; (36)

where FN
1 ðq2Þ and FN

2 ðq2Þ are the Dirac and Pauli form

factors, which are normalized as FN
1 ð0Þ ¼ eN (nucleon

electric charge) and FN
2 ð0Þ ¼ �N (nucleon anomalous

magnetic moment). The form factors FN
1;2 are expressed

through the electric and magnetic Sachs form factors GN
E ,

GN
M of the nucleon as FN

1 ¼ ðGN
E þ �GN

MÞ=ð1þ �Þ, FN
2 ¼

ðGN
M �GN

E Þ=ð1þ �Þ, � ¼ �q2=4m2
N . For the Sachs form

factors we use the Kelly parametrization [50]:

Gð�Þ /
P

n
k¼1 ak�

k

1þP
nþ2
k¼0 bk�

k
: (37)

Two additional contributing diagrams to the electropro-
duction of the Roper resonance are shown in Fig. 5. The
amplitudes of the ���V (V ¼ �0, !) transition are written
in the form

eg��V
MV

ðg��q � k� k�q�Þ; (38)

where k is the vector-meson momentum. The values for the
coupling constants g��V are estimated in the branch ratio

model [51] with g���0 ’ 0:25, g��! ’ 0:05.

The contributions of the amplitudes of Fig. 5 were
estimated using the local limit for the NN� and NN!
vertices. We found a very small contribution compared to
the diagrams of Fig. 3. Both ��V diagrams are explicitly
transverse under contraction with the photon momentum
q�.

Finally, the helicity amplitudes for the electromagnetic
excitation are defined like in (15)

A1=2 ¼
ffiffiffiffiffiffiffiffiffiffi
2�


qR

s �
R;

1

2

��������Jþ
��������N;� 1

2

�
�;

S1=2 ¼
ffiffiffiffiffiffiffiffiffiffi
2�


qR

s �
R;

1

2

��������J0
��������N;

1

2

�
�;

Jþ ¼ � 1ffiffiffi
2

p ðJx þ iJyÞ; (39)

where J� is the electromagnetic transition current defined
by the diagrams of Fig. 3. The helicity amplitudes (39) are
defined up to a phase �. The amplitudes are written in the
c.m. frame of the nucleon and the photon, i.e., in the Roper
resonance rest frame. The 4-spinors present in jRi, jNi are
normalized as �RR ¼ mR

"R
, �NN ¼ mN

"N
.

IV. RESULTS AND COMPARISON WITH DATA

A. Parameter fitting

In the calculation the helicity amplitudes A1=2 and S1=2
we use two variants for the free parameters, denoted as (a)

+
N R

γ

N

*

σρ0

N
N

R

ω σ

γ *

(a) (b)

FIG. 5. ���V (V ¼ �0, !) processes in the electroexcitation
of the N� bound state.
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and (b), both typical for the CQM. They were only fitted to
the A1=2 JLab data [5,6] without any additional adjustment

to the S1=2 data [we only take into account the condition

(19)]. One of the parameter sets gives the best description
of the data in the soft region with 0 & Q2 & 1 GeV2 and
the other one the optimal description in the whole
measured interval including the hard region of Q2 *
1:5–2 GeV2=c2.

Note, we do not pretend that the nonrelativistic model
for the quark configurations is able to describe data for the
whole hard region. We only study the compatibility of our
predictions with the behavior of the data in the transition
region between the soft and the hard regimes (a relativistic
generalization of the model could be the next step to start
from a hard variant which gives a realistic description of
the data at low and moderate values of Q2).

Our parameters are grouped into two sets: one set of
parameters is related to the 3q components of the baryons
and the other set is connected with the N� molecular
component. One of the quark model parameters is fixed
by the strong constraints following from the Ward identity
[parameter bR, see Eq. (19)]. The additional free quark
parameters b, bV , and � are adjusted to optimize the
description of the proton magnetic form factor in the
considered region of Q2, including the intermediate values
0:5 & Q2 & 1:5 GeV2=c2, and of the above mentioned
subset of data on the helicity amplitude A1=2. Two of these

fitted parameters, b and bV , should, in addition, have values
which are typical for the quark core radii of the nucleon
and a vector meson with b � bV � 0:5 fm. The third fitted
parameter � should not be smaller than the characteristic
scale 
ð1–1:5ÞmN associated with short-range effects in
eN scattering. These additional constraints on the parame-
ters b, bV , and � sufficiently limit the range of allowed
values. Finally, we arrive at the following two optimal sets
of quark component parameters:

(a) a hard variant

b ¼ 0:48 fm; y0 ¼ bV
b

¼ 0:9;

�2 ¼ 1:5m2
N; bR ¼ 0:9444b; (40)

adjusted to the data of A1=2 with taking into account

the hard region of Q2 * 1:5–2 GeV2=c2 and
(b) a soft variant

b ¼ 0:54 fm; y0 ¼ bV
b

¼ 0:81;

�2 ¼ 4m2
N; bR ¼ 0:8824b; (41)

fitted to the A1=2 data with 0 & Q2 & 1 GeV2=c2.
The set of parameters related to the molecular compo-

nent includes the mixing parameter �, the scale parameters
�M,�N and the parameter 	 entering in the vertex function
of the Roper. Further parameters linked to the � are the
mass M�, the width ��, and the strong coupling constant

g�NN . The parameters �M � �N � 1 GeV are approxi-
mately taken at the scale set by the light baryons. The
parameter 	 is fixed through the orthogonality condition
hRjNi ¼ 0 (finally fitted at 	 ¼ 2:45). For the � resonance
we take values which are reasonable [2] [a wide range
of values is given by M� ¼ ð0:4� 1:2Þ GeV, �� ¼
ð0:5� 1Þ GeV, and g�NN � 5–10]. Some fine-tuning of
these parameters to the complete range of data on A1=2

results in the following set of molecular parameters:

�M ¼ 1 GeV; �N ¼ 0:8 GeV; M� ¼ 0:5�0:05 GeV;

�� ¼ 0:75�0:25 GeV; g�NN ¼ 5: (42)

The mixing parameter � is fixed in the low-energy region
(0 & Q2 & 1 GeV2=c2) of A1=2, where the molecular com-

ponent is optimized to reproduce the difference between
the 3q contribution and the JLab data. We obtain sin� ¼
0:6 and 0.7 for sets (a) and (b), respectively. The complete
results for the parameters should be considered preliminary
and be tested seriously in further applications.
It is important to remark that in the evaluation of the

helicity amplitudes we use the free �meson propagator (as
some kind of approximation), while in case of the strong
Roper decay R ! N þ 2� we had to use the Breit-Wigner
�-meson propagator. The sensitivity of the results to a
variation of the �meson mass from 0.45 to 0.55 GeV gives
a variation of the helicity amplitudes up to 10%. The
sensitivity of the strong decay �ðR ! N þ 2�Þ to a varia-
tion of �� is discussed in Sec. IVC. In fact, more precise
data on �ðR ! N þ 2�Þ can give a new, additional con-
straint on ��.

B. Helicity amplitudes

The calculated helicity amplitudes A1=2 and S1=2 are

shown in Figs. 6(a) and 6(b) [using the parameter sets (a)
and (b), respectively]. We also show separately the contri-
butions to the amplitude from the quark and the hadron
molecule components (dashed and dashed-dotted curves,
respectively). The comparison with the standard 3P0 model

calculation with a fixed value for the vector-meson radius
bV ¼ 0:9b (dotted curves) demonstrates the following: a
smooth transition from the 3P0 �RN vertex [Fig. 1(a)] to

the partonlike one [Fig. 1(b)] using aQ2-dependent vector-
meson radius bVðQ2Þ ! 0 leads to considerable improve-
ment of the standard 3P0 model results at moderate values

of Q2.
The quark core component of R plays the main role in

the electroproduction of the Roper resonance for this Q2

region (Q2 * 1–1:5 GeV2=c2). For small values of Q2 &
1 GeV2, where the contribution of the meson cloud should
also be important, it can be effectively taken into account
in the framework of 3P0 and VMD models. However, such

a model overestimates the transverse amplitude A1=2 in the

region 0:5 & Q2 & 1 GeV2 (the dashed line in Fig. 6).
The description of the JLab data [5,6] on A1=2 can be
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considerably improved if one takes a combined structure
for the Roper in the form of jRi ¼ cos�j3q�i þ sin�jN þ
�i. The adjustable parameter � fitted to the JLab data in
this region is about cos� ¼ 0:8 [for the hard variant (a)] or
cos� ¼ 0:7 [for set (b)], in both cases indicating an admix-
ture of N� component of about 50%.

The hard version (a) looks more plausible in the descrip-
tion of both amplitudes A1=2 and S1=2, while set (b) only

represents a fit to the soft-Q2 (up to Q2 � 1 GeV2=c2)
behavior of the transverse amplitude A1=2. In the soft-Q2

region the contribution of the pion cloud and the influence
of the coupled channel �þ � are important [6,20–23].
Both effects should be taken into account in further de-
tailed calculations.

C. Decay widths

When the weight of the N þ � component in the Roper
resonance in terms of 
sin2� is fixed, the Roper decay
width for the transition N þ ð��ÞI¼0

S wave can be calculated.

The assumption that the quark part of the Roper just gives a

very small contribution through a virtual transition R !
N þ � is justified in our quark model [see, e.g., our evalu-
ation of the quark amplitudeMq

R!Nþ� in Eq. (B20) which
goes to zero at y� ¼ 1 as it follows from Eq. (B22)]. Then
the transition is described as the virtual decay of the
molecular part to N þ � followed by the � ! �� decay.
The diagram for such a mechanism is shown in Fig. 7.
The probability jMfij2 for the transition process of Fig. 7

contains the Breit-Wigner representation for the intermedi-
ate �-meson state with

jMfij2 ¼ g2R�Ng
2
���

~�2
Rðk2Þ ðmN þmRÞ2 � s��

ðm2
� � s��Þ2 þm2

��
2
�ðs��Þ

;

��ðxÞ ¼ ��

m�ffiffiffi
x

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� 4m2

�

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� � 4m2
�

p ; x ¼ s�� 	 k2�; (43)

where k ¼ pR �!N�pN and the coupling constant g���
is deduced from the two-pion decay width of the � with

g2��� ¼ 32�
3 ��m�ð1� 4m2

�

m2
�
Þ�1=2. The coupling constant
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FIG. 6. Helicity amplitudes A1=2 (top panels) and S1=2 (bottom) for two variants of the model parameters, hard (left panels) and soft
(right panels), in comparison to JLab data [5,6]. Dotted curves: the quark core excitation amplitudes j3qi þ �� ! j3q�i calculated in
the framework of the standard 3P0 þ VMD model with a fixed vector-meson radius bV ¼ y0b. Dashed curves: the same amplitudes

calculated in a modified 3P0 þ VMDmodel with aQ2-dependent scale parameter y ¼ y0e
�Q2=�2

for the vector-meson radius bV ¼ yb.
Dashed-dotted curves: helicity amplitudes for the electroexcitation of the hadron molecule N þ �. Solid curves: the full calculation of
A1=2 and S1=2 in terms of a combined structure R ¼ cos�j3q�i þ sin�jN þ �i. For comparison, the valence quark contribution to A1=2

calculated in Ref. [19] on the basis of a covariant spectator model is also shown (the dashed-double-dotted curve in the left top panel).
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gR�N of the hadron-molecular vertex is defined by the
compositeness condition (7).

The result for the R ! N þ ð��ÞI¼0
S wave decay width is

presented by an integral over the variables of the phase
space volume

�R!N�ð��Þ ¼ 3sin2�

512�3m3
R

�
Z ðmR�mNÞ2

4m2
�

ds��
s��

jMfij2	1=2ðm2
R;m

2
N; s��Þ

� 	1=2ðs��;m2
�;m

2
�Þ; (44)

with 	ða; b; cÞ ¼ a2 þ b2 þ c2 � 2ab� 2bc� 2ac.
The numerical value for �R!N� with gR�N ¼ 6:39 [fixed

by the compositeness condition (7)] and a molecular
admixture in the Roper of sin� ’ 0:6 is

�R!N�ð��Þ ¼ ð19:0–26:7Þ MeV; (45)

where the lower and upper limits correspond to a variation
of the � decay width �� from 0.5 to 1 GeV, respectively,
(the variation of the �-meson mass M� ¼ 500� 50 MeV
can only change the result within 10%). This should be
compared to the PDG [2] value �R!N�ð��Þ � ð0:05–0:1Þ
�tot
R ð� 15–30 MeVÞ) or the recent data [3] �R!N� ¼ 71�

17 MeV. It is clear that the strong Roper decay can serve as
a constraint on ��, however present results for �R!N�ð��Þ
are compatible with all values of ��.

The pion decay width calculated for the quark part of the
Roper resonance in the framework of our approach
(�q

R!�N ’ 36 MeV) is not as small as in the case of EEM
evaluations (�EEM

R!�N ’ 4 MeV) but it is still several times
smaller than the PDG value of �R!Nþ� � ð0:55–0:75Þ�tot

R .
It is clear that considerable corrections to �q

R!�N can come
from the pion cloud contribution which is neglected here.

V. CONCLUSIONS

We suggested a two-component model of the lightest
nucleon resonance R ¼ N1=2þð1440Þ as a combined state

of the quark configuration sp2½3�X and the hadron mole-
cule component N þ �. This approach allows us to de-
scribe with reasonable accuracy the recent CLAS
electroproduction data [5,6] at low and moderate values

of Q2 with 0 � Q2 & 1:5–2 GeV2. In the model the R !
N þ ð��ÞI¼0

S wave transition process is interpreted as the

decay of a virtual � meson in the N þ � component.
The calculated decay width �R!N�ð��Þ correlates well

with the PDG value [2] and the recent CB-ELSA and
A2-TAPS data [3].
The weight of the N þ � component in the Roper with

sin2� � 0:36 is compatible with the CLAS data at low and
moderateQ2. This weight is also compatible with the value
of the helicity amplitude A1=2 at the photon point and with

the data on the R ! N þ ð��ÞI¼0
S wave decay width.

However, our evaluations have shown that at low Q2

the contribution of the pion cloud to the amplitude A1=2

can be considerable. For example, this is evident from
Fig. 6(a), where the discrepancy of our results and the
CLAS data is about 1–1.5 experimental error bars. Still,
this discrepancy is considerably smaller than in the case
of previous quark models: note the predictions of the
valence quark covariant spectator model (the dashed-
double-dotted curve in Fig. 6(a) adapted from Ref. [19])
or predictions of the LF models in the same region of
Q2 & 1 GeV2=c2.
In this paper we tried to show that the description of

transition amplitudes in terms of partonlike models, which
are very good at highQ2, can be naturally transformed into
a description in terms of the soft vector-meson cloud. This
smooth transition is achieved by ‘‘switching on’’ a nonzero
radius of the intermediate vector meson. The vector-meson
V of finite size generates a nonlocal Vqq interaction. This
weakens the effect of the orthogonality of the spatial R and
N wave functions in the transition matrix element N þ
��
T ! R, and the amplitude A1=2. Resulting theoretical

values, which match the data, are contrary to the standard
predictions of LF models, which lead to nonzero and
(negative) large values at the photon point.
Further we plan to develop a relativistic version of the

suggested electroexcitation mechanism.
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APPENDIX A: HADRON
QUARK WAVE FUNCTIONS

1. Basic elements

We use the standard definitions for the harmonic oscil-
lator wave functions

’0Sðp; r0Þ ¼ ð4�r20Þ3=4e�p2r2
0
=2;

’2Sðp; r0Þ ¼
ffiffiffi
3

2

s �
1� 2

3
p2r20

�
’0Sðp; r0Þ;

’1P;mðp; r0Þ ¼
ffiffiffi
2

3

s
pr0’0Sðp; r0Þ

ffiffiffiffiffiffiffi
4�

p
Y1mðp̂Þ: (A1)

The relative momenta in the quark (antiquark) systems
with numbering i ¼ 1, 2, 3, 4, 5 (see Figs. 1 and 8) are
set up as

˘1 ¼ 1
2ðp1 � p2Þ; ˘2 ¼ 1

3ðp1 þ p2Þ � 2
3p4;

˘0
2 ¼ 1

3ðp1 þ p2Þ � 2
3p3; ˘M ¼ 1

2ðp3 � p5Þ;
pM ¼ p3 þ p5: (A2)

In the rest frame with P0
RðNÞ ¼ p1 þ p2 þ p3 ¼ 0 we have

the relations

pM ¼ k; PN ¼ p1 þ p2 þ p4 ¼ �k;

p4 � p3 ¼ �k; ˘M ¼ �˘0
2 �

k

2
;

p4 þ p3 ¼ �2˘0
2 � k; (A3)

which are used with m1 ¼ m2 ¼ m3 ¼ mq ¼ mN=3 and

�1 ¼ 2; �2 ¼ 3

2
; m12 ¼ m1m2

m1 þm2

¼ mq

�1

;

mð12Þ3 ¼ ðm1 þm2Þm3

m1 þm2 þm3

¼ mq

�2

; (A4)

in the calculation of matrix elements.

2. Quark configurations

a. Baryons

The translationally invariant quark configurations s3½3�X
and sp2½3�x, L ¼ 0 are represented in terms of harmonic
oscillator wave functions (A1) depending on the relative
momenta (A2) as

�Nðß1ß2;Sz; TzÞ ¼ ’0Sðß1; ffiffiffiffiffi
�1

p
bÞ’0Sðß2; ffiffiffiffiffi

�2

p
bÞc ST

N ð124Þ;
(A5)

�Rðß1; ß02; Sz; TzÞ ¼
� ffiffiffi

1

2

s
’0Sðß1; ffiffiffiffiffi

�1

p
bÞ’2Sðß02;

ffiffiffiffiffi
�2

p
bÞ

þ
ffiffiffi
1

2

s
’2Sðß1; ffiffiffiffiffi

�1

p
bÞ’0Sðß02;

ffiffiffiffiffi
�2

p
bÞ
�
c ST

N ð123Þ: (A6)

The spin-isospin part c ST
N for both configurations is de-

scribed by the state vector

c ST
N ð124Þ¼X

�4t4

� ffiffiffi
1

2

s �
1ðSz��4Þ12�4

��������12Sz
�

�
�
1ðTz� t4Þ12t4

��������12Tz

�
jS12¼1;Sz��4ijT12

¼1;Tz� t4iþ
ffiffiffi
1

2

s
��4;Sz�t4;Tz

jS12¼0;0ij

�T12¼0;0i
�
��4

�t4 ; (A7)

where ��i
(�ti) is the spinor (isospinor) of i-th quark, �i

(ti) is the spin (isospin) projection; i ¼ 1, 2, 4 for the
nucleon and i ¼ 1, 2, 3 for the Roper.

b. Mesons

(1) Pseudoscalar (�) and scalar (�)

��ðß�;t�Þ¼’0Sðß�; ffiffiffiffiffi
�1

p
b�Þ

X
�3�5

�
1

2
�3

1

2
�5j00

�

�X
t3t5

�
1

2
t3
1

2
t5j1t�

�
��3

��5
�t3�t5 ; (A8)

��ðß�Þ¼’0Sðß�; ffiffiffiffiffi
�1

p
b�Þ ffiffiffiffiffi

�1
p

b�ß�

ffiffiffiffiffiffiffi
4�

3

s

�X
m

ð1m1�mj00ÞX
�3�5

�
1

2
�3

1

2
�5j1m

�
Y1�mðß̂�Þ

�X
t3t5

�
1

2
t3
1

2
t5j00

�
Þ��3

��5
�t3�t5 : (A9)

(2) Vectors (�, !)

��ðß�;	�;t�Þ¼’0Sðß�; ffiffiffiffiffi
�1

p
b�Þ

X
�3�5

�
1

2
�3

1

2
�5j1	�

�

�X
t3t5

�
1

2
t3
1

2
t5j1t�

�
��3

��5
�t3�t5

(A10)

[for the ! use the substitution

p
3

p
2

p
1

p
3

p
5

p
4

p
2

p1

p
3+ p

5= k

P = kP = 0
NR,N

FIG. 8. Quark diagram of the 3P0 model for the meson-baryon
coupling.
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�
1

2
t3
1

2
t5j1t�

�
!

�
1

2
t3
1

2
t5j00

�
(A11)

in Eq. (A10)].

APPENDIX B: MESON-BARYON COUPLING

The meson-baryon vertex generated by the effective
pair creation operator Veff

�qq is schematically sketched in

Fig. 8. Performing a recoupling of quark (antiquark)
variables in the matrix element hMjhNjVeff

�qq jNðRÞi (M ¼
�, �, �, !), omitting the isospin part and other trivial
factors [

gq
2mq

,
gq
2mq

, �ðp4 þ p5Þ, etc.] we obtain for the

nontrivial spin part of the effective �qq and �qq vertices
the following expressions:

�qq: � � p4; �qq: ð�p4 þ i½� � p4�Þ � �ð	�Þ; (B1)

where


ð	�Þ� ¼ f
ð	�Þ
0 ; �ð	�Þg (B2)

is the � meson polarization vector and � is the vector of
quark spin Pauli matrices. Expressions in Eq. (B1) are
only acceptable in the rest frame of the initial baryon
NðRÞ, in which case p4 ¼ �k and p4 ¼ �p5 (see Fig. 8).
For the 3rd quark with a nonzero momentum p3 � 0 both
expressions do not satisfy the Galilean invariance and the
second expression in Eq. (B1) does not correspond to the
elementary �qq vertex �uðp4Þ��uðp3Þ��ðp3 � p4Þ. Thus,
it does not lead to a conserved current in the VMD model.

It is possible to improve the expressions (B1) in an
acceptable form without changing them in the rest frame
where they were deduced in the 3P0 ansatz. Such correc-

tions are only possible with the substitutions p4 ! p4 �
p3, which become identities for p3 ¼ 0, i.e., in the rest
frame of the third spectator quark.

In our calculations we use the following corrected form
of Eq. (B1):

�qq:� � ðp4 � p3Þ;
�qq: ðE4 þ E3Þ
ð	�Þ

0 � fðp4 þ p3Þ
� i½� � ðp4 � p3Þ�g � �ð	�ÞÞ: (B3)

These expressions satisfy Galilean invariance and
are well correlated with the Feynman amplitudes
�uðp4Þ�5uðp3Þ�ðp3 � p4Þ and �uðp4Þ��uðp3Þ��ðp3 � p4Þ,
respectively, (in the nonrelativistic approximation). Here
we show that using such a corrected form of Eq. (B1) one
can obtain realistic values for the coupling constants �NN,
!NN, �NN and the nucleon magnetic moments �p, �n.

We further predict the nondiagonal couplings �NR, �NR,
�NR, !NR starting from a single constant � ¼ gq

2mq
nor-

malized to the well established value g�NN ¼ 13:5.

1. Diagonal N ! N transitions

Substituting wave functions (A8)–(A10) into Eq. (11)
and taking into account the modification (B3) of Eq. (B1)
gives after some algebra the following expressions for the
N ! N þM (N þM ! N) amplitudes:

Tq
N!Nþ�¼3nrh��;kjh�N;�kjVeff

q j�N;0inr
¼5

3

�
gq
2mq

�
1

n3=2ðy�Þ
ð8�b2Þ3=4y3=2� e��ðy�Þk2b2=6

�
�
1

2
T0
z

���������t�
��������12Tz

��
1

2
S0z
��������� �k
2mq

��������12Sz
�
; (B4)

Tq
N!Nþ� ¼ 3nrh��;kjh�N;�kjVeff

q j�N; 0inr
¼ �3

�
gq
2mq

�
y�ffiffiffi

6
p ð2mqbÞ

1

n5=2ðy�Þ
ð8�b2Þ3=4y3=2�

�
�
1þ fðy�Þk

2b2

9

�
e��ðy�Þk2b2=6�S0z;Sz�T0

z;Tz
;

(B5)

Tq
�þN!N ¼ 3nrh�N; 0jVeff

q j�N;�kij��;k; 	�; t�inr
¼ �

�
gq
2mq

�
1

n3=2ðy�Þ
ð8�b2Þ3=4y3=2� e��ðy�Þk2b2=6

�
�
1

2
T0
z

���������t�
��������12Tz

���
1þ 1

3

k � �ð	�Þ

2mqnðy�Þ
�
�S0z;Sz

� 5

3

�
1

2
S0z
��������i½� � k� � �ð	�Þ

2mq

��������12 Sz
��

; (B6)

Tq
!þN!N¼3nrh�N;0jVeff

q j�N;�kij�!;k;	!inr
¼�

�
gq
2mq

�
1

n3=2ðy!Þ
ð8�b2Þ3=4y3=2! e��ðy!Þk2b2=6�T0

z;Tz

�
��

3þ k��ð	!Þ

2mqnðy!Þ
�
�S0z;Sz �

�
i½��k���ð	!Þ

2mq

�
S

�
:

(B7)

The parameter b is the rms radius of the quark configura-
tion 0s3 which is used for the nucleon. The meson radius
bM is related through the relative value

yM ¼ bM
b

; M ¼ �;�; �; . . . ; (B8)

and we use the notations

nðyÞ¼1þ2

3
y2; �ðyÞ¼1þ5y2=6

nðyÞ ; fðyÞ¼1þy2=2

nðyÞ :

(B9)

If bR � bwe also use another relative variable yR ¼ bR
b and

then Eq. (B8) should be generalized as
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nðyÞ ! Nðy; yRÞ ¼ 1
2ð1þ y2RÞ þ 2

3y: (B10)

The strength parameter of the 3P0 model, � ¼ gq
2mq

, is fixed

as usual by normalizing the value of the �NN coupling
constant to g�NN ¼ 13:5. From (B4) it follows that

gq�NN ¼ 5

3

mN

mq

�
gq
2mq

�
1

n3=2ðy�Þ
½ð8�b2Þ3=4y3=2� 2mN

ffiffiffiffiffiffiffiffiffiffi
2M�

p �
(B11)

and for a typical value of b ¼ 0:5 fm one obtains � ’ 0:2.
For the �NN coupling constant

gq�NN ¼ 3

�
gq
2mq

�
y�ffiffiffi

6
p ð2mqbÞ

1

n5=2ðy�Þ
� ½ð8�b2Þ3=4y3=2� 2mN

ffiffiffiffiffiffiffiffiffiffi
2M�

p � (B12)

we get

gq�NN ¼ g�NN

2mNb

9
ffiffiffi
3

p

10
ffiffiffi
2

p
ffiffiffiffiffiffiffiffi
M�

M�

s
y5=2�

y3=2�

n3=2ðy�Þ
n5=2ðy�Þ

; (B13)

taking gq�NN ¼ g�NN . For typical CQM values of b ¼
0:5 fm and y� ¼ y� ¼ 1 this expression gives a realistic
value for the coupling constant with gq�NN ¼ 0:262g�NN ¼
3:54.

For the �NN coupling constant defined in Eq. (B6) as

gq�NN ¼1

3

�
gq
2mq

�
1

n3=2ðyÞ½ð8�b
2Þ3=4y3=22mN

ffiffiffiffiffiffiffiffiffiffi
2MV

p �; (B14)

substitution of the value
gq
2mq

deduced from Eq. (B11) gives

gq�NN ¼ g�NN

5

ffiffiffiffiffiffiffiffi
M�

M�

s
y3=2�

y3=2�

n3=2ðy�Þ
n3=2ðy�Þ

(B15)

and for y� ¼ y� ¼ 1 one obtains the realistic value

g�NN ¼ gq�NN ¼ 0:469g�NN ¼ 6:33.

Comparing Eqs. (B6) and (B8) one can see that in this
approach the !NN and �NN couplings are linked by the
standard relation

gq!NN ¼ 3gq�NN (B16)

which corresponds to ‘‘ideal mixing’’ usually used in the
VMD model.

2. Nondiagonal transitions

Here the main objective is the calculation of the non-
diagonal baryon matrix elements for the transitions N þ
� ! R and R ! N þM. The values of the coupling con-
stants have been fixed by Eqs. (B13), (B15), and (B16), on
the basis of g�NN . We further use them in the expressions
for the nondiagonal transitions N þ �� ! R, R ! N þ �,
R ! N þ �, etc., substituting symbols gq�NN and gq�NN

(and gq!NN with gq!NN ¼ 3gq�NN) instead of the explicit

expressions of the right-hand side. of Eqs. (B12) and

(B14). Then the vector-meson absorption amplitude

Mqð	V Þ
VþN!R ¼ 2mN

ffiffiffiffiffiffiffiffiffiffi
2MV

p
T
qð	V Þ
VþN!R is represented by the fol-

lowing two-component column vector:

Mqð	Þ
�þN!R

Mqð	Þ
!þN!R

0
@

1
A¼

ffiffiffi
3

p
2
gq�NNe

��ðyÞk2b2=6 h12T0
zj�t� j12Tzi
3�T0

z;Tz

 !

�
	��


ð	Þ0 þn0~k ��ð	Þ
2mNnðyÞ

�
p2ðy;k2Þ

þp0ðyÞn0
~k ��ð	Þ

2mNnðyÞ
�
�S0z;Sz þ

�
5

1

�

�
�
1

2
S0z
��������i½��k� �
ð	Þ

2mN

��������12Sz
�
p2ðy;k2Þ



:

(B17)

This is the main result of our considerations. Here we use

momenta k ¼ P� P0, ~k ¼ Pþ P0, related to momenta P,
P0 of initial and final baryon. Only in the rest frame they

have the same values, ~k ¼ k. In the case bR � b the
polynomials p0;2 and � , n, n0 also depend on yR. They
are defined by the equations

p0ðyÞ¼P0ðy;yR¼1Þ; p2ðy;q2Þ¼P2ðy;yR¼1;q2Þ;
n0¼N0ðyR¼1Þ; N0ðyRÞ¼3

2
y2R�

1

2
;

�ðyÞ¼ ~�ðy;yR¼1Þ; ~�ðy;yRÞ¼
y2Rþ 3

2ð1þy2R
2 � 4

9Þy2
1þy2R
2 þ 2

3y
2

;

P0ðy;yRÞ¼4

3

1þy2

Nðy;yRÞ ;

P2ðy;yR;k2Þ¼ð1�y2RÞ=2þ2y2=3

Nðy;yRÞ �y2R

�
1þy2

Nðy;yRÞ
�
2k2b2

9
;

(B18)

with Nðy; yRÞ defined in Eq. (B10). The R ! N þ � and
R ! N þ � decay widths are defined by the matrix
elements

Mq
R!Nþ� ¼ 3h��;kjh�N;�kjVeff

q j�R; 0i

¼
ffiffiffi
3

p
2

gq�NNp2ðy�;k2Þe��ðy�Þk2b2=6

�
�
1

2
S0zj� � kj 1

2
Sz

��
1

2
T0
zj�t� j

1

2
Tz

�
; (B19)

M q
R!Nþ� ¼ 3h��;kjh�N;�kjVeff

q j�R; 0i

¼
ffiffiffi
3

p
2

gq�NNp4ðy�;k2Þe��ðy�Þk2b2=6�S0z;Sz�T0
z;Tz

(B20)
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with

p4ðy�;k2Þ ¼ � 2

3

1� y2�
nðy�Þ � k2b2

27

�
1þ y2�=2þ y4�=3

n2ðy�Þ
þ k2b2

3

ð1þ y2�Þð1þ y2�=2Þ
n3ðy�Þ

�
: (B21)

As in the case of vector mesons the polynomials p2ðy�;k2Þ
and p4ðy�;k2Þ do not vanish in the limit jkj ! 0 and the
nonzero values

Z� ¼ 2y2�=3

nðy�Þ ; Z� ¼ 2

3

1� y2�
nðy�Þ ; (B22)

determine the amplitudes (B19) and (B20) for small values
of jkj.
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