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We define and compute from data the strong couplings of the Xð3872Þ with both of the possible

quantum numbers assignments JPC ¼ 1þþ, 2�þ. We use these to compute cross sections for J=c

resonance scattering into D �D�. As an application of the results obtained we revise the calculation of

the J=c absorption in a hot hadron gas to confront with recent RHIC observations in Au-Au collisions.
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I. INTRODUCTION

Recently the BABAR Collaboration took issue with the
statement that the Xð3872Þ is a 1þþ resonance, as was
widely accepted, raising the hypothesis of 2�þ quantum
numbers [1], yet to be confirmed by Belle or LHC
experiments.

In consideration of this we have discussed in a previous
paper [2] the consequences of the quantum numbers as-
signment suggested by BABAR, confronting the expected
mass of the 2�þ standard charmonium with the one mea-
sured for the X. We also raised the problem of the small X
prompt production cross section predicted for a 11D2

charmonium when confronted with the measured one.
Indeed, assuming the 2�þ hypothesis, the molecular inter-
pretation of the Xð3872Þ (at odds with data also in the
1þþ case, as discussed in [3,4] and contested in [5]) is
ruled out and the charmonium interpretation comes back
into play. Also the tetraquark is still an open option [2].

In this paper we will expand on the consequences of the
JPC assignment, studying the decay modes of the Xð3872Þ
under the hypothesis that it is a 1þþ state, let us call it X1,
or a 2�þ state, call it X2, but making no hypotheses on its
structure (charmonium, molecule, tetraquark).

As a first step, we will define a general parametrization
of the transition matrix elements, describing the known
decays in terms of a set of strong coupling constants. Using
the experimental information available and summarized in
Table I, as discussed in [6], we will determine the strong
couplings in the 1þþ and 2�þ cases by the explicit com-
putation of decay widths. In our fits we will also use the
data on X ! J=c! decays reported in [1].

We will not attempt any theoretical determination of the
strong coupling constants we are going to define. This
would require one to formulate some hypotheses on the
structure of the X and the use of approaches such as quark
models or QCD sum rules. This work could be done
elsewhere and confronted with the coupling strengths
found here.

We also confirm that, using data in [1], the negative
parity assignment for the X is indeed favored: contrary to
an earlier analysis by CDF [7] on the J=c�þ�� angular
distribution, indicating that both the 1þþ and 2�þ assign-
ments are equally possible, we will show that the
2�þ assignment would be the preferred one.
Once we have extracted from data the strong couplings

of the X1;2 to the ! and � vector mesons, we will calculate

the J=c ð�;!Þ ! X1;2 ! D0 �D0� cross section. This calcu-
lation could be of relevance to the study of a classic
background to the J=c suppression signal in heavy-ion
collisions: the J=c can be absorbed by a hot gas of hadrons
including pions and the lighter vector resonances at a
similar rate as it is supposed to occur in a phase of decon-
fined quarks and gluons. If one finds that this mechanism is
effective at temperatures smaller than the Hagedorn tem-
perature, considered as the limiting one for hadronic matter
(see e.g. [8]), then the J=c suppression signal should be
regarded as the less compelling among the many indica-
tions available of a new phase of matter produced in heavy-
ion collisions.
We will show that only the X2 would contribute effec-

tively to the J=c ð�;!Þ ! D0 �D0� absorption, whereas the
X1 has no significant contribution. It is clear that, given the
narrowness of the Xð3872Þ, the process of converting
J=c ð�;!Þ into D0 �D0� due to an intermediate X is too
slow to have a mean free path in a gas of �’s and !’s
that is likely larger than the typical size expected for the
fireball generated in a heavy-ion collision.

TABLE I. Branching ratios B and one sigma errors �ðBÞ for
the observed decays of Xð3872Þ [6].
Decay mode B �ðBÞ
X ! J=c�þ�� 0.055 0.020

X ! J=c�þ���0 0.045 0.030

X ! J=c� 0.0135 0.0060

X ! D0 �D0� 0.67 0.13

PHYSICAL REVIEW D 84, 014003 (2011)

1550-7998=2011=84(1)=014003(19) 014003-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.84.014003


Most of the studies on the hadronic suppression of J=c
are made under the hypothesis that the in-medium D and
D� mesons have a reduced mass and a larger width [9–17].
This in turn would compensate for the narrow width of the
X, because of a larger D0 �D0� phase space—we find that
mass variation of the open-charm mesons allows a sizable
contribution of the X2 in the hadronic J=c suppression. It
has been claimed that if one sets a definite temperature at
which the D and D� masses drop down, one could repro-
duce the dip observed in J=c production data in corre-
spondence of a critical centrality of the nucleus-nucleus
collision [18,19]. As discussed in the section on the com-
parison to data on J=c suppression at RHIC, we do not
confirm this pattern in our analysis.

We will add the contribution of the X2 to former results
on the nonresonant hadronic J=c suppression due to a hot

�=�, �=!, �, Kð�Þ gas and show its relative weight with
respect to that. This study is intended to be suggestive of
the fact that the XYZ resonances could be of relevance as
intermediate states in a number of physical processes, as
proposed, for example, in [20].

In Sec. II we define the strong coupling constants for X1

and X2 and calculate their values using available data on
the Xð3872Þ decay modes. In Sec. III A, using the results
obtained in Sec. II, we compute the cross sections for
processes like J=c ð�;!Þ ! X1;2 ! D0 �D0�. Section III C

is devoted to the computation of the average absorption
length of the J=c in a hadron fireball, taking into account
the in-medium properties of open-charm mesons described
in Sec. III B. We compare these results with those obtained
in absence of effects modifying the mass and width of D
mesons. We include in our analysis resonant and nonreso-
nant contributions neglecting their interference. Finally in
Sec. III D we compare our predictions to the RHIC data on
Au-Au collisions.

II. X DECAYS

We start with the parametrization of the transition matrix
elements for the decay processes in Table I in terms of
coupling strengths whose numerical values are then ex-
tracted by comparison with experimental data. In the next
subsection we discuss the Mfi matrix elements which are

related to the transition matrix elements Tfi by

Tfi ¼ ð2�Þ4�4

�
pi �

X
f

pf

�
Mfi: (1)

As for the normalization of states in Mfi the standard

1=
ffiffiffiffiffiffiffiffiffiffi
2EV

p
is used.

A. Transition matrix elements

We require that strong transition matrix elements are
parity-even Lorentz scalars obtained by combining the
momenta and polarizations of the initial and final particles.
The conservation of angular momentum fixes the decay

wave of A ! BC: JA ¼ ðJB � JCÞ � ‘BC, ‘BC being the
relative orbital angular momentum in the final state. For
each unit of orbital angular momentum in the final state
there must be factor of a spatial component of the momen-
tum in the transition matrix element. Here and in the
following we use the notation c and J=c interchangeably.
The JPC ¼ 1þþ case. The decay X ! cV, with V ¼

�;! is an ‘ ¼ 0 decay, since from the point of view of the
JP quantum numbers it corresponds to 1þ ! 1�1�. There
is only one combination of momenta and polarizations
which has all the properties we enumerated above1

hc ð�; pÞVð�; qÞjXð	; PÞi ¼ g1cV�

���	
ðPÞ���ðpÞ

� ��
�ðqÞP�: (2)

The decay X ! D0 �D0� is also an ‘ ¼ 0 process, since it
corresponds to 1þ ! 0�1�. The matrix element can be
written in terms of a second coupling strength, g1DD�, as
follows:

hD0ðpÞ �D0�ð�; qÞjXð	; PÞi ¼ g1DD�	
ðPÞ��
ðqÞ: (3)

In order to conserve charge conjugation one should con-
sider the final state D0 �D0� þ �D0D0�. As explained in
Appendix D 1, we can consider only theD0 �D0� component
of the final state in what follows.
The JPC ¼ 2�þ case. In this case, both the decays X !

cV and X ! D0 �D0� are ‘ ¼ 1 processes, since they cor-
respond to 2� ! 1�1� and 2� ! 0�1� transitions,
respectively.
The spin of the X is described by a symmetric traceless

polarization tensor �
� satisfying P
�

� ¼ 0. In the rest

frame, the five independent components can be set in a
3� 3 traceless tensor �ij. For the sum over polarizations
we have [21]X
pol

�
�ðkÞ��
�
ðkÞ

¼ 1

2
ðg
�g�
 þ g

g�� � g
�g�
Þ

� 1

2m2
ðg
�k�k
 þ g�
k
k� þ g

k�k� þ g��k
k
Þ

þ 1

6

�
g
� þ 2

m2
k
k�

��
g�
 þ 2

m2
k�k


�
; (4)

with k2 ¼ m2.

1In the rest frame of the decaying particle P� ¼ ðmX; 0Þ and
one can write

hc ð�; pÞVð�; qÞjXð	; PÞi ¼ g1cVmX�
ijk0	iðPÞ��j ðpÞ��

kðqÞ
¼ g1cVmXð�ðPÞ � ��ðpÞÞ � ��ðqÞ;

which is the scalar product of two polar vectors, the first coming
from the vector product between an axial vector � and a polar
vector �. Moreover, the above expression does not contain any
spatial component of the momenta and thus accounts for an
S—wave process.
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For the decay X ! cV, we have to determine the tran-
sition matrix element hc ð�; pÞVð�; qÞjXð�;PÞi. There are
two ways of combining momenta and polarizations which
give a parity-even Lorentz scalar2:

(i) a polarization vector contracts with the left index of
the � tensor. If that of the c , we have

���ðpÞ��
ðPÞ�
���p�q��
�
�ðqÞ (5)

or if the V one does,

���ðpÞ��
ðPÞ�
���q�p��
�
�ðqÞ; (6)

(ii) a momentum contracts with the left index of the
� tensor. One can have

p���
ðPÞ�
���q��
�
�ðpÞ��

�ðqÞ (7)

and the remaining combinations of momenta ob-
tained by replacing pq by pp, qq, qp.

Since we have a P-wave decay, we should not have non-
zero terms proportional to piqj, where i and j are spatial

indices. In the X rest frame such terms are absent in
Eqs. (5) and (6) since they would be proportional to
p� q—which vanishes only in the rest frame of the decay-
ing particle. The only nonzero combination of the type of
Eq. (7), not containing the piqj terms, is

Q���
ðPÞ�
���P��
�
�ðpÞ��

�ðqÞ; (8)

where Q ¼ p� q and P ¼ pþ q.
In conclusion we find that there are only three invariant

amplitudes one can form by combining these tensors,

T1 ¼ ���ðpÞ��
ðPÞ�
���p�q��
�
�ðqÞ

þ ���ðqÞ��
ðPÞ�
���p�q��
�
�ðpÞ; (9)

T2 ¼ ���ðpÞ��
ðPÞ�
���p�q��
�
�ðqÞ

� ���ðqÞ��
ðPÞ�
���q�p��
�
�ðpÞ; (10)

T3 ¼ Q���
ðPÞ�
���P��
�
�ðpÞ��

�ðqÞ; (11)

which carry three implicit polarization indices. The first
two correspond to the sum and the difference of Eqs. (5)
and (6), which turns out to be useful to further reduce the
number of independent tensors. Indeed one can show that
T1 and T3 are one and the same tensor. To do this we prove
that the following relation among sums over polarizations
holds: �X

pol

T1T
�
3

�
2 ¼

�X
pol

jT1j2
��X

pol

jT3j2
�
: (12)

The above condition implies that the two tensors are equal
up to a constant if the sum over polarizations has the
properties of an inner product. The Schwarz inequality
states indeed that for all vectors v, w

jhv;wij2 � hv;vihw;wi; (13)

where h�; �i is an inner product: the equality holds only if
the two vectors are linearly dependent, i.e., if they are
parallel. Given two vectors v, w 2 Cn, the inner product
is defined as hv;wi ¼ PN

n¼1 vnw
�
n ¼ PN

n¼1 v
�
nwn. Here we

are evaluating sums over polarizations, labeled by n, which
means

X
pol

TiT
�
j ¼ X5�3�3

n¼1

TðnÞ
i ðTðnÞ

j Þ�; (14)

where we are summing over the five polarizations of the X
and three of the vectors. Therefore Eq. (12) implies that for
each polarization configuration, T1 and T3 are equal up to a
constant, and we can choose one of the two for our basis of
linearly independent tensors. We choose to keep T3 and
eliminate T1. The final choice for the parametrization is

hc ð�; pÞVð�; qÞjXð�;PÞi ¼ g2cVT2 þ g02cVT3; (15)

where V ¼ �, !.
Finally we consider X ! D0 �D0�. One can easily build a

parity-even Lorentz scalar by contracting the � tensor with
the D0� polarization vector and the D0 momentum3

hD0ðpÞ �D0�ð�; qÞjXð�;PÞi ¼ g2DD��
���
ðqÞp�: (16)

B. Decay widths and determination of the
strong couplings

The JPC ¼ 1þþ case. Since ! and � have different
isospin quantum numbers in principle one needs to use
different couplings to describe these decays: g1c! and

g1c�. To determine these two values we write the partial

decay widths for X ! J=c� and X ! J=c! as in
Eqs. (B10) and (C13) in Appendix B and C respectively.
For X ! J=c� ! J=c�þ�� we have

2An �
��� tensor is needed to obtain even parity. Moreover
one cannot contract the two indices of the symmetric � tensor
with two of the indices of the completely antisymmetric � tensor.

3The even parity can be easily understood. In the rest frame of
the X one has

hD0ðpÞ �D0�ð�; qÞjXð�;PÞi ¼ g2DD��ij��i ðqÞpj

¼ g2DD� ða � ��ðqÞÞ � ðv � pÞ;
where a and v are an axial and a polar vector, respectively,
defined by �ij ¼ ai � vj þ vi � aj.
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�ðX ! J=c�þ��Þ

¼ 1

3

1

8�m2
X

Z
ds
X
pol

jhc�ðsÞjXij2p�ðm2
X;m

2
c ; sÞ

1

�

� m���Bð� ! ��Þ
ðs�m2

�Þ2 þ ðm���Þ2
m�ffiffiffi
s

p p�ðs; m2
�þ ; m2

��Þ
p�ðm2

�; m
2
�þ ; m2

��Þ :
(17)

HereB denotes a branching fraction, �� is the width of the

� resonance, hc�ðsÞjXi is the transition amplitude of the
previous section,4 and p� is the decay momentum in the X
rest frame, given by

p�ðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðx; y; zÞp
2

ffiffiffi
x

p ; (18)

where the Källén function is

	ðx; y; zÞ ¼ x2 þ y2 þ z2 � 2xy� 2yz� 2xz: (19)

In the calculations we will substitute m��� !ffiffiffi
s

p
��ðsÞ ! ðs=m�Þ��, the comoving width [see

Eq. (B17) in Appendix B]. Similarly for X ! J=c! !
J=c�þ���0 we get

�ðX ! J=c�þ���0Þ
¼ 1

3

1

8�m2
X

Z
ds
X
pol

jhc!ðsÞjXij2p�ðm2
X;m

2
c ; sÞ

� 1

�

m!�!Bð! ! 3�Þ
ðs�m2

!Þ2 þ ðm!�!Þ2
�ð3Þð ffiffiffi

s
p

; m�þ ; m�� ; m�0Þ
�ð3Þðm!;m�þ ; m�� ; m�0Þ ;

(20)

where m!�! ! ðs=m!Þ�!. The meaning of �ð3Þ is ex-
plained in Eq. (C7), Appendix C.

The width of X ! D0 �D0� ! D0 �D0�0 can be written as
the one for X ! J=c� ! J=c�þ��. Using the expres-
sions for the invariant amplitudes in terms of the couplings
constants in the preceding section, we obtain g1c� ¼
0:14� 0:03, g1c! ¼ 0:36� 0:01, and g1DD� ¼
ð3:5� 0:7Þ GeV.

The JPC ¼ 2þ case. We will use four different couplings
to describe the decays X ! J=c� and X ! J=c!: g2c�,

g02c� and g2c!, g
0
2c!. As for the J=c� channel, one can

assume that the decay proceeds through a hadronic chan-
nel: X first decays to J=c� or J=c! and later � or !
convert into a photon, using vector meson dominance,

hJ=c�jXi
¼ h�j!i 1

m2
!

hJ=c!ðq2¼0ÞjXiþh�j�ðq2¼0Þi

� 1

m2
�

hJ=c�jXi

¼ f!
m2

!

hJ=c!ðq2¼0ÞjXiþ f�

m2
�

hJ=c�ðq2¼0ÞjXi: (21)

We use the decay constants for � and ! derived from the
eþe� partial decay width of the two mesons: f� ¼
0:121 GeV2 and f! ¼ 0:036 GeV2 [22]. The matrix ele-
ment for the decay of X ! J=c� is thus also written in
terms of g2c!, g

0
2c! and g2c�, g

0
2c�. We are left with four

couplings to be determined and only three input values for
the branching ratios: BðX ! c!Þ, BðX ! c�Þ, and
BðX ! c�Þ. To perform the fit of the coupling we there-
fore use the data on the 3� invariant mass spectrum taken
from [1].
In [1], 3� events are selected from a sample of J=c!

events with an invariant mass in the interval 3:8625 GeV<

mJ=c! < 3:8825 GeV. To perform the fit we simulate the

decay of a 2�þ particle extracting its squared mass xi ¼
m2

i randomly with a Breit-Wigner distribution centered at
mX ¼ 3:8723 GeV and with a width �X ¼ 0:003 GeV [6].
For each value xi we require that xi > 0 and that
3:8625 GeV<

ffiffiffiffi
xi

p
< 3:8825 GeV. Having assigned m2

i

the expected number of 3� events with a definite invariant
mass m2

3� ¼ s is proportional to the distribution with

respect to s of the decay width �ðX ! J=c�þ���0Þ

Niðm2
3� ¼ sÞ / d�ðX ! J=c�þ���0Þ

ds
; (22)

which can be computed using Eq. (20). Neglecting the
overall numerical normalization we obtain

0.745 0.750 0.755 0.760 0.765 0.770 0.775 0.780

0

2

4

6

8

10

12

14

m 3 GeV

N

FIG. 1 (color online). Our fit from Eq. (26) (red triangles)
compared with experimental data (black disks) and the fit in
[1] (blue diamonds). �2=DOF ¼ 4:03=4.

4By hc�ðsÞjXi we mean hc ð�; pÞ�ð�; qÞjXð	; PÞi with q2 ¼
s. s is thus the invariant mass of the �� pair coming from the �.
In what follows, we will use the same notation for the transition
matrix element to a final state containing an unstable particle.
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Niðm2
3� ¼ sÞ / 1

m2
i

X
pol

jhJ=c!jXðm2
i Þij2

� 1

ðs�m2
!Þ2 þ ð s

m!
�!Þ2

p�ðm2
i ; m

2
c ; sÞ

��ð3Þð ffiffiffi
s

p
; mþ

� ;m
�
� ;m

0
�Þ (23)

if mi > mc þ ffiffiffi
s

p
. Thus the total number of events at fixed

s is

Nðm2
3� ¼ sÞ ¼ X

i

Niðm2
3� ¼ sÞ�ðmi �mc � ffiffiffi

s
p Þ: (24)

In Fig. 1 we show the agreement obtained with data
(�2=DOF ¼ 4:03=4) and we compare it with the experi-
mental fit obtained using a Blatt-Weisskopf factor to ac-
count for the ‘ ¼ 1 decay, as was done in [1].

To compute the normalization factor we exploit the
partial decay width of �ðX ! c!Þ ¼ BðX ! c!Þ�X as
written in Eq. (21). We obtain g2c! ¼ ð1:58�
0:16Þ GeV�1 and g02c! ¼ ð�0:74� 0:34Þ GeV�1. Using

the known experimental data on BðX ! c�Þ and BðX !
c�Þ, we obtain two possible solutions for g2c� and g02c�.

Since the J=c� ! X2 ! D0 �D0� cross section turns out to
be roughly the same using the two sets of couplings, we
choose to use one of them, namely g2c� ¼ ð�0:29�
0:08Þ GeV�1, g02c� ¼ ð0:28� 0:09Þ GeV�1.

If one fits the same data set assuming JPC ¼ 1þþ a
�2=DOF	 9=4 is obtained, which means that the proba-
bility of the 1þþ hypothesis is smaller by a factor of 6 than
the 2�þ one. For the decay X ! D0 �D0�, we use the same
method to extract the coupling and we obtain g2DD� ¼
189� 36.

The results are summarized in Table II. As a conse-
quence of the fact that BðX ! D0 �D0�Þ>BðX ! c!Þ
and BðX ! D0 �D0�Þ>BðX ! c�Þ, we find that the adi-
mensional coupling g2DD� is much larger than g1c! and

g1c�. On the other hand all the dimensional couplings turn

out to be of the same order of magnitude of the mass scales
involved.

III. AN APPLICATION TO THE J=c
SUPPRESSION IN HOT HADRONIC

MATTER

Recently the PHENIX Collaboration published new data
on the J=c suppression in heavy-ion collisions observed at

RHIC [23], which have been discussed, for example, in
[24]. These data, together with the upcoming ones from the
LHC-ALICE collaboration, have encouraged us to con-
sider, as a possible application of the determination of
the X1;2 coupling strengths, the study of the contribution

of the Xð3872Þ to the J=c suppression by a hot hadron gas
and to revise some previous results on this topic.
A decrease of the J=c production in heavy-ion colli-

sions is one of the first quark-gluon plasma discovery
signals suggested in the literature [25]. However processes
like

J=c ð�;�; �;!;�;Kð�Þ; . . .Þ ! Dð�Þ �Dð�Þ; (25)

which are at work in a hypothetical hadron gas formed in
place or after the deconfined phase of quarks and gluons,
may also provide a source of attenuation of J=c—an
antagonist signal to the standard one of quark-gluon
plasma suppression. These contributions might also take
place at a different stage of the hadronization process—
once the plasma has converted into hadrons under the
hypothesis that the hadron gas is itself in thermal equilib-
rium. Such situations have been extensively studied in the
past. Here we take into account also the in-medium effects
on the open-charm mesons discussed in [9–17] and update
analyses such as those in [26–32] and lattice studies like
[33]. Similar studies can be found in [34] or in [18,19],
where a critical temperature (Mott transition) is introduced
to reproduce the dip observed in J=c suppression in
correspondence of a particular centrality; see also [35–37].
In contrast to previous works, we consider here a reso-

nant channel mediated by X1;2, which turns out to be

relevant if in-medium effects on open-charm mesons are
considered. Because of the narrowness of the Xð3872Þ, one
would expect the contribution of the s-channel processes

J=c ð�;!Þ ! Xð3872Þ ! D0 �D0� (26)

to be negligible. Nevertheless they can be enhanced be-
cause the properties of open-charm mesons change when
propagating inside a hadron medium. In particular their
masses are expected to decrease, lowering the D0 �D0�
threshold. Also the nonresonant modes are affected by
in-medium D meson properties. Hence we reanalyze
some results previously obtained [26–29,33], in particular,
those in [27].
We will obtain an estimate for the cross section for the

process of Eq. (26), using the couplings derived in the first

TABLE II. Fitted values for the effective couplings of Xð3872Þ to D �D0�, J=c!, and J=c� for
the two JPC assignments.

Coupling JPC ¼ 1þþ JPC ¼ 2�þ

gðJÞDD� ð3:5� 0:7Þ GeV 189� 36
gðJÞ!c 0:36� 0:01 1:58� 0:16 GeV�1 �0:74� 0:34 GeV�1

gðJÞ�c 0:14� 0:03 ð�0:29� 0:08Þ GeV�1 ð0:28� 0:09Þ GeV�1
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part of this paper. In the following we will briefly review
how the properties of open-charm mesons are expected to
be modified inside the hadron medium. Using the results
found in the literature we will quantify the effect of this
dissociation process and update the estimates on the non-
resonant channels of Eq. (25) with respect to those given in
[27]. We will compare the predictions obtained with the
experimental data in the last subsection of the paper.

A. Cross sections

The cross section for the process of Eq. (26), depicted in
Fig. 2, reads as follows (see Appendix A):

�ðJ=c� ! D �D0�Þ ¼ 1

9

1

2	1=2ðs;m2
c ; m

2
�Þ

� fðs;m2
c ; m

2
�; m

2
X1;2

; m2
D;m

2
D� Þ

� 1

16�

	1=2ðs;m2
D;m

2
D� Þ

s
; (27)

where fðsÞ is the integral over the scattering angle of the
sum over polarizations of the squared matrix element

fðs;m2
c ; m

2
�;m

2
X1;2

; m2
D;m

2
D� Þ

¼
Z

d cos�
X
pol

jMviaX1;2
j2ðs;m2

c ; m
2
�; m

2
X1;2

; m2
D;m

2
D� ; �Þ:

(28)

For the matrix elements we use the couplings reported
in Table II. The resulting cross sections are shown in
Figs. 3–6 as functions of E� or E!, the energies of the �,

and the ! in the rest frame of the J=c : s ¼ m2
�;! þm2

c þ
2mcE�;!.

The functional behavior of the cross sections shown
can be explained as follows. At small values of the energy
of the incoming �;! the ‘‘exothermic’’ peak appears5: the
threshold energy of the reaction mD þmD� is indeed
smaller than the minimum value of

ffiffiffi
s

p
, namely m� þ

mc , so that the divergence in the flux factor is located at

a larger value than the threshold one. At higher energies,
s 
 m2

X, the flux factor behaves as 1=s, whereas the phase

space is approximately constant (	1=2ðs; 0; 0Þ=s ’ 1) so
that

�ðsÞ 	 1

s
� fðsÞ as s 
 m2

X: (29)

Here comes the difference between the 1þþ and the 2�þ
assignments. In the X1 case at high energies fðsÞ 	 s0

giving �ðsÞ 	 1=s. If instead X ¼ X2, fðsÞ 	 s7 giving
instead �ðsÞ 	 s6.
The divergence observed at high energies in the 2�þ

assignment should be mitigated including a form factor
which modifies the propagation of the virtual X2. As com-
mented in [38], there is ‘‘no empirical information on form
factors involving charmoniums.’’ At any rate it is sug-
gested that one can consider a polar expression as

FðqÞ ¼ 1

1þ jqj2
�2

¼ 1

1þ E2
��m2

�

�2

: (30)

FIG. 2. Feynman graph for J=c ð�;!Þ ! Xð3872Þ ! D0 �D0�.
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FIG. 3. Dissociation cross section of J=c into open-charm
mesons mediated by X1 as a function of the energy of the � in
the rest frame of the J=c (g1c� ¼ 0:14, g1DD� ¼ 3:5 GeV). The

low-energy exothermic peak is present.
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FIG. 4. Dissociation cross section of J=c into open-charm
mesons mediated by X1 as a function of the energy of the !
in the rest frame of the J=c (g1c! ¼ 0:36, g1DD� ¼ 3:5 GeV).

The low-energy exothermic peak is present.

5In Fig. 5 the peak is not resolved because of the x-scale
chosen.
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In Figs. 5 and 6 the dashed lines represent the cross
sections corrected by this polar form factor with
� ¼ mX. On the other hand this effect on the process
mediated by a virtual X1 can be safely neglected, since it
would be effective only in the high energy region where the
cross section drops down.

B. In-medium properties of open-charm mesons

The modifications of the masses and decay widths of
open-charm mesons D0 and D0� inside a hot pion gas have

been computed, for example, in [10], following the ap-
proach discussed in [39]. Indeed the presence of a gas of
light hadrons, such as �’s, can sustain scattering processes
which involve D mesons leading to a modification of their
masses and widths. These two quantities are both related to
the self-energy diagrams, which can be written at finite
temperature as the thermal averages of the resonant part of
the D��;0 forward scattering amplitude.
The decrease of the mass and the increasing decay

width for both the D mesons found in [10] are shown in
Fig. 7 and 8.
The authors of [18,19], obtained similar results but with

a different approach. They assume that the shape of q0 �q
interaction potentials, responsible for the binding of me-
sons, is sensitive to the temperature. Thus it can happen
that some discrete levels, corresponding to different
c �q excitations, are shifted into the continuous part of the
spectrum becoming metastable states with different
masses and nonvanishing widths. EachD-meson excitation

40
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m
b
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20

30

FIG. 6. Dissociation cross section of J=c into open-charm
mesons mediated by X2 as a function of the energy of the !
in the rest frame of the J=c (g2c! ¼ 1:58 GeV�1, g02c! ¼
�0:74 GeV�1, and g2DD� ¼ 189). Consider that we are actually
concerned only with relatively low-energy � and ! mesons in a
Hagedorn gas. The dashed line includes the polar form factor of
X2, while the solid one does not.
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FIG. 5. Dissociation cross section of J=c into open-charm
mesons mediated by X2 as a function of the energy of the �
in the rest frame of the J=c (g2c� ¼ �0:29 GeV�1, g02c� ¼
0:28 GeV�1, and g2DD� ¼ 189). If one uses the other set of
couplings for �, the cross section is roughly the same. The
dashed line includes the polar form factor of X2, while the solid
one does not.
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FIG. 7. In-medium mass modification computed in [10] for D0

(solid line) and D0� (dashed line).
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FIG. 8. In-medium total decay width computed in [10] for D0

(solid line) and D0� (dashed line).
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undergoes this transition at a different critical temperature:
�M / �ðT � TCÞ�ðT � TCÞ.

Since we do not find any relevant differences on the J=c
dissociation by using the two approaches, we will consider
only the one in [10].

The broadening and shifting of the masses of the two
open-charm mesons lead to a modification of the decay
width and mass of the Xð3872Þ. Since we do not have clues
on how in-medium effects would modify the mass of a X1;2

tetraquark, we simply assume that if Xð3872Þ ¼ X1 it is a
D0 �D0� molecule; if Xð3872Þ ¼ X2 it is a charmonium
state. We recall here that the 1þþ assignment is severely
at odds with a 23P1 standard charmonium interpretation
essentially because of the small radiative transition rate
X ! J=c� with respect to what was expected. In the
molecular interpretation the mass of the X1 is directly
related to the sum of the masses of the D0 and D0� and
thus it will decrease with the temperature. In the charmo-
nium assignment (and likely also for tetraquarks) one
might expect the mass of the X2 to be almost stable with
temperature. This is because X2 would be the 11D2 char-
monium radial ground state and Debye screening is not
expected to alter the lowest lying levels [25]. The D0 �D0�
width can be computed as

�ðX!D0 �D0�ÞT
¼ 1

2sXþ1

1

8�m2
X

Z smax
2

smin
2

ds2
Z smax

1

smin
1

ds1

�X
pol

jMX!DD�ðs1;s2Þj2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðm2

X;s1;s2Þ
q

2mX

�BWðs1;mDðTÞ;�DðTÞÞBWðs2;mD� ðTÞ;�D� ðTÞÞ; (31)

where by BW we mean the standard normalized Breit-
Wigner function

BWðs; m;�Þ ¼ 1

�

m�

ðs�m2Þ2 þ ðm�Þ2 (32)

and smin and smax are fixed by the kinematics. We show the
results in terms of the logarithmic derivative of the total
width of X1;2 with respect to the temperature; see Fig. 9: in-

medium effects make the X2 become much broader than
X1. This fact can be understood by taking into account the
dependence of the decay width on the masses of the
particles in the final state. The phase space volume is
enlarged proportionally to the decay momentum p�. As
for the matrix element, if JPC ¼ 1þþ the X ! D0 �D0�
decay has ‘ ¼ 0 and thus jMj2 	 constant, while if X is
a 2�þ state it has ‘ ¼ 1 so that jMj2 / p�2. Thus if JPC ¼
1þþ then �X / p�, instead if JPC ¼ 2�þ then �X / p�3.
To summarize, the fact that the charmonium X2 mass is

not affected by the medium makes the X2 ! D0 �D0�
P-wave decay much larger because theD0 andD0� masses
are instead sensitively decreased in the finite temperature
medium.

C. Comparison to data on J=c suppression at RHIC

The average absorption length (mean free path) of the
J=c due to the presence of a �meson gas at temperature T
is the inverse of the thermal average of the product of the
density number � of � mesons and the cross section �
[given in Eq. (26)],

h��J=c�!D0 �D0� iT ¼ ð2s� þ 1Þ
Z d3p�

ð2�Þ3
�ðE�Þ

eE�=�BT � 1

¼ 2s� þ 1

2�2

Z Emax
�

Emin
�

dE�

p�E��ðE�Þ
eE�=�BT � 1

:

(33)

Here the kinematics imposes that

Emin
� ¼ max

2
64m�;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmD þmD� Þ2 �m2

� �m2
c

2m2
c

vuut
3
75: (34)

By numerical inspection we have found that it is safe to cut
off the integrals at Emax

�;! ¼ 1:5 GeV and Emax
�;! ¼ 3:5 GeV

for JPC ¼ 1þþ and JPC ¼ 2�þ, respectively. The differ-
ence between the two values for Emax can be understood
noting that the cross section diminishes as the energy
grows if JPC ¼ 1þþ, while it grows with energy for
JPC ¼ 2�þ.
Given that the masses of the D0 and D0� mesons are

supposed to change with the temperature, we need to take
into account this effect in the calculation of the thermal
averages. We average the absorption length over the Breit-
Wigner distributions of the D and of the D�: the formula
for h��iT is therefore
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FIG. 9. Logarithmic derivative of the total decay width of
Xð3872Þ as a function of the temperature in the case X ¼ X1

and mX ¼ mDðTÞ þmD� ðTÞ (dashed line) and X ¼ X2 and
mX ¼ 3872 MeV (solid line).
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h��J=c�!X1;2!DD� iT ¼ 2s� þ 1

2�2

Z smax
2

smin
2

ds2
Z smax

1

smin
1

ds1
Z Emax

�

Emin
�

dE�

p�E��ðE�; s1; s2; mXðTÞ;�XðTÞÞ
eE�=�BT � 1

� BWðs1; mDðTÞ;�DðTÞÞBWðs2; mD� ðTÞ;�D� ðTÞÞ: (35)

As already mentioned in the previous subsection, we report
only the results obtained using the masses and widths of the
D mesons computed in [10]. If one uses the discontinuous
functions for mDðTÞ and �DðTÞ proposed in [18,19], the
values obtained for h��iT are of the same magnitude.
Moreover, regardless of whether the nonresonant channel
is included, h��iT does not show any discontinuity that
can help in fitting the observed dip in the experimental
data, contrarily to what shown in [18,19]. The same holds
for the !.

In Figs. 10 and 11 we show the results for the inverse
average absorption length for the resonant J=c suppres-
sion mediated by X2 and initiated by � and!, respectively.
For the X1 case we find the effect is negligible, since the in-
medium X1 is still too narrow for � and ! to effectively
dissociate the J=c into open-charm mesons.

When computing the thermal average h��iT associated
to X2 one should use the cross section corrected by the

form factor. Nevertheless due to the exponential e�E�=kT in
the Bose-Einstein statistics, the region in E� which gives

the largest contribution to h��iT extends up to 	1:8 GeV
for T ¼ 170 MeV. In this region the effect of the form
factor is not dramatic and thus it can be safely neglected
without modifying the final picture.

We also update the estimates for the nonresonant chan-
nels enumerated in Eq. (25) as discussed in [27]. In
Appendix D 2, we give some details on the counting rules
for all the J=c absorption processes we consider in the
hadron gas.

In Table III we give a summary of the results for the
inverse mean free paths. The contribution of the X1 is

negligible whereas the contribution from the X2 resonant
channel amounts to the 50% of the nonresonant channels at
T ¼ 100 MeV. With the growing temperature, the reso-
nant contribution is found to weight less than the non-
resonant ones, reducing to a 10% of the nonresonant total
at about the Hagedorn temperature T 	 170 MeV. We
remind the reader that we have neglected possible inter-
ference between resonant and nonresonant channels.
We now take into account the recent RHIC data on the

so-called nuclear modification factor RJ=c
AþA, reported in

[23] as a function of the number of participants in the

collision. The quantity RJ=c
AþA measures the ratio of the

J=c yield in Aþ A and pp collisions scaled by the num-
ber of nucleon-nucleon collisions. We will consider only
Au-Au collisions at RHIC, due to their higher statistical
significance. We will also reconsider the old data on Pb-Pb
collisions from NA50 [40] to show how the picture has
changed in recent years.
References [41,42] have also considered the possibility

that a recombination mechanism could compensate the
J=c suppression due to quark-gluon plasma (QGP), mak-
ing the drop in RHIC data less evident with respect to
NA50, where this mechanism is expected to be weaker due
to the much smaller energies involved. However in [24] it
was shown that the recombination effects are of the same
order of magnitude as the experimental uncertainties and
thus they can be safely neglected.
The geometry of the heavy-ion collision is shown sche-

matically in Fig. 12, which depicts the time-evolution in
the center of mass frame. The impact parameter, b, is
defined as the transverse distance of the centers of the
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FIG. 10. J=c� ! D0 �D0�: inverse average absorption length
for X2 hypothesis, using mX ¼ 3:8723 GeV.
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FIG. 11. J=c! ! D0 �D0�: inverse average absorption length
for X2 hypothesis, using mX ¼ 3:8723 GeV.
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two nuclei. We consider the J=c to be created with
Feynman’s x ’ 0, during the overlap of the two nuclei.
These particles have to overcome absorption from the
column density of nucleons of extension L. In the center
of mass frame the length of the column is L=�. In the same
frame, the density of nucleons is �nucl�, so that the absorp-
tion factor is Lorentz invariant and given by
expð��nucl�nuclLÞ; see [43]. The nuclear absorption cross
section, �nucl, has been determined in [44] from the be-
havior of the cross section for pþ A ! J=c þ anything
and dþ Au ! J=c þ anything

�RHIC
nucl ¼ ð3:5� 0:2Þ mb: (36)

As for NA50, one learns from [45] that

�NA50
nucl ¼ ð4:3� 0:2Þ mb: (37)

For the density of ordinary nuclear matter we take �nucl ¼
0:17 fm�3 [46].
In Fig. 12(c) we show the hadron fireball produced by

the central collisions of the interacting nucleons [47] (the
comoving particles �;�;!; . . . ). The fireball has a trans-
verse dimension, l, approximately equal to the length of the
overlapping region

l ¼ 2R� b; (38)

where R is the nuclear radius. The attenuation due to the
interactions with the hadrons in the fireball is related to the
average length that a J=c has to traverse before leaving it.
The RHIC data in [23] are taken in two different rapidity
regions: a forward rapidity region 1:2< jyj< 2:2 and a
mid rapidity region jyj< 0:35. We take, for simplicity,
a spherical fireball and we simulate the production of a
particle at some point inside the sphere and with a given
direction of the velocity. Assuming a uniform linear mo-
tion inside the fireball, the distance d, given the starting
point r and the direction of the velocity v̂, can be written in
implicit form as

jrþ dv̂j ¼ l

2
: (39)

The point on the spherical surface where the particle
emerges from the fireball is thus r0 ¼ rþ dv̂, from which
one can compute the rapidity of the J=c observed, y ’
� ¼ � lnðtanð�=2ÞÞ, with � the polar angle associated to r0.
To obtain the average distance one needs to integrate over
the two angles which identify the direction of v̂ and over r,
taking into account the constraint on the polar angle of the

TABLE III. Inverse absorption lengths as defined in Eq. (38) for all the particles in the gas. For each temperature, we show the results
obtained for fixed D meson masses (upper entry of each cell) and for decreasing D meson masses as computed in [10] (lower entry of
each cell). Since the � decays only into Ds

�Ds and we assume that Ds mesons do not change their masses and widths inside a hadron
medium, the upper and lower entry of each cell are equal. As for the resonant contribution due to X2 (first column) we do not report the
results with fixed D meson masses, since they are negligible with respect to the nonresonant ones (NR). We do not consider
temperatures higher than the value we use for the Hagedorn temperature TH 	 177 MeV.

T (GeV) h��ið�þ!ÞX2
T (fm�1) h��i�þ!

T (fm�1) h��iKT (fm�1) h��iK�
T (fm�1) h��i�T (fm�1) h��i�þ�

T (fm�1) h��iNRT (fm�1)

0.150 0.00700 0.00182 0.00244 0.00052 0.00469 0.01648

0.00218 0.00801 0.00212 0.00268 0.00052 0.00580 0.01908

0.155 0.00948 0.00239 0.00341 0.00074 0.00607 0.02208

0.00260 0.01101 0.00280 0.00375 0.00074 0.00753 0.02565

0.160 0.01267 0.00311 0.00467 0.00102 0.00774 0.02920

0.00311 0.01478 0.00365 0.00516 0.00102 0.00967 0.03402

0.165 0.01672 0.00398 0.00631 0.00138 0.00977 0.03817

0.00369 0.01959 0.00470 0.00670 0.00138 0.01224 0.04456

0.170 0.02183 0.00505 0.00842 0.00186 0.01219 0.04935

0.00434 0.02566 0.00597 0.00934 0.00186 0.01533 0.05769

0.175 0.02821 0.00633 0.01109 0.00247 0.01506 0.06316

0.00505 0.03326 0.00751 0.01234 0.00247 0.01904 0.07398

0.180 0.03610 0.00786 0.01445 0.00324 0.01845 0.08010

0.00588 0.04270 0.00935 0.01612 0.00324 0.02341 0.09400

(a)

time

(b)

L/γ

(c)

N  = 0B
b l

FIG. 12 (color online). Geometry of the collision between two
identical heavy nuclei with impact parameter b. After the two
nuclei have traversed each other, a thermalized gas of lighter
resonances is formed.
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emersion point given by the experimental bounds on the
rapidity (y0 < jyj< y1 implies �0 < �< �1). To make our
simple simulation more realistic we take into account that
the distribution of the directions of the velocity is not
uniform, but can be approximated by fðv̂TÞ / 1=pT , where
pT is the transverse momentum with respect to the beam
axis. Finally one has

�d ¼
R
dr

R
dv̂fðv̂TÞdðr; v̂ÞTð�ÞR

dr
R
dv̂fðv̂TÞTð�Þ ; (40)

with

Tð�Þ ¼
�
1 �0 < �< �1
0 elsewhere

: (41)

The result of this computation is �dfwd ¼ 0:4l and
�dmid ¼ 0:3l in the forward and mid rapidity region, respec-
tively. Thus, the attenuation factor due to absorption by the
comoving particles is

A fwdðmidÞ
�;�;!;... / exp½��ih�i�iiTðlÞ �dfwdðmidÞ�; (42)

where the subscript i labels the species of hadrons making
up the fireball, �i the number density of the effective (i.e.
above threshold) particles, and �i the corresponding J=c
dissociation cross section. Brackets indicate an average
over the energy distribution in the fireball. This thermal
average is computed at a certain temperature TðlÞ, which is
given by the centrality of the collision, as we shall explain
in detail in the next subsection.

The NA50 measurements on Pb-Pb collisions were in-
clusive. Hence one needs to integrate the distance dðr; v̂Þ
over the whole range for the polar angle, obtaining
�d ¼ 3=8l, as was done in the previous analysis contained
in [27].

As noted before, we can compute the nuclear absorption
length, L, as a function of b using NA50 data [48,49] for
Pb-Pb collisions. We report this function in Fig. 13.
Exploiting Eq. (42), one can obtain L as a function of l.

We can reasonably suppose that the same functionLðbÞ can
be used in the analysis of Au-Au collisions at RHIC, since
Au and Pb have approximately the same radius (RPb ¼
7:1 fm and RAu ¼ 7:0 fm).
Putting it all together, we write the attenuation of the

J=c , due to both comovers and nuclear effects, as a
function of l according to

A fwdðmidÞðlÞ ¼ C0 þ C� exp½��nucl�nuclLðlÞ�
� exp½��ih�i�iiTðlÞ �dfwdðmidÞ�; (43)

where C is an appropriate normalization constant and C0 is
an offset. To fit NA50 data we substitute �dfwdðmidÞ with 3=8l.
To obtain the experimental data [23] as a function of l

we derive the number of nucleons participating in a
collision with impact parameter b from geometrical
considerations

Npart ¼ 4

2
4Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2�b2=4
p

0
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

p
� b

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2=4

q 3
5

� 2A

�R2
; (44)

where A is the atomic mass number and R the nucleus
radius; see Fig. 14. Very similar results are obtained using a
Glauber model to relate the number of participants to the
impact parameter [40].

D. Hagedorn gas

Herewewish to determine the function TðlÞ to be used in
Eq. (42). We will describe the fireball as a Hagedorn gas of
resonances. The partition function of a Hagedorn gas in the
classical Boltzmann limit (E 
 �BT) can be written
as [46]

lnðZcl
HÞ ¼

�
T

2�

�
3=2 Z

dm�ðmÞm3=2e�m=T: (45)
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FIG. 13. Mean length of the path that a J=c produced during
Pb-Pb collisions at NA50 must travel in nuclear matter as a
function of the impact parameter b [48,49].
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FIG. 14. Average number of participant nucleons in a Au-Au
collision as a function of the impact parameter b computed using
Eq. (49).
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�ðmÞ is the mass spectrum of hadronic states, which has the
empirical shape

�ðmÞ ¼ c

ðm2
0 þm2Þ3=2 e

m=TH ; (46)

with m0 ¼ 0:96 GeV, c ¼ 2:12 GeV2, and TH ¼
177 MeV [27]. TH is known as the Hagedorn temperature.
For a recent determination, see [50]. As soon as T � TH

the integral in Eq. (45) diverges, hence this thermodynam-
ical description is valid up to T � TH. Above the Hagedorn
temperature the system undergoes a phase transition,
which can be interpreted as the transition from hadronic
matter to QGP.

From the partition function of Eq. (45) one can easily
obtain the energy density �ðTÞ,

�ðTÞ ¼ � @

@

lnðZcl

HÞ

¼
�
T

2�

�
3=2 Z

dm
c

ðm2
0 þm2Þ3=2 m

5=2

�
�
1þ 3

2

T

m

�
emð1=TH�1=TÞ: (47)

On the other hand, the energy density released in a colli-
sion is proportional to the factor

�nuclVðbÞ
SðbÞ ¼ A

S
gðb=RÞ; (48)

where

gðb=RÞ ¼ �

2

ð1� b=2RÞ2ðb=4Rþ 1Þ
arccosðb=2RÞ � ðb=2RÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2=4R2
p :

(49)

Therefore a simple estimate of the ratio of the energy
density for two different values of b is given by

�ðbÞ
�ðb0Þ

¼ gðb=RÞ
gðb0=RÞ ) �ðbÞ ¼ �ðb0Þ

gðb0=RÞgðb=RÞ: (50)

Using the Bjorken relation [47] one can estimate the
energy density released in a collision with impact parame-
ter b by measuring the transverse energy per unit rapidity

�Bj ¼ dET

dy

1

�0�r
2
; (51)

where �0, the formation time, is usually taken as 1 fm, and
�r2 is the effective area of the collision. In [51] the
PHENIX Collaboration finds that in Au-Au collisions
with 90 participants, which corresponds to b0 ’ 9 fm
[see Eq. (44)], the energy density amounts to
2:4 GeV=fm3, thus

�RHICðb0 ¼ 9 fmÞ ¼ 2:4 GeV=fm3: (52)
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FIG. 15. Temperature of the Hagedorn gas formed after a Pb-Pb collision at NA50 (left panel) or a Au-Au collision at RHIC (right
panel) as a function of l ¼ 2R� b, b being the impact parameter.
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FIG. 16 (color online). Attenuation function for the J=c yield
in Pb-Pb collisions as measured at NA50 (squares) and as
predicted by the hadron gas description (red line). The best fit
is obtained for C0 ¼ �0:2 and C ¼ 1:4 giving a �2=DOF ¼
4:9=9. In the absence of the resonant contribution from X2 and of
the in-medium effects on the D mesons, we obtain �2=DOF ¼
5:1=9.
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As for the NA50 data on Pb-Pb collisions, we take
from [52]

�NA50ðb0 ¼ 9:2 fmÞ ¼ 1:9 GeV=fm3: (53)

Using these values we obtain the energy density as a
function of the impact parameter �ðbÞ. On the other
hand, we know the relation between energy density and
temperature �ðTÞ from Eq. (47) and thus we can deduce
TðbÞ and in turn TðlÞ. We show TðlÞ for Pb-Pb collisions at
NA50 and Au-Au collisions at RHIC in Fig. 15. It is

evident that over a wide range of l the temperature is
almost constant and below the Hagedorn temperature.
Now we have all the ingredients to perform a best fit of
the experimental data using the attenuation function de-
fined in Eq. (43). We show the agreement between experi-
mental data and theoretical prediction in Fig. 16 for NA50
data, and in Figs. 17 and 18 for RHIC data. We remind the
reader here that C and C0 are fit parameters which include
bulk effects we do not dwell upon. Moreover, the differ-
ences we find in these parameters between RHIC and
NA50 are not statistically significant within the errors.

IV. DISCUSSION AND CONCLUSIONS

We have determined from available data the strong
coupling constants of the Xð3872Þ under the hypothesis
that it is a 1þþðX1Þ or 2�þðX2Þ resonance. The results we
find may be confronted with theoretical calculations mak-
ing assumptions on the structure of the X: molecule, tetra-
quark, standard charmonium.
We use the coupling strengths we find to explore the

potential role of X1;2 in J=c absorption processes like

J=c ð�;!Þ ! X1;2 ! D0 �D0�. Such processes might occur

in a hot resonance gas produced in heavy-ion collisions.
Regardless of the detail mechanism by which the reso-
nance gas is formed, processes as the ones mentioned
above are mimicking the in-plasma J=c suppression hy-
pothetically due to the Debye screening of the c �c confining
potential, as first discussed in [25]. Therefore this is a
background to the Debye J=c suppression signal. How
far can we go with a hadron gas picture in fitting data on
J=c suppression at RHIC? A limitation to the hadron gas
description might come from the excessively high tem-
perature needed for the gas to account for the observed
J=c suppression effect. This was discussed in [26,27]: a
hadron gas description fails above the critical Hagedorn
temperature, the highest temperature for hadron matter.
The analysis in [26,27] was based on NA50 data on

Pb-Pb collisions (see Fig. 11), where at a centrality of
about 4 fm in units of l ¼ 2R� b, b being the impact
parameter, a drop was observed (actually a 1� effect) in the
J=c yield in going from the three left-most points toward
higher centralities. In the low-l region (l � 4 fm) the
authors of [26,27] used also data on S-U collisions and
the approach was to perform a best fit in that region (where
the hadron gas picture is more reliable, the energy density
being smaller) with an exponential attenuation function at
some temperature T. An unreasonably large T was then
needed to fit data also at l � 4 fm. Using an Hagedorn gas
model the fit was simply very poor. Moreover Ref. [53]
pointed out a correlation in the l dependence of the J=c
suppression and the enhancement of strange particle pro-
duction observed in NA50 data.
Here we take a different approach. We note that the drop

at l ¼ 4 fm observed by NA50 (Fig. 16) is much less
evident in the recent Au-Au RHIC data in Fig. 17 and
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FIG. 17 (color online). Attenuation function for the J=c yield
in Au-Au collisions in the forward rapidity region 1:2< jyj<
2:2 as measured at RHIC (disks) and as predicted by the hadron
gas description (red line). The best fit is obtained for C0 ¼ �0:6
and C ¼ 1:9 giving a �2=DOF ¼ 5:6=4. In the absence of the
resonant contribution from X2 and of the in-medium effects on
the D mesons, we obtain �2=DOF ¼ 6=4. In this rapidity region
the J=c is reconstructed in the 
þ
� mode.
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FIG. 18 (color online). Attenuation function for the J=c yield
in Au-Au collisions in the mid rapidity region jyj< 0:35 as
measured at RHIC (disks) and as predicted by the hadron gas
description (red line). The best fit is obtained for C0 ¼ �0:5 and
C ¼ 1:8 giving a �2=DOF ¼ 6:1=6. In the absence of the
resonant contribution from X2 and of the in-medium effects on
the D mesons, we obtain �2=DOF ¼ 6:5=6. In this rapidity
region the J=c is reconstructed in the eþe� mode.
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absent in Fig. 18. Therefore we fit the whole data set (and
not only the l � 4 fm region) with an attenuation function
computed in a Hagedorn gas having a limiting temperature
TH ¼ 177 MeV. As stated in Sec. III C we are neglecting
possible charm recombination effects.

Actually we find a very good fit to data just using the
attenuation functions computed in [27]. This is so because
the nuclear part of the attenuation function in Au-Au
collisions at RHIC is expected to be almost the same as
that in Pb-Pb collisions at NA50, because Pb and Au nuclei
are very similar in size and the J=c nuclear absorption
cross sections turn out to be very similar at RHIC and
NA50. Moreover to define the dependence of the tempera-
ture on centrality, we use the energy density produced in
the RHIC collisions according to the Bjorken description,
and we found it to be almost equal to the one computed for
NA50.

Including some hypothetical in-medium effects on mass
decreasing and broadening of open-charm mesons [9–17]
and a resonant contribution from the J=c ð�;!Þ ! X2 !
D0 �D0� channel (about the 10% of the nonresonant one), we
get slightly larger inverse absorption lengths as shown in
Table III which altogether slightly improve the fit to data,
decreasing the �2=DOF from 6=4 to 5:6=4; see Figs. 17
and 18. In the calculation of J=c absorption we assume
that X ¼ X2 has more likely a 2�þ charmonium interpre-
tation, whereas X ¼ X1 has a 1

þþ molecule assignment if
only because we have no clues on how a finite temperature
hadron medium would alter mass and width of a tetraquark
particle. In this respect a charmonium X2 gets a much
larger width because its mass is not modified by the me-
dium, while the masses of its decay products D0 and D0�
are. The larger width of X2 is in turn responsible for the
most effective J=c ð�;!Þ ! X2 conversion which has a
very low rate for a narrow X1. The X1 is expected to stay
narrow even in-medium because: (i) its mass lowers as
the sum of D0 and D0� masses and (ii) X1 ! D0 �D0� is an
S-wave decay.

The conclusion which can be drawn from this analysis is
that, given the hypotheses we use, data on J=c yield in
heavy-ion collisions are likely the less compelling ones in
the search of a deconfined quark-gluon state of matter
because they are affected by a large hadronic background
in the sense explained above.

In order to have a clearer picture, it would be very
important to have RHIC data on J=c suppression for a
larger number of impact parameter bins, in particular in the
intermediate centrality range. It is moreover our aim to
underscore that X, Y, Z particles being discovered in the
last few years might have impact on a wide class of
elementary processes: we find here that if the Xð3872Þ
were confirmed to be a 2�þ state, under certain hypotheses
on the behavior of open-charm mesons in a hot hadron gas,
it would give a non-negligible contribution to the hadron
J=c dissociation mechanism.

APPENDIX A: J=c ð�;!Þ ! Xð3872Þ ! D0 �D0�
CROSS SECTION

We give some details on the formulas used in the text.
The differential cross section for J=c� ! D0 �D0� is

d�ðJ=c� ! D0 �D0�Þ
¼ 1

9

1

4�
ð2�Þ4�ð4ÞðpD þ pD� � pc � p�Þ

�X
pol

jMJ=c�!D0 �D0� j2 d3pD

ð2�Þ32!D

d3pD

ð2�Þ32!D�
; (A1)

with the flux � defined by

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpc � p�Þ2 �m2

cm
2
�

q
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðs; m2

c ; m
2
�Þ

q
: (A2)

We use also

Z
ð2�Þ4�ð!Dþ!D� � ffiffiffi

s
p Þ�ð3ÞðpDþpD� Þ

� d3pD

ð2�Þ32!D

d3pD

ð2�Þ32!D�
¼ 1

16�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðs;m2

D;m
2
D� Þ

q
s

dcos�:

(A3)

The above formulas lead to Eq. (27). Similarly for !.

APPENDIX B: X ! J=c�

Here we report the formulas used for the computation of
the width of X ! J=c�,

d�ðX ! J=c�þ��Þ
¼ 1

2sX þ 1

1

2mX

X
pol

jhJ=c�þ��jXij2d�ð3Þ; (B1)

where

d�ð3Þ ¼ ð2�Þ4�ð4ÞðP� pc � p1 � p2Þ

� d3pc

ð2�Þ32Ec

d3p1

ð2�Þ32E1

d3p2

ð2�Þ32E2

: (B2)

Using the narrow width approximation for the � and the
unstable particle propagator

X
pol

jhJ=c�þ��jXij2

¼ 1

3

X
pol

jhJ=c�jXij2 1

ðs�m2
�Þ2 þ ðm���Þ2

�X
pol

jh�þ��j�ij2; (B3)

where
P

poljh�þ��j�ij2 ¼ g2��, with g�� a constant num-

ber. The phase space factor can be rewritten as
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d ��ð3Þ ¼ ð2�Þ4
Z
d4p��

ð4ÞðP�pc �p�Þ�ð4Þðp��p1�p2Þ

� d3pc

ð2�Þ32Ec

d3p1

ð2�Þ32E1

d3p2

ð2�Þ32E2

¼ 1

2�

Z
dsð2�Þ4�ð4ÞðP�pc �p�Þ

� d3p�

ð2�Þ32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþjp�j2

q d3pc

ð2�Þ32Ec

ð2�Þ4�ð4Þ

�ðp��p1�p2Þ d3p1

ð2�Þ32E1

d3p2

ð2�Þ32E2

: (B4)

The notation d ��ð3Þ is to indicate that we have an inter-
mediate �. Now we observe that

Z
ð2�Þ4�ð4ÞðP� pc � p�Þ

d3p�

ð2�Þ32
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ jp�j2

q d3pc

ð2�Þ32Ec

¼ �ð2ÞðmX;mc ;
ffiffiffi
s

p Þ ¼ 1

4�

p�ðm2
X;m

2
c ; sÞ

mX

(B5)

and

Z
ð2�Þ4�ð4Þðp� � p1 � p2Þ d3p1

ð2�Þ32E1

d3p2

ð2�Þ32E2

¼ �ð2Þð ffiffiffi
s

p
; m�þ ; m��Þ ¼ 1

4�

p�ðs;m2
�þ ; m2

��Þffiffiffi
s

p : (B6)

Thus it results that

��ð3ÞðmX;mc ;m�þ ;m��Þ

¼ 1

2�

Z
ds

1

4�

p�ðm2
X;m

2
c ;sÞ

mX

1

4�

p�ðs;m2
�þ ;m2

��Þffiffiffi
s

p : (B7)

The full decay width is then

�ðX ! J=c�þ��Þ
¼ 1

2sX þ 1

1

2mX

1

6�

Z
ds
X
pol

jhJ=c�ðsÞjXij2

� 1

4�

p�ðm2
X;m

2
c ; sÞ

mX

g2��

ðs�m2
�Þ2 þ ðm���Þ2

1

4�

� p�ðs; m2
�þ ; m2

��Þffiffiffi
s

p : (B8)

We can relate g2�� to �ð� ! ��Þ by

g2�� ¼ 6m2
��ð� ! ��Þ 4�

p�ðm2
�; m

2
�;m

2
�Þ

(B9)

g2��¼6m2
��ð�!��Þ 4�

p�ðm2
�;m

2
�;m

2
�Þ
�ðX!J=c�þ��Þ

¼ 1

2sXþ1

1

8�m2
X

Z
ds
X
pol

jhJ=c�ðsÞjXij2p�ðm2
X;m

2
c ;sÞ

� 1

�

m���Bð�!��Þ
ðs�m2

�Þ2þðm���Þ2
m�ffiffiffi
s

p p�ðs;m2
�þ ;m2

��Þ
p�ðm2

�;m
2
�;m

2
�Þ

:

(B10)

In the limit of narrow width for the �

lim
�!0

m�

ðs�m2Þ2 þ ðm�Þ2 ¼ ��ðs�m2Þ: (B11)

Equation (B10) is equal to the one we can obtain taking
the average of

P
poljhJ=c�ðsÞjXij2p�ðm2

X;m
2
c ; sÞ over the

Breit-Wigner distribution of the � meson

�ðX ! J=c�þ��Þ
¼ 1

2sX þ 1

1

8�m2
X

Z
ds
X
pol

jhJ=c�ðsÞjXij2p�ðm2
X;m

2
c ; sÞ

� 1

�

m���Bð� ! ��Þ
ðs�m2

�Þ2 þ ðm���Þ2
: (B12)

In actual calculations we use m��� ! s
m�

��. Indeed the

propagator of an unstable particle A with 4-momentum p
and which decays to two particles B andC can be written in
the form (p2 ¼ s) [54],

1

ðp2 �m2Þ2 þ ð ffiffiffiffiffiffi
p2

p
�ðp2ÞÞ2 ; (B13)

where �ðp2Þ ¼ �ðAðp2Þ ! BCÞ is

�ðAðp2Þ ! BCÞ ¼ g2ðp2; m2
B;m

2
CÞ

16�ð ffiffiffiffiffiffi
p2

p Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðp2; m2

B;m
2
CÞ

q
:

(B14)

Even if an unstable state cannot be properly put on the
mass-shell, the mass of a narrow resonance is still well
defined and for p2 equal to its mass its decay width is

�ðAðm2Þ ! BCÞ ¼ g2ðm2
A;m

2
B;m

2
BÞ

16�m3
A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðm2

A;m
2
B;m

2
CÞ

q
:

(B15)

It is then straightforward to see that

�ðp2Þ ¼ m3
A

ð ffiffiffiffiffiffi
p2

p Þ3
g2ðp2; m2

B;m
2
CÞ

g2ðm2
A;m

2
B;m

2
CÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðp2; m2

B;m
2
CÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðm2

A;m
2
B;m

2
CÞ

q �ðm2
AÞ:

(B16)
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The coupling constant g has the dimension of a mass, to
give the right dimension to the width (½g� ¼ M). Now let
us consider two limits which are relevant to our analysis.
The first limit is the one in which both the particles in the
final state are massless, i.e., much lighter than A, mB ¼
mC ¼ 0. In this case the only mass scale of the problem is
p2 orm2

A, and thus the only possibility is that g
2ðp2; 0; 0Þ ¼

�p2 and thus g2ðm2
A; 0; 0Þ ¼ �m2

A, where � is some adi-
mensional constant. The relation (B16) reduces to

�ðp2Þ ¼
ffiffiffiffiffiffi
p2

p
mA

�ðm2
AÞ: (B17)

This relation can be used when the unstable propagating
particle has a mass much larger than that of its decay
products, as in the case of the �. For an intermediate D�
we need to consider the case in which only one of the
produced particles is massless mC ¼ 0. Sinceffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ðp2; m2

B; 0Þ
q

¼ ðp2 �m2
BÞ one obtains

�ðp2Þ ¼ mAffiffiffiffiffiffi
p2

p ðp2 �m2
BÞ

ðm2
A �m2

BÞ
�ðm2

AÞ: (B18)

APPENDIX C: X ! J=c!

Here we report the basic formulas for the computation of
the width of X ! J=c!,

d�ðX ! J=c�þ���0Þ
¼ 1

2sX þ 1

1

2mX

X
pol

jhJ=c�þ���0jXij2d�ð4Þ; (C1)

where d�ð4Þ is

d�ð4Þ ¼ ð2�Þ4�ð4Þ
�
P�pc �

X4
i¼1

pi

�
d3pc

ð2�Þ32Ec

�Y4
i¼1

d3pi

ð2�Þ32Ei

: (C2)

Using narrow width approximationX
pol

jhJ=c�þ���0jXij2

¼ 1

3

X
pol

jhJ=c!jXij2 1

ðs�m2
!Þ2 þ ðm!�!Þ2

�X
pol

jh�þ���0j!ij2 (C3)

and we further assume that
P

poljh�þ���0j�ij2 ¼ g2!�,

with g!� a constant number. The phase space factor can be
rewritten as

d ��ð4Þ ¼ ð2�Þ4
Z

d4p!�
ð4ÞðP� pc � p!Þ�ð4Þ

� ðp! �X
i

piÞ
d3pc

ð2�Þ32Ec

Y
i

d3pi

ð2�Þ32Ei

¼ 1

2�

Z
dsð2�Þ4�ð4ÞðP� pc � p!Þ

� d3p!

ð2�Þ32 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ jp!j2

p d3pc

ð2�Þ32Ec

ð2�Þ4�ð4Þ

� ðp! �X
i

piÞ
Y
i

d3pi

ð2�Þ32Ei

; (C4)

where the notation d ��ð4Þ is to indicate that we have an
intermediate !. Now

Z
ð2�Þ4�ð4ÞðP� pc � p!Þ d3p!

ð2�Þ32 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ jp!j2

p d3pc

ð2�Þ32Ec

¼ 1

4�

p�ðm2
X;m

2
c ; sÞ

mX

(C5)

and

Z
ð2�Þ4�ð4Þðp! �X

i

piÞ
Y
i

d3pi

ð2�Þ32Ei

¼ �ð3Þð ffiffiffi
s

p
; m�þ ; m�� ; m�0Þ: (C6)

The expression for the three-body phase space is the fol-
lowing:

�ð3Þð ffiffiffi
s

p
; m1; m2; m3Þ

¼ 1

32�3

Z
d!ðxþð

ffiffiffi
s

p
; m1; m2; m3; !Þ

� x�ð
ffiffiffi
s

p
; m1; m2; m3; !ÞÞ; (C7)

where

x�ð
ffiffiffi
s

p
; m1; m2; m3; !Þ ¼

ðm2
2
�m2

3
Þð ffiffi

s
p �!Þ

4
ffiffi
s

p � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!2 �m2

1Þð!mð
ffiffiffi
s

p
; m1; m2; m3Þ �!Þð2m2m3ffiffi

s
p �!þ!mð

ffiffiffi
s

p
; m1; m2; m3ÞÞ

q
ðm2þm3Þ2

2
ffiffi
s

p �!þ!mð
ffiffiffi
s

p
; m1; m2; m3Þ

;

(C8)
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with

!mð
ffiffiffi
s

p
; m1; m2; m3Þ ¼ m2

1 � ðm2 þm3Þ2 þ s

2
ffiffiffi
s

p : (C9)

Finally

�ð4ÞðmX;mc ; m�þ ; m�� ; m�0Þ

¼ 1

2�

Z
ds

1

4�

p�ðm2
X;m

2
c ; sÞ

mX

�ð3Þð ffiffiffi
s

p
; m�þ ; m�� ; m�0Þ:

(C10)

The full decay width is then

�ðX ! J=c�þ���0Þ
¼ 1

2sX þ 1

1

2mX

1

6�

Z
ds
X
pol

jhJ=c!ðsÞjXij2

� 1

4�

p�ðm2
X;m

2
c ; sÞ

mX

g2!�

ðs�m2
!Þ2 þ ðm!�!Þ2

��ð3Þð ffiffiffi
s

p
; m�þ ; m�� ; m�0Þ: (C11)

We can relate g2!� to �ð! ! 3�Þ

g2!� ¼ 6m!�ð! ! ���Þ 1

�ð3Þðm!;m�þ ; m�� ; m�0Þ ;
(C12)

thus giving

�ðX!J=c�þ���0Þ
¼ 1

2sXþ1

1

8�m2
X

Z
ds
X
pol

jhJ=c!ðsÞjXij2p�ðm2
X;m

2
c ;sÞ

� 1

�

m!�!Bð!!3�Þ
ðs�m2

!Þ2þðm!�!Þ2
�ð3Þð ffiffiffi

s
p

;m�þ ;m�� ;m�0Þ
�ð3Þðm!;m�þ ;m�� ;m�0Þ :

(C13)

In the limit of narrow width for the!, Eq. (C13) is equal to
the one we can obtain taking the average ofP

poljhJ=c!ðsÞjXij2p�ðm2
X;m

2
c ; sÞ over the Breit-Wigner

distribution of the ! meson (using the comoving width
of the !)

�ðX ! J=c�þ���0Þ
¼ 1

2sX þ 1

1

8�m2
X

Z
ds
X
pol

jhJ=c!ðsÞjXij2p�ðm2
X;m

2
c ; sÞ

� 1

�

m!�!Bð! ! ��Þ
ðs�m2

!Þ2 þ ðm!�!Þ2
: (C15)

In actual calculations we use m!�! ! s
m!

�!.

APPENDIX D: MULTIPLICITY RULES

1. Xð3872Þ ! D0 �D0�

Let us consider the decay Xð3872Þ ! D0 �D0�. Since X
has even charge conjugation, whatever its spin is, the final
state into open-charm mesons needs to be

jfi ¼ jD0 �D0�i þ j �D0D0�iffiffiffi
2

p : (D1)

The matrix element is

hfjXi ¼ hD0 �D0�jXi þ h �D0D0�jXiffiffiffi
2

p : (D2)

Assuming that

hD0 �D0�jXi ¼ h �D0D0�jXi; (D3)

the sum over polarizations of the squared matrix element isX
pol

jhfjXij2 ¼ 2
X
pol

jhD0 �D0�jXij2: (D4)

When we compute the cross section for J=c ð�;!Þ !
XJ ! D0 �D0� we actually consider the transition
J=c ð�;!Þ ! f. The flavor wave function for the � meson
is

j�i ¼ ju �ui � jd �diffiffiffi
2

p : (D5)

Since the neutral D mesons contain only the u quark
(jD0i ¼ jc �uiej �D0i ¼ j �cui) only the u �u component will
contribute to the transition matrix element

M ¼ 1ffiffiffi
2

p hfjc�i: (D6)

Summing over polarization the squared matrix element,
one obtains

X
pol

jMj2 ¼ X
pol

1

2
jhfjc�ij2 ¼ X

pol

1

2
� 2jhD0 �D0�jc�ij2

¼ X
pol

jhD0 �D0�jc�ij2: (D7)

Thus one needs to divide by 2 the gJDD� coupling com-
puted from the jhD0 �D0�jXij matrix element.

2. Nonresonant processes

We consider the t-channel processes of Eq. (25). We
computed the average absorption lengths for each of the

particles in the initial state, A ¼ �, �, �, !, �, Kð�Þ using
the couplings defined in [27]

h��J=cA!D �DiT ¼ð2sAþ1Þ
Z d3pA

ð2�Þ3
�A

eEA=�BT�1
: (D8)

Depending on the flavor content of each meson in the
initial state, one can define the possible open-charm meson
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configuration in the final state. The flavor wave functions
of the mesons we considered are the following [55] [we
neglect the s�s component of the � meson, since the con-

tribution of the associated final state, Dþð�Þ
s D�ð�Þ

s , is small

compared to the one coming from the ðu �uþ d �dÞ= ffiffiffi
2

p
com-

ponent, i.e., D0ð�Þ �D0ð�Þ or D�ð�ÞD
ð�Þ]:

�þð�þÞ ¼ u �d; ��ð��Þ ¼ �ud; �0ð�0Þ ¼ u �u� d �dffiffiffi
2

p

� ’ u �uþ d �dffiffiffi
2

p ! ’ u �uþ d �dffiffiffi
2

p � ’ s�s

K0 ¼ s �d; �K0 ¼ �sd; Kþ ¼ u�s; K� ¼ �us:

(D9)

The multiplicity coefficients cAi associated to the possible
final states fi for each initial particle A are summarized in
Table IV. Given these coefficients the total dissociation
cross section for the initial particle A can be written as

�A ¼ X
i

cAi �AJ=c!fi : (D10)

We can summarize all the contributions as follows:

�� ¼ 3� ½�ðJ=c� ! D �DÞ þ 2�ðJ=c� ! D �D�Þ
þ �ðJ=c� ! D� �D�Þ�; (D11)

��þ! ¼ 4� ½�ðJ=c� ! D �DÞ þ 2�ðJ=c� ! D �D�Þ
þ �ðJ=c� ! D� �D�Þ�; (D12)

�� ¼ �ðJ=c� ! D �DÞ þ 2�ðJ=c� ! D �D�Þ
þ �ðJ=c� ! D� �D�Þ; (D13)

�� ¼ �ðJ=c� ! D�
s D

þ
s Þ þ 2�ðJ=c� ! D�

s D
þ�
s Þ

þ �ðJ=c� ! D��
s Dþ�

s Þ; (D14)

�K ¼4�½�ðJ=cK!Ds
�DÞþ�ðJ=cK!D�

s
�DÞ

þ�ðJ=cK!Ds
�D�Þþ�ðJ=cK!D�

s
�D�Þ�; (D15)
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