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Current experimental data on the neutrino parameters are in good agreement with tribimaximal mixing

and may indicate the presence of an underlying family symmetry. For 76 flavor groups, we perform a

systematic scan for models: The particle content is that of the standard model plus up to three flavon fields,

and the effective Lagrangian contains all terms of mass dimension � 6. We find that 44 groups can

accommodate models that are consistent with experiment at 3�, and 38 groups can have models that are

tribimaximal. For A4 � Z3, T7, and T13 we look at correlations between the mixing angles and make a

prediction for �13 that will be testable in the near future. We present the details of a model with �12 ¼
33:9�, �23 ¼ 40:9�, �13 ¼ 5:1� to show that the recent tentative hints of a nonzero �13 can easily be

accommodated. The smallest group for which we find tribimaximal mixing is T7. We argue that T7 and T13

are as suited to produce tribimaximal mixing as A4 and should therefore be considered on equal footing. In

the appendixes, we present some new mathematical methods and results that may prove useful for future

model building efforts.
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I. INTRODUCTION

Neutrino physics is a fast developing field. The past
decade has seen the discovery of neutrino masses [1,2]
and ever improving measurements of the neutrino mixing
matrix UPMNS [3,4]. Our growing knowledge of the neu-
trino parameters [5,6] has almost raised more questions
than it has answered: Why are neutrinos so light? Why are
two of the mixing angles large and one vanishingly small?
Why isUPMNS so different fromUCKM [7]? These are some
of the questions that any model for the neutrino sector
needs to address.

Experimental data suggest that the mixing angles are in
good agreement with tribimaximal mixing (TBM) [8,9].
The very form of the Harrison-Perkins-Scott matrix UHPS

is suggestive of an underlying family symmetry between
the three generations of leptons. In the past years, much
effort has been vested in finding a family symmetry that
would naturally lead to tribimaximal mixing, and to that
end, some 20 odd groups have been the subject of model
building efforts (see Refs. [10–12] and references therein).

It has been argued that A4 is particularly relevant for
producing tribimaximal mixing [13–16], and by the num-
ber of publications (see e.g. Table 2 in Ref. [10]), it is
certainly the most popular discrete symmetry used for
model building. That is why we start out by following
the same path to construct all A4 � Z3 models with up to
three flavon fields, where the lepton doublet L transforms

as a triplet. We find 22 932 inequivalent models, of which
4481 (19.5%) give mixing angles that are consistent with
experiment at 3�, and 4233 (18.5%) that are tribimaximal.
Restricting �12 and �23 to their respective 3� intervals, we
obtain an interesting prediction for �13 whose value is
currently not known with very high precision: By far, the
most likely value is �13 ¼ 0�, and there are extremely few
models for 0�≨�13 & 12�. We also present a model where
all three mixing angles, �12 ¼ 33:9�, �23 ¼ 40:9�, and
�13 ¼ 5:1�, lie in their respective 1� intervals to show
that it is possible to accommodate the recent tentative hints
of a nonzero �13 [6,17,18].
Next we explore whether A4 is really special or we are

looking for tribimaximal models ‘‘under the lamppost.’’
There are 1048 groups with less than or equal to 100
elements, and 90 of them have a three-dimensional irre-
ducible representation. For 76 groups, we construct all
models with up to three flavon fields, where the lepton
doublet L transforms in a three-dimensional irreducible
representation. For the remaining 14 groups, a systematic
scan would simply take too long. We find 44 groups (58%)
that can accommodate models which are consistent with
experiment at the 3� level, and 38 groups (50%) that can
produce tribimaximal mixing. The smallest group for
which we find tribimaximal mixing is T7, and the group
with the largest fraction of tribimaximal models is T13.
Incidentally, for T13 (and the other metacyclic groups) the
set of tribimaximal models and the set of 3� models
are almost identical, and this may be pointing towards a
profound connection between T13 and tribimaximal
mixing that is more pronounced as compared to A4. For a
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recent publication that uses T13 for model building, see
Ref. [19].

A systematic scan of discrete Abelian family symmetries
has been performed before [20]. Our analysis is comple-
mentary in the sense that we only consider non-Abelian
flavor groups that can have three-dimensional irreducible
representations.

For our analysis, the computer algebra program GAP

[21] played a central role. We used GAP to obtain the
character table, the dimension of the conjugacy classes,
and the explicit form of the representation matrices for the
76 groups that we considered in this publication. In
contrast to e.g. solving renormalization group equations,
the use of computers for algebraic and group theoretic
operations is not widespread (a notable exception is
Ref. [22]). We strongly advocate the use of the Small
Groups Library [23] which collects, in one place, and
provides easy access to all finite groups of order at most
2000 (except 1024).

In the appendixes we present some new developments
and mathematical background information relevant for
model building with discrete symmetries.

In Appendix A, we list the 90 groups of order less than or
equal to 100 that have a three-dimensional irreducible
representation. For each group, we indicate whether it is
a subset of U(3), U(2), or Uð2Þ � Uð1Þ and, at the same

time, check whether it contains A4 as a subgroup. Because
of its length, the full list of the 1048 groups of order at most
100 is presented in a separate file [24].
In Appendix B we give the full details on how we

generated the 1048 groups and compiled the tables in
Appendix A and Ref. [24]. We elaborate on some disagree-
ment that we have with the existing literature.
In Appendix C, we discuss an algorithm due to

van den Broek and Cornwell [25] for calculating the
Clebsch-Gordan coefficients (CGCs) for any finite group.
This allows us to construct the group invariants or, more
generally, contract the family indices in the Lagrangian
without referring to heuristic constructions as is common
practice in the current literature.

II. EXPERIMENTAL CONSTRAINTS

The leptonic mixing matrix UPMNS is generally parame-
trized by three angles, �12, �23, �13, and one Dirac phase, �
[26]. If the neutrinos are Majorana particles, there are two
extra phases, �1 and �2, that do not affect neutrino oscil-
lation phenomena [27] and are likely to remain uncon-
strained in the near future. In this paper, we use the
standard parametrization [26] of UPMNS except for the
definition of the Majorana phases, where we follow
Ref. [28]:

UPMNS ¼
c12c13 s12c13 s13e

�i�

�s12c23 � c12s13s23e
i� c12c23 � s12s13s23e

i� c13s23
s12s23 � c12s13c23e

i� �c12s23 � s12s13c23e
i� c13c23

0
B@

1
CA � diagðei�1 ; ei�2 ; 1Þ: (1)

For comparing our results from Sec. IV to experiment, we
used Refs. [5,6,17]. In Table I, we summarize the relevant
information for the reader’s convenience.

The solar and atmospheric neutrino mixing angles,
�12 and �23, are relatively well determined. �13, on the
other hand, effectively only has an upper bound. The
experimental data are consistent with �13 being zero, as
e.g. in exact tribimaximal mixing. If �13 ¼ 0�, the Dirac
phase loses physical significance. Currently, there are pos-
sible hints for a nonzero �13 [6,17,18]. A new generation of
neutrino experiments will probe sin2�13 down to about
10�2 [17].

III. A PARADIGM: A4 � Z3 FAMILY SYMMETRY
WITH THREE FLAVON FIELDS

To illustrate our general approach, we will choose
A4 � Z3 as the family symmetry and reproduce the results
of the now classic paper by Altarelli and Feruglio [16].
Here and in the following we will use the alternate notation
Cn for Zn. Note that we could have taken any of the
439 820 models that we will be constructing in Sec. IV,
but considering a model that is already well known has the
advantage of a clearer presentation of our methodology by
stressing the differences to other approaches.
The following lines of GAP code give us information on

the group A4 � C3:

1 group :¼ SmallGroupð36; 11Þ;;
2 Display (StructureDescription (group));

3 chartab :¼ IrrðgroupÞ;;
4 Display(chartab);

5 SizesConjugacyClasses (CharacterTable(group));

6 LoadPackage(‘‘repsn’’);;

7 for i in [1..Size(chartab)] do

TABLE I. The leptonic mixing angles from the global fit to
data from Ref. [6] (first table, left column).

Parameter Mean value 1� range 3� range

�12 34.4� 33.4�–35.4� 31.5�–37.6�
�23 42.8� 39.9�–47.5� 35.5�–53.5�
�13 5.6� 2.9�–8.6� 0�–12.5�
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8 rep :¼ IrreducibleAffordingRepresentationðchartab½i�Þ;
9 for el in Elements(group) do

10 Displayðel ^repÞ;
11 od;

12 od;

These lines can be entered directly at the GAP prompt or
saved in a file and executed automatically as explained
later. Line 1 defines the group in terms of its GAPID (see
Appendix B 1). Lines 4 and 5 display the character table
and the dimensions of the conjugacy classes, respectively.
Finally, lines 6–12 give the explicit form of the matrices for
all elements and for all representations of the group.

The first column of the character table gives the dimen-
sions of the representations. We follow the common prac-
tice of denoting the representations by their dimensions
and using primes or numbers to distinguish different rep-
resentations of the same dimension:

1; 10; 100; 1000; 1ð4Þ; 1ð5Þ; 1ð6Þ; 1ð7Þ; 1ð8Þ;

3; 30; 300: (2)

Note that we deviate from the notation of Ref. [16], where
the transformation properties of the representation under
the factor subgroups are indicated, e.g. 3 �!, where !
is the primitive third root of unity. The reason why we
choose another notation is that we would like to deal with
all groups on equal footing. It is easy to establish the
connection between the two notations by comparing the
representation matrices of A4 and A4 � C3, e.g. for the 3:
The first, third, and fourth generators of A4 � C3 are
identical to the three generators of A4, and the second
generator generates C3. The explicit form for the genera-
tors of A4 and A4 � C3 can be obtained by running the GAP

script on the preceding page with the GAPIDs [12,3] and
[36,11], respectively. We can now easily identify 3� 3 �
1, 30 � 3 �!, 300 � 3 �!2. The other cases are handled in
a completely analogous way (see Table II for the complete
list). Strictly speaking, though, making this connection is
not necessary.

The particle content of the model is given in Table II. In
the following we list the terms that (i) are invariant under
the standard model gauge symmetry, (ii) contain exactly
two leptons, (iii) have mass dimension smaller than or
equal to six, and (iv) are at most linear in the flavon vacuum
expectation values (vevs):

LLhuhu’S; LLhuhu�; Lehd’T; L�hd’T; L�hd’T:

(3)

To check invariance under the family symmetry we need
the decomposition of tensor products into irreducible rep-
resentations (see e.g. Ref. [29]) that is readily obtained
from the character table and the dimensions of the conju-
gacy classes. For example, for the first term in Eq. (3) we
have

30 � 30 � 1� 1� 30 ¼ ð10 þ 1ð5Þ þ 1ð8Þ þ 2� 300Þ � 30

¼ 2� 1þ 2� 1000 þ 2� 1ð4Þ þ 7� 3:

(4)

The tensor product contains two singlets and thus there are
two ways to contract the family indices to obtain invariant
combinations. To do this, however, we need to know the
Clebsch-Gordan coefficients for A4 � C3, and to our sur-
prise, the general method for the calculation of Clebsch-
Gordan coefficients for any finite symmetry group is not
well known. That is why we have dedicated Appendix C to
discussing an algorithm [25] for the calculation of
Clebsch-Gordan coefficients for finite groups. The
first term in Eq. (3) after contracting the family indices
becomes

1ffiffiffi
3

p L2L3huhu’S;1 þ 1ffiffiffi
3

p L3L1huhu’S;2

þ 1ffiffiffi
3

p L1L2huhu’S;3 þ 1ffiffiffi
3

p L1L1huhu�

þ 1ffiffiffi
3

p L2L2huhu�þ 1ffiffiffi
3

p L3L3huhu�: (5)

After contracting the SU(2) indices and substituting the
vevs

hhð1Þu i ¼ hhð2Þd i ¼ 0; hhð2Þu i ¼ vu; hhð1Þd i ¼ vd;

h’Ti ¼ ðvT; vT; vTÞ; h’Si ¼ ðvS;0;0Þ; h�i ¼ v�;

(6)

Eq. (5) reads

1ffiffiffi
3

p Lð1Þ
2 Lð1Þ

3 vuvuvS þ 1ffiffiffi
3

p Lð1Þ
1 Lð1Þ

1 vuvuv�

þ 1ffiffiffi
3

p Lð1Þ
2 Lð1Þ

2 vuvuv� þ 1ffiffiffi
3

p Lð1Þ
3 Lð1Þ

3 vuvuv�: (7)

TABLE II. Particle content and charges for the model given in
Ref. [16]. The last column gives the family symmetry charges in
our notation. In Ref. [16], there is an evident typo in the charge
assignments to � and � in Sec. 4 as compared to Sec. 3 in the
same publication.

Field SUð2ÞL � Uð1ÞY A4 C3 A4 � C3

L (2, �1) 3 ! 30
e (1, 2) 1 !2 10
� (1, 2) 100 !2 1ð8Þ
� (1, 2) 10 !2 1ð5Þ
hu (2, 1) 1 1 1
hd (2, �1) 1 1 1
’T (1, 0) 3 1 3
’S (1, 0) 3 ! 30
� (1, 0) 1 ! 100
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Following these steps for all the terms in Eq. (3) yields the
mass matrices for the charged leptons and the neutrinos:

M‘þ ¼ vdvT

M
�

Lð2Þ
1

Lð2Þ
2

Lð2Þ
3

e � �0
BBB@
� 1ffiffi

3
p � 1ffiffi

3
p � 1ffiffi

3
p

� 1ffiffi
3

p 1
2
ffiffi
3

p 1
2
ffiffi
3

p

� 1ffiffi
3

p 1
2
ffiffi
3

p 1
2
ffiffi
3

p

1
CCCA ;

M� ¼ vuvu

M2
�

Lð1Þ
1

Lð1Þ
2

Lð1Þ
3

Lð1Þ
1 Lð1Þ

2 Lð1Þ
30

BBB@

v�ffiffi
3

p 0 0

0
v�ffiffi
3

p vS

2
ffiffi
3

p

0 vS

2
ffiffi
3

p v�ffiffi
3

p

1
CCCA
:

(8)

Here, M denotes the cutoff scale of the theory, and
suppresses the operators of mass dimension 5 and 6. In
the case of Eq. (8), the bi-unitary transformations that
diagonalize the charged lepton and neutrino mass matrices
are independent of the Yukawa couplings, which we have
therefore not indicated. The singular value decomposition
(here in the special case where the number of rows is equal
to the number of columns)

M̂ ‘þ ¼ DLM‘þD
y
R; M̂� ¼ ULM�U

y
R (9)

allows us to express the mass matrices as a product of a
unitary matrix, a diagonal matrix with non-negative real
numbers on the diagonal, and another unitary matrix where

DL ¼
�0:5774þ i0:0000 �0:5774þ i0:0000 �0:5774þ i0:0000

0:5738� i0:0636 �0:2319þ i0:5287 �0:3420� i0:4652

0:5731� i0:0702 �0:3474� i0:4612 �0:2257þ i0:5314

0
BB@

1
CCA;

UL ¼
0:0000 �0:7071 �0:7071

�1:0000 0:0000 0:0000

0:0000 0:7071 �0:7071

0
BB@

1
CCA:

(10)

The neutrino mixing matrix is, by definition,

UPMNS ¼ DLU
y
L ¼

0:8165þ i0:0000 0:5774þ i0:0000 0:0000þ i0:0000
0:4058� i0:0449 �0:5738þ i0:0636 0:0778þ i0:7028
0:4052� i0:0497 �0:5731þ i0:0702 �0:0860� i0:7019

0
@

1
A: (11)

To extract the mixing angles and phases, we use the
explicit formulas presented in Ref. [28] and obtain

�12 ¼ 35:26�; �23 ¼ 45:00�; �13 ¼ 0:00�;
(12)

which is tribimaximal mixing.
Several remarks are in order. In contrast to Ref. [16],

where the matrices for the generators in the three-
dimensional representation were wisely chosen so that
M‘þ is diagonal, our choice for the generators leads to a
nondiagonal charged lepton mass matrix; see Eq. (8). We
have checked that after changing to a basis where M‘þ is
diagonal (which corresponds to a redefinition of the
charged lepton fields), our expressions for the
Lagrangian, the mass matrices, and UPMNS coincide with
those in Ref. [16], and the same is true for the vevs. Our
generators T1, T2, T3 of A4 are connected to those of
Ref. [16] by S � T1T

�1
2 T1 and T � T2.

We have written PYTHON programs that interact with
GAP to get the generators, the character table, the dimen-

sions of the conjugacy classes, and the explicit form of the
matrices for all representations. From this, our code builds
the Lagrangian that is invariant under all the symmetries,
breaks the family symmetry, collects the terms that

contribute to the charged lepton and neutrino mass matri-
ces, and finally calculates the mixing matrix, the mixing
angles, and the phases.
In Sec. IV, we present the results of our systematic scan

for A4 � C3, and finally in Sec. V, we discuss the results for
all 76 flavor groups with special emphasis on the metacy-
clic groups T7 and T13.

IV. SYSTEMATIC SCAN OF A4 � Z3

We will now discuss the results that we obtained from
the systematic scan of family symmetries, charge assign-
ments, and vacuum configurations. We refer the reader also
to Table III, where some of the results of this section are
summarized.
It is important to stress that we are not specifically

searching for tribimaximal mixing, but constructing all
models for a given symmetry group (with the qualifications
detailed in Sec. IVA).
We will only list inequivalent models: We consider

two models to be equivalent, if their Lagrangians after
contracting the family indices, but before symmetry
breaking, are equal. In the plots, however, the data points
correspond to vacua, and some may correspond to the same
Lagrangian.
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Since we will be discussing many different groups that
may not all have a standard name, we will use their GAPIDs,
and e.g. denote A4 � C3 byGð36; 11Þ. The correspondence
between the GAPIDs and the groups is given in Table III.

A. Particle content and family charge assignments

In Fig. 1 we show the flowchart of our systematic scan.
The particles and their standard model charges are listed in
the first two columns of Table II and will not be reproduced
here. To avoid any misunderstandings, we emphasize that
from now on � is on the same footing as ’T and ’S, and
that its naming is simply a relic from earlier sections. The
flavon fields may transform in any representation, and we
scan over all possible vevs that have either 0 or 1 in each
entry.

We restrict ourselves to such models where the lepton
doublet L transforms in a three-dimensional representa-
tion, and e, �, � transform in one-dimensional representa-
tions of the family symmetry. Plausible as this may sound,
there is no physics reason for that, but rather without these
assumptions the number of family charge assignments
quickly grows too large to allow for a systematic scan.

Regarding the Higgs sector, we will assume that there
are exactly two fields. For one thing, we have supersym-
metric models in mind that require an even number of

Higgses. For another, more than two Higgs fields would
spoil the unification of the gauge couplings. Thus, hu, hd
are assigned any one-dimensional representation.

B. Models for A4 � Z3

We will start with the results for the ‘‘classic’’ group
Gð36; 11Þ ¼ A4 � C3. The 14 594 580 family charge as-
signments to L, e, �, �, hu, hd, ’T , ’S, � give 39 900
inequivalent Lagrangians out of which 22 932 have non-
singular charged lepton and neutrino mass matrices.
In this set, we find 4233 models of tribimaximal mixing

(18.5%). For a given model, there may exist more than one
vacuum configuration that leads to TBM (e.g. six vevs for
the model in Sec. III), and we have not counted them
separately. In the 3� range there are 4481 models
(19.5%). We find no models that lie in the 1� range,
because �13 ¼ 0� is excluded at 1� (cf. Table I). This
fact is nicely illustrated in the third plot of Fig. 2(b): The
1� range, represented by the green band, is empty.
Figure 2 shows the distribution of the mixing angles �12,

�23, and �13, where we are now counting the vacua and not
the models. The reason for this is that for one and the same
Lagrangian, the values of the mixing angles will, in gen-
eral, depend on the choice of vacuum. The histograms in
Fig. 2(a) have 15 992 118 entries, reflecting the fact that
for each of the 39 900 inequivalent Lagrangians, we are
looping over 8 to 512 vacua, depending on the dimensions
of the irreducible representations (irreps) assigned to the
flavon fields.
The area of each histogram has been normalized to 1 and

the bin width is 1�, so the y axis gives the percentage of
vacua that produce the angles on the x axis. The green and
yellow bands correspond to the 1� and 3� ranges, respec-
tively (cf. Table I). In Fig. 2(a), we simply count the
number of times that a given angle is reproduced, irrespec-
tive of the values that the two other angles may take. For
example, from the first histogram we can read off that 7.6%
of the vacua give a value for �12 that is consistent with
experiment at 3�, where �23 and �13 can take any values.
Now we investigate whether we can obtain some pre-

dictions by introducing priors. In Fig. 2(b) we have re-
stricted two of the angles to their 3� intervals and plotted
the third one. As a consequence, the numbers of entries in
the histograms are not equal.
The most striking difference between Figs. 2(a) and 2(b)

is that now the most likely value for �23 is 45
� and it lies in

the 1� interval. Furthermore, the number of vacua in the
experimentally disfavored region has decreased signifi-
cantly, and 58% of the vacua are in the 3� interval.
For �13, values near 90

� are now excluded, and the 3�
interval is almost depopulated except for �13 ¼ 0� and
some very few models with �13 � 0�. Since �13 ¼ 0� is
now by far the most likely value, this can be interpreted as
a strong hint for �13 to be 0� (at leading order) based on
current experimental data and the theoretical assumption of

FIG. 1 (color online). Systematic scan for models with family
symmetry G and up to three flavon fields.
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an A4 � Z3 family symmetry. We find that 38% of the
vacua are in the 3� interval.

For �12, the most likely value is still 0�, but 35� is now
the third most likely angle. Clearly, the experimental data
on �23 and �13 are pushing us in the right direction. 11% of
the vacua are in the 3� interval.

It is an interesting observation that the effect of our
restricting two out of three angles to their 3� interval
was such that the preference of the data for the experimen-
tally allowed ranges became much more pronounced. This
is an unexpected and nontrivial result and may further
testify to the phenomenological viability of A4.

To learn more about the correlation of the angles and
how priors may affect them, in Fig. 3 we present the
distribution of two out of three angles, respectively. The
color bar on the right-hand side of each figure gives
the correspondence between the colors in the plots and
the logarithm to base 10 of the number of vacua with the
angles �ij and �mn on the x and y axes, respectively.

In Fig. 3(a), each two-dimensional histogram has
15 992 118 entries which correspond to the full set of vacua
that we had also previously considered in Fig. 2(a). In
analogy to Fig. 2(a), we have imposed no constraints on
the third angle which is not plotted. From the first plot, we
cannot read off much, except that there exist certain ‘‘hot
spots’’ (e.g. �12 ¼ 0� and �23 ¼ 45�) that correspond to
large numbers of vacua, and that the regions near the lower
corners are, by comparison, less populated. In the second

and third plots, we see that there are considerably fewer
models for �12 * 70� and �23 * 75�, respectively. In the
case of the second plot, this holds even for much lower
values of �12 * 35�, given that �13 is not larger than�15�
or near 0�.
In Fig. 3(b), we present the same correlations as in

Fig. 3(a), but this time, we have required that the third
angle be in its 3� interval. As a consequence, the numbers
of entries in the histograms are not equal. We have used the
same normalization of the color bars in Figs. 3(a) and 3(b)
to facilitate comparisons between them.
Considering the first plot, we can see that most vacua lie

in a band �12 ’ 30�–60�, whereas this effect becomes less
pronounced for �23 ’ 15�–30�. For �23 ’ 45�, values of
�12 ¼ 0�, 35�, 55�, 90� are favored (red bins in plot).
The second plot clearly shows that �12 * 70� and, to a

lesser extent, �12 & 10� are disfavored. For �12 ’
10�–70�, a band of �13 ¼ 0�–10� that widens with in-
creasing �12 is sparsely populated, but note that for
�13 ¼ 0� and �12 ¼ 45�, there is one of the highest counts
of vacua in the plot as indicated by the red bins. This is
consistent with our previous observation from Fig. 2(b)
that �13 ¼ 0� is preferred, but that otherwise the region
�13 & 10� is disfavored.
In the third plot we again observe a band structure �23 ’

15�–60� where most of the vacua are concentrated, and
find that �13 & 10� and �13 * 80� are disfavored.
The combination �23 ’ 45� and �13 ¼ 0�, however, is

FIG. 2 (color online). Number of vacua with family symmetry Gð36; 11Þ ¼ A4 � C3 that give the mixing angles denoted on the x
axis. The area of the histograms is normalized to 1 and the bin width is 1. The green and yellow (dark and light gray) bands correspond
to the 1� and 3� ranges, respectively.
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not preferred. As indicated by the red bins, the most likely
combination of angles lies elsewhere.

Ideally, to give a graphical representation of the full
information on the angles and their correlations, we would
create a three-dimensional histogram with �12, �23, and �13
on the axes, and plot the number of vacua along a fourth
dimension. Since this is not feasible, we present a plot in
three dimensions, where the color of the data points in-
dicates the number of vacua.

In Fig. 4(a), each point represents a bin in a three-
dimensional histogram: If there is at least one vacuum
that produces the angles ð�12; �23; �13Þ, we set a point at
the respective coordinates. The bin width on each axis is 1,
and in total there are 90� 90� 90 bins, of which 5528 are
not empty. The color of the point denotes the logarithm to
base 10 of the number of vacua that give the respective
angles, where the colors from blue to red (dark to light
gray) correspond to an increasing number of vacua. We
have not displayed the color map for the plots, since we
find it difficult to extract quantitative information from the
three-dimensional representation and rather use it as a
means of uncovering correlations between the angles and
the qualitative features of A4 as a symmetry group.

In Fig. 4(b), we display only those 1287 bins that have
more than 1000 entries. This removes much of the clutter-
ing and gives a clearer picture regarding where the most

likely vacua are concentrated. One immediate observation
is that the parameter space for ð�12; �23; �13Þ is not uni-
formly populated: There are very few vacua for �12 ’
60�–90�; low and high values of �13 are disfavored
(except �13 ¼ 0�); and rotating Fig. 4(b) to view it from
different perspectives, we see that most of the vacua are
concentrated in a volume �12 ’ 10�–60�, �23 ’ 20�–70�,
�13 * 15�.
Considering the �12–�23 plane of Fig. 4(b) that corre-

sponds to �13 ¼ 0�, we find that �12 ¼ �23 ¼ 45� are the
most likely values (see red points), which is in agreement
with the first plot in Fig. 3(a).
Regrettably, we fail to see any preference for tribimax-

imal mixing or the experimentally allowed values. Without
putting in at least some priors, the best we can do is set
approximate upper and lower bounds on the angles.
It is also worth mentioning that TBM can be realized

with the smaller flavor groupGð24; 13Þ ¼ A4 � C2, where
theC3 factor of the model in Ref. [16] has been replaced by
aC2. As we will see from Fig. 5 in Sec. VA, it is the second
smallest discrete group for which we find TBM.

C. A model with �13 ’ 5�

Recently some analyses have reported on possible hints
of a nonzero �13 [6,17,18]. A model with 0�≨�13 � 8:6�

FIG. 3 (color online). Logarithmic plot of the number of vacua with family symmetry Gð36; 11Þ ¼ A4 � C3 that give the mixing
angles denoted on the axes. The bin width on both axes is 1. The base of the logarithm is 10, and the color map on the right side of each
plot gives the exponents.
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that lies in the 1� interval is easily constructed. For the
family symmetry, we take Gð36; 11Þ ¼ A4 � C3 and as-

sign the family charges ðL; e;�; �; hu; hd; ’T; ’S; �Þ �
ð3; 1; 1ð4Þ; 1000; 10; 1ð7Þ; 1ð5Þ; 300; 300Þ. When the flavon fields
acquire vevs along the directions h’Ti ¼ ð1Þ, h’Si ¼
ð1; 0; 1Þ, h�i ¼ ð1; 1; 1Þ, we obtain the mixing angles �12 ¼
33:9�, �23 ¼ 40:9�, and �13 ¼ 5:1� that all lie in the 1�
interval of the experimentally determined values.
Incidentally, we have chosen the model in such a way as
to produce a �13 that is close to the present best-fit value of
Ref. [6] with the modified Gallium cross section.

V. RESULTS FOR 76 FLAVOR GROUPS

In the list of all groups of order � 100 [24], we find 90
groups which have a three-dimensional representation (see
Table III). For 14 groups, a systematic scanwould takemore
than 60 days. In this section, we present the results for those
76 groups that can be analyzed in a reasonable time.

A. Tribimaximal and experimentally allowed models

One main result of our analysis is that we have found
thousands of new models that give exact tribimaximal
mixing. Figure 5 shows the number of inequivalent models
(not vacua) for the 76 groups specified before. The red bars
indicate the fraction of Lagrangians for which at least one
choice of vevs leads to tribimaximal mixing, and the green
bars give the number of models that lie in the 3� interval of
the measured angles. The correspondence between the
GAPIDs on the x axis and the full name of the group is

given in Table III, where we also list the exact numbers of
models that may be difficult to read off from the graph.
The conspicuous gaps in Fig. 5 are a consequence of our

criterion that the mass matrices be nonsingular; i.e. we do
not consider such cases where any of the neutrinos (or
charged leptons) are massless.
Out of the 76 groups that we scanned, nine (12%) have

only singular mass matrices. We see that 44 groups (58%)

FIG. 4 (color online). Number of vacua that give �12, �23, �13. Each point corresponds to a bin in the three-dimensional histogram
that has at least one entry. The bin width is 1. The color of the points (from blue to red/dark to light gray) corresponds to the logarithm
to base 10 of the number of vacua (from lower to higher). The color map is the same as in Fig. 3.

FIG. 5 (color online). The number of models per symmetry group. On the x axis, we label the flavor symmetry g by its GAPID,
cf. Table III. The red and blue labels on the x axis indicate that g 	 A4 and g 
 Uð3Þ, respectively, whereas green signifies that both
conditions are satisfied simultaneously. Along the y axis, the blue bars give the number of Lagrangians that lead to nonsingular mass
matrices. The green bars indicates the number of models that lie within the 3� interval, and the red bars finally give the number of
models for which at least one vacuum configuration gives tribimaximal mixing. If the colors are not visible, please refer to Table III
which contains the same information.
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lie in the 3� interval, and 38 (50%) are even tribimaximal
(for at least one vacuum configuration, respectively). Only
for 23 groups (30%) we could not find any vacuum con-
figuration that satisfies the experimental limits. Note,
though, that despite being very general, our scan is not
fully comprehensive, since (i) we assume that the lepton
doublet transforms in a triplet, and (ii) we do not scan over
all possible vevs. Owing to this fact, there may exist even
more viable models than we have identified.

The smallest group for which we find TBM is
Gð21; 1Þ ¼ T7. Note that we do not have any additional
Abelian factors Zn, as is the case with many A4 models in
the literature. In this sense, we have identified T7 as the
minimal flavor symmetry that can produce TBM.
Incidentally, T7 is the smallest group after A4 that has a
three-dimensional irreducible representation. We will take
a closer look at T7 in Sec. VB.

An interesting observation from Fig. 5 is that for nine
groups the models with TBM are identical to those that are
consistent with experiment at 3�; i.e. the green bars
are completely covered by the red ones: Gð21; 1Þ ¼
T7, Gð39;1Þ¼T13, Gð48;3Þ¼�ð48Þ, Gð57;1Þ¼T19,
Gð75;2Þ¼�ð75Þ, Gð78;2Þ¼T26, Gð84;11Þ, Gð93;1Þ¼
T31, and Gð96; 3Þ (see also Table III). Five of these
nine groups belong to the T series of SU(3) subgroups
[30].

B. The flavor group T7

As mentioned before, T7 [31–33] is the smallest group
for which we find tribimaximal mixing.
In Fig. 6 we show for Gð21; 1Þ ¼ T7 the distribution of

the mixing angles. If we use the experimental data on two
of the angles and plot the multiplicity of the third one, we
find that �12 ’ 35� is the second-most likely angle to be
produced, and the only one within the 3� interval. For �23,
we obtain a unique prediction �23 ¼ 45�. As for �13, the
value 0� is both the most likely angle and the only one
attained within the 3� interval.
Remarkably, the 3� bands in Fig. 6(b) are completely

depopulated except for the values corresponding to exact
tribimaximal mixing. In this sense one can say that in light
of the experimental data, assuming a T7 family symmetry
predicts TBM.
As one can see from Table III, for T7 the number of

experimentally allowed models coincides with the number
of tribimaximal ones. This is a slightly weaker statement
than the one made in the previous paragraph, since we list a
model as TBM or experimentally allowed, if there exists at
least one vacuum configuration for which this is true.
These vacua need not be the same, and there may exist
others for which the model is neither allowed nor TBM. In
contrast, Fig. 6(b) shows that, independently of the choice

FIG. 6 (color online). Number of vacua with family symmetryGð21; 1Þ ¼ T7 that give the mixing angles denoted on the x axis. The
area of the histograms is normalized to 1 and the bin width is 1. The green and yellow bands correspond to the 1� and 3� ranges,
respectively.
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of vacuum, requiring the mixing angles to be in the 3�
bands automatically leads to tribimaximal mixing.

The other plots relating to T7 can be found in Sec. 2 of
Ref. [34].

C. The flavor group T13

Let us now turn our attention to Gð39; 1Þ ¼ T13. One
reason why this group stands out is that 59% of its models
are tribimaximal (see Table III). As compared to e.g.
A4 � C3 with 18.5%, this is a much larger fraction.

Again, as was the case for T7, any model that has a
vacuum for which the mixing angles are consistent with
experiment at the 3� level also allows for TBM to be
realized (see Table III).

From Fig. 7(b) we see that the correlation between the
family symmetry T13 and tribimaximal mixing is almost as
strong as in the case of T7. Contrary to the case of T7, not
every vacuum that is consistent with experiment leads to
TBM; i.e. we can find some vacua in the 3� band that are
not tribimaximal, but this is mainly a consequence of the
large errors on �13. Remarkably, all three histograms in
Fig. 7(b) peak at values corresponding to tribimaximal
mixing.

The other plots relating to T13 can be found in Sec. 9 of
Ref. [34].

D. The other flavor groups

In Ref. [34] we present the graphs (analogous to those in
Sec. IV) for all 67 flavor groups that have nonsingular mass
matrices (cf. Sec. VA). Since a detailed discussion of the
results for all groups is beyond the scope of the present
publication, we will limit ourselves to some qualitative
observations.
From the discussion in the previous sections, one may

get the impression that realizing TBM is not too difficult as
long as one scans over a large enough fraction of the
parameter space. Figure 1(b) of Ref. [34] for Gð12; 3Þ ¼
A4, however, shows that there are groups for which the
experimentally determined mixing angles cannot be repro-
duced within their 3� error bands. Other examples with a
larger flavor group are [34] Gð48; 30Þ or Gð96; 65Þ. Of
course, this statement depends on the assumptions that we
used to constrain the Lagrangian, e.g. the number of flavon
fields.
T13 is, by far, not the only group with the remarkable

property that restricting two of the angles to their respec-
tive 3� intervals predicts the third one in the sense that it is
the most likely value. Other examples are [34] Gð57; 1Þ ¼
T19, Gð75; 2Þ ¼ �ð75Þ, and Gð93; 1Þ ¼ T31.
In analogy to T7 there exist other groups for which

restricting all three angles to their respective 3� intervals

FIG. 7 (color online). Number of vacua with family symmetryGð39; 1Þ ¼ T13 that give the mixing angles denoted on the x axis. The
area of the histograms is normalized to 1 and the bin width is 1. The green and yellow bands correspond to the 1� and 3� ranges,
respectively.
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almost always leads to TBM, e.g. Gð48; 31Þ, Gð60; 9Þ,
Gð72; 25Þ. In contrast to T7, however, there are a few vacua
in the 3� interval that do not realize TBM.

From Fig. 21(a) of Ref. [34], for Gð36; 3Þ we see that
there exist groups that predict a uniform distribution of the
mixing angles so that, in comparison, the distribution for
A4 � C3 (see Fig. 4) clearly shows some preference for
certain regions of the parameter space.

E. Is there a connection between A4 and
tribimaximal mixing?

To explore the connection between tribimaximal mixing
and A4, we have color coded the group names on the x axis
of Fig. 5. Blue, red, and green bars correspond to g 
 Uð3Þ,
g 	 A4, and A4 
 g 
 Uð3Þ, respectively. The same infor-
mation is summarized in Table III. Of the 76 groups, 35
contain A4 as a subgroup, but only for 16 out of these 35
groups we can find vacua that give models of tribimaximal
mixing. It is conceivable, though, that one may find TBM
models for the other groups, if one introduces more than
three flavon fields.

We find four groups, Gð84; 9Þ, Gð96; 198Þ, Gð96; 201Þ,
and Gð96; 202Þ, that are not subsets of U(3) nor do they
contain an A4 subgroup; nevertheless, they can accommo-
date models of tribimaximal mixing.

In light of these facts, it is difficult to maintain that A4 is
special with regard to realizing tribimaximal mixing. We
strongly advocate not neglecting other promising groups,
especially T7 and T13.

VI. CONCLUSIONS

In this publication we scanned 76 groups and con-
structed a total of 439 820 Lagrangians, out of which
59 019 were consistent with experiment and 31 137 were
tribimaximal. The large set of viable models allowed us to
look at correlations between the mixing angles and make a
prediction for �13 that will be measured in upcoming
experiments.

We have presented an explicit model with �13 ¼ 5:1� to
show that the recent tentative hints of a nonzero �13 can be
accommodated. We found tribimaximal mixing in 38 fla-
vor groups; most of these groups had not been considered
for model building before. We hope that the calculational
tools and methods that we have outlined will be useful for
future model building efforts.

We would like to emphasize that we do not advocate a
probabilistic approach to model building along the lines of
the landscape idea in string theory. Rather, we are trying to
maximize our chances of finding the correct model(s) by
starting out with a large set that reproduces the mixing
angles within the current experimental limits. In the future,
we plan to take this analysis several steps further and look
at the generation of mass hierarchies and the vacuum
alignment problem, and finally include the quark sector.
Invariably, each step will drastically reduce the number of

models, and the goal is to find at least one that passes all
criteria.
On the other hand, for answering the question as to

whether any discrete flavor group is inherently connected
to tribimaximal mixing, a probabilistic approach may be
useful: The easier tribimaximal mixing can be realized in a
given group, the more pronounced the connection is. In this
sense, A4 fares well, but T7 and T13 should be considered to
be on equal footing, if not more promising.
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APPENDIX A: LIST OF GROUPS OF
ORDER AT MOST 100

Very few groups have been given dedicated names by
the mathematicians and physicists who studied them.
Examples are the cyclic groups Cn, the symmetric groups
Sn, the alternating groups An, and the dihedral groups
Dn. The vast majority are described by their substructure
and a ‘‘prescription’’ of how to put these parts together to
form the full group: the direct product, the semidirect
product, and the short exact sequence. The reader who is
unfamiliar with any of these concepts may refer to e.g.
Ref. [35].
Since the list of 1048 groups of order � 100 is too long

to include in the present publication, we have made it
available for download [24]. For details on the generation
of this list, see Appendix B.
The list of the 90 groups of order � 100 that have a

three-dimensional irreducible representation and that we
have systematically scanned for viable models of lepton
flavor is given in Table III.
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TABLE III. The 90 groups of order � 100 that have a three-dimensional irreducible representation. For details, refer to
Appendix A 2.

GAPID Group U3 U2 U2�1 A4 Models 3� TBM

[12, 3] A4 ✓✓ � � ✓ 90 0 0

[21, 1] C7 2’C3 ✓✓ � � � 108 36 36

[24, 3] SL(2, 3) ✓✓ ✓✓ ✓✓ � 135 0 0

[24, 12] S4 ✓✓ � � ✓ 0 0 0

[24, 13] C2 � A4 ✓ � � ✓ 2034 344 288

[27, 3] ðC3 � C3Þ 2’C3 ✓✓ � � � 34 992 2430 0

[27, 4] C9 2’C3 ✓ � � � 34 992 4536 0

[36, 3] ðC2 � C2Þ 2’C9 ✓ � � � 53 535 10 621 3459

[36, 11] C3 � A4 ✓✓ � � ✓ 22 932 4481 4233

[39, 1] C13 2’C3 ✓✓ � � � 288 171 171

[42, 2] C2 � ðC7 2’C3Þ ✓ � � � 2682 445 273

[48, 3] ðC4 � C4Þ 2’C3 ✓✓ � � ✓ 270 90 90

[48, 28] SLð2; 3Þ ! G ! C2 ✓✓ ✓✓ ✓✓ � 0 0 0

[48, 29] GL(2, 3) ✓✓ ✓ ✓ � 0 0 0

[48, 30] A4 2’C4 ✓ � � ✓ 48 0 0

[48, 31] C4 � A4 ✓ � � ✓ 14 937 2864 2712

[48, 32] C2 � SLð2; 3Þ ✓ � ✓✓ � 2052 344 288

[48, 33] SLð2; 3Þ 2’C2 ✓✓ ✓ ✓ � 2052 344 288

[48, 48] C2 � S4 ✓ � � ✓ 16 0 0

[48, 49] C2 � C2 � A4 � � � ✓ 5805 640 561

[48, 50] ðC2 � C2 � C2 � C2Þ 2’C3 � � � ✓ 189 0 0

[54, 8] ððC3 � C3Þ 2’C3Þ 2’C2 ✓✓ � � � 0 0 0

[54, 10] C2 � ððC3 � C3Þ 2’C3Þ ✓ � � � — — —

[54, 11] C2 � ðC9 2’C3Þ ✓ � � � — — —

[57, 1] C19 2’C3 ✓✓ � � � 405 198 198

[60, 5] A5 ✓✓ � � ✓ 0 0 0

[60, 9] C5 � A4 ✓ � � ✓ 11 575 2063 1983

[63, 1] C7 2’C9 ✓ � � � 24345 3792 795

[63, 3] C3 � ðC7 2’C3Þ ✓✓ � � � 15 246 2483 1863

[72, 3] Q8 2’C9 ✓✓ ✓ ✓✓ � 18 714 3272 1344

[72, 15] ððC2 � C2Þ 2’C9Þ 2’C2 � � � � 0 0 0

[72, 16] C2 � ððC2 � C2Þ 2’C9Þ ✓ � � � — — —

[72, 25] C3 � SLð2; 3Þ ✓✓ ✓ ✓✓ � 18 105 3441 3261

[72, 42] C3 � S4 ✓✓ � � ✓ 108 0 0

[72, 43] ðC3 � A4Þ 2’C2 � � � ✓ 0 0 0

[72, 44] A4 � S3 � � � ✓ 2451 399 336

[72, 47] C6 � A4 ✓ � � ✓ — — —

[75, 2] ðC5 � C5Þ 2’C3 ✓✓ � � � 477 234 234

[78, 2] C2 � ðC13 2’C3Þ ✓ � � � 2541 810 810

[81, 3] ðC9 � C3Þ 2’C3 � � � � — — —

[81, 4] C9 2’C9 � � � � — — —

[81, 6] C27 2’C3 ✓ � � � — — —

[81, 7] ðC3 � C3 � C3Þ 2’C3 ✓ � � � 24 329 1296 0

[81, 8] ðC9 � C3Þ 2’C3 ✓ � � � 32 416 1782 0

[81, 9] ðC9 � C3Þ 2’C3 ✓✓ � � � 32 076 1782 0

[81, 10] ðC3 � C3Þ ! G ! ðC3 � C3Þ ✓ � � � 20 736 1161 0

[81, 12] C3 � ððC3 � C3Þ 2’C3Þ � � � � — — —

[81, 13] C3 � ðC9 2’C3Þ � � � � — — —

[81, 14] ðC9 � C3Þ 2’C3 ✓ � � � — — —

[84, 2] C4 � ðC7 2’C3Þ ✓ � � � 4752 714 567

[84, 9] C2 � C2 � ðC7 2’C3Þ � � � � 2136 366 306

[84, 10] C7 � A4 ✓ � � ✓ — — —
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1. Notation and conventions

Our notation follows the GAP Reference Manual, p. 356
[36], with the following exceptions. We denote the direct
product by ‘‘�’’ and the semidirect by N 2’K, where N is

normal. Beware that this convention is not unique and that
the symbol ‘‘ 2’’’ may point the other way. In writing short

exact sequences like 1 ! N ! G ! Q ! 1, we will omit
the leading and trailing trivial groups in order to make our
notation more compact.

We denote the dihedral group of a regular n-gon by Dn,
and not by D2n, as some authors prefer to do. Cn or Zn is
the cyclic group of order n. Sn and An are the symmetric

and alternating groups, respectively. Q4 and Q8 are the
quaternion and octonion groups, respectively. SLðn; pÞ is
the special linear group over a finite field, i.e. the set of all
n� n matrices with determinant 1 and values from a field
of order p.
To facilitate the comparison with the existing literature,

we give in Appendix A 3 a nonexhaustive list of alternative
names for some of the groups considered in our analysis.

Many of the groups that we consider do not have specific

names, and we will refer to them by their GAPIDs. Gðm; nÞ
will denote the group that is generated in GAP by the

command SmallGroup (m, n).

GAPID Group U3 U2 U2�1 A4 Models 3� TBM

[84, 11] ðC14 � C2Þ 2’C3 ✓✓ � � ✓ 678 192 192

[93, 1] C31 2’C3 ✓✓ � � � 507 249 249

[96, 3] ððC4 � C2Þ 2’C4Þ 2’C3 � � � ✓ 324 90 90

[96, 64] ððC4 � C4Þ 2’C3Þ 2’C2 ✓✓ � � ✓ 0 0 0

[96, 65] A4 2’C8 ✓ � � ✓ 138 0 0

[96, 66] SLð2; 3Þ 2’C4 ✓ � ✓✓ � 48 0 0

[96, 67] SLð2; 3Þ 2’C4 ✓✓ ✓ ✓ � 48 0 0

[96, 68] C2 � ððC4 � C4Þ 2’C3Þ ✓ � � ✓ 3648 939 876

[96, 69] C4 � SLð2; 3Þ ✓ � ✓✓ � 6637 1002 936

[96, 70] ððC2 � C2 � C2 � C2Þ 2’C3Þ 2’C2 � � � ✓ 2433 399 336

[96, 71] ððC4 � C4Þ 2’C3Þ 2’C2 � � � ✓ 2433 399 336

[96, 72] ððC4 � C4Þ 2’C3Þ 2’C2 � � � ✓ 2433 399 336

[96, 73] C8 � A4 ✓ � � ✓ — — —

[96, 74] ððC8 � C2Þ 2’C2Þ 2’C3 ✓✓ ✓ ✓ � 3884 678 630

[96, 185] A4 2’Q8 � � � ✓ 16 0 0

[96, 186] C4 � S4 ✓ � � ✓ 113 0 0

[96, 187] ðC2 � S4Þ 2’C2 � � � ✓ 16 0 0

[96, 188] SLð2; 3Þ ! G ! C2Þ ✓ � ✓✓ � 14 0 0

[96, 189] C2 � GLð2; 3Þ ✓ � ✓ � 14 0 0

[96, 190] ðC2 � SLð2; 3ÞÞ 2’C2 � � � � 16 0 0

[96, 191] SLð2; 3Þ ! G ! C2Þ 2’C2 � � � � 16 0 0

[96, 192] SLð2; 3Þ ! G ! C2Þ 2’C2 ✓✓ ✓ ✓ � 14 0 0

[96, 193] ðSLð2; 3Þ 2’C2Þ 2’C2 � � � � 16 0 0

[96, 194] C2 � ðA4 2’C4Þ � � � ✓ 118 0 0

[96, 195] ðC2 � C2 � A4Þ 2’C2 � � � ✓ 16 0 0

[96, 196] C2 � C4 � A4 � � � ✓ — — —

[96, 197] D4 � A4 � � � ✓ 5202 558 486

[96, 198] C2 � C2 � SLð2; 3Þ � � � � 1347 224 198

[96, 199] Q8 � A4 � � � ✓ 5187 558 486

[96, 200] C2 � ðSLð2; 3Þ 2’C2Þ ✓ � ✓ � 1332 224 198

[96, 201] ðSLð2; 3Þ 2’C2Þ 2’C2 � � � � 5202 558 486

[96, 202] ðC2 � SLð2; 3ÞÞ 2’C2 � � � � 5202 558 486

[96, 203] ðC2 � C2 �Q8Þ 2’C3 � � � ✓ 189 0 0

[96, 204] ððC2 �D4Þ 2’C2Þ 2’C3 � � � ✓ 189 0 0

[96, 226] C2 � C2 � S4 � � � ✓ 42 0 0

[96, 227] ððC2 � C2 � C2 � C2Þ 2’C3Þ 2’C2 � � � ✓ 0 0 0

[96, 228] C2 � C2 � C2 � A4 � � � ✓ — — —

[96, 229] C2 � ððC2 � C2 � C2 � C2Þ 2’C3Þ � � � ✓ 4779 853 720

TABLE III. (Continued)
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2. The list of 90 groups

In Table III, we list the 90 groups of order � 100 that
have a three-dimensional irreducible representation.

The first column gives the GAPID, which is a label that
uniquely identifies the group in GAP. The first number in the
square brackets is the order of the group, and the second
number simply enumerates different groups of the same
order. The GAPIDs of the 14 groups that require more than
60 days of computer time are indicated by a dash in the
seventh to ninth columns.

The second column gives the name of the group. If two
or more groups by the same name are isomorphic, we list
only one. For the conventions we used in naming the
groups and for a nonexhaustive compilation of alternative
names common in the physics and mathematics literature,
see Appendixes A 1 and A 3, respectively.

The third column indicates whether the group G is a
subgroup of U(3). If G is in SU(3), a double check mark is
shown, otherwise a single one.

The fourth and fifth columns indicate whether G is in
U(2) or Uð2Þ � Uð1Þ, respectively (single check mark). If
G is in SU(2) or SUð2Þ � Uð1Þ, respectively, there is a
double check mark.

The sixth column indicates whether G contains A4 as a
subgroup.

The seventh column gives the total number of inequiva-
lent models, and the eighth and ninth columns show the
number of models that have vacua with mixing angles that
lie in the 3� interval or are tribimaximal, respectively.

3. Alternative names for some small groups

In Table IV we list some alternative names for the
groups that we have considered in this publication
(cf. Table III). To compile this list, we have made use of
Refs. [10–12,22,30,37–39].

APPENDIX B: CONSTRUCTION OF
THE GROUPS OF ORDER AT

MOST 100

Wewill first describe how to generate all groups of order
� 100 in GAP. Then wewill determine which groups have a
three-dimensional irrep and/or are a subgroup of U(3) or
SU(3). We include this information because there seems to
be a clear preference in model building for continuous or
discrete subgroups of U(3) or SU(3).

1. Generating the groups

The following lines of code generate the list of all
groups of order � 100 using the Small Groups Library
[23] in GAP:

1 SizeScreen( [ 500, ] );

2 groups :¼ AllSmallGroupsð½1::100�Þ;;
3 for g in groups do

4 Display(StructureDescription(g));

5 Display(IdGroup(g));

6 chartab :¼ IrrðgÞ;;
7 for i in [1..Size(chartab)] do

8 Print(chartab[i][1], ‘‘ ’’);

TABLE IV. Some aliases for the groups in Table III. The first and second columns give the GAPID and the group names displayed by
GAP, respectively. The third column shows one or more alternative names that are in common use in the physics and mathematics

literature. The fourth column, finally, gives a short description of the group, where appropriate.

GAPID Group Other names Description

[12, 3] A4 �ð12Þ, T Tetrahedral group

[21, 1] C7 2’C3 T7

[24, 3] SL(2, 3) T0 Double cover of A4

[24, 12] S4 �ð24Þ, O Octahedral group

[24, 13] C2 � A4 �ð24Þ Pyritohedral group

[27, 3] ðC3 � C3Þ 2’C3 �ð27Þ
[39, 1] C13 2’C3 T13

[42, 2] C2 � ðC7 2’C3Þ T14

[48, 3] ðC4 � C4Þ 2’C3 �ð48Þ
[48, 28] SLð2; 3Þ ! G ! C2 Double cover of S4
[54, 8] ððC3 � C3Þ 2’C3Þ 2’C2 �ð54Þ
[57, 1] C19 2’C3 T19

[60, 5] A5 �ð60Þ, I Icosahedral group

[63, 3] C3 � ðC7 2’C3Þ T21

[75, 2] ðC5 � C5Þ 2’C3 �ð75Þ
[78, 2] C2 � ðC13 2’C3Þ T26

[81, 7] ðC3 � C3 � C3Þ 2’C3 �ð81Þ
[84, 2] C4 � ðC7 2’C3Þ T28

[93, 1] C31 2’C3 T31

[96, 64] ððC4 � C4Þ 2’C3Þ 2’C2 �ð96Þ
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9 od;

10 Print(‘‘\n’’);

11 od;

12 time;

These lines can be entered directly at the GAP prompt. In
the following we assume that the preceding lines have been
saved in a file named smallgroups.gap that is then loaded
and automatically executed (see line 1 below):

1 gap> Readð“smallgroups:gap”Þ;
2 1

3 [1, 1]

4 1

5 C2

6 [2, 1]

7 1 1

8 C3

9 [3, 1]

10 1 1 1

We only display the first few lines of output (lines 2–10
above). For each group, there are three lines of output
corresponding to lines 4, 5, 8 in the GAP code. For a
nontrivial example, see lines 5–7 in the output. Line 5
displays the human-readable name of the group, line 6
gives its GAPID which uniquely identifies the group and
which we will use as input for other GAP commands, and
line 7 gives the first column of the character table, i.e. the
dimensions of the irreps [29].

We find 1048 groups of order � 100 which we list in a
separate file that we have made available for download
[24]. The first two columns of this list summarize the
information we have obtained in this section.

2. Groups that are subgroups of SU(3) or U(3)

Next we determine which of these groups are subgroups
of U(3) or SU(3). If a group g is (isomorphic to) a subgroup
of U(3), there is a one-to-one correspondence between its
elements and matrices of U(3). These matrices furnish a
three-dimensional faithful representation of g that is not
necessarily irreducible. Conversely, if g has a three-
dimensional, faithful representation, then g is a subgroup
of U(3): For finite groups, every representation is equiva-
lent to a unitary representation [29], so the representation
matrices are elements of U(3). By faithfulness, the repre-
sentation 	 is a one-to-one mapping between g and the
image of 	 in U(3). By virtue of 	 being a group
homomorphism, Im	 inherits the group properties from
g, and consequently Im	 
 Uð3Þ is a group that is iso-
morphic to g. Finally, whether g lies in SU(3) can be
verified by checking the determinant of representation
matrices, since equivalent representations have the same
determinant.

The kernel of the representation is given by Ker	¼
fg2gjcharðgÞ¼charð1Þg [40], and thus a three-dimensional
representation 	 is faithful, iff 1 is the only element

whose character is 3. For each of the 1048 groups generated
in Appendix B 1, we calculate the character table. Below is
the output for A4:

1 gap> g :¼ SmallGroupð12; 3Þ;;
2 gap> DisplayðStructureDescriptionðgÞÞ;
3 A4

4 gap> chartab :¼ IrrðgÞ;;
5 gap> DisplayðchartabÞ;
6 [ [ 1, 1, 1, 1 ],

7 [ 1, Eð3Þ̂2, 1, E(3) ],
8 ½1;Eð3Þ; 1;Eð3Þ̂2�,
9 ½3; 0;�1; 0��

On line 1, we specify the group by entering its
GAPID [12,3]; see Table III. Lines 6–9 give its character

table, where Eð3Þ ¼ exp2
i=3 denotes the primitive third
root of unity. The first column gives the dimensions of the
representations: 1, 10, 100, 3. On line 9 corresponding to 3,
there is only one character equal to 3, so 3 is faithful. This
proves that A4 is a subgroup of U(3). The representation
matrices can be found by using the REPSN package [41]
in GAP:

1 gap> LoadPackageðrepsnÞ;;
2 gap> for i in½1::SizeðchartabÞ�do
3 >DisplayðIrreducibleAffordingRepresentationðchartab½i�ÞÞ;
4 >od;
5 Pcgsð½f1; f2; f3�Þ �>½½½1��; ½½1��; ½½1���
6 Pcgsð½f1; f2; f3�Þ �>½½½Eð3Þ̂2��; ½½1��; ½½1���
7 Pcgsð½f1; f2; f3�Þ �>½½½Eð3Þ��; ½½1��; ½½1���
8 Pcgsð½f1; f2; f3�Þ �>½½½0; 1; 0�; ½0; 0; 1�; ½1; 0; 0��,
9 ½½�1; 0; 0�; ½0; 1; 0�; ½0; 0;�1��,
10 ½½�1; 0; 0�; ½0;�1; 0�; ½0; 0; 1���

Lines 8, 9, 10, respectively, correspond to the represen-
tation matrices of the generators f1, f2, f3 of A4 for the
three-dimensional irrep. Their determinants are all 1, and
thus A4 is a subgroup of SU(3).
In other cases, when there is no faithful, irreducible

three-dimensional representation, we have to consider the
reducible ones. If A, B are two representations, then
charðA � BÞ ¼ charðAÞ þ charðBÞ; i.e. we obtain the char-
acter of A � B by adding the rows in the character table that
correspond to A and B. For a given group, we consider all
direct sums that are three dimensional and calculate their
characters. For each direct sum, the first element of
the character will be 3, corresponding to the dimension
of the representation. If there is more than one 3, we
conclude that the direct sum is not faithful. If we cannot
find any direct sum that is faithful, we conclude that g is
not isomorphic to a subgroup of U(3).
Assume that we can find a three-dimensional faithful,

reducible representation, thereby proving that g is a
subgroup of U(3). The representation matrices are block
diagonal, and each submatrix is unitary. There are two
cases: All submatrices are 1� 1, or one is 2� 2 and
the other is 1� 1. In the former case, the representation
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matrices are diagonal and commute; thus g ’ Zp � Zq �
Zr 
 Uð1Þn for some n � 3. In the latter case, we consider
the canonical embedding of the submatrices into U(3) (i.e.
by extending the submatrix by the identity matrix to match
the dimensions). Every representation matrix can be
uniquely written as a product of these embedded subma-
trices, and the submatrices corresponding to different
blocks trivially commute. This establishes that g is iso-
morphic to a subgroup of Uð2Þ � Uð1Þ.

We have implemented the above algorithm in a GAP

script. The results have been summarized in Ref. [24]
and made available for download.

3. Comparing our results to the existing
literature

We have compared our results to the existing literature
on SU(3) subgroups [12,22,30,37–39]. Identifying the
groups is not always straightforward, since they may ap-
pear under different names in different contexts; e.g. A4 is
listed as �ð12Þ in Ref. [38] and as part of the C series in
Ref. [37].

In Table 1 of Ref. [24] we list all groups of order at most
100 and for each group indicate whether it is a subgroup of
U(3), SU(3), U(2), SU(2), Uð2Þ � Uð1Þ, or SUð2Þ � Uð1Þ,
respectively.

We find that the groups in our list that are subgroups of
SU(3) but not of Uð2Þ � Uð1Þ agree with those in
Refs. [30,38,39] except in the following cases: According
to Ref. [30], the groupsGð42; 2Þ,Gð78; 2Þ,Gð84; 2Þ are in
SU(3), but our analysis along the lines of Appendix B 2
shows that they are only in U(3), not in SU(3).

Reference [12] only explicitly lists groups that are not
direct products with cyclic factors, and thus does not con-
sider the groups in question, but according to Theorem II.2
in the same publication, these groups are in U(3), so we
have agreement.

Also, the groups Gð36; 11Þ, Gð72; 42Þ, Gð81; 9Þ, and
Gð84; 11Þ were not listed in Refs. [30,38,39], but we
have verified that these groups are indeed in SU(3).
Gð81; 9Þ and Gð84; 11Þ are part of the C series as given
in Ref. [37]. This has already been pointed out by Ref. [12].
The groupsGð36; 11Þ andGð72; 42Þ have not been explic-
itly listed in Ref. [12], but the discussion following
Theorem II.2 in the same publication makes it clear that
these groups are in SU(3).

Reference [12], Sec. II.1, makes the observation that a
finite subgroup of U(3) is not in U(2) or U(1), if and only
if it has a faithful three-dimensional irreducible represen-
tation. In our analysis, we find counterexamples: For
instance, the group Gð16; 3Þ 
 Uð3Þ is not in U(2) and
has no three-dimensional irreducible representation. The
reason is that the existence of a reducible and faithful
three-dimensional representation is already sufficient
for being a subgroup of U(3). For more details, see
Appendix B 2.

For generating the �ð3n2Þ series, we have used the
generators from Table 1 in Ref. [38] with j ¼ 1 and
k ¼ 0 (also see Ref. [42]). Note that if we take some
arbitrary integers j and k, the representation may not be
faithful and thus will not generate [a subgroup of U(3) that
is isomorphic to] �ð3n2Þ. Also note that in Ref. [38] the
generators for �ð360Þ generate a group of order 1080
which is a nonsplit extension1 of A6 by C3, and not A6.
We agree with Ref. [37], which lists the same group as
�ð360�Þ.

4. Groups that contain A4 as a subgroup

Since many publications in the past have highlighted A4

and its connection to tribimaximal mixing, we find it useful
to list the groups that contain A4 as a subgroup:

1 LoadPackage(‘‘sonata’’);

2 for n in [1..100] do

3 for g in AllSmallGroups(n) do

4 sg :¼ SubgroupsðgÞ;
5 if "A4" in List(sg, x�>StructureDescriptionðxÞ) then
6 Print(IdGroup(g),‘‘\n’’);

7 fi;

8 od;

9 UnloadSmallGroupsData();

10 od;

For every n from 1 to 100 (line 2), we generate all groups
of order n (line 3). For each such group, we determine its
subgroups (line 4) and check whether A4 is one of them
(line 5). If the answer is positive, we print the GAPID of the
respective group (line 6). On a technical note, since the
number of subgroups becomes large, we need to increase
the default memory allocation for GAP. The results are
presented in the last column of Table 1 in Ref. [24].

APPENDIX C: CLEBSCH-GORDAN
COEFFICIENTS FOR FINITE GROUPS

Currently, it is general practice to construct the CGCs
for the various groups that are studied in physics on a case-
by-case basis using heuristic methods. It is clear that such
an approach becomes cumbersome, if one considers more
than one group or if the number of irreducible representa-
tions is large. Also, for automating the steps from the
choice of the family symmetry to finding the invariant
Lagrangian to calculating the mixing angles and phases,
we need a systematic way of deriving the CGCs that does
not rely on the specifics of the group under consideration.
An algorithm due to van den Broek and Cornwell [25]

solves this problem in full generality: Given the character
table and the explicit form of the unitary representation

1We are indebted to Patrick Otto Ludl for pointing out that it is
not the direct product of A6 and C3 as we had incorrectly
identified in the first version of this publication due to a mis-
interpretation of the GAP output.
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matrices, it calculates the CGCs for any finite group. We
have implemented this algorithm in PYTHON to automati-
cally generate the CGCs for any finite group. We get the
character table and the representation matrices from GAP

that we have interfaced with our PYTHON programs to
achieve a high level of automation.

We performed several checks to ascertain that the CGCs
are calculated correctly. For one thing, we have compared
our output to the (comparatively few) results that exist in
the literature (see Ref. [22] and references therein). For
another, we have checked, for all 90 groups in Table III and

for all irreducible representations p, q, that contractions
with the CGCs, namely, Cijkpiqj, transform like the

terms on the right-hand side of the tensor product decom-
position p � q (note that this is the defining property for
CGCs).
We find complete agreement except for A5. The problem

can be traced back to the fact that the representation
matrices for A5 provided by GAP are not unitary. After
choosing unitary representation matrices, the algorithm
also gives the correct CGCs for this remaining case.

[1] Y. Fukuda et al. (Super-Kamiokande Collaboration), Phys.
Rev. Lett. 81, 1562 (1998).

[2] Q. R. Ahmad et al. (SNO Collaboration), Phys. Rev. Lett.
89, 011301 (2002).

[3] B. Pontecorvo, Sov. Phys. JETP 6, 429 (1957).
[4] Z. Maki, M. Nakagawa, and S. Sakata, Prog. Theor. Phys.

28, 870 (1962).
[5] T. Schwetz, M.A. Tortola, and J.W. F. Valle, New J. Phys.

10, 113011 (2008).
[6] M.C. Gonzalez-Garcia, M. Maltoni, and J. Salvado, J.

High Energy Phys. 04 (2010) 056.
[7] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652

(1973).
[8] P. F. Harrison, D.H. Perkins, and W.G. Scott, Phys. Lett.

B 530, 167 (2002).
[9] P. F. Harrison and W.G. Scott, Phys. Lett. B 535, 163

(2002).
[10] G. Altarelli and F. Feruglio, Rev. Mod. Phys. 82, 2701

(2010).
[11] H. Ishimori et al., Prog. Theor. Phys. Suppl. 183, 1 (2010).
[12] P. O. Ludl, J. Phys. A 43, 395204 (2010); 44, 139501(E)

(2011).
[13] E. Ma and G. Rajasekaran, Phys. Rev. D 64, 113012

(2001).
[14] E. Ma, arXiv:hep-ph/0409075.
[15] K. S. Babu and X.-G. He, arXiv:hep-ph/0507217.
[16] G. Altarelli and F. Feruglio, Nucl. Phys. B741, 215

(2006).
[17] M. Mezzetto and T. Schwetz, J. Phys. G 37, 103001

(2010).
[18] G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo, and A.M.

Rotunno, J. Phys. Conf. Ser. 203, 012103 (2010).
[19] Y. Kajiyama and H. Okada, Nucl. Phys. B848, 303 (2011).
[20] F. Plentinger, G. Seidl, and W. Winter, J. High Energy

Phys. 04 (2008) 077.
[21] The GAP Group, ‘‘GAP—Groups, Algorithms, and

Programming, Version 4.4.12,’’ http://www.gap-
system.org, 2008.

[22] P. O. Ludl, arXiv:0907.5587.
[23] B. E. Hans Ulrich Besche and E. O’Brien, ‘‘Small

Groups—A GAP package’’ http://www.icm.tu-bs.de/
~beick/soft/small/small.html.

[24] See Supplementary Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.84.013011 for the full
list of the 1048 groups of order at most 100.

[25] P. van den Broek and J. Cornwell, Phys. Status Solidi B
90, 211 (1978).

[26] K. Nakamura and P.D. Group, J. Phys. G 37, 075021
(2010).

[27] S.M. Bilenky, J. Hosek, and S. T. Petcov, Phys. Lett. 94B,
495 (1980).

[28] F. Plentinger, G. Seidl, and W. Winter, Nucl. Phys. B791,
60 (2008).

[29] H. F. Jones, Groups, Representations and Physics (Hilger,
Bristol, England, 1990), p. 287.

[30] W.M. Fairbairn and T. Fulton, J. Math. Phys. (N.Y.) 23,
1747 (1982).

[31] C. Luhn, S. Nasri, and P. Ramond, Phys. Lett. B 652, 27
(2007).

[32] C. Hagedorn, M.A. Schmidt, and A.Y. Smirnov, Phys.
Rev. D 79, 036002 (2009).

[33] Q.-H. Cao, S. Khalil, E. Ma, and H. Okada, Phys. Rev.
Lett. 106, 131801 (2011).

[34] See Supplementary Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.84.013011 for the
graphs of all 67 flavor groups that have nonsingular
mass matrices.

[35] S. Lang, Algebra (Springer, Heidelberg, 2002).
[36] The GAP Group, ‘‘GAP Reference Manual,’’ http://www

.gap-system.org/Manuals/doc/ref/manual.pdf, 2008.
[37] G. A. Miller, H. F. Blichfeldt, and L. E. Dickson,

Theory and Applications of Finite Groups (Dover, New
York, 1961).

[38] W.M. Fairbairn, T. Fulton, and W.H. Klink, J. Math. Phys.
(N.Y.) 5, 1038 (1964).

[39] A. Bovier, M. Luling, and D. Wyler, J. Math. Phys. (N.Y.)
22, 1543 (1981).

[40] I.M. Isaacs, Character Theory of Finite Groups
(Academic Press, New York, 1976).

[41] V. Dabbaghian, ‘‘Repsn—A GAP package,’’ http://
www.sfu.ca/~vdabbagh/gap/repsn.html.

[42] C. Luhn, S. Nasri, and P. Ramond, J. Math. Phys. (N.Y.)
48, 073501 (2007).

TRIBIMAXIMAL MIXING FROM SMALL GROUPS PHYSICAL REVIEW D 84, 013011 (2011)

013011-17

http://dx.doi.org/10.1103/PhysRevLett.81.1562
http://dx.doi.org/10.1103/PhysRevLett.81.1562
http://dx.doi.org/10.1103/PhysRevLett.89.011301
http://dx.doi.org/10.1103/PhysRevLett.89.011301
http://dx.doi.org/10.1143/PTP.28.870
http://dx.doi.org/10.1143/PTP.28.870
http://dx.doi.org/10.1088/1367-2630/10/11/113011
http://dx.doi.org/10.1088/1367-2630/10/11/113011
http://dx.doi.org/10.1007/JHEP04(2010)056
http://dx.doi.org/10.1007/JHEP04(2010)056
http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1143/PTP.49.652
http://dx.doi.org/10.1016/S0370-2693(02)01336-9
http://dx.doi.org/10.1016/S0370-2693(02)01336-9
http://dx.doi.org/10.1016/S0370-2693(02)01753-7
http://dx.doi.org/10.1016/S0370-2693(02)01753-7
http://dx.doi.org/10.1103/RevModPhys.82.2701
http://dx.doi.org/10.1103/RevModPhys.82.2701
http://dx.doi.org/10.1143/PTPS.183.1
http://dx.doi.org/10.1088/1751-8113/43/39/395204
http://dx.doi.org/10.1088/1751-8113/44/13/139501
http://dx.doi.org/10.1088/1751-8113/44/13/139501
http://dx.doi.org/10.1103/PhysRevD.64.113012
http://dx.doi.org/10.1103/PhysRevD.64.113012
http://arXiv.org/abs/hep-ph/0409075
http://arXiv.org/abs/hep-ph/0507217
http://dx.doi.org/10.1016/j.nuclphysb.2006.02.015
http://dx.doi.org/10.1016/j.nuclphysb.2006.02.015
http://dx.doi.org/10.1088/0954-3899/37/10/103001
http://dx.doi.org/10.1088/0954-3899/37/10/103001
http://dx.doi.org/10.1088/1742-6596/203/1/012103
http://dx.doi.org/10.1016/j.nuclphysb.2011.02.020
http://dx.doi.org/10.1088/1126-6708/2008/04/077
http://dx.doi.org/10.1088/1126-6708/2008/04/077
http://www.gap-system.org
http://www.gap-system.org
http://arXiv.org/abs/0907.5587
http://www.icm.tu-bs.de/~beick/soft/small/small.html
http://www.icm.tu-bs.de/~beick/soft/small/small.html
http://link.aps.org/supplemental/10.1103/PhysRevD.84.013011
http://link.aps.org/supplemental/10.1103/PhysRevD.84.013011
http://dx.doi.org/10.1002/pssb.2220900123
http://dx.doi.org/10.1002/pssb.2220900123
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1016/0370-2693(80)90927-2
http://dx.doi.org/10.1016/0370-2693(80)90927-2
http://dx.doi.org/10.1016/j.nuclphysb.2007.09.016
http://dx.doi.org/10.1016/j.nuclphysb.2007.09.016
http://dx.doi.org/10.1063/1.525224
http://dx.doi.org/10.1063/1.525224
http://dx.doi.org/10.1016/j.physletb.2007.06.059
http://dx.doi.org/10.1016/j.physletb.2007.06.059
http://dx.doi.org/10.1103/PhysRevD.79.036002
http://dx.doi.org/10.1103/PhysRevD.79.036002
http://dx.doi.org/10.1103/PhysRevLett.106.131801
http://dx.doi.org/10.1103/PhysRevLett.106.131801
http://link.aps.org/supplemental/10.1103/PhysRevD.84.013011
http://link.aps.org/supplemental/10.1103/PhysRevD.84.013011
http://www.gap-system.org/Manuals/doc/ref/manual.pdf
http://www.gap-system.org/Manuals/doc/ref/manual.pdf
http://dx.doi.org/10.1063/1.1704204
http://dx.doi.org/10.1063/1.1704204
http://dx.doi.org/10.1063/1.525096
http://dx.doi.org/10.1063/1.525096
http://www.sfu.ca/~vdabbagh/gap/repsn.html
http://www.sfu.ca/~vdabbagh/gap/repsn.html
http://dx.doi.org/10.1063/1.2734865
http://dx.doi.org/10.1063/1.2734865

