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Experimental searches for lepton-flavor-violating coherent muon-to-electron conversion in the field of a

nucleus, have been proposed to reach the unprecedented sensitivity of 10�16–10�18 per stopped muon. At

that level, they probe new interactions at effective-mass scales well beyond 1000 TeV. However, they must

contend with background from ordinary bound muon decay. To better understa560nd the background-

spectrum shape and rate, we have carried out a detailed analysis of Coulombic-bound-state muon decay,

including nuclear recoil. Implications for future experiments are briefly discussed.
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I. INTRODUCTION AND MOTIVATION

From the observation of neutrino oscillations, we now
know that lepton flavors (electron, muon and tau number)
are not conserved. However, the mixing and small neutrino
mass differences seen in oscillations have negligible effect
on charged-lepton-flavor-violating (CLFV) reactions such
as � ! e� or � ! �� (now predicted to occur with un-
observable tiny branching ratios of about 10�54). So, if
charged-lepton flavor violation were to be experimentally
detected, it would have to come from ‘‘new physics’’ such
as supersymmetry, heavy neutrino mixing, leptoquark in-
teractions, or some other extension of the standard model.
In that way, charged-lepton number violating reactions
provide a discovery window to interactions, beyond stan-
dard model expectations, reaching effective-mass scales
above Oð1000 TeVÞ [1,2].

Because muons can be copiously produced at accelera-
tors and are relatively long lived (2:2 �s), they have been
at the forefront of searches for CLFV [1,2]. One reaction
that can be probed with particularly high sensitivity is the
muon-electron conversion in a muonic atom,

�� þ ðA; ZÞ ! e� þ ðA; ZÞ; (1)

where ðA; ZÞ represents a nucleus of atomic number Z and
mass number A. Various experiments have been performed
over the years to search for this process [3]. The most
recent, and stringent, results come from the SINDRUM II
Collaboration [4], which reports an upper limit of
7� 10�13 for the branching ratio of the conversion process
relative to muon capture in gold, and a similar unpublished
bound for titanium. Several new efforts are being planned.
In the nearest future, the DeeMe Collaboration [5] has
proposed to reach 10�14 sensitivity. Larger scale searches,
Mu2e at Fermilab [6] and COMET at J-PARC [7], aim for
sensitivities below 10�16. In the long run, intensity up-
grades at Fermilab and the proposal PRISM/PRIME at
J-PARC may allow them to reach the 10�18 sensitivity, a

limit only accessible with muon-electron conversion in
nuclei. For comparison, the current best upper bound on
the branching ratio of the decay� ! e�, set by the MEGA
experiment, is 1:2� 10�11 (90% confidence level) [8]. For
some mechanisms of CLFV, the conversion process is less
sensitive than � ! e� by a factor on the order of a few
hundred [9]. But even in those cases, a 10�14 conversion
search is more sensitive than this best current bound, and
may be competitive with the new search for� ! e� by the
MEG experiment [10]. In addition, the conversion process
is also sensitive to CLFV chiral conserving amplitudes that
do not contribute to � ! e�.
The success of the conversion searches depends criti-

cally on control of the background events. The signal for
the�� e conversion process in Eq. (1) is a monoenergetic
electron with energy E�e, given by

E�e ¼ m� � Eb � Erec; (2)

where m� is the muon mass, Eb ’ Z2�2m�=2 is the bind-

ing energy of the muonic atom, and Erec ’ m2
�=ð2mNÞ is

the nuclear-recoil energy, with � the fine-structure con-
stant, and mN the nucleus mass. The main physics back-
ground for this signal comes from the so-called muon
decay-in-orbit (DIO), a process in which the muon decays
in the normal way, i.e.�� ! e� ��e��, while in the orbit of

the atom. Whereas in a free-muon decay, in order to
conserve energy and three-momentum, the maximum elec-
tron energy is m�=2, for decay-in-orbit the presence of an

additional particle (the nucleus), which can absorb three-
momentum, causes the maximum electron energy to be
E�e. Therefore, the high-energy tail of the electron spec-

trum in muon decay-in-orbit constitutes a background for
conversion searches. A detailed study of that background is
the main focus of this work.
Several theoretical studies of the muon decay-in-orbit

have been performed, starting with Ref. [11] about 60 years
ago. Reference [12] presented expressions which allow for
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a calculation of the electron spectrum including relativistic
effects in the muon wavefunction, the Coulomb interaction
between the electron, and the nucleus, and a finite nuclear
size. Nuclear-recoil effects which, as we will discuss later,
need to be considered in the high-energy region, were only
included in the Born approximation (that is, using the
nonrelativistic Schrödinger wave function for the muon
and a plane wave for the electron), which is not adequate
for the high-energy tail. Later, Refs. [13,14] presented
similar expressions for the electron spectrum completely
neglecting nuclear-recoil effects, evaluating it for several
different elements. None of these references focused on the
high-energy end-point of the spectrum, which is the region
of interest for conversion experiments. References [15,16]
did study the high-energy end of the electron spectrum, and
presented approximate results which allow for a quick
rough estimate of the muon decay-in-orbit contribution to
the background in conversion experiments. However, a
detailed evaluation of the high-energy region of the elec-
tron spectrum is still missing in the literature. What is
typically done, to account for the background from muon
decay-in-orbit, is to connect (in a somewhat arbitrary way)
the approximate expressions given in Ref. [15] with the
numerical results presented in Ref. [14]. Since this is the
main source of background [6,7] for the oncoming conver-
sion experiments, a more detailed analysis is highly desir-
able. In this work, we discuss all the relevant effects that
need to be included in the high-energy region of the
spectrum and present a precise evaluation of it. Our results
for an aluminum (Z ¼ 13) nucleus (the intended target in
Mu2e and COMET) are presented in Fig. 1.

The structure of the paper is as follows. In Sec. II, we
present the formulas for the computation of the electron
spectrum. In Sec. III, we describe the numerical evaluation
of the spectrum. Section IV contains some discussion on
the different contributions in the high-energy region of the
spectrum, and the approximations we have used. We con-
clude in Sec. V, where brief comments regarding the
implications of our results are given. The Appendix details

the conventions we use for the Dirac equation, and the
electron and muon wavefunctions.

II. FORMULAE FOR THE ELECTRON SPECTRUM

The Fermi interaction that mediates muon decay is
given by

L F ¼ �2
ffiffiffi
2

p
GF½ �c ���

�PLc ��½ �c e��PLc �e
� þ H:c:;

(3)

where GF ¼ 1:1 663 788ð7Þ � 10�5 GeV�2 is the Fermi
constant and PL ¼ ð1� �5Þ=2. This Lagrangian can be
Fierz rearranged to charge retention ordering,

L F ¼ 2
ffiffiffi
2

p
GF½ �c e�

�PLc ��½ �c ��
��PLc �e

� þ H:c:; (4)

which is the form that we will use. Since quantum electro-
dynamics (QED) interactions do not affect the neutrino
part of the Lagrangian, it is convenient to partition the
phase space and integrate the neutrino portion. In that
way, we generate an effective �� e current and the free-
muon decay rate can be written as

� ¼ 1

2E�

Z
dq2

Z
½d��!eq�jM��

�!ej2T��; (5)

with

d��!eq�
Z d3pe

ð2�Þ32Ee

Z d3k

ð2�Þ32Eq

ð2�Þ4	ð4Þðp��pe�qÞ;

T���� �

3ð2�Þ3 ðq
2g���q�q�Þ;

jM��
�!ej2�1

2

X
��spin

X
e�spin

8G2
F �uðpeÞ��

�PLuðp�Þ �uðp�Þ��PLuðpeÞ; (6)

where the spinors uðpÞ in that expression are normalized

according to �urðpÞusðpÞ ¼ 2m	rs, q� � ðEq; ~kÞ is the

4-momentum transferred to the neutrinos, ~pe is the

85 90 95 100 105
10 20

10 18

10 16

10 14

10 12

10 10

10 8

Ee MeV

1 0

d dE
e

M
eV

1

100 101 102 103 104 105

10 20

10 18

10 16

10 14

Ee MeV

1 0

d dE
e

M
eV

1

FIG. 1 (color online). End-point region of the electron spectrum for aluminum. The squares correspond to the spectrum with recoil
effects, Eq. (18). For comparison, we show the spectrum neglecting recoil, Eq. (10), as the triangles. The right plot is a zoom for
Ee > 100 MeV, the solid (dashed) line on this plot corresponds to the Taylor expansion around the end-point with (without) recoil.
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electron three-momentum, and Ee and E� are the electron

and muon energies, respectively. When we consider the
bound muon decay case, Eq. (5) gets replaced by

� ¼ 2G2
F

ð2�Þ6
X

e�spin

Z
dq2

d3pe

E2
e

d3k

Eq

ð2�Þ	ðE� � Ee � EqÞ

�
�Z

d3re�i ~k� ~r �’e�
�PL’�

�

�
�Z

d3r0ei ~k� ~r0 �’��
�PL’e

�
T��; (7)

where we are taking the nucleus as static (we discuss the
inclusion of recoil effects in the next Section), and ’e and
’� represent the solutions of the Dirac equation for the

electron and the muon, respectively. We incorporate the
average over the muon spin in the definition of ’�, while

we do not incorporate the sum over the electron spin in the
definition of ’e. For the normalization convention that is
implied for the wavefunctions in Eq. (7) we refer to the
Appendix. The muon energy in Eq. (7) is given by E� ¼
m� � Eb. When the muonic atom is formed, the muon

cascades down almost immediately to the ground state, the
1Swavefunction should therefore be used for’� in Eq. (7)

(the cascade process also depolarizes the muons [17]). We
take the electron to be massless, since electron mass effects
are only relevant for Ee �me, which is not our region of
interest.1 Integrating over dq2 in Eq. (7), we obtain

�¼� X
e�spin

G2
F

192�7

Z d3pe

E2
e

Z
d3kJ�J�yðq2g���q�q�Þ; (8)

where it is understood that q� ¼ ðE� � Ee; ~kÞ, and we

defined

J� �
Z

d3re�i ~k�~r �’e�
�PL’�: (9)

The condition q2 > 0 determines the limit of integration

for j ~kj to be j ~kj<E� � Ee. Performing the angular inte-

gration over ~r in the currents J�, and the angular integra-

tions over ~k and ~pe, and summing over electron spins in
Eq. (8), we obtain

1

�0

d�

dEe

¼X
K


4

�m5
�

ð2j
þ1Þ
Z E��Ee

0
dkk2

�
½ðE��EeÞ2�k2�

�
� jS0K
j2
KðKþ1Þþ

jS�1
K
j2

Kð2Kþ1Þþ
jSþ1

K
j2
ðKþ1Þð2Kþ1Þ

�

þ½ðE��EeÞk�2Im
�
SK
ðS�1�

K
 þSþ1�
K
 Þ

2Kþ1

�

þk2
�jS�1

K
þSþ1
K
j2

ð2Kþ1Þ2 þjSK
j2
��
; (10)

where

�0 �
G2

Fm
5
�

192�3
(11)

is the free-muon decay rate. The S functions in Eq. (10) are
defined using the notation h. . .i � R1

0 . . . r2dr, and the two
cases refer to odd/even l
 þ K, respectively

S0K
 ¼
��ið
�1ÞhjKðkrÞðf
Gþg
FÞi
ð
þ1ÞhjKðkrÞðg
G�f
FÞi

S�1
K
 ¼

�hjK�1ðkrÞ½ð
�K�1Þg
G�ð
þK�1Þf
F�i
�ihjK�1ðkrÞ½ð
þKþ1Þf
Gþð
�Kþ1Þg
F�i

Sþ1
K
 ¼

�hjKþ1ðkrÞ½ð
þKÞg
GþðK�
þ2Þf
F�i
�ihjKþ1ðkrÞ½ð
�KÞf
Gþð
þKþ2Þg
F�i

SK
 ¼
�
ihjKðkrÞðf
G�g
FÞi
hjKðkrÞðg
Gþf
FÞi

(12)

where G and F (g
 and f
) are the upper and lower
components of the radial muon (electron) wavefunction,
respectively. 
 is the quantum number appearing in the
Dirac equation (see the Appendix for the conventions we
use and the definitions of j
 and l
). For a given value of K
in Eq. (10), 
 can only take the values �K and �ðK þ 1Þ.
The sum over K goes from 0 to 1, but K cannot take the
value K ¼ 0 in the S0K
 and S�1

K
 terms, and 
 can never be
equal to 0. jnðzÞ is the spherical Bessel function of order n.
Equation (10) agrees with the expressions presented in
Refs. [13,14].

A. Inclusion of recoil effects

In the previous section, we considered the nucleus to be
static. The upcoming conversion experiments plan to use
an aluminum target (previous conversion experiments used
heavier elements), where the atomic mass of aluminum
(Z ¼ 13, A ¼ 27) is 25133 MeV. The nucleus is, therefore,
more than 200 times heavier than the muon (m� ¼
105:6584 MeV) and recoil effects should be negligible
for most of the electron spectrum. However, the nuclear-
recoil energy modifies the end-point of the electron spec-
trum E�e, see Eq. (2), which means that recoil effects need

to be carefully considered in studies of the high-energy part
of the spectrum. We will always consider the recoil effects
at first order in a 1=mN expansion, wheremN is the mass of
the nucleus N.
For muon DIO, the nuclear-recoil energy is

Erec ¼ j ~pNj2
2mN

; (13)

where the three-momentum of the nucleus is

~p N ¼ � ~pe � ~p ��e
� ~p��

; (14)

with ~p��
and ~p ��e

the three-momenta of the neutrino and

antineutrino, respectively. We see that, for a given electron

1In the low-energy region of the spectrum one should also
consider the possibility that the electron remains bound or
captured by the nucleus.
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energy, the nuclear-recoil energy is not constant but de-
pends on the momenta of the neutrinos. This complicates
the integration over the neutrino momenta, but in the high-
energy end of the spectrum we can approximate

Erec ¼ j ~pNj2
2mN

¼ ð ~pe þ ~p ��e
þ ~p��

Þ2
2mN

’ j ~pej2
2mN

¼ E2
e

2mN

; (15)

so that the recoil effects amount to a change in the mo-
mentum transfer to the neutrinos. The net effect is to
substitute

E� � Ee ! E� � Ee � E2
e

2mN

; (16)

in the upper limit of the integration over k and inside the
square brackets in Eq. (10). The end-point of the electron
spectrum is given by

E�e ¼ E� � E2
�

2mN

¼ m� � Eb �
E2
�

2mN

; (17)

which is exact up to corrections of order 1=m2
N . The

approximation for the recoil energy in Eq. (15) is the
same as used in Ref. [15]. The electron spectrum including
nuclear-recoil effects is, therefore, given by

1

�0

d�

dEe

¼X
K


4

�m5
�

ð2j
þ1Þ
Z E��Ee�½ðE2

eÞ=2mN�

0

�dkk2
���

E��Ee� E2
e

2mN

�
2�k2

�

�
� jS0K
j2
KðKþ1Þþ

jS�1
K
j2

Kð2Kþ1Þþ
jSþ1

K
j2
ðKþ1Þð2Kþ1Þ

�

þ2k

�
E��Ee� E2

e

2mN

�
Im

SK
ðS�1�
K
 þSþ1�

K
 Þ
2Kþ1

þk2
�jS�1

K
þSþ1
K
j2

ð2Kþ1Þ2 þjSK
j2
��
; (18)

where it is understood that this expression should only be
used in the region where Eq. (15) is a good approximation
to the nuclear-recoil energy. As will be manifest in the
following sections, recoil effects become negligible before
Eq. (15) ceases to be a good approximation to the recoil
energy. That means the inclusion of recoil effects beyond
the approximation considered here is unnecessary.

B. End-point expansions

Equation (18) constitutes our final result for the high-
energy region of the electron spectrum and it is what we
will use in our numerical evaluations. Nevertheless, it is
still interesting to perform a Taylor expansion of Eq. (18)
around the end-point, to make the behavior of the spectrum
manifest. We obtain

1

�0

d�

dEe

��������Ee�E��½ðE2
�Þ=2mN�

¼ 64

5�m5
�

�
E� � Ee � E2

e

2mN

�
5
�
p2
1 þ

s21
3
þ 2

3
r22

�

� B

�
E� � Ee � E2

e

2mN

�
5
; (19)

where p
 ¼ hg�
Gi, s
 ¼ hf�
Fi, r
 ¼ hg�
Fi, and it is
understood that the electron wavefunctions g
 and f
 in
Eq. (19) correspond to the energy Ee ¼ E� � E2

�=ð2mNÞ.
We show the values of the B coefficient in Eq. (19), for a
few elements, in Table I. The corresponding Taylor expan-
sion for the expression without recoil effects in Eq. (10) is
given by

1

�0

d�

dEe

��������
no recoil

Ee�E�

¼ 64

5�m5
�

ðE� � EeÞ5
�
p2
1 þ

s21
3
þ 2=3r22

�
;

(20)

where it is understood that the electron wavefunctions in
this equation correspond to the energy Ee ¼ E�. Our

Taylor expansion agrees with the results in Ref. [15].

III. NUMERICAL EVALUATION OF THE
SPECTRUM

We now use Eq. (18) to obtain a numerical evaluation of
the high-energy region of the electron spectrum. We
present the results for the case of an aluminum nucleus
(Al, Z ¼ 13), which is the target intended to be used in
Mu2e and COMET [6,7].
We consider a nucleus of finite size, characterized by a

two-parameter Fermi distribution �ðrÞ, given by

�ðrÞ ¼ �0

1

1þ eðr�r0Þ=a : (21)

For the parameters of the Fermi distribution, we use the
values [18]

r0 ¼ 2:84� 0:05 fm; a ¼ 0:569 fm: (22)

TABLE I. Values for the B coefficient of the leading-order
Taylor expansion in Eq. (19), for a few elements. We use finite-
size nuclei, characterized by a two-parameter Fermi distribution
(see Eq. (21)), with the values of the parameters of that distri-
bution taken from Refs. [18,19].

Nucleus BðMeV�6Þ
AlðZ ¼ 13Þ 8:98� 10�17

TiðZ ¼ 22Þ 4:94� 10�16

CuðZ ¼ 29Þ 1:14� 10�15

SeðZ ¼ 34Þ 1:62� 10�15

SbðZ ¼ 51Þ 3:57� 10�15

AuðZ ¼ 79Þ 4:79� 10�15
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�0 in Eq. (21) is the normalization factor, which can be
expressed in terms of r0 and a. For the muon mass,
aluminum mass and the fine-structure constant we use
the values m� ¼ 105:6584 MeV, mAl ¼ 25133 MeV,

� ¼ 1
137:036 , and remember that we take the electron to

be massless. We numerically solve the radial Dirac equa-
tions for the muon and the electron, with the charge dis-
tribution in Eq. (21), to obtain the wavefunctions. For the
muon energy, we obtain

E� ¼ m� � Eb ¼ 105:194 MeV; (23)

which gives the end-point energy

E�e ¼ E� � E2
�

2mAl

¼ 104:973 MeV: (24)

Electron screening will increase the end-point energy in
Eq. (24) by about þ0:001 MeV and similarly shift the
overall spectrum. That small effect is negligible for our
considerations. Recall that the sum over K in Eq. (18) goes
from 0 to1, we include as many terms inK as necessary in
order to get three-digit precision for each point of the
spectrum. This requires about 30 terms near m�=2 and

fewer terms in the low- and the high-energy parts of the
spectrum.

We present the result of the numerical evaluation of the
high-energy region of the electron spectrum in Fig. 1. The
squares in the figure are the spectrum with recoil effects,
from Eq. (18). For comparison, we also show the result
obtained by neglecting recoil effects, from Eq. (10), as the
triangles. The right plot in the figure is a zoom for
Ee > 100 MeV, the solid and dashed lines on this
plot correspond to the Taylor expansions in Eqs. (19) and
(20), respectively. Terms up to K ¼ 4 were included in
Fig. 1. Figure 2 presents a detail of the electron spectrum
very close to the high-energy end-point in linear scale. We
can appreciate in that figure how the spectra with (solid
line) and without (dashed line) recoil effects tend to zero at
the corresponding endpoints (the end-point without recoil
is at Ee ¼ E�). To make our results easier to use, we

mention that the polynomial

PðEeÞ � a5	
5 þ a6	

6 þ a7	
7 þ a8	

8; (25)

with

a5 ¼ 8:6434� 10�17; a6 ¼ 1:16874� 10�17;

a7 ¼�1:87828� 10�19; a8 ¼ 9:16327� 10�20;
(26)

the energies expressed in MeV, and

	 ¼ E� � Ee � E2
e

2mAl

; (27)

fits very well the result for the electron spectrum in alumi-
num normalized to the free decay rate (squares in Fig. 1)
for all Ee > 85 MeV (i.e., the difference between Eq.(25)
and the squares in Fig.1 is not larger than the uncertainties
discussed in the next section ). Note that, in order to obtain
a better fit for the whole Ee > 85MeV region, the value of
a5, in Eq. (25), was not constrained to be that of the leading
coefficient of the Taylor expansion in Table I.
For completeness, we also show the spectrum for the full

range of electron energies in Fig. 3 as the circles, from
Eq. (10). Terms up to K ¼ 31 were included in this plot.
The total decay rate for muon decay-in-orbit in aluminum
is obtained by integrating the spectrum in Fig. 3. The result
we obtain is
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d dE
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M
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1

FIG. 2 (color online). Detail of the electron spectrum for
aluminum very close to the high-energy end-point with (neglect-
ing) nuclear-recoil, represented as the solid (dashed) line.
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FIG. 3. Electron spectrum for aluminum. Left plot: linear scale; right plot: logarithmic scale.
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1

�0

Z E�e

0

d�

dEe

dEe ¼ 0:9934; (28)

in agreement with Ref. [14]. Nuclear-recoil effects are
negligible in the total rate. Also note, the integrated ordi-
nary muon decay rate is hardly affected by the presence of
the Coulomb potential, in accord with the general results in
[20,21].

Since the Mu2e Collaboration also considers titanium
(Ti, Z ¼ 22) as a viable target [6], we give the polynomial,

PðTiÞðEeÞ, that fits the result for the electron spectrum in
titanium (normalized to the free decay rate) for energies
Ee > 85 MeV,

PðTiÞðEeÞ � aðTiÞ5 	5
ðTiÞ þ aðTiÞ6 	6

ðTiÞ þ aðTiÞ7 	7
ðTiÞ þ aðTiÞ8 	8

ðTiÞ;

(29)

with

aðTiÞ5 ¼ 4:44278�10�16; aðTiÞ6 ¼ 9:06648�10�17;

aðTiÞ7 ¼�4:26245�10�18; aðTiÞ8 ¼ 8:193�10�19;
(30)

the energies expressed in MeV,

	ðTiÞ ¼ E� � Ee � E2
e

2mTi

; (31)

and for titanium E� ¼ 104:394 MeV.

IV. DISCUSSION

As expected, the results in Fig. 1 show that nuclear-
recoil effects are only important close to the high-energy
end-point of the spectrum. The corrections to the approxi-
mation of the recoil energy that we have used in Eq. (15)
are of order EeðE� � EeÞ=ð2mNÞ (while Ref. [15] seems

to wrongly estimate this correction as being smaller
�ðE� � EeÞ2=ð2mNÞ). For electron energies around

85 MeV, Eq. (15) is still a good approximation to the recoil
energy while the effect of recoil in the spectrum is very
small. When the corrections to the approximation in
Eq. (15) become order one, the recoil effects on the spec-
trum are negligible. Therefore, we conclude that, as antici-
pated in Sec. IIa, inclusion of recoil effects beyond the
approximation considered here is unnecessary.

As already noted in Ref. [15], the Schrödinger wave
function for the muon is not a good approximation near the
end-point. In that region, one needs to produce an electron
with Ee � j ~pej �m�. This implies that, either the muon

has j ~p�j �m� (i.e., it is at the tail of the wavefunction) or

(if the muon has the typical atomic nonrelativistic momen-
tum, of order the inverse Bohr radius) the electron must
interact with the nucleus to get j ~pej �m�. Those two

contributions are of the same order in �, which means
that we cannot treat the muon within a nonrelativistic
approximation. There are, thus, some leading contributions
where the muon is far off-shell (it has E� � j ~p�j �m�), a

fact that also tells us that this is the region where finite-
nuclear-size effects will be most important (since the muon
will be closer to the nucleus). By this argument, we can
also understand that only the lowest values of the angular
momentum in the electron wavefunctions contribute at the
end-point (as we see in Eq. (19)).
Uncertainties in the modeling of finite nuclear-size ef-

fects can induce errors in the electron spectrum and, as we
discussed in the previous paragraph, those are expected to
be most important in the end-point region. We recomputed
the spectrum varying the parameters in the Fermi distribu-
tion as indicated in Eq. (22), and found that the errors
induced in the spectrum do increase as we approach the
end-point, as expected, but they are never larger than�2%;
so, we can safely ignore them.
Finally we comment that radiative corrections have not

been included in Eq. (18). However, they are not expected
to significantly modify the results presented.

V. CONCLUSIONS AND EXPERIMENTAL
APPLICATIONS

We have performed a detailed evaluation of the high-
energy region of the electron spectrum in muon decay-in-
orbit. Our results in Eqs. (18) and (25) and Fig. 1 include
all the relevant effects to accurately describe the high-
energy region of the spectrum, and provide the correct
background contribution for �� e conversion search ex-
periments. To summarize our findings, we plot in Fig. 4 the
rate of decay-in-orbit events producing an electron with
energy higher than x, as a function of x (normalized to the
free-muon decay rate).
The complete muon DIO electron spectrum presented

here provides a check on previous low- and high-energy
partial calculations [14,15], as well as an interpolation
between them. It properly incorporates recoil and relativ-
istic effects in the high-energy end-point region, which is
of crucial importance for future �� e conversion back-
ground studies. In that regard, its primary utility is twofold.
First, when experimental data on muon DIO becomes
available, our formula in Eq. (25) can be compared with
it and used to refine the detector’s acceptance, efficiency,
and resolution. Second, the expected spectrum can be
convoluted with the spectrometer resolution function to
obtain a more precise estimate of the muon DIO back-
ground to CLFV �� e conversion in the Ee ’
103:5–105 MeV signal region.
Currently available estimates by theMu2e Collaboration

[6] find for 4� 1016 ordinary muon captures in Al
(corresponding to a total of 2:6� 1016 DIO), a signal of
4 conversion events if R�Al��ð��Al!e�AlÞ=
�ð��Al!��MgÞ¼10�16, with only about 0.2 DIO

background events for their detector resolution function.
At that level, the discovery capability is quite robust.
However, if R�Al is much smaller, more running will be
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required to enhance the signal and refinements of the
background using the spectrum in Eq. (25) will be critical.

One can also use our analysis to make a rough compari-
son of DIO backgrounds for stopping targets with different
Z. Indeed, if a signal for � ! e conversion is found in Al,
other targets will be important for extracting the under-
lying ‘‘new physics’’ responsible for it. Of course, for
much higher Z, the initial dead time of 700 ns envisioned
in the Mu2e proposal for eliminating prompt backgrounds
would significantly reduce the number of ‘‘live’’ muon
captures and severely compromise the experimental sensi-
tivity. Ignoring that issue for now, we can ask: What DIO
background is expected for a higher-Z target with energy
resolution identical to the Al setup of Mu2e, while con-
tinuing to require that it also produces 4 signal events?
Considering the case of a titanium target, with Z ¼ 22, we
expect R�Ti ’ 1:6R�Al for models of ‘‘new physics’’ [3]

dominated by chiral changing CLFV. So, one needs a live
run with ‘‘only’’ 2:5� 1016 ordinary muon captures or
correspondingly 0:43� 1016 total DIO events to reach
the same 4 event discovery sensitivity as in aluminum.
However, even though the total number of DIO events
(for all Ee) is smaller by a factor of 6 in Ti, the relative
branching fraction for high-energy DIO events in the signal
region (with similar detector resolution) is about 6 times
larger for Ti compared to Al. So, overall the DIO back-
ground is about the same for Ti.

More difficult will be the loss of muon events in higher Z
materials due to the 700 ns dead time during which most of
the muons undergo capture. For that, a complete reassess-
ment of the muon production and stopping conditions may
be required.
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APPENDIX: CONVENTIONS

In this formula, we explain our conventions for the Dirac
equation, and the electron and muon wavefunctions.
The Dirac equation in a central field is given by

Wc ¼
�
�i�5�r

�
@

@r
þ1

r
��

r
K

�
þVðrÞþm�

�
c ; (A1)

where W is the energy of the particle, m its mass and VðrÞ
is the potential. The 4� 4 matrices �5, �, K and �r are
given by

�5 ¼
0 1

1 0

 !
; �¼ 1 0

0 �1

 !
; r�r ¼

~� � ~r 0

0 ~� � ~r

 !
;

K¼ ~� � ~lþ 1 0

0 �ð ~� � ~lþ 1Þ

 !
; (A2)

with ~l the orbital angular momentum ~l ¼ �i~r� ~r and ~�
the 2� 2 Pauli matrices

�x¼
0 1

1 0

 !
; �y¼

0 �i

i 0

 !
; �z¼

1 0

0 �1

 !
: (A3)

The wavefunctions are generically denoted as follows

c ¼ c �

 ¼ g
ðrÞ��




if
ðrÞ���


 !
; (A4)

they diagonalize the operators K, ~j2, and jz ( ~j being the
total angular momentum) with eigenvalues �
, jðjþ 1Þ,
and �, respectively. g
 and f
 are the radial functions
which are given by the equations

df

dr

¼ 
� 1

r
f
 � ðW �m� VÞg
; (A5)

dg

dr

¼ ðW � V þmÞf
 � 
þ 1

r
g
: (A6)

��

 ¼ ��


 ðr̂Þ are the spin-angular functions, which satisfy

ð ~� � ~lþ 1Þ��

 ¼ �
�

�

 ; jz�

�

 ¼ ��

�

 ;
Z

d�r̂�
�y

 �

�0

0

¼ 	��0	

0 : (A7)

They are given by

��

 ¼ X

m

C

�
l1=2j;��mm�

�
Y��m
l �m; (A8)

with Cðlsj; lzszjzÞ the Clebsch-Gordan coefficients, Y�
l the

spherical harmonics and �m the spin 1=2 eigenfunctions

~s 2�m ¼ 3=4�m; sz�
m ¼ m�m; m ¼ �1=2;

(A9)

where ~s ¼ 1=2 ~�. Equation (A8) makes manifest that ��



is an eigenfunction of ~� � ~lþ 1 ¼ ~j2 � ~l2 � ~s2 þ 1 with
eigenvalue

103.0 103.5 104.0 104.5 105.0
10 25

10 23

10 21

10 19

10 17

10 15

x MeV

x

E
e

1 0

d dE
e

E
e

FIG. 4. Total rate of decay-in-orbit events, for aluminum, with
electron energy larger than x, normalized to the free-muon decay
rate �0.
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ð ~� � ~lþ 1Þ��

 ¼

�
jðjþ 1Þ � lðlþ 1Þ þ 1=4

�
�
�



� �
��

 : (A10)

Thus, we have


 ¼
�
l for j ¼ l� 1=2
�l� 1 for j ¼ lþ 1=2

; (A11)

and we see that 
 can take all integer values except 0. We
also note that the value of j is given by 
 according to

j ¼ j
j � 1=2 � j
; (A12)

and that the value of l is also given by 
, according to

l ¼ jþ 1=2



j
j � l
: (A13)

We express the 1S muon wavefunction as

’�ð ~rÞ ¼
X
s

as
G�s

�1

iF�s
1

 !
; (A14)

where as is the amplitude of the muon state with spin
projection s, since we need an unpolarized muon we

have jasj2 ¼ 1=2. The muon wavefunction is normalized
according to

Z
r2ðF2 þG2Þdr ¼ 1: (A15)

We express the electron wavefunction as an expansion in
partial waves, according to

’eð ~rÞ ¼
X

�

a
�tc
�

 ¼X


�

a
�t

g
�
�



if
�
��


 !
; (A16)

where t is the z-component of the electron spin, and the
a
�t coefficients are given by

a
�t ¼ il

4�ffiffiffi
2

p C

�
l

1

2
j
;�� tt�

�
Y��t�
l


ðp̂eÞe�i	
 ; (A17)

with 	
 the Coulomb phase shift (the distortion from a
plane wave due to the potential of the nucleus). The
electron wavefunctions are normalized in the energy scale,
according to

Z
d3rc ��


;Wc �0

0;W 0 ¼ 2�	��0	

0	ðW �W 0Þ; (A18)

where c �

;W corresponds to a solution with energy W.
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[20] H. Überall, Phys. Rev. 119, 365 (1960).
[21] A. Czarnecki, G. P. Lepage, and W. J. Marciano, Phys.

Rev. D 61, 073001 (2000).

CZARNECKI, GARCIA I TORMO, AND MARCIANO PHYSICAL REVIEW D 84, 013006 (2011)

013006-8

http://dx.doi.org/10.1103/RevModPhys.73.151
http://dx.doi.org/10.1146/annurev.nucl.58.110707.171126
http://dx.doi.org/10.1146/annurev.nucl.58.110707.171126
http://dx.doi.org/10.1140/epjc/s2006-02582-x
http://dx.doi.org/10.1140/epjc/s2006-02582-x
http://dx.doi.org/10.1103/PhysRevLett.83.1521
http://dx.doi.org/10.1103/PhysRevLett.83.1521
http://dx.doi.org/10.1016/j.nuclphysb.2010.03.030
http://dx.doi.org/10.1016/j.nuclphysb.2010.03.030
http://dx.doi.org/10.1103/PhysRev.83.849
http://dx.doi.org/10.1016/0370-2693(74)90193-2
http://dx.doi.org/10.1016/0370-2693(74)90193-2
http://dx.doi.org/10.1143/PTP.78.114
http://dx.doi.org/10.1143/PTP.78.114
http://dx.doi.org/10.1006/adnd.1993.1012
http://dx.doi.org/10.1006/adnd.1993.1012
http://dx.doi.org/10.1103/PhysRevD.25.1847
http://dx.doi.org/10.1103/PhysRevD.55.7307
http://dx.doi.org/10.1103/PhysRevD.55.7307
http://dx.doi.org/10.1103/PhysRevD.80.052012
http://dx.doi.org/10.1103/PhysRevD.80.052012
http://dx.doi.org/10.1016/0092-640X(87)90013-1
http://dx.doi.org/10.1016/0092-640X(87)90013-1
http://dx.doi.org/10.1006/adnd.1995.1007
http://dx.doi.org/10.1006/adnd.1995.1007
http://dx.doi.org/10.1103/PhysRev.119.365
http://dx.doi.org/10.1103/PhysRevD.61.073001
http://dx.doi.org/10.1103/PhysRevD.61.073001

