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We use partially conserved axial vector current in the small Q2 region in order to calculate the Adler

sum rule and the production of hadrons in the low-energy region where resonances dominate. We find very

good agreement with the sum rule and with the computed cross sections. We find a value CA
5 ð0Þ close to

the Goldberger-Treiman prediction. The formalism is general and can be applied to other reactions

shedding light into the dynamical transition from resonances to deep inelastic scattering.
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I. INTRODUCTION

In spite of the long history of neutrino interactions with
hadrons, there is still interest on them because many cross
sections, especially at low energies, are not known pre-
cisely. Analyses of experiments need the cross sections in
order to interpret properties in the oscillations of neutrinos
and separate specific quantities, like the mixing angle �13,
CP-violation, etc. The cross sections are also of interest on
their own right because they explain properties of the
strong interactions and the transition from the resonance
to the deep inelastic region.

In this article we consider again the production of had-
rons in the small Q2-region. Matrix elements of the vector
current have been evaluated using the conserved vector
current property by relating them to electroproduction
data. This way the magnitude and Q2 dependence have
been determined [1] and have been applied [2–4] success-
fully. For the vector current we use the results from [1]. The
conservation of the vector current is already incorporated
in the equations of the appendix of Ref. [5].

The matrix elements of the axial current are more diffi-
cult to determine; therefore, several studies resorted to
models for estimating specific values of the form factors
and their Q2 dependence. In addition data in the small Q2

region do not agree with some theoretical predictions [2,6].
Here, we address the small Q2 region. We adapt the prin-
ciple that amplitudes which are free of strong interaction
singularities in a specific variable will generally vary
smoothly with that variable [7]. We apply this smoothness
assumption in the delta resonance region by using a rela-
tion from the partially conserved axial vector current
(PCAC) for Q2 � 5m2

� � 0:1 GeV2 and extend the results
to values twice as big, i.e. Q2 up to 0:2 GeV2. This kine-
matic region is especially sensitive in charged current
reactions because the three quantities Q2, m2

�, and m2
�

are of the same magnitude. As a check we calculate with
the same assumptions the Adler sum rule and establish
that it is very well satisfied for Q2 � 0:2 GeV2. For the

differential cross section d�=dQ2 we use exact kinematics
by keeping the three small quantities mentioned above.
We outline now the main framework and the equations

that we shall use in our calculations. The matrix element of
Aþ

� between a proton and the delta resonance is defined in

Eq. (2.7) of Ref. [5] to which we will refer to as (LP). The
matrix element depends on the form factors CA

3 ðQ2Þ,
CA
4 ðQ2Þ, CA

5 ðQ2Þ, and CA
6 ðQ2Þ. The last form factor is the

induced pseudoscalar, which can be written explicitly in
terms of the pion pole. When we keep the mass of the
muon, the leptonic current can be expanded in four
polarization vectors [8,9]. Estimates of contributions
from transverse polarizations are small in the small Q2

region and will be neglected. The reason for this is the
small Ap ! �p amplitude which is primarily longitudinal
[10]. Thus we shall concentrate on contributions from the
polarizations

��s ¼ q�ffiffiffiffiffiffi
Q2

p (1)

and

��ð� ¼ 0Þ ¼ 1ffiffiffiffiffiffi
Q2

p ðj ~qj; 0; 0; q0Þ: (2)

For the small Q2 region we adopt these approximations. In
this case the overall tensors multiplying the form factors
CA
3 and CA

4 are such that their inner product with q�
vanishes (see Eq. (2.7) in Ref. [5]).
We keep the two form factors CA

5 and CA
6 and for the

pseudoscalar form factor we write the pion pole explicitly.
For the �p� vertex we introduce h�jj�jpi with j� being
the pion source:

h�þþjAþ
� jpi ¼

ffiffiffi
3

p
�c �ðp0Þig��CA

5 ðQ2ÞuðpÞ

þ ffiffiffi
3

p if�q�

q2 �m2
�

h�jj�jpi: (3)

Taking the divergence on both sides of the equation and
using PCAC we arrive at
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�iq�h�þþjAþ
� jpi ¼

ffiffiffi
3

p
�c �ðp0Þq�CA

5 ðQ2ÞuðpÞ

þ ffiffiffi
3

p f�q
2

q2 �m2
�

h�jj�jpi (4)

¼ ffiffiffi
3

p f�m
2
�

q2 �m2
�

h�jj�jpi: (5)

This relation holds for values of Q2 where PCAC is valid.
It follows now that

CA
5 ðQ2Þ �c �ðp0Þq�uðpÞ ¼ �f�h�jj�jpi: (6)

This is our PCAC relation which we assume to hold in the
extended region of Q2 because there are no singularities in
Q2. Obviously, we eliminated the pion pole by subtracting
Eq. (5) from (4).

A similar relation holds when we replace the delta
resonance by a general final state Xþþ. In this case

hXþþjAþ
� jpi ¼ R� þ ffiffiffi

3
p if�q�

q2 �m2
�

hXþþjj�jpi (7)

whose divergence gives the relation

q�R� ¼ �if�hXþþjj�jpi: (8)

HereR� is the remaining amplitude beyond the pion pole.

The reader should note that this relation holds for any final
state mX � mp and also when we replace the proton in the

target by a neutron. We need this relation for estimating the
amplitude AðWþn ! XþÞ ¼ AðW�p ! X0Þ in the sum
rule and also for contributions up to W � ½1:6� GeV.

Another remarkable property of neutrino interactions is
that for small values of Q2 relative to the neutrino energy
E� and energy transfer �, the leptonic current can be
approximated by the two polarizations given in Eqs. (1)
and (2). The scalar polarization gives a small term propor-
tional to m2

�, which we keep. The polarization with zero
helicity annihilates the pion pole and gives the dominant
contribution for the remainder as follows:

��ð� ¼ 0Þh�þþjA�jpi�
¼ ��ð� ¼ 0Þi ffiffiffi

3
p

�c �ðp0ÞCA
5 ðQ2ÞuðpÞ (9)

� i
ffiffiffi
3

p q�ffiffiffiffiffiffi
Q2

p �c �ðp0ÞCA
5 ðQ2ÞuðpÞ þO

�
Q2

�2

�

(10)

� � f�
ffiffiffi
3

p
ffiffiffiffiffiffi
Q2

p Að�þp ! �þþÞ (11)

with f� ¼ 0:093 GeV. We emphasize that we first elimi-
nate the pion pole and then approximate the helicity zero

polarization by q�=
ffiffiffiffiffiffi
Q2

p
. This method leaves out terms of

OðQ2=�2Þ and justifies the application of PCAC. Thus the
polarization with zero helicity takes the divergence of the

axial current. Using this result we calculate in the follow-
ing sections the differential cross section and the Adler
sum rule as a function of Q2.
In previous articles the axial contribution was accounted

for by introducing form factors and estimating the Q2

dependence from neutrino data. The Goldberger-Treiman
relation that was obtained earlier [1,11] is also inherent in
Eq. (6) when we substitute couplings for the matrix ele-
ments. What is different now is the replacement of the left-
hand side of Eq. (6) by �þp ! �þþ or �þp ! Xþþ data.
As it will become clear later on, PCAC with the smooth-
ness assumption provides an estimate of the form factor for
Q2 � 0:2 GeV2. The handling of the vector-axial interfer-
ence [the structure function W3ðQ2; �Þ] will be explained
in Sec. III.
In an extension of the model, some authors [3,4], in

order to account for the nonresonant background, use addi-
tional diagrams generated by an effective Lagrangian. In
this article we compute the contribution of the axial current
using PCAC, and for the vector contribution we use the
results from (LP). The production of pions through the
exchange of mesons and Regge trajectories in the t channel
has also been published [12]. Our PCAC results in
Eqs. (6)–(11) sum up the contributions from these
exchanges.

II. GENERAL FORMULAS

From the results of the previous section we determine
the contribution of the axial current alone to the cross
section

d�A

dQ2d�
¼ G2

FjVudj2
2�

1

4�

�

E2
�

f2�
Q2

�
~L00 þ 2 ~Ll0

m2
�

Q2 þm2
�

þ ~Lll

�
m2

�

Q2 þm2
�

�
2
�
�ð�þp ! XþþÞ: (12)

The matrix elements ~L00, ~Ll0, ~Lll were introduced and
elaborated in Refs. [8,9]. The elements ~Ll0 and ~Lll are
proportional to m2

� and with an additional factor of m2
�

or m4
� become too small and will be neglected. The cross

section�ð�þp ! XþþÞ is the production of hadrons at the
energy �. It is evident now that integrating over � in order
to obtain d�=dQ2 we trace the delta resonance peak
and this influences the turning over of the cross section at
low Q2.
For evaluating the Adler sum rule we need the structure

function W2ðQ2; �Þ. The identification is more evident
when we consider the dominant contribution in our

Eq. (12) in the limit E� � � � �; Q
2

M ;
m2

�

M . The leptonic

density matrix element squared was computed in [8] as

~L 00 ¼ 2

�½Q2ð2E� � �Þ � �m2
��2

Q2ðQ2 þ �2Þ �Q2 �m2
�

�
; (13)

which in the high-energy limit becomes
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~L 00 ! 2Q2

Q2 þ �2

�
4E�E

0 � ðQ2 þm2
�Þ �

m2
�

Q2
�2

�
: (14)

By comparing our Eq. (12) with theW2ðQ2; �Þ in Eq. (2.10)
of (LP) we find the relation

WA
2 ðQ2; �Þ ¼ 2f2�

�

�

Q2 þ �2
�ð�þp ! XþþÞ (15)

with the superscript A denoting the axial contribution
alone.

III. TESTING THE ADLER SUM RULE

A basic relation in particle physics is the Adler sum rule
for neutrinos [13]. It follows from current algebra and
holds for each value of Q2. For the axial current it takes
the form

½gAðQ2Þ�2 þ
Z 1

�th

d�½WA
2;�nðQ2; �Þ �WA

2;�pðQ2; �Þ� ¼ 1

(16)

with gAðQ2Þ the form factor for the vertex hpjAþ
� jni. With

the functional form for WA
2 ðQ2; �Þ given in Eq. (15), we

obtain

½gAðQ2Þ�2 þ 2f2�
�

Z 1

�th

d�
�

Q2 þ �2
½���pð�Þ � ��þpð�Þ�

¼ 1: (17)

The functional form in Eq. (17) follows from the general
formalism. It is a very convenient form because at Q2 ¼ 0
it reduces to the Adler-Weisberger relation [14,15].

We tested the relation by using experimental data for the
pion-nucleon scattering and

gAðQ2Þ ¼ �1:26

ð1þ Q2

M2
A

Þ2
(18)

withMA ¼ 1:0 GeV. The data we use are from the particle
data group (PDG) [16] which gives a compilation from a
large number of experiments. The PDG gives both the
elastic and total cross sections for the reactions �þp and
��p, which is equal to �þn. In the region of integration,
the inelastic channel for �þp is negligible. For ��p the
inelasticity is substantial, which indicates the presence
of a nonresonant background. For the sum rule we use
the total cross sections. In the next section we shall use data
for the �þp channel for extracting CA

5 , where, as men-

tioned, the difference between elastic and total cross sec-
tion is negligible.

In order to present some typical quantities, we collected
in Tables I and II values of the hadronic cross sections
for two different values of Q2 ¼ 0:010 GeV2 and
Q2 ¼ 0:150 GeV2. The cross sections correspond to the
invariant mass W. In the last column we give the variable

A ¼ 2�f2� ~L00

E2
�Q

2 , which enters Eq. (12) as an overall factor.

The neutrino cross section contains the product of A
with the pion-nucleon cross section, which indicates that

the overwhelming contribution is close to the delta reso-
nance peak.
The results of the numerical integration are shown in

Fig. 1 with the resonance contribution corresponding to the
integration of the total cross sections. The integral has been
truncated at � ¼ 1:6 GeV. The sum of quasi-elastic (QE)
and resonance (RES) may saturate the sum rule. The
difference [1� ðQEþ RESÞ] corresponds to contributions
from higher energies, where multipion production is

TABLE II. Values of various quantities for E� ¼ 1 GeV and
Q2 ¼ 0:150 GeV.

� [GeV] W [GeV] �ð�þpÞ [mb] �ð��pÞ [mb] A [GeV]

0.20 1.053 16 12 0.109

0.25 1.097 77 30 0.113

0.30 1.139 189 67 0.111

0.35 1.180 175 63 0.104

0.40 1.219 95 37 0.095

0.45 1.257 60 28 0.085

0.50 1.294 42 26 0.074

0.55 1.330 31 28 0.063

0.60 1.364 24 28 0.052

0.65 1.398 17 34 0.042

TABLE I. Values of various quantities for E� ¼ 1 GeV and
Q2 ¼ 0:010 GeV.

� [GeV] W [GeV] �ð�þpÞ [mb] �ð��pÞ [mb] A [GeV]

0.20 1.118 16 12 0.329

0.25 1.159 77 30 0.240

0.30 1.199 189 67 0.171

0.35 1.238 175 63 0.119

0.40 1.275 95 37 0.079

0.45 1.311 60 28 0.047

0.50 1.347 42 26 0.022

0.55 1.381 31 28 0.002

RES

HE

QE

0.00 0.05 0.10 0.15 0.20
1.0

0.5

0.0

0.5

1.0

1.5

Q2 GeV2

FIG. 1. Solid line, Adler sum; dashed line, form factor; dotted-
dashed line, integral over resonances; dotted line, high energy
part (Bodek-Yang interpolation).
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important. The high-energy contribution is very small for
Q2 � 0:0 and increases monotonically indicating that mul-
tihadron final states become more important for larger
values of Q2.

An alternative method studies the interpolation of the
quark distribution functions to small values of Q2 [17]. In
this work deep inelastic scattering and photoproduction
data for H2 and D2 targets were used in order to interpolate
the difference of the quark distribution functions
uðx;Q2Þ � dðx;Q2Þ to low values of Q2. The distribution
functions reproduce on the average the resonances and
suggest the formula [18]

�W2 ¼ HE ¼ 2
Q2 þ 0:19

Q2 þ 0:29
�Q2 þ 0:25

Q2 þ 0:20
(19)

with Q2 given in GeV. �W2 is the additional smooth
contribution above the resonances. Since the vector and
axial-current contributions are related in the parton model,
we can use Eq. (19) for the axial current in the sum rule.

We find that the sum of the three contributions produces
the value of one to 10% or better. The errors in the hadronic
cross sections are less than 3%. Thus the confirmation of
the sum rule is an indication for the validity of PCAC.

IV. THE DIFFERENTIAL CROSS SECTION

For the calculation of the various terms we apply, by
necessity, different methods because we choose for each
current the method that is most reliable. For the axial
current we use the PCAC result in Eq. (12). For the vector
current we use the form factors from reference [1]. The
vector-axial interference term is obtained by using formula
(A3) in (LP) with the vector form factors from [1,5] and the
axial form factor CA

5 ðQ2Þ extracted later on in this section.

We elaborate on each of these terms.
(1) For the axial contribution we use the data for pion-

nucleon cross sections [16]. We concentrate on the
reaction ��p ! ��p�þ where the nonresonant

background is negligible so that we select Xþþ ¼
�þþ. We integrate the cross section over � tracing
the product ~L00ðQ2; �; E�Þ��pð�Þ, and we obtain the
curve denoted as PCAC in Fig. 2. Our method shows
that the turn over in Q2 is in part a reflection of the
peak in the invariant mass of the resonance. In the
same figure we show the contributions from ðCV

3 Þ2,
the interference term, and the remaining form fac-
tors (rest) that are smaller.

(2) We also determine the axial form factor CA
5 ðQ2Þ by

computing the integral
R
1:6 GeV
�th

WA
2 ðQ2; �Þd� nu-

merically using Eq. (15) and as a second method
we use Eq. (A2) of (LP) where only CA

4 and CA
5 are

kept. The two results contain axial-current contri-
butions, and by comparing them we extract values
for CA

5 ðQ2Þ as shown in Fig. 3. For data we use

the reaction �þp ! �þþ where the nonresonant

background is smallest. It is reassuring that the
value CA

5 ð0Þ ¼ 1:08 is close to 1.20 predicted by

the Goldberger-Treiman relation. In the same figure
we plotted CA

5 ðQ2Þ from the parametrization in (LP),

noting that the two results are close to each other. An
alternative method uses the pion-nucleon phase
shifts. Several articles, like Arndt et al. [19], up-
dated the phase shift analysis for pion-proton scat-
tering and confirmed the presence of a very small
background in the �þp channel. This is evident
from the result in their Table VI and the plots in
Fig. 2 [19]. In the energy region of the P33ð1232Þ
resonance the only other resonances with I ¼ 3=2
are P33ð1600Þ, S31ð1620Þ, and D33ð1700Þ whose
contributions are negligible. Using the result from
the phase shifts with the normalization �ðqRÞ ¼ 8�

qR

[20] at the peak of the resonance, we obtain the same
curves for CA

5 ðQ2Þ. Here qR is the center of mass

momentum at the resonance peak.
Several recent articles calculated CA

5 ð0Þ by fitting

the experimental data [3,4,21–25] with their values

PCAC

C3
V 2

total

C3
V C5

A

rest

0.00 0.05 0.10 0.15 0.20

0

2. 10 39

4. 10 39

6. 10 39

8. 10 39

Q2 GeV2

d
dQ

2
cm

2
G

eV
2

FIG. 2. Contributions to the total cross section at E� ¼ 1 GeV
with no cuts.

proton

model

0.00 0.05 0.10 0.15 0.20
0.4

0.6

0.8

1.0

1.2

1.4

Q2 GeV2

C
5A

Q
2

FIG. 3. Extracted CA
5 values for proton scattering (solid line)

and the phenomenological model CA
5 ðQ2Þ ¼ 1:2

ð1þQ2=M2
A
Þ2

1
1þ2Q2=M2

A

with MA ¼ 1:05 GeV (dashed line). Throughout our calculation
we use the extracted values.
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varying from 0.87 up to 1.20. Some models [3,4]
found the lower value, while other articles [21–25]
prefer values closer to 1.20. The models differ in
several ways that the interested reader can find in the
articles. It would be interesting to check which
models satisfy the PCAC relation used in our article.

(3) For the vector contribution we use the formulas
from [1]

CV
3 ðQ2Þ¼2:13=DV

1þ Q2

4M2
V

; CV
4 ðQ2Þ¼�1:51=DV

1þ Q2

4M2
V

; (20)

CV
5 ðQ2Þ¼ 0:48=DV

1þ Q2

0:776M2
V

and DV ¼
�
1þ Q2

M2
V

�
2
; (21)

with MV ¼ 0:84 GeV, which have been extracted
from electroproduction data. The result is also
shown in Fig. 2.

(4) For the vector-axial interference W3ðQ2; �Þ, we use
the form factor CA

5 ðQ2Þ extracted through PCAC,

CA
4 ¼ �1=4CA

5 , and the vector form factors just

described. Then we use the formulas from (LP)
and calculate their contributions to the cross section.
The three contributions are shown separately in
Fig. 2.

We note that the three contributions are comparable and
are important for determining the Q2 dependence of
d�=dQ2.

V. COMPARISONS

For comparisons with data we shall account for two
bubble chamber experiments [26,27] and the recent results
fromMiniBooNE [28]. The results of our calculation using
the Argonne experiment (ANL) are shown in Fig. 4. We
weighted the theoretical curve with the ANL flux and
limited W < 1:4 GeV. A similar comparison was per-
formed for the Brookhaven (BNL) experiment shown in
Fig. 5. The experimental data is given in terms of event
rates [27]. For comparison with absolute cross sections we
use the transformation coefficient obtained in [4]. In both
cases the curves are close to the experimental points. We
emphasize that we did not include the nonresonant back-
ground, which has been estimated in electroproduction to
be 10% [29,30].

The MiniBooNE group also reported data for a CH2

target with an absolute normalization [28]. For the nuclear
targets we use the incoherent sum of scatterings on neu-
trons and protons. We use for each channel the same
formulas and the appropriate hadronic cross sections. For
this we calculate also the cross section on neutron targets
using hadronic data. For the ratio of neutrino scattering
we found the ratio �A

n=�
A
p shown in Fig. 6. We weighted

the cross sections with the neutrino spectrum and show the
results in Fig. 7 by taking eight proton and six neutron

cross sections. Again we did not consider explicitly the
nonresonant background or final state interactions that may
occur in the carbon target. Note that the results in Fig. 7 are
for the entire molecular target that makes the cross section
very big.
Finally, we consider a very high-energy reaction from

the Fermilab (FNAL) 15-ft bubble chamber [31] and the
results are shown in Fig. 8.

PCAC

C3
V 2

C3
V C5

A

total

rest

0.00 0.05 0.10 0.15 0.20

0

2. 10 39

4. 10 39

6. 10 39

8. 10 39

Q2 GeV2

d
dQ

2
cm

2
G

eV
2

FIG. 4. Contributions to the total cross section for the ANL
flux with W < 1:4 GeV.
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FIG. 5. Contributions to the total cross section for the BNL
flux with W < 1:4 GeV.
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FIG. 6. Ratio �A
n=�

A
p for the MiniBooNE flux.
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VI. SUMMARYAND OUTLOOK

We applied the PCAC relation to the small Q2 region
and calculated the contribution of the axial current. An
interesting result is the expression for WA

2 ðQ2; �Þ in terms
of pion-nucleon scattering cross sections, Eq. (15). We use
the new expression to compute the Adler sum rule and
showed that it is saturated almost completely by data in the
delta energy region, leaving a smaller contribution from
higher energies, which becomes more important as Q2

increases. The higher-energy contribution suggests an in-
terpolation given in Eq. (19).

We also studied extensively a general formula for the
differential cross section that includes the mass of the
charged lepton exactly. Our estimates of the cross section

for charged pion production by neutrinos shows that con-
tributions from vector, axial, and interference terms are
comparable. The addition of all three determines the
magnitude, position, and shape of the peak in the differen-
tial cross section atQ2 � 0:20 GeV2. Encouraged from the
results we computed the differential cross sections for
the Argonne, Brookhaven, and MiniBooNE experiments.
The comparisons in Fig. 4–7 are very good. Besides the
low energies a calculation for E� ¼ 25 GeV produces the
measured cross section. We did not include the nonreso-
nant background, which can be the subject for further
studies [4]. For this reason we concentrated on the �þþ
production where the background is the smallest. For
medium heavy nuclei rescattering corrections will also be
required.
Our method allows to extract the axial form factor

CA
5 ðQ2Þ whose value at Q2 ¼ 0 is consistent with the

Goldberger-Treiman relation. This form factor has been
the subject of several articles [3,4,21–25] with its value
varying from 0.87 to 1.20. We feel that a precise treatment
of the various contributions and of mass effects are
essential.
Our approach can be extended and combined with ex-

perimental data in order to predict cross sections at other
energies, for reactions with antineutrinos and also for
neutral currents. The kinematic region we considered is
the place where coherent scattering on nuclei also occurs.
Our cross section should be useful in subtracting the reso-
nant contribution leaving as a remainder the coherent
production. The PCAC relation and the cross section in
Eq. (12) are general and can be applied to other resonances.
Finally, the rapid saturation of the sum rule and esti-

mates of the cross sections hint how the transition from
resonances to the deep inelastic region is attained dynami-
cally. The picture that emerges for d�=dQ2 includes a
constant contribution from the algebra of commutators
plus a term varying with Q2 from the form factor and
low mass resonances that fade away as Q2 increases,
leaving space for multiparticle final states. Our results
support and extend the results obtained earlier [32].
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FIG. 7. Contributions to the total cross section for the
MiniBooNE flux with W < 1:4 GeV. Incoherent sum of proton
and neutron cross section for CH2. The entire neutron cross
section is scaled relative to the proton cross section according to
the ratio given in Fig. 6.
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FIG. 8. Contributions to the total cross section for the FNAL
15-ft experiment with W < 1:4 GeV. Neutrino energy fixed at
25 GeV.

E. A. PASCHOS AND DARIO SCHALLA PHYSICAL REVIEW D 84, 013004 (2011)

013004-6



[1] O. Lalakulich, E. A. Paschos, and G. Piranishvili, Phys.
Rev. D 74, 014009 (2006).

[2] E. A. Paschos, J.-Y. Yu, and M. Sakuda, Phys. Rev. D 69,
014013 (2004).

[3] E. Hernandez, J. Nieves, and M. Valverde, Phys. Rev. D
76, 033005 (2007).

[4] O. Lalakulich, T. Leitner, O. Buss, and U. Mosel, Phys.
Rev. D 82, 093001 (2010).

[5] O. Lalakulich and E.A. Paschos, Phys. Rev. D 71, 074003
(2005).

[6] K. Furuno et al., in Second International Workshop on
Neutrino-Nucleus Interactions in the Few GeV Region
(NUINT 02), Irvine, California, 2002 (unpublished).

[7] S. Weinberg, in Proceedings of the 14th international
Conference on High-Energy Physics, Vienna, 1968
(European Organization for Nuclear Research, Geneva,
1968), pp. 253–278; p. 255, ‘‘The idea is that an amplitude
which is free of strong singularities in a given variable will
generally vary smoothly with that variable, provided that it
obeys a dispersion relation with a few subtractions.’’

[8] G. J. Gounaris, A. Kartavtsev, and E.A. Paschos, Phys.
Rev. D 74, 054007 (2006).

[9] E. A. Paschos and D. Schalla, Phys. Rev. D 80, 033005
(2009).

[10] J. Ballam et al., Phys. Rev. Lett. 21, 934 (1968).
[11] P. A. Schreiner and F. Von Hippel, Nucl. Phys. B58, 333

(1973).
[12] S. S. Gershtein, Y.Y. Komachenko, and M.Y. Khlopov,

Sov. J. Nucl. Phys. 32, 861 (1980).
[13] S. L. Adler, Phys. Rev. 140, B736 (1965).
[14] S. L. Adler, Phys. Rev. 143, 1144 (1966).

[15] W. I. Weisberger, Phys. Rev. 143, 1302 (1966).
[16] K. Nakamura et al. (Particle Data Group), J. Phys. G 37,

075021 (2010), sec. 41, p. 14.
[17] A. Bodek and U.-K. Yang, arXiv:1011.6592.
[18] A. Bodek and U. Yang (private communication).
[19] R. A. Arndt, I. I. Strakovsky, R. L. Workman, and M.M.

Pavan, Phys. Rev. C 52, 2120 (1995).
[20] S. L. Adler, S. Nussinov, and E.A. Paschos, Phys. Rev. D

9, 2125 (1974). The normalization also appears in S.
Gasiorowicz, Elementary Particle Physics (Wiley, New
York, 1966), p 294.

[21] T. Leitner, O. Buss, L. Alvarez-Ruso, and U. Mosel, Phys.
Rev. C 79, 034601 (2009).

[22] K.M. Graczyk, D. Kielczewska, P. Przewlocki, and J. T.
Sobczyk, Phys. Rev. D 80, 093001 (2009).

[23] E. Hernandez, J. Nieves, M. Valverde, and M. J. Vicente
Vacas, Phys. Rev. D 81, 085046 (2010).

[24] L. Alvarez-Ruso, S. K. Singh, and M. J. Vicente Vacas,
Phys. Rev. C 59, 3386 (1999).

[25] M. Sajjad Athar, S. Chauhan, and S.K. Singh, J. Phys. G
37, 015005 (2010).

[26] G.M. Radecky et al., Phys. Rev. D 25, 1161
(1982).

[27] T. Kitagaki et al., Phys. Rev. D 34, 2554 (1986).
[28] A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. D

83, 052007 (2011).
[29] S. Galster et al., Phys. Rev. D 5, 519 (1972).
[30] W. Bartel et al., Phys. Lett. 28B, 148 (1968).
[31] J. Bell et al., Phys. Rev. Lett. 41, 1012 (1978).
[32] O. Lalakulich, W. Melnitchouk, and E.A. Paschos, Phys.

Rev. C 75, 015202 (2007).

NEUTRINO PRODUCTION OF HADRONS AT LOW ENERGY . . . PHYSICAL REVIEW D 84, 013004 (2011)

013004-7

http://dx.doi.org/10.1103/PhysRevD.74.014009
http://dx.doi.org/10.1103/PhysRevD.74.014009
http://dx.doi.org/10.1103/PhysRevD.69.014013
http://dx.doi.org/10.1103/PhysRevD.69.014013
http://dx.doi.org/10.1103/PhysRevD.76.033005
http://dx.doi.org/10.1103/PhysRevD.76.033005
http://dx.doi.org/10.1103/PhysRevD.82.093001
http://dx.doi.org/10.1103/PhysRevD.82.093001
http://dx.doi.org/10.1103/PhysRevD.71.074003
http://dx.doi.org/10.1103/PhysRevD.71.074003
http://dx.doi.org/10.1103/PhysRevD.74.054007
http://dx.doi.org/10.1103/PhysRevD.74.054007
http://dx.doi.org/10.1103/PhysRevD.80.033005
http://dx.doi.org/10.1103/PhysRevD.80.033005
http://dx.doi.org/10.1103/PhysRevLett.21.934
http://dx.doi.org/10.1016/0550-3213(73)90588-9
http://dx.doi.org/10.1016/0550-3213(73)90588-9
http://dx.doi.org/10.1103/PhysRev.140.B736
http://dx.doi.org/10.1103/PhysRev.143.1144
http://dx.doi.org/10.1103/PhysRev.143.1302
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://arXiv.org/abs/1011.6592
http://dx.doi.org/10.1103/PhysRevC.52.2120
http://dx.doi.org/10.1103/PhysRevD.9.2125
http://dx.doi.org/10.1103/PhysRevD.9.2125
http://dx.doi.org/10.1103/PhysRevC.79.034601
http://dx.doi.org/10.1103/PhysRevC.79.034601
http://dx.doi.org/10.1103/PhysRevD.80.093001
http://dx.doi.org/10.1103/PhysRevD.81.085046
http://dx.doi.org/10.1103/PhysRevC.59.3386
http://dx.doi.org/10.1088/0954-3899/37/1/015005
http://dx.doi.org/10.1088/0954-3899/37/1/015005
http://dx.doi.org/10.1103/PhysRevD.25.1161
http://dx.doi.org/10.1103/PhysRevD.25.1161
http://dx.doi.org/10.1103/PhysRevD.34.2554
http://dx.doi.org/10.1103/PhysRevD.83.052007
http://dx.doi.org/10.1103/PhysRevD.83.052007
http://dx.doi.org/10.1103/PhysRevD.5.519
http://dx.doi.org/10.1016/0370-2693(68)90155-X
http://dx.doi.org/10.1103/PhysRevLett.41.1012
http://dx.doi.org/10.1103/PhysRevC.75.015202
http://dx.doi.org/10.1103/PhysRevC.75.015202

