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The vacuum neutrino mixing is known to exhibit an approximate�� � symmetry, which was shown to

be preserved for neutrino propagating in matter. This symmetry reduces the neutrino transition proba-

bilities to very simple forms when expressed in a rephasing invariant parametrization introduced earlier.

Applications to long baseline experiments are discussed.
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I. INTRODUCTION

The tremendous progress in the last decade has made it
possible to pin down, with impressive accuracy, many of
the fundamental parameters in the neutrino sector. A com-
plete picture, however, is still not available. Chief among
the missing information is the determination of the V13

element of the neutrino mixing matrix V, which, in turn, is
crucial in ascertaining the CP violation effects in the
leptonic sector. Given that directCP violations in the quark
sector [1] have been well-established and accurately mea-
sured, it is imperative, from both the theoretical and ex-
perimental points of view, to assess the corresponding
situation in the leptonic sector. Another unsolved puzzle
concerns the neutrino mass spectrum, in that there are the
possibilities of either the ‘‘normal’’ or ‘‘inverted’’ order-
ings. It is certainly important to settle this question.

While the fundamental parameters refer to those
in vacuum, it has been well-established (see, e.g.,
Ref. [2–15]) that they are modified when neutrinos propa-
gate through matter, by giving the neutrino an induced
mass, which is proportional to its energy and to the me-
dium density. Indeed, in the analyses of the solar neutrinos,
certain features of the data, such as the modification of the
energy spectra from the original, can only be understood by
the inclusion of matter effects. With the advent of long
baseline experiments (LBL, for an incomplete list, see,
e.g., Ref. [16–23]), the induced mass can actually be
‘‘tuned’’ by changing the neutrino energy (E). This pro-
vides a powerful tool which can be used to extract funda-
mental neutrino parameters from measurements.

In this work, we will use a rephasing invariant parame-
trization which enables us to obtain simple formulas for the
transition probabilities of neutrinos propagating through
matter of constant density. It was shown earlier that these
parameters obey evolution equations as a function of the
induced mass. In addition, these equations preserve the

approximate �� � symmetry [24,25] which characterizes
the neutrino mixing in vacuum. Incorporation of the �� �
symmetry for all induced mass values results in a set of very
simple transition probabilities Pð�� ! ��Þ. In general,

these formulas offer quick estimates of the various oscilla-
tion probabilities, using the known solutions obtained ear-
lier. As an example, we will analyze Pð�e ! ��Þ in detail,

emphasizing its dependence on the neutrino parameters.

II. THE REPHRASING INVARIANT
PARAMETRIZATION

Neutrino oscillations, being lepton-number conserving,
are described in terms of a mixing matrix whose possible
Majorana phases are not observable. Thus it behaves just
like the Cabibbo-Kobayashi-Maskawa quark-mixing ma-
trix under rephasing transformations, which leave physical
observables invariant [26]. To date, however, such observ-
ables are often given in terms of parameters which are not
individually invariant. So it seems that the use of mani-
festly invariant parameters may be more physically rele-
vant. Two such sets are known to be jVijj [27,28] and

V�iV�jV
�
�jV

�
�i [29]. Recently, by imposing the condition

detV ¼ þ1 (without loss of generality), another set was
found, given by [26,30–32]

�ijk ¼ V1iV2jV3k ¼ Rijk � iJ; (1)

where the common imaginary part can be identified with
the Jarlskog invariant J [29]. Their real parts are labeled as

ðR123;R231;R312;R132;R213;R321Þ¼ðx1;x2;x3;y1;y2;y3Þ: (2)

The variables are bounded by �1 � ðxi; yjÞ � þ1 with

yj � xi for any (i; j), and satisfy two constraints:

detV ¼ ðx1 þ x2 þ x3Þ � ðy1 þ y2 þ y3Þ ¼ 1; (3)

ðx1x2 þ x2x3 þ x3x1Þ � ðy1y2 þ y2y3 þ y3y1Þ ¼ 0: (4)

Equation (4), together with the relation

J2 ¼ x1x2x3 � y1y2y3; (5)
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follows [26] from (the imaginary and real parts of) the
identity �123�231�312 ¼ �132�213�321. Thus, flavor mixing
is specified by the set ðx; yÞ plus a sign, according to

J ¼ �
ffiffiffiffiffi
J2

p
. This sign arises since the transformation

V ! V�, corresponding to a CP conjugation, leaves the
real part ðx; yÞ of �ijk invariant, but changes the sign of its

imaginary part ðJÞ. Note that, using jVijj2, a complete

parametrization also requires four jVijj2 elements plus

a sign.
The parameters ðx; yÞ are related to the rephasing invari-

ant elements jVijj2 by

W ¼ ½jVijj2� ¼
x1 � y1 x2 � y2 x3 � y3
x3 � y2 x1 � y3 x2 � y1
x2 � y3 x3 � y1 x1 � y2

0
@

1
A: (6)

One can readily obtain the parameters ðx; yÞ from W by
computing its cofactors, which form the matrix w with
wTW ¼ ðdetWÞI, and is given by

w ¼
x1 þ y1 x2 þ y2 x3 þ y3
x3 þ y2 x1 þ y3 x2 þ y1
x2 þ y3 x3 þ y1 x1 þ y2

0
@

1
A: (7)

The relations between ðx; yÞ and
���

ij � V�iV�jV
�
�jV

�
�i (8)

are given by (using V�iV�j � V�jV�i ¼ P
�k�����ijkV

�
�k):

���
ij ¼ jV�ij2jV�jj2 �

X
�k

�����ijkV�iV�jV�k

¼ jV�jj2jV�ij2 þ
X
�k

�����ijkV
�
�jV

�
�iV

�
�k: (9)

The second term in either expression is one of the �’s
(��’s) defined in Eq. (1). Also, by using the constraint in

Eq. (3), Reð���
ij Þ can be expressed in terms of quadratics

in ðx; yÞ, a result which will be used later in Tables I and II.

III. EVOLUTION EQUATIONS AND
THE �� � SYMMETRY

For neutrinos in matter (of constant density), it was

shown [31,32] that, as a function of the induced mass A ¼
2

ffiffiffi
2

p
GFneE, the neutrino parameters satisfy a set of evolu-

tion equations which are greatly simplified by using the
ðx; yÞ variables. It was found that

TABLE II. The complete and approximate forms for the functions F��
ij in all channels under

the normal hierarchy.

F��
ij complete with xi þ yi ’ 0 Ai < A < Ad

Fee
21 �x1x2 þ x1y2 þ x2y1 � y1y2 �4x1x2 � 1

Fee
31 �x1x3 þ x1y3 þ x3y1 � y1y3 �4x1x3 � 1

Fee
32 �x2x3 þ x2y3 þ x3y2 � y2y3 �4x2x3 �4x2x3

F
��
21 �x1x3 þ x3y3 þ x1y2 � y2y3 �x1x2 � ðx3=2Þ �x3=2

F
��
31 �x2x3 þ x3y1 þ x2y2 � y1y2 �x1x3 � ðx2=2Þ �x2=2

F
��
32 �x1x2 þ x1y1 þ x2y3 � y1y3 �x2x3 � ðx1=2Þ �x2x3

F��
21 �x2x3 þ x2y1 þ x3y3 � y1y3 �x1x2 � ðx3=2Þ �x3=2

F��
31 �x1x2 þ x2y2 þ x1y3 � y2y3 �x1x3 � ðx2=2Þ �x2=2

F��
32 �x1x3 þ x3y2 þ x1y1 � y1y2 �x2x3 � ðx1=2Þ �x2x3

TABLE I. The complete and the approximate forms for the functions F��
ij in all channels

under the normal hierarchy. Note that the approximation for F��
ij in 0< A & Ai is the same as

that with xi þ yi ’ 0 and is omitted. Note also that F��
ij ¼ F��

ij .

F��
ij complete with xi þ yi ’ 0 Ai < A < Ad

F
e�
21 �x1x2 � x1x3 þ x1y2 þ y1y3 �2x1x2 � 1

F
e�
31 x1x2 þ x3y1 � y1y2 � y1y3 �2x1x3 � 1

F
e�
32 �x1x2 � x2x3 þ x2y3 þ y1y2 �2x2x3 �2x2x3

Fe�
21 þx1x3 þ x2y1 � y1y2 � y1y3 �2x1x2 � 1

Fe�
31 �x1x2 � x1x3 þ x1y3 þ y1y2 �2x1x3 � 1

Fe�
32 �x1x2 þ x3y2 � y1y2 � y2y3 �2x2x3 �2x2x3

F
��
21 �x1x3 � x2x3 þ x3y3 þ y1y2 �ðx3=2Þ þ x1x2 �x3=2

F
��
31 x1x3 þ x2y2 � y1y2 � y2y3 �ðx2=2Þ þ x1x3 �x2=2

F
��
32 �x1x2 � x1x3 þ x1y1 þ y2y3 �ðx1=2Þ þ x2x3 x2x3
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dDi

dA
¼ jV1ij2 ¼ xi � yi; ði ¼ 1; 2; 3Þ; (10)

where Di are the eigenvalues of the Hamiltonian. Also, the
evolution equations for all ðxi; yjÞ can be obtained and are

collected in Table I of Ref. [31,32]. Of particular interest
for our purposes are the equations:

dlnJ

dA
¼�ðx1�y1Þþðx2�y2Þ

D1�D2

þ�ðx2�y2Þþðx3�y3Þ
D2�D3

þðx1�y1Þ�ðx3�y3Þ
D3�D1

; (11)

and

1

2

d

dA
lnðx1 � y1Þ ¼ x2 � y2

D1 �D2

� x3 � y3
D3 �D1

;

1

2

d

dA
lnðx2 � y2Þ ¼ � x1 � y1

D1 �D2

þ x3 � y3
D2 �D3

;

1

2

d

dA
lnðx3 � y3Þ ¼ � x2 � y2

D2 �D3

þ x1 � y1
D3 �D1

:

(12)

Note that the quantities Di �Dj and xi � yi form a closed

system under the evolution equations, independent of other
possible combinations of these variables.

There remain two more independent evolution equa-
tions, which may be chosen as those for (xi þ yi). We
define

Xi ¼ xi � yi; (13)

�i ¼ xi þ yi: (14)

Then

d�i

dA
¼X

j>k

1

Dj�Dk

½�ijð�iXk��kXiÞ��ikð�iXj��jXiÞ

��ijkðð�iXj��jXiÞ�ð�iXk��kXiÞÞ�: (15)

It follows that

d

dA
ðxi þ yiÞ ¼ 0 (16)

if ðxj þ yjÞ ¼ 0. This condition is equivalent to W2i ¼
W3i, i.e., �� � exchange symmetry. Thus, the evolution
equations preserve the �� � symmetry, which was estab-
lished (approximately) for neutrino mixing in vacuum.

Another useful property of the evolution equations is to
establish matter invariants. For instance [33–36],

d

dA
½X1X2X3�

2
12�

2
23�

2
31� ¼ 0; (17)

where Xi is defined in Eq. (13) and

�ij ¼ Di �Dj: (18)

(Also, dðJ�12�23�31Þ=dA ¼ 0, as mentioned before
[31,32]). In addition, there is a simple relation

1

2

d

dA

�X
i>j

ðXi � XjÞ�ij

�
¼ 1: (19)

Equations (17) and (19) are three-flavor generalizations of
the two-flavor results [32]:

d

dA
ðxyD2Þ ¼ 0; (20)

d

dA
½ðxþ yÞD� ¼ �1; (21)

where x ¼ V11V22 ¼ cos2	, y ¼ V12V21 ¼ �sin2	, D ¼
m2

2 �m2
1, in the usual notation.

The vacuum neutrino masses are known to be hierarch-
ical, �0=�0 � 1=32 � 1, �0 ¼ m2

2 �m2
1,�0�jm2

3�m2
2j.

There are two possibilities, the normal hierarchy (m2
3 	

m2
1 � m2

2), or the inverted hierarchy (m2
3 � m2

1 � m2
2). In

matter of constant density, m2
i ! Di, which are

A-dependent. For the case of normal hierarchy, there are
two A-values where the levels ‘‘cross’’, at the lower
resonance, A ¼ Al, ½dðD1 �D2Þ=dA�Al

¼ 0, and at the

higher resonance, A¼Ah, ½dðD2�D3Þ=dA�Ah
¼0. From

Eqs. (12), one finds that rapid variations occur only for A to
be near Al or Ah. Let us denote by ðA0; Al; Ai; Ah; AdÞ the
values of A in vacuum ðA0 ¼ 0Þ, at the lower resonance
ðAlÞ, in the intermediate range ðAiÞ, at the higher resonance
ðAhÞ, and in dense medium ðAdÞ. Then, the solutions
for ðX; YÞ are well-approximated [31,32] by two-flavor
resonance solutions.
For 0< A< Ai,

�21 ¼ ½p2
l A

2 � 2ql�0Aþ �2
0�1=2;

X1 ¼ 1

2
½pl � ðp2

l A� ql�0Þ=�21�;

X2 ¼ 1

2
½pl þ ðp2

l A� ql�0Þ=�21�; X3 ffi ðX3Þ0;

(22)

where �ij¼Di�Dj in matter, Xi ¼ xi � yi, pl¼
ðX1þX2Þ0, ql ¼ ðX1 � X2Þ0. Note that ðX1Þ0 ffi 2=3,
ðX2Þ0 ffi 1=3, and X1X2�

2
21 ¼ constant.

For Ai < A< Ad,

�32 ¼ ½p2
h
�A2 � 2qh�i

�Aþ�2
i �1=2; X1 ffi ðX1Þi;

X2 ¼ 1

2
½ph � ðp2

h
�A� qh�iÞ=�32�;

X3 ¼ 1

2
½ph þ ðp2

h
�A� qh�iÞ=�32�:

(23)

Here, �A � A� Ai, and ph ¼ ðX2 þ X3Þi, qh¼ðX2�X3Þi,
�i ¼ ð�32Þi are taken at A¼Ai	�0. Note that ðX1Þi ffi 0,
ðX2Þi ffi 1, ðX3Þi ffi ðX3Þ0 ¼ jV13j20 � 1. Also, X2X3�

2
32 is

an invariant as A varies. Thus, the product X2X3 has a
resonance behavior near A ’ Ah. Note also that the mini-

mum of �32 is at ð�32Þmin ’ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
jV13j20

q
�0.
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To obtain �21 for Ai < A < Ad and �32 for 0< A< Ai,
one first notes from Eq. (10) that d�21=dA ’ X2 for high A.
Thus, a direct integration leads to

�21¼�iþ1

2
½�iþph

�A�ðp2
h
�A2�2qh�i

�Aþ�2
i Þ1=2� (24)

for Ai < A < Ad, where �i ¼ ð�21Þi. Similarly, a direct
integration of d�32=dA ’ X2 for low A gives

�32¼�0þ1

2
½�0�plA�ðp2

l A
2�2ql�0Aþ�2

0Þ1=2�: (25)

The solutions for �31 in both regions of A are obtained
from �31 ¼ �32 þ �21. Note that the solutions for 0<
A< Ai and for Ai < A < Ad should agree for A ffi Ai. This
condition leads to �i ’ �0 � Ai and �i ’ Ai.

For inverted hierarchy, the behaviors of Xi near Al are
given by the same Eq. (22). However, for A > Ai, there is
no longer a resonance. Instead, all Xi change slowly, so that
X1 ’ 0, X2 ’ 1, X3 ’ 0, for A > Ai. The solutions for �� are
obtained by A ! �A. Thus, there is a resonance behavior
near Ah, for the inverted hierarchy scenario. Otherwise all
the changes are small.

The accuracy of the approximate formulas in Eqs. (22)
and (23) can be assessed by numerical integrations of the
exact equations, Eqs. (10) and (12). To do that we write

W¼
2ð1��2Þ

3 �2
 1��2

3 þ2
 �2

1þ2�2��
6 þ�þ
 2þ�2�2�

6 ���
 1��2þ�
2

1þ2�2þ�
6 ��þ
 2þ�2þ2�

6 þ��
 1��2��
2

0
BB@

1
CCA; (26)

where ð�; 
; �; �Þ � 1 in vacuum, and W reduces to the
tribimaximal [37] matrix when � ¼ 
 ¼ � ¼ � ¼ 0.

It should be emphasized that the parameters ð�; 
; �; �Þ
carry quite distinct behaviors as A varies, as shown in the
following. Equations (6) and (26) give rise to

� ¼ W23 �W33 ¼ ðx2 þ y2Þ � ðx1 þ y1Þ; (27)

and from W21 �W31, we have

6� ¼ 3ðx3 þ y3Þ � 2ðx2 þ y2Þ � ðx1 þ y1Þ: (28)

With the constancy of xjþyj, one concludes that �’��0

asA varies. In addition, sinceW11 þW12 ¼ 1� �2,we have

d�2

dA
¼ � d

dA
½ðx2 � y2Þ þ ðx1 � y1Þ�; (29)

and

d�2

dA
¼0; ðfor lowAÞ

d�2

dA
¼�2ðx2�y2Þðx3�y3Þ=ðD2�D3Þ; ðfor highAÞ:

(30)

Furthermore, one obtains fromW12 �W11 that


 ¼ 1

12
ð1� �2Þ þ 1

4
½ðx2 � y2Þ � ðx1 � y1Þ�; (31)

and

d


dA
¼�ðx2�y2Þðx1�y1Þ=ðD1�D2Þ; ðfor lowAÞ

d


dA
¼2

3
ðx2�y2Þðx3�y3Þ=ðD2�D3Þ; ðfor highAÞ:

(32)

Thus, 
 and �2 can change considerably as functions of A,
but � ’ � � 0 throughout.
For numerical integrations, Eqs. (6) and (26) suggest the

following initial values in vacuum:

x10¼1

6
ð2�3��2�2Þ; y10¼1

6
ð�2�3�þ2�2Þ;

x20¼1

6
ð1�3���2Þ; y20¼1

6
ð�1�3�þ�2Þ;

x30¼1

2
ð�þ�2Þ; y30¼1

2
ð���2Þ;

(33)

where � ¼ 
 ¼ 0 is chosen and the terms in Oð��2Þ are
ignored. We shall choose the initial values � ¼ 0:17 and
� ¼ 0:02, which correspond to the experimental bounds
jV13j2 � 0:03 [38] and an assumed CP violation phase
cos’ ¼ 1=4, respectively. The numerical solutions for
the ðx; yÞ parameters, the squared elements of the mixing
matrix, and J in matter follow directly and are shown in
Figs. 2–5 in Ref. [32]. Our choice of � � 0 signifies a
small �� � symmetry breaking, the solutions verify that
(xi þ yi) remain negligible for all Avalues. In addition, we
show in Fig. 1 both the numerical and the approximate
solutions for �ij in matter. Note that the hierarchical

relation among the �ij’s varies in matter and plays an

important role in the oscillatory factor sin2�ij of the

probability functions. It is seen that�21=�31 ’ �21=�32 �
1=32 � 1 (normal hierarchy) and �21=�23 ’ �21=�13 �
1=32 � 1 (inverted hierarchy) for 0<A & Ai. While in
Ai < A & Ad, the �ij’s are less hierarchical: �21=�31 �
�21=�32 * 1=5 (normal) and �13=�21 � �13=�23 * 1=5
(inverted).

IV. THE PROBABILITY FUNCTIONS

The neutrino transition probability in matter is given
by [38]

Pð��!��Þ¼����4
X
j>i

Reð���
ij Þsin2�ij

þ2
X
j>i

Imð���
ij Þsin2�ij; (34)

where ���
ij � V�iV�jV

�
�jV

�
�i (Eq. (8)), and

�ij � �ijL=4E; (35)

with L ¼ baseline length. We can rewrite the probability
functions in terms of the physical observables ðx; yÞ. Let us
write, for � � �,
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Pð��!��Þ¼�4½F��
21 sin

2�21þF��
31 sin

2�31

þF��
32 sin

2�32��8Jsin�21 sin�31 sin�32:

(36)

Using Eq. (9), F��
ij can all be expressed as quadratic forms

in ðx; yÞ. They are listed in Table I. The functions F��
ij can

be further simplified by using the approximate �� �
symmetry, xi þ yi ’ 0, for all A. In addition, with normal
hierarchy, x1 � 1 for Ai<A<Ad. These approximate re-
sults are also listed in Table I. Despite the fact that x3�1
for 0 & A & Ai, terms containing x3 ’ jV13j2=2 are kept so
that the physical potential can be explored. Finally, it is
noteworthy that the term x2x3, according to Eq. (23), has a
resonance behavior near A ’ Ah. This is a distinctive fea-
ture that can be exploited by proper choices of parameters
in an experiment.

For � ¼ �, we write

Pð��!��Þ¼1� X
���

Pð��!��Þ¼1þ4
X
j>i

F��
ij sin2�ij:

(37)

We list F��
ij in Table II.

Our results may be compared to formulas in terms of the
‘‘standard parametrization’’ [38], given, e.g., in Kimura
et al. [12]. The relations between ðx; yÞ and the ‘‘standard
parametrization’’ are given by

J¼K sin’; K¼ s12c12s13c
2
13s23c23;

x1¼c212c
2
13c

2
23�Kcos’; x2¼ s212c

2
13s

2
23�Kcos’;

x3¼ s212s
2
13c

2
23þc212s

2
13s

2
23þ

1þs213
1�s213

Kcos’;

y1¼�c212c
2
13s

2
23�Kcos’; y2¼�s212c

2
13c

2
23�Kcos’;

y3¼�s212s
2
13s

2
23�c212s

2
13c

2
23þ

1þs213
1�s213

Kcos’; (38)

where sij � sin	ij, cij � cos	ij, and ’ is the Dirac CP

phase. It can be shown that the functions F��
ij here in terms

of ðx; yÞ are simply ReJij�� in Eqs. (15–23) of Ref. [12], and

the resultant probability functions are identical. Equation
(38) also offers some insight on the A-independence
of the approximate �� � symmetry. It is seen that the
conditions xi þ yi ¼ 0 are fulfilled if 1) c223 ¼ s223, and
2) s12c12s13s23c23 cos’¼0. The behaviors of sij were

given in Fig. 6 of Ref. [32]. While s223 ffi 1=2 is almost

independent of A, s13 ffi 0 for low A, and c12 ffi 0 for high
A. They combine to validate conditions 1) and 2), for all A
values. The other possibility is that cos’ ¼ 0. Here, ’
itself is largely A-independent because of the matter in-
variant sin’ sin2	23 [35].
Exact �� � symmetry was studied earlier by Harrison

and Scott [24]. Their formulation uses the mixing matrix V
(with specific choice of phases), while our results are in
terms of rephasing invariant (and observable) variables,
making it possible to calculate transition probabilities di-
rectly. In addition, by comparing with the exact formulas in
Table I, one can quickly compute corrections to the pre-
sumed exact symmetry.

V. APPLICATIONS TO THE LONG
BASELINE EXPERIMENTS

The unique features of the ðx; yÞ parametrization can be
used to facilitate, e.g., the analyses of the LBL experi-
ments. As an example, let us consider the probability
Pð�e ! ��Þ explicitly. According to Table I, with the

approximation xi þ yi ¼ 0,

Pð�e!��Þ¼8½x1x2sin2�21þx1x3sin
2�31þx2x3sin

2�32�
�8Jsin�21 sin�31sin�32; (39)

with J ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x1x2x3

p
. Using the solutions in Eqs. (22) and

(23), it is straightforward to infer the behaviors of
Pð�e ! ��Þ. In the following, let us focus on the region

of high A values (Ai < A < Ad) Here, x1 � 1 so that
(excluding the case �32 � 1)

Pð�e ! ��Þ ’ 8x2x3sin
2�32: (40)

It is useful to examine the qualitative properties of x2x3 and
sin2�32 separately. If the mass hierarchy is normal, the

FIG. 1. The variation of �ij for the normal hierarchy (left) and the inverted hierarchy (right). Both the numerical (solid lines) and the
approximate (dashed lines) solutions are shown. The approximate analytical solutions are given by Eqs. (22)–(25). We adopt � ¼ 0:02
and the current upper bound for jV13j, � ’ 0:17.
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solutions in Eq. (23) suggest a higher resonance for x2x3 at
Ah ’ ðqh=p2

hÞ�0 ’ �0, where �0=�0 � 32. With A=�0 ’
½
=ðg=cm3Þ�½ðE=GeVÞ�, �0 � 7:6� 10�5 eV2, and 
 �
3:0 g=cm3, the location of resonance Ah corresponds to
an energy Eh � 10 GeV, which is independent of the base-
line length. Equation (40) shows that, in the high A region,
Pð�e ! ��Þ ðffi Pð�e ! ��ÞÞ is two-flavor like. However,
it does not mean that the three-flavor problem is reduced to
a single two-flavor problem. This is because the probability
Pð�� ! ��Þ, according to Table I, would have contribu-

tions from all the �ij’s.

As an illustration, we show 8x2x3, sin2�23, and
Pð�e ! ��Þ ’ 8x2x3sin

2�23 as functions of E in Fig. 2,

with L ¼ 2540 km. It is seen that a resonance for 8x2x3
occurs near E ffi 10 GeV as expected. However, the small-
ness of sin2�32 near E ffi 10 GeV suppresses the proba-
bility even if 8x2x3 is at a resonance. On the other hand, the
probability at the first peak of sin2�32 (near E ffi 3:5 GeV)
also gets suppressed by the smallness of 8x2x3. As a result,
a significant flavor transition only occurs when L is ad-
justed so that the peak of sin2�23 is located near the
resonance of 8x2x3.

The first maximum of sin2�32 occurs if L=E is properly
chosen:

�32¼�32

�
L

4E

�
’9:65�10�5

�
�32

�0

�� ðL=kmÞ
ðE=GeVÞ

�
¼�

2
: (41)

For the first maximum to coincide with the resonance of

x2x3, the value of �32 is taken at Ah: �32=�0 ’
2

ffiffiffiffiffiffiffiffiffiffiffiffi
jV13j20

q
�0=�0 ffi 11. It leads to ðL=kmÞ=ðE=GeVÞ � 103

using the current upper bound jV13j20 � 0:03. One con-

cludes that if the mass hierarchy is normal, an extra long
baseline (L� 104 km) can lead to a greatly enhanced

probability for the neutrino beam near E� 10 GeV, at
which energy both 8x2x3 and sin2�32 reach the maximal
values. The probability will be suppressed when L starts to
vary and sin2�32 moves away from the maximum. Note
that for the maxima of x2x3 and sin2�32 to coincide near
E� 10 GeV, the baseline L and the undetermined jV13j20
are related by ðL=kmÞðjV13j0Þ � 2:54� 103.
On the other hand, since 8x2x3 does not go through the

higher resonance under the inverted hierarchy, the proba-
bility is in general suppressed even if sin2�32 reaches its
maximum. One further concludes that under the inverted
hierarchy, the transition probability remains small and is
insensitive to variation of the baseline length L.
Thus, if the mass hierarchy is normal, one would expect

to observe sizable probability difference at high energy
for experiments involving two baselines with sizable
difference in length. On the other hand, the probability
would be small and nearly independent of the baseline at
high energy if the mass hierarchy is inverted. We show in
Fig. 3 the probability function under both hierarchies for
two arbitrarily chosen baselines. Note that the peak loca-
tions and the peak values vary as L. It is seen that for the
normal hierarchy, PðL1 ¼ 7500 kmÞ 	 PðL2 ¼ 750 kmÞ
near the first peak is expected, while PðL1 ¼ 7500 kmÞ �
PðL2 ¼ 750 kmÞ � 1 if the mass hierarchy is inverted.
This result may provide useful hints to the determination
of the mass hierarchy. Note that the probabilities can be
deduced if the details of the experiments are considered. If
the neutrino energy can be reconstructed accurately from
the secondary particles involved in an experiment, the
observed spectrum will tell how the magnitude of the
transition probability plays a role. On the other hand, if
reliable measurement of the energy spectrum is not avail-
able, a collection of the event rates should also be useful in
comparing the probabilities.

FIG. 2. For L ¼ 2540 km, the resonant location of 8x2x3 and the peak of the oscillatory factor sin2�32 do not coincide, and the
resultant probability P ’ 8x2x3sin

2�32 is suppressed. Note that the probability P ’ 8x2x3sin
2�32 is shown here for a check of the

qualitative property at high energy. The large, fast oscillating probability near the low energy is not seen here because the x1x2 and x1x3
terms are ignored in P ’ 8x2x3sin

2�32.
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Another possible application is to look for both
Pð�e!��Þ and Pð ��e ! ���Þ for a single, but very long

baseline. Since the ��’s only go through the higher reso-
nance under the inverted hierarchy, one would expect to
observe in the vicinity of the peak either Pð�e!��Þ=
Pð ��e! ���Þ	1 if the hierarchy is normal, or Pð�e!��Þ=
Pð ��e! ���Þ�1 if the hierarchy is inverted. We show an

example in Fig. 4. Note that although the peak value of the
probability varies with the baseline length, the relative and
qualitative features of the above observation remain valid
for a chosen baseline.

VI. CONCLUSIONS

Neutrino transition probabilities are usually given in
terms of the simple expression ðV�iV�jV

�
�jV

�
�iÞ, although

the individual V�i’s are not directly observable. When one
rewrites them using physical observables, such as those in
the ‘‘standard parametrization’’, the resulting formulas are
often very complicated. It is thus not easy to obtain general

properties of these probabilities in experimental situations.
In this paper we express the probabilities as functions
of rephasing invariant parameters. In addition, we incor-
porate the �� � symmetry, valid (approximately) for any
value of the induced neutrino mass (A). The resulting
formulas are very simple, and are listed in Tables I and
II. They offer a quick quantitative assessment for any
physical process at arbitrary A values. As an illustration,
we analyzed the probability Pð�e ! ��Þ, with emphasis

on its dependence on E, L, and
ffiffiffiffiffiffiffiffiffiffiffiffi
jV13j20

q
. By changing the

value of E and L in various LBL experiments, one can hope
not only to test the theory used to establish Pð�� ! ��Þ,
but also to help in the efforts to determine the unknown
parameter jV13j20.
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