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We present an N ¼ 1 supersymmetric multiplet with a vector-spinor field in three dimensions. We call

this the vector-spinor multiplet with the field content ðc �; A�; �Þ, where c � is a vector spinor, A� is a

vector, while � is a gaugino. Based on on-shell component field formulation, we can accommodate N ¼ 1

supersymmetric Dirac-Born-Infeld (SDBI) interactions consistently with supersymmetry. This is possible

even in the presence of the vector spinor. The c �-field equation contains a nontrivial interaction term

with A�. Moreover, it turns out that in the presence of mass terms, one physical degree of freedom in the

original � is transferred to that of c �, making the latter propagating. In other words, our model presents

nontrivial rewriting of SDBI interaction in terms of ðc �; A�Þ instead of ðA�; �Þ.
DOI: 10.1103/PhysRevD.83.127701 PACS numbers: 11.30.Pb, 12.60.Jv, 11.10.Kk

I. INTRODUCTION

In four dimensions (4D), there have been supersymmet-
ric formulations for multiplets with vector spinors c � with

the minimal spin content (3=2, 1) [1,2]. Here the important
point is that the vector spinor has no spin 2 superpartner,
but has only a spin 1 counterpart. In other words, the
system has only global supersymmetry, but no local super-
symmetry or supergravity. One of the ultimate aims is to
establish the foundation for more general supersymmetric
higher-spin interactions [3].

However, there have been so far no consistent interac-
tions introduced for the (3=2, 1) multiplet, at least in terms
of component fields. This situation is understandable
through the conventional wisdom that once spin 3=2 is
introduced, there should be spin 2 graviton, resulting nec-
essarily in supergravity for consistency. Another technical
reasons is that the auxiliary field structure in superfields
[1,2,4] is so involved that the corresponding formulations
in component fields is impractically complicated.

This problem appears to be easily solved in superspace. In
superspace, the (3=2, 1) multiplet is represented by a spinor
superfield�� and a real scalar superfield V [1,2,4]. We can
conjecture, for example, a total action to be I � I1 þ I2,
where the free action I1 [1] and the supersymmetric Dirac-
Born-Infeld (SDBI) action I2 [5,6] can be written down as
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Z
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where K � 2D2ðW2Þ, and we use the notation in [7].
The two actions, I1 and I2, are invariant under the following
�, K, and �-gauge transformations [1]:

��;K�� ¼ �� þ i@� _�D
2 �D

_�K; ��V ¼ þið�� ��Þ;
K ¼ �K; V ¼ �V; �D _��� ¼ 0;

D�
�� _� ¼ 0; D�

�� _� ¼ 0; �D _��� ¼ 0:

(1.3)

However, the drawback here is that unless we write
down the explicit component total Lagrangian after elim-
inating auxiliary fields, we cannot easily see the total
consistency of the whole system. There was a superspace
Lagrangian also proposed by Ogievetsky and Sokatchev in
[2], but its corresponding component total Lagrangian has
not been presented, to our knowledge. Unless we present
the explicit component total Lagrangian by eliminating
auxiliary fields, we cannot easily see the total consistency
of the whole system. From this viewpoint, interaction
Lagrangians in terms of component fields is not just for
curiosity, but it is for physical significance.
In this brief report, instead of addressing the problem

directly in 4D, we study an analogous multiplet in three
dimensions (3D), taking advantage of simplification of su-
persymmetry in 3D.We consider themultiplet ðc �; A�; �Þ,1
where c � is a vector spinor, A� is a vector, and � is a

Majorana spinor.
There are two important ingredients about our vector

spinor c � in 3D. First, a massless vector spinor c � has 0
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1From now on, we use the indices �; �; � � � ¼ 0; 1; 2 for the
3D space-time indices.
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on-shell degrees of freedom (DOF), based on the conven-

tional counting: ðD� 3Þ � 2½D=2��1 ¼ ð3� 3Þ � 20 ¼ 0.2

However, as will be seen, when SDBI interactions are

introduced, the original field equation R��¼� 0 for field

strength R�� is no longer zero, but modified by SDBI

interactions. Second, due to mass terms present, the count-
ing should be for a massive vector spinor: ð3�2Þ�20¼1.
Wewill see in Sec. IV how this one DOF of c � is accounted

for, transferred from our gaugino field. We will also see that
c � for a massive case has one propagating DOF.

II. LAGRANGIAN AND TRANSFORMATION RULE

Our multiplet is ðc �;A�;�Þ, where � is a Majorana

spinor as the superpartner of A�, while c � is a vector

spinor in the Majorana representation in 3D. We start with
free fields with the action I0 �

R
d3xL0, where

3

L 0 ¼ þ1
2�
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2ð ��	�@��Þ
� 1
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4m��
�F�
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(2.1)

The first term is the kinetic term for the c � in 3D. The

second line is for mass terms and a Chern-Simons term.
Our action I0 is invariant under global N ¼ 1 supersym-

metry 4

�QA� ¼ �ð ��c �Þ þ ð ��	��Þ; (2.2a)
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2��
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F�
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We use the Hodge-dual quantities, such as

~F � � þ1
2��

�
F�
;
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2��
�
R�
; (2.3)

whereR���@�c ��@�c �.

We now consider possible interactions for this system. A
typical interaction for the vector field is SDBI interaction
[5]. We use the real constant parameter � for SDBI terms,
so that the total action is now I � I0 þ I� � R

d3xL �R
d3xðL0 þL�Þ, whereL� gives ourOð�Þ interactions:

L� � þ1
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4�ð ���Þ@2�ð ���Þ: (2.4)

The first term is proportional to the usualDBI term ðF4Þ���
ð1=4ÞðF2

��Þ2 [8], because of the particular feature in 3D.
The total action I is invariant up to Oð�2Þ and

Oðm�Þ-terms, under the modified supersymmetry trans-
formation at Oð�Þ:

�QA� ¼ �ð ��c �Þ þ ð ��	��Þ � 2�ð ��c �ÞðF�
Þ2
� 8�ð ��c �Þð �c �

~R�Þ; (2.5a)
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The �-transformation rule is not modified at Oð�Þ.
The field equations for our total action I � R

d3xL are

�L
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¼ �@�F
�� þm ~F� � 4�����@
½F
�ð �c �R��Þ�

þ ���
@�½þ4� ~F

~F2
� � 4�ð ��6@�Þ ~F


þ 2� ��	
 6@ð	�� ~F�Þ� (2.6c)

¼� �@�F
�� þm ~F� � 4����
 ~F�@
ð ~F2

�Þ
þ 4�ð ��	��@��Þ@� ~F� þ 4�ð@� ��Þð@��Þ ~F�

� 4�ð ��@�@��Þ ~F� þOð�2; �mÞ¼� 0: (2.6d)

The Oð�mÞ is ignored, because we have confirmed our
action invariance only up to Oð�2Þ or Oð�mÞ-terms.
The expression (2.6c) is directly from the Lagrangian

variation, while (2.6d) is simplification by using field
equations. In other words, they are ‘on-shell’ equivalent
up to Oð�2; �mÞ-terms. The Oð�0Þ-field equations that
can be used for the �-terms are such as

@½� ~F��¼� Oð�;mÞ; 6@�¼� Oð�;mÞ; R��¼� Oð�;mÞ: (2.7)

III. CONSISTENCY OF INTERACTIONS

As the consistency confirmation of our total system, we
first investigate the supersymmetry transformations of c �

and �-field equations (2.6a) and (2.6b). The supersymmet-
ric variation of the vector-spinor field equation is

2Here ½D=2� is the Gauss’ symbol for the integer part of the
real number D=2.

3Our metric is ð���Þ � diag:ð�;þ;þÞ. Accordingly, we have
�012 ¼ þ1, 	��� ¼ þ����, 	�� ¼ þ����	�, 	� ¼
�ð1=2Þ���
	�
, I ¼ �ð1=6Þ���
	��
.

4This transformation rule will be modified by interaction terms
at Oð�Þ later in (2.5).
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Here we have used the field equations (2.7) up to Oð�2; �mÞ-terms. For the A�-field equation used for the fist term
in (3.1), we have to include Oð�0Þ, Oð�Þ, and OðmÞ-terms in (2.6d), while for other terms with �, we need only the field
equations (2.7) at Oð�0Þ. After these manipulations, all the remaining terms cancel, as desired. Similarly, we get
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�Þ ~F�@
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�Þ�4�ð	��Þð@� ��Þð@��Þ ~F�

�2�ð	��Þð@� ��Þð@��Þ ~F��þ½þ2�ð	��Þð@� ��Þð@��Þ ~F��2�ð	��Þð ��@��Þ@� ~F�þ2�ð	��Þð ��	��@��Þ@� ~F�

þ2��ð ��	�@��Þ@� ~F��þOð�2;�mÞ; (3.3)

where there are four pairs of square brackets, each of which represents the variation of the four terms in (3.2), respectively.
After using the Oð�0Þ-field equations (2.7), all the terms in (3.3) cancel each other. A useful lemma here is

�QF�� ¼� �2ð ��	½�@���Þ þmð ��	���Þ þ 2mð ��	½�c ��Þ þOð�2; �mÞ; (3.4)

without Oð�Þ-term. In other words, the �Q-transformation of F�� has no Oð�Þ modification, because essentially the
transformation structure of the �-field equation is exactly the same as the conventional N ¼ 1 SDBI system [5].

We next study the consistency of A� and c �-field equations with divergences. The former is just the Uð1Þ-gauge
invariance, while the latter is similar to consistency for supergravity [9]. For the former, we use (2.6d):

0¼? @�
�
�L
�A�

�
¼� �4����
ð@� ~F�Þ@
ð ~F2

�Þþ4�ð@2� ��Þð@��Þ ~F�þ4�ð@��Þð@�@��Þ ~F�þ4�ð@� ��Þð@��Þ@� ~F�

�4�ð@� ��Þð@�@��Þ ~F��4�ð ��@2�@��Þ ~F��4�ð ��@�@��Þ@� ~F�þ4�ð@� ��Þ	��ð@��Þ@� ~F�þ4�ð ��	��@�@��Þ@� ~F�

þOð�2;�mÞ: (3.5)

0¼? @�
�
�L
� �c �

�
¼þ@�½þ ~R��mð	��Þ�mð	��c �Þ�2����
c �@
ð ~F2

��Þ�¼� þ2����
R��@
ð ~F2
�Þ¼� Oð�2;�mÞ: (3.6)

After using Oð�0Þ-field equations (2.7), we see that all
the terms in (3.5) cancel each other, leaving only
Oð�2; mÞ-terms. Despite a non-trivial interaction term
in (2.6a) the consistency equation (3.6) is satisfied.
Before the discovery of supergravity [9], the possible in-
consistency for such divergences was known as Velo-
Zwanziger disease [10]. From this viewpoint, it is quite
nontrivial that our vector-spinor field equation (2.6a) ex-
plicitly satisfies the consistency conditions without local
supersymmetry.

In supergravity in 3D [11,12], even though the massless
gravitino or graviton field has no physical DOF, their field
equations still play important roles, when coupled to matter
multiplet [11,12]. In a similar fashion, our vector-spinor
field plays a significant role, when coupled to the vector
and gaugino, accompanied by SDBI interactions.

IV. SDBI INTERACTION IN TERMS OF
VECTOR SPINOR

We have so far not counted the real DOF for the vector
spinor. When a vector spinor is massless, its physical DOF
is ð3� 3Þ � 1 ¼ 0, since three components for the index�
is to be subtracted. This is because the 	-trace component
should be subtracted.
However, for a massive vector spinor, the counting should

be ð3�2Þ�1¼1. Hence, there must be one physical degree
of freedomcarried by c �.We can understand this in terms of

c � and �-field equations (2.6a) and (2.6b).We first multiply

(2.6a) by 	� or apply @�, getting two equations

þð	�
~R�Þ � 3m�� 2mð	�c �Þ¼� Oð�Þ; (4.1a)

þmð6@�Þ þmð	� ~R�Þ¼� Oð�Þ: (4.1b)
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From these equations, we can eliminate ð	�
~R�Þ, as

þ ð6@�Þ þ 3m�þ 2mð	�c �Þ¼� Oð�Þ: (4.2)

Adding (4.2) to (2.6b), we get

þ �¼� �ð	�c �Þ þOð�Þ: (4.3)

This is also consistent with (2.5b) and (2.5c). In other words,
c � becomes the fundamental field. Combining (4.3) with

(4.2), we get

þ ð6@�Þ þm�¼� Oð�Þ: (4.4)

Namely, �¼� � ð	�c �Þ is one propagating DOF.

Relevantly, (4.3) with (2.6a) implies that ~R�¼� �mc � þ
Oð�Þ; the divergence of which leads to
0�@�

~R�þm@�c
�¼� Oð�;mÞ ���!@�c

�¼� Oð�Þ: (4.5)

Equation (4.5) is analogous to @�A
�¼� 0 for the massive

vector field equation @�F
�� þm2A�¼� 0.

Eventually, c � is now massive and propagating with

ð3� 2Þ � 1 ¼ 1 DOF, instead of the massless case
ð3� 3Þ � 1 ¼ 0. However, when the mass term is added,
the one DOF of � is transferred to the vector spinor c �,

making it massive and propagating.
The conventional SDBI action in terms of the vector

multiplet ðA�; �Þ has been completely rewritten in terms

of the new multiplet ðc �; A�; �Þ. In particular, the vector-

spinor field is consistent with N ¼ 1 supersymmetry.
Moreover,we can rewrite�¼�ð	�c �ÞþOð�Þ everywhere
in the field equations (2.6), still maintaining supersymmetry.

V. CONCLUDING REMARKS

In this brief report, we have shown how to introduce
nontrivial interaction to the multiplet ðc �; A�; �Þ with a

vector spinor in 3D. We have seen that the SDBI terms can
be accommodated into the multiplet consistently with
global N ¼ 1 supersymmetry.

We have seen highly nontrivial structure for the super-
symmetry transformations of c � and �-field equations,

consistent with all other field equations under N ¼ 1 su-
persymmetry. We have also confirmed the consistency for
the divergence of the A� and c �-field equations without

local supersymmetry.
It has been well known that a massless vector spinor

has no DOF in 3D by simple counting ð3�3Þ�1¼0.
However, as supergravity theories in 3D indicate [11],
the gravitino field equation plays an important role
for matter couplings. By the same token, our c �-field

equation plays an important role, when coupled to the
vector and gaugino with nontrivial SDBI interactions.
We have shown moreover that the original system can

be reexpressed only in terms of ðc �; A�Þ, because of the

on-shell relationship �¼� �ð	�c �ÞþOð�Þ, when mass

terms are present. In other words, the original 1 DOF of �
is transferred to that of the massive vector spinor c �.

Consequently, the conventional SDBI interactions in terms
of ðA�; �Þ can be reexpressed in terms of ðc �; A�Þ.
The conventional wisdom tells us that once a vector

spinor is introduced into a system, supergravity, or local
supersymmetry with graviton is inevitable. Even though
our success might be attributed to the special feature of 3D,
we can also regard that our results indicate the encouraging
aspect of 3D, where we can study the nontrivial couplings
of vector spinor without introducing a spin 2 field.
Our system in 3D can serve as the testing ground for the

study of nontrivial interactions of spin (3=2, 1) multiplet in
4D [1,2], where auxiliary field structure in component
language is considerably involved.
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