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We present a recursive method for super Yang-Mills color-ordered n-point tree amplitudes based on the

cohomology of pure spinor superspace in ten space-time dimensions. The amplitudes are organized

into BRST covariant building blocks with diagrammatic interpretation. Manifestly cyclic expressions (no

longer than one line each) are explicitly given up to n ¼ 10 and higher leg generalizations are

straightforward.
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I. INTRODUCTION

Elementary particle physics relies on the computation of
scattering amplitudes in Yang-Mills theory. Parke and
Taylor found compact and simple expressions for maxi-
mally helicity violating (MHV) amplitudes in four space-
time dimensions [1], which provide an important milestone
in discovering hidden structures underlying the S-matrix.
Many formal, as well as phenomenological advances, fol-
lowed since then; see [2,3] for some reviews.

Supersymmetric field theories emerge in the low-energy
limit of superstring theory, that is why the latter can be
used as a powerful tool to gain further insights into field
theories; see [4] for a recent example. There are several
descriptions for the superstring’s world sheet degrees of
freedom, and the pure spinor formalism [5] is the only
manifestly supersymmetric formulation known so far
which can still be quantized covariantly.

In this paper, we use the framework of the pure spinor
formalism to reduce the computation of n-point tree am-
plitudes in ten-dimensional N ¼ 1 super-Yang-Mills the-
ory (SYM) to a recursive cohomology problem in pure
spinor superspace. The end result is the compact formula
(1) for the supersymmetric color-ordered n-point scattering
amplitude at tree level.

Up until now, cohomology arguments have been used to
propose SYM amplitudes up to seven-point [6], and they
have been identified as the low-energy limit of superstring
amplitudes up to six-point [7]. The main idea of [6] and
this article is to bypass taking the field theory limit of a
superstring computation and to instead fix SYM ampli-
tudes using the BRST cohomology. This is achieved for
any number n of external legs in this paper.

Although the pure spinor framework is initially adapted
to ten space-time dimensions, one can still dimensionally
reduce the results and extract the physics from any lower
dimensional point of view. At any rate, the striking sim-
plicity of our results is exhibited without the need of
four-dimensional spinor helicity formalism. Moreover,

the simplicity is furnished both for MHV and non-MHV
helicity configurations in four space-time dimensions.

II. PURE SPINOR COHOMOLOGY
FORMULA FOR An

The color-ordered tree-level massless SYM amplitudes
in ten dimensions will be argued to be
determined by the pure spinor superspace cohomology
formula,1

An ¼ hEi1...in�1
Vni; (1)

where Vn is the vertex operator for the SYM multiplet in
the pure spinor approach to superstring theory. The bosonic
superfields Ei1...ip are closed under the pure spinor BRST

charge Q but not BRST exact in the momentum phase
space of an n-point massless amplitude where the
Mandelstam variables si1...ip ¼ 1

2 ðki1 þ . . .þ kipÞ2 encom-

passing n� 1 momenta vanish, si1...in�1
¼ 0:

QEi1...ip ¼0; Ei1...ip ¼QMi1...ip if si1...ip �0: (2)

The h. . .i bracket denotes a zero mode integration prescrip-
tion automated in [8], which extracts the superfield com-
ponents from the enclosed superfields [5]. More precisely,
nonvanishing contributions arise from tensor structures of
order �3�5, where � is the ghost variable of the pure spinor
formalism and � the Grassmann odd superspace variable of
ten-dimensional N ¼ 1 SYM.

A. BRST building blocks

The first step in constructing the BRST cohomological
objects Ei1...in�1

in (1) is guided by the world sheet confor-

mal field theory of superstring theory in its pure spinor
formulation. Apart from the unintegrated vertex operator

1The n-point color-ordered formulas in this paper are all for
the ordering 1; 2; . . . ; n.
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Vi ¼ ��Ai
�, the massless level of the BRST cohomology

contains the integral over Uj ¼ @��Aj
� þ�mAj

m þ
d�W

�
j þ 1

2N
mnF j

mn along the world sheet boundary. The

so-called integrated vertex operator Uj is built from h ¼ 1
fields ½@��;�m; d�; N

mn� of the pure spinor conformal
field theory contracted with SYM superfields

½Aj
�; A

j
m;W�

j ;F
j
mn�.

Computing scattering amplitudes involves the residues
L2131...p1 of the operator product expansion (OPE) of p� 1

integrated vertex operators UjðzjÞ approach their uninte-

grated counterpart ViðziÞ:

lim
z2!z1

V1ðz1ÞU2ðz2Þ ! L21ðz1Þ
z21

;

lim
zp!z1

L2131...ðp�1Þ1ðz1ÞUpðzpÞ !
L2131...ðp�1Þ1p1ðz1Þ

zp1
: (3)

Using the explicit form of Vi, Uj in terms of SYM super-
fields and their OPEs, we find

L21 ¼ �A1
mð��mW2Þ � V1ðk1 � A2Þ

L2131 ¼ �L21ððk1 þ k2Þ � A3Þ þ ð��mW3Þ½A1
mðk1 � A2Þ

þ A1nF 2
mn � ðW1�mW

2Þ�

for two and three legs, respectively.
The p-leg residues L2131...p1 by themselves do transform

BRST covariantly, e.g.,

QLji ¼ sijViVj;

QLjiki ¼ sijkLjiVk � sij½LkjVi � LkiVj þ LjiVk�;
but they do not exhibit any symmetry properties in the
labels i, j, k as required for a diagrammatic interpretation.
However, many irreducibles of the symmetric group turn
out to be BRST exact, e.g., QðAi � AjÞ ¼ �2LðijÞ. Only
truly BRST cohomological pieces are kept,

Tij :¼ L½ji� ¼ Lji � LðjiÞ ¼ Lji þ 1
2QðAi � AjÞ:

Any higher rank residue L21...p1 with p � 3 requires a

redefinition in two steps to form the so-called BRST build-
ing blocks T12...p, which ultimately enter the n-point SYM

amplitude (1): L2131...p1 ! ~T123...p ! T123...p. A first step
~T123...p ¼ L2131...p1 þ . . . removes the BRST trivial parts in

Q ~T123...p, e.g.,

~Tijk � Ljiki þ
sij
2
½ðAj � AkÞVi � ðAi � AkÞVj

þ ðAi � AjÞVk� �
sijk
2

ðAi � AjÞVk

Q ~Tijk ¼ sijkTijVk � sij½TjkVi � TikVj þ TijVk�

such that the BRST variation of ~T123...p involves Ti1...iq<p

rather than Li2i1...iq<pi1 . But there will be BRST-exact com-

ponents in ~T123...p, which still have to be subtracted in a

second step. For example, there exist superfields RðlÞ
ijk such

that [7,9]

QRð1Þ
ijk ¼ 2 ~TðijÞk; QRð2Þ

ijk ¼ 3 ~T½ijk�:

The following redefinition yields the hook Young tableau
Tijk ¼ T½ij�k with T½ijk� ¼ 0

Tijk ¼ ~Tijk � 1
2QRð1Þ

ijk � 1
3QRð2Þ

ijk

suitable to represent field theory diagrams made of cubic
vertices. Similarly, one has to remove p� 1 BRST trivial
irreducibles from T12...p ¼ ~T12...p þ . . . where the higher

order generalizations of Ai � Aj, and RðlÞ
ijk superfields are

related to zij double poles in the OPE of UiðziÞUjðzjÞ.
The explicit construction of BRST building blocks

T12...p with higher rank p involves two completely straight-

forward steps: The residue L2131...p1 is determined by the

OPEs of the conformal world sheet fields, and the corre-
sponding ~T12...p follows from replacing the lower rank

L2131...q1 � T12...q, q < p within QL2131...p1. Only the last

step of finding ‘‘parent superfields’’ RðiÞ
12...p whose Q varia-

tion yields the BRST-exact components of ~T12...p requires

some intuition. We have worked out such higher order

generalizations of the Rð1Þ
ijk and Rð2Þ

ijk above up to p ¼ 5

(see the Appendix of [9]) on the basis of a ‘‘trial and error’’
analysis.
More generally, each Ti1...ip inherits all the symmetries

of Ti1...ip�1
in the first p� 1 labels, so there is one new

identity at each rank p (such as T12½34� þ T34½12� ¼ 0 at p ¼
4) which cannot be inferred from lower order relatives. It
can be determined from the symmetries of the diagrams
described by Ti1...ip , e.g.,

Tijklm � Tijkml þ Tlmijk � Tlmjik � Tlmkij þ Tlmkji ¼ 0

(4)

at p ¼ 5. Higher order generalizations of (4) will be listed
in [9].
Just like the OPE residues L2131...p1 defined by (3), the

BRST building blocks T12...p transform covariantly under

the BRST charge,
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QTijk ¼ sijkTijVk � sijðTijVk þ TjkVi þ TkiVjÞ
QTijkl ¼ sijklTijkVl þ sijkðTijlVk � TijkVl þ TijTklÞ

þ sijðViTjkl þ TiklVj � TijlVk þ TikTjl

þ TilTjk � TijTklÞ; (5)

once again, we refer the reader to [9] for higher order
generalizations.

B. Feynman diagrams and Berends-Giele
currents

In this subsection, we give a diagrammatic interpretation
of the BRST building blocks T12::p and combine them to

color-ordered field theory amplitudes with one off-shell
leg, so-called Berends-Giele currents [10]. The
Mandelstam invariants sij; sijk; sijkl; . . . , which appear in

the BRST variation (5), play a crucial role: They must be
the propagators associated with the Tijkl to guarantee that

each term in QTj1...jp cancels one of the poles. This is the

only way to combine different terms Tj1...jp=ðsj1j2 ;

sj1j2j3 ; . . . ; sj1...jpÞ to an overall BRST closed SYM or su-

perstring amplitude.
The � ghost number one of the Tj1...jp implies that it just

represents a subdiagram with p on-shell legs and one off-
shell leg. Adding all the color-ordered diagrams contribut-
ing to a pþ 1 point amplitude gives rise to a Berends-
Giele currentMj1...jp , these objects were first considered in

the context of gluon scattering [10]

Let us give explicit lower order examples of Mj1...jp at

p ¼ 2, 3, 4, 5: The p ¼ 2 case Mi1i2
:¼ Ti1i2=si1i2 just

represents the cubic vertex of an off-shell three-point am-
plitude. The next examples p � 3 involve Ppþ1 ¼
2; 5; 14; . . . terms according to the color-ordered (pþ 1)
point amplitudes2:

According to P5 ¼ 5, there are five diagrams collected in
M1234 and the last one makes use of the fact that QT12½34�
cancels poles in s12, s34, and s1234. As we have mentioned
before, the diagrammatic interpretation of the BRST build-
ing blocks rests on their symmetry properties such as
TðijÞ ¼ TðijÞk ¼ T½ijk� ¼ 0 at p ¼ 2, 3. In the p ¼ 4 case

at hand, T12½34� þ T34½12� ¼ 0 is crucial to preserve the
reflection symmetry ð1; 2; 3; 4Þ $ ð4; 3; 2; 1Þ of the last
diagram in the figure above.

2The number Pn of pole channels in an n point amplitude will
be recursively and explicitly given in Eq. (9) and the line after.

RECURSIVE METHOD FOR n-POINT TREE-LEVEL . . . PHYSICAL REVIEW D 83, 126012 (2011)

126012-3



As a last explicit example, we shall displayM12345 here:

M12345 � 1

s12345

�
T12345

s12s123s1234
� T23145

s23s123s1234
� T23415

s23s234s1234

þ T34215

s34s234s1234
� T23451

s23s234s2345
þ T34251

s34s234s2345

þ T34521

s34s345s2345
� T45321

s45s345s2345
þ ðT34215 � T34125Þ

s12s34s1234

þ ðT45231 � T45321Þ
s23s45s2345

þ ðT12345 þ T21354Þ
s12s45s123

� ðT23145 þ T32154Þ
s23s45s123

� ðT34512 þ T43521Þ
s12s34s345

þ ðT45312 þ T54321Þ
s12s45s345

�
: (6)

The 14 cubic graphs encompassed by M12345, as well as
higher rank currents, can be found in the Appendix of [9].
Apart from this diagrammatic method to construct Mi1...ip ,

we will give a string-inspired formula in Sec. IV.

C. Berends-Giele recursions for SYM amplitudes

Remarkably, the BRST variation of Berends-Giele cur-
rents M12...p introduces bilinears of lower rank M12...j<p.

Up to p ¼ 4, these are

QMij ¼ ViVj ¼: Eij;

QMijk ¼ ViMjk þMijVk ¼: Eijk

QMijkl ¼ ViMjkl þMijMkl þMijkVl ¼: Eijkl:

(7)

More generally, the BRST charge cutsM12...p into all color-

ordered partitions of its p on-shell legs among two lower
rank Berends-Giele currents

QM12...p ¼ Xp�1

j¼1

M12...jMjþ1...p ¼: E12...p; (8)

where the one-index version is defined to be the uninte-
grated SYM vertex operator Mi ¼ Vi. We have explicitly
obtained solutions to (8) up to M12...7 [9].

Let us denote the number of kinematic pole configura-
tions in Mi1...ip or Ei1...ip by Ppþ1, then (8) implies the

recursion relation

Pn¼
Xn�1

i¼2

PiPn�iþ1; P2¼P3�1; n�4: (9)

Its explicit solution Pn ¼ 2n�2 ð2n�5Þ!!
ðn�1Þ! agrees with the for-

mula for the number of cubic diagrams in the color-ordered
n-point SYM amplitude; see, e.g., [11]. Hence, our expres-
sion An ¼ hEi1...in�1

Vni passes the consistency check to

encompass the right number of diagrams.
We have defined the rank p Berends-Giele currents

Mi1...ip to contain p� 1 inverse powers of Mandelstam

invariants si1...iq ¼ 1
2 ðki1 þ . . .þ kiqÞ2 and, in particular,

an overall propagator Mi1...ip � ðsi1...ipÞ�1. The latter can-

cels under action (8) of the BRST charge such that the
resulting � ghost number two superfield QMi1...ip ¼ Ei1...ip

is well defined even if si1...ip ¼ 0.

Actually, this is the crucial reason why An ¼
hEi1...in�1

Vni lies in the BRST cohomology: Massless

n-particle kinematics imply that si1...in�1
¼ 0. The resulting

rank n� 1 Berends-Giele current Mi1...in�1
diverges due to

the overall propagator and we cannot write Ei1...in�1
as a

BRST variation. The si1...in�1
¼ 0 constraint saves An

from being BRST exact. Expressing the n-point amplitude
in terms of Ei1...in�1

amounts to removing the overall pole

before putting the rank n� 1 Berends-Giele current on
shell.
The representation of the SYM n-point amplitude as a

bilinear in Berends-Giele currents

An ¼ Xn�2

j¼1

hM12...jMjþ1...n�1Vni (10)

makes its factorization into (jþ 1)-point and (n� j)-point
subamplitudes manifest; see the following figure

Equations (10) and (8) can be viewed as a supersym-
metric generalization of Berends-Giele recursion relations
for gluon amplitudes [10]. As an additional bonus, our
M12...j do not receive contributions from quartic vertices.

D. BRST equivalent expressions for An and
cyclic invariance

It follows from (10) that p ¼ n� 2 is the maximum
rank of Mi1...ip appearing in the n-point amplitude coho-

mology formula (1). However, these terms are of the form
hMi1...in�2

Vin�1
Vini and can be rewritten as hEi1...in�2

Min�1ini
due to ViVj ¼ Eij ¼ QMij and BRST integration by parts

hMi1...ipEi1...iqi ¼ hEi1...ipMi1...iqi: (11)

The decomposition of Ei1...in�2
involves at mostMi1...in�3

, so

BRST integration by parts reduces the maximum rank p of
Mi1...ip by one. It turns out that the n-point cohomology

formula (1) allows enough BRST integrations by parts as to
reduce the maximum rank to p ¼ ½n=2�. The ½�� bracket
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denotes the Gauss bracket ½x� ¼ maxn2Zn � x, which
picks out the nearest integer smaller than or equal to
its argument. This yields a more economic expression for
An.

Another benefit of the BRST equivalentAn representa-
tion in terms of Mi1...ip with p � ½n=2� lies in the manifest

cyclic symmetry. The last leg Vn being singled out in (1)
obscures the amplitudes’ cyclicity. Performing k integra-
tions by parts includes Vn into bigger blocks Mi1...ikþ1

such

that the nth leg appears on the same footing as any other
one in the end. We will give examples in Sec. III.

III. THE n-POINT AMPLITUDES UP TO n ¼ 10

The three-point amplitude [5] is trivially reproduced by
(1) and (8),

A3 ¼ hE12V3i ¼ hV1V2V3i: (12)

Similarly, (1) and (8) reproduce the results of [6,12,13] for
the four-point amplitude:

A 4 ¼ hE123V4i ¼ hV1M23V4i þ hM12V3V4i

¼ 1

s23
hV1T23V4i þ 1

s12
hT12V3V4i: (13)

For n ¼ 5, the formulas (1) and (8) lead to

A 5 ¼ hE1234V5i
¼ hV1M234V5i þ hM12M34V5i þ hM123V4V5i

¼ hT123V4V5i
s12s45

� hT234V1V5i
s23s51

þ hT12T34V5i
s12s34

� hT231V4V5i
s23s45

þ hT342V1V5i
s34s51

: (14)

As discussed in the previous section, identifying Eij in (14)

and using (11) leads to a manifestly cyclic-invariant form
proved in [6]

A 5 ¼ hM12V3M45i þ cyclic ð12345Þ

¼ hT12V3T45i
s12s45

þ cyclic ð12345Þ: (15)

For n ¼ 6, the formula (1) reads

A6 ¼ hE12345V6i
¼ hV1M2345V6i þ hM12M345V6i

þ hM123M45V6i þ hM1234V5V6i: (16)

Integrating the BRST charge by parts in the first and last
terms using (11) leads to

A6 ¼ hM12M34M56i þ hM23M45M61i
þ hM123ðM45V6 þ V4M56Þi
þ hM234ðV5M61 þM56V1Þi
þ hM345ðV6M12 þM61V2Þi

¼ hT12T34T56i
3s12s34s56

þ 1

2

��
T123

s12s123
� T231

s23s123

�

�
�
T45V6

s45
þ V4T56

s56

��
þ cyclic ð1 . . . 6Þ: (17)

The amplitude (17) was first proposed in [6] by using
BRST cohomology arguments and proved by the field
theory limit of the six-point superstring amplitude in [7].
For n ¼ 7,

A7 ¼ hV1M23456V7i þ hM12M3456V7i þ hM123M456V7i
þ hM1234M56V7i þ hM12345V6V7i:

Identifying ViVj ¼ Eij ¼ QMij and using (11) leads to

A 7 ¼ hM123M45M67i þ hM123M456V7i þ hM234M56M71i
þ hM345M67M12i þ hM456M71M23i
þ hM1234ðV5M67 þM56V7Þi þ hM2345ðV6M71

þM67V1Þi þ hM3456ðV7M12 þM71V2Þi;
where the generated factors of E12345 and E23456 have been
replaced by M’s using the definition (8). The maximum
rank Mi1...i4 only appears in combination with the BRST-

exact superfield Eijk ¼ ViMjk þMijVk ¼ QMijk. Using

(11) once again leads to a more compact expression with
manifest cyclic symmetry,

A7 ¼ hM123M45M67i þ hV1M234M567i þ cyclic ð1 . . . 7Þ:
(18)

Plugging the solutions (6) in (18) leads to the Ansatz of [6],

A 7 ¼
�
V1

�
T234

s23s234
� T342

s34s234

��
T567

s56s567
� T675

s67s567

��

þ
��

T123

s12s123
� T231

s23s123

�
T45T67

s45s67

�
þ cyclic ð1 . . . 7Þ:

(19)

It is easy to check that (19) is expanded in terms of 42
kinematic poles.
The procedure to obtain manifestly cyclic symmetric

higher-point amplitudes using (1) and (8) is straightfor-
ward and follows the same steps as above. Increasing the
number of legs allows further BRST integrations by parts
to be performed by identifying and integrating Eij; Eijk; . . .

successively at each step, leading to

A 8 ¼ hM123M456M78i þ 1
2hM1234E5678i

þ cyclic ð1 . . . 8Þ; (20)
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A9 ¼ 1
3hM123M456M789i
þ hM1234ðM567M89 þM56M789 þM5678V9Þi
þ cyclic ð1 . . . 9Þ; (21)

A 10 ¼ hM1234ðM567M89;10 þM5678M9;10Þi
þ 1

2hM12345E6789;10i þ cyclic ð1 . . . 10Þ: (22)

IV. RELATION TO SUPERSTRING THEORY

Supersymmetric field theory tree amplitudes can also be
obtained from the low-energy limit of superstring theory
where the dimensionless combinations �0si1...ip of Regge

slope �0 and Mandelstam bilinears are formally sent to
zero. Using the pure spinor formalism [5], we will argue in
[9,14] that the full superstring n-point amplitude at tree
level is given by

Astring
n ð�0Þ ¼ ð2�0Þn�3

Yn�2

i¼2

Z 1

zi�1

dzi
Y
j<k

jzjkj�2�0sjk
Xn�2

p¼1

hT12...pTn�1;pþ1;...;n�2Vni
ðz12z23 . . . zp�1;pÞðzn�1;pþ1zpþ1;pþ2 . . . zn�3;n�2Þ

þ P ð2; 3; . . . ; n� 2Þ; (23)

where SLð2;RÞ invariance of the tree-level world
sheet admits to fix ðz1; zn�1; znÞ ¼ ð0; 1;1Þ and
P ð2; 3; . . . ; n� 2Þ denotes a sum over all permutations of
(2; 3; . . . ; n� 2). The full superstring amplitude is deter-
mined by BRST building blocks T12...p and n� 3 world
sheet integrals over zjk ¼ zj � zk. The�

0 ! 0 limit of (23)
reproducesAn ¼ P

n�2
p¼1hMi1...ipMipþ1...in�1

Vni term by term
in the individual p sums. Therefore considering p ¼ n�
2 � q yields an explicit formula for Mi1...ip

M12...q ¼ lim
�0!0

ð2�0Þq�1
Yq
i¼2

Z 1

zi�1

dzi
Yqþ1

j<k

jzjkj�2�0sjk

�
�

T12...q

z12z23 . . . zq�1;q

þ P ð2; 3; . . . ; qÞ
�

(24)

in the fixing z1 ¼ 0 and zqþ1 ¼ 1. It has been checked up
to q ¼ 7 that the string-inspired computation (24) ofM12...q

agrees with its construction from the color-ordered dia-
grams in Aqþ1.
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