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Using the holographic gauge-gravity duality, we find a solution for an isolated vortex and a vortex

lattice in a 2þ 1-dimensional p-wave superconductor, which is described by the boundary theory dual to

an SUð2Þ gauge theory in 3þ 1-dimensional anti-de Sitter space. Both px þ ipy and px � ipy compo-

nents of the superconducting order parameter, as well as the effects of a magnetic field on these

components, are considered. The isolated vortex solution is studied, and it is found that the two order

parameter components have different amplitudes due to the time-reversal symmetry breaking. The vortex

lattice for large magnetic fields is also studied, where it is argued that only one order parameter component

will be nonzero sufficiently close to the upper critical field. The upper critical field exhibits a characteristic

upward curvature, reflecting the effects of field-induced correlations captured by the holographic theory.

The free energy is calculated perturbatively in this region of the phase diagram, and it is shown that the

triangular vortex lattice is the thermodynamically preferred solution.
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Recently the gauge-gravity duality [1,2] has provided a
new means by which to explore strongly interacting theo-
ries in condensed matter systems. One of the earliest and
most successful of such models has been shown to exhibit
the key properties of superconductivity: a phase transition
at a critical temperature, where a spontaneous symmetry
breaking of a Uð1Þ gauge symmetry in the bulk gravita-
tional theory corresponds to a broken global Uð1Þ symme-
try on the boundary, and the formation of a charged
condensate. Gravity duals have so far been found for
s-wave superconductors [3,4] (in which the Cooper
electron pairs have angular momentum l ¼ 0), as well as
for p-wave (l ¼ 1) [5–7] and d-wave (l ¼ 2) [8,9] super-
conductors. The field of holographic superconductivity has
since grown rapidly (see Ref. [10] for reviews). Such a
dual description provides a window through which we
might hope to obtain insight into the properties and
behaviors of superconductors and superfluids that defy
description by more traditional approaches.

The basic recipe for creating a holographic supercon-
ductor involves the introduction of a black hole and a
charged scalar field into anti-de Sitter (AdS) spacetime in
dþ 1 dimensions. According to the AdS/CFT correspon-
dence, this theory is dual to a d-dimensional field theory
that exists on the boundary of this space, where the bound-
ary value of the bulk field is related to the expectation value
of an operator, which is interpreted as the superconducting
order parameter, in the boundary theory, and the tempera-
ture of the boundary theory is given by the Hawking
temperature of the black hole. Below a critical temperature
Tc the field condenses, and the operator on the boundary
acquires a nonzero expectation value, which corresponds to
a superconducting phase transition.

The simplest case in the above scenario is that in which
the electromagnetic and scalar fields are a function only of
the radial AdS coordinate, having a boundary value which

is spatially uniform. Such solutions were soon extended to
include solutions for isolated vortices, which feature a
spatially nonuniform order parameter, in s-wave super-
conductors [11–13] and vortex lattices in s-wave [14]
and d-wave [15] superconductors. Extending these results
to p-wave superconductors is of interest for a number of
reasons. The order parameter in these systems has multiple
components and breaks time-reversal symmetry, which
leads to a richer set of possibilities than is possible in the
simpler s-wave superconductors. In addition, the fact that
the gravity dual is a SUð2Þ gauge theory makes its develop-
ment more straightforward than for d-wave superconduc-
tors, where the dual theory involves a spin-2 field in a
gravitational background. The theory of holographic
p-wave superconductors is also attractive because it has
fewer free parameters than the charged scalar field theories
that describe s- and d-wave superconductors.
The action proposed in Ref. [7] to describe a p-wave

holographic superconductor is

S ¼ 1

�2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

Rþ 6

L2
� 1

4q2
ðFa

��Þ2
�
; (1)

where � is the gravitational coupling, R is the Ricci scalar
curvature, L is the radius of AdS space, and Fa

�� ¼
@�A

a
� � @�A

a
� þ �abcAb

�A
c
� is the SUð2Þ Yang-Mills field

strength. The bulk gravitational theory is described by the
AdS-Schwarzschild metric:

ds2 ¼ L2

z2

�
�gðzÞdt2 þ dz2

gðzÞ þ dx2 þ dy2
�
; (2)

where z is the radial AdS coordinate and gðzÞ ¼
1� ðz=z0Þ3. The black hole horizon at z ¼ z0 is related
to the Hawking temperature of the black hole, which is
equal to the temperature of the boundary theory, by z0 ¼
3=ð4�TÞ. Our calculations will be performed in the probe
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limit, in which there is no backreaction of the gauge field
on the metric [4].

As a starting point we consider the following ansatz for
the gauge field:

A ¼ �3ð�dtþ A3
xdxþ A3

ydyÞ þ wþð�1dxþ �2dyÞ
þ w�ð�1dx� �2dyÞ: (3)

Here �a are the generators of SUð2Þ, which obey the
relation ½�a; �b� ¼ �abc�c and are related to the Pauli
matrices by �a ¼ �a=2i. Following Refs. [5–7], we inter-
pret the Uð1Þ subgroup generated by �3 as the group of
electromagnetism, so that�ðx; y; zÞ and A3

x;yðx; y; zÞ are the
electromagnetic scalar and vector potentials, respectively.
Because �3 generates a rotation in the 1–2 ‘‘plane,’’ which
is the analogue of a rotation in the complex plane in an
ordinary Ginzburg-Landau theory of superconductivity,
the (real) scalar fields w�ðx; y; zÞ are charged under this
Uð1Þ, and they represent the amplitudes of the px � ipy

components of the superconducting order parameter,
respectively.

To study the case of an isolated vortex, we switch
boundary coordinates from ðx; yÞ to ðr;�Þ. In an ordinary
Ginzburg-Landau theory with a complex order parameter,
the vortex solution is found by replacing c ðr; �Þ !
ein�c ðrÞ, such that the phase changes by 2�n as one
goes around the vortex core, and n is known as the
winding number. By analogy, the vortex ansatz for the
px � ipy superconductor is given by the replacements

w�ðr;�; zÞ ! expð2n���3Þw�ðr; zÞ in Eq. (3), where n�
are the (integer) winding numbers for the two components
of the superconducting order parameter. With this modifi-
cation, the gauge field ansatz becomes

A1
x ¼ wþðr; zÞ cosðnþ�Þ þ w�ðr; zÞ cosðn��Þ;

A1
y ¼ �wþðr; zÞ sinðnþ�Þ � w�ðr; zÞ sinðn��Þ

A2
x ¼ wþðr; zÞ sinðnþ�Þ � w�ðr; zÞ sinðn��Þ;

A2
y ¼ wþðr; zÞ cosðnþ�Þ � w�ðr; zÞ cosðn��Þ:

(4)

Furthermore, we assume that the electromagnetic scalar
and vector potentials are rotationally symmetric and given
by �ðr; zÞ and A3

�ðr; zÞ, respectively.
The next step is to determine and numerically solve the

equations of motion for this ansatz. The Yang-Mills
equations are

0 ¼ 1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
Fa��Þ þ �abcAb

�F
c��: (5)

To get the equation of motion for wþðr; zÞ, we add the
Yang-Mills equations (5) for ða; �Þ ¼ ð1; xÞ and ða; �Þ ¼
ð2; yÞ. We find that to obtain consistent equations, with wþ
independent of �, requires that the winding numbers are
related by n� ¼ nþ þ 2. This relation between the wind-
ing numbers is also seen in the ordinary Ginzburg-Landau

theory of p-wave superconductors [16], and is ultimately
due to the presence of mixed gradient terms such as ðDx þ
iDyÞ2 in the full equations of motion. Choosing n� ¼ �1,

which we expect corresponds to the lowest energy solution,
yields

0 ¼ @zðg@zwþÞ þ 1

2r
@rðr@rwþÞ � 1

2
@r

�
1

r
@rðrw�Þ

�

� 1

2r
w�@rA3

� � 1

r
A3
�@rw� � 1

2r2
ðA3

�Þ2w�

þ
�
�2

g
þ w2� � w2þ � ðA3

� � 1Þ2
2r2

�
wþ: (6)

Similarly, the equations of motion for w� and the gauge
fields are

0 ¼ @zðg@zw�Þ þ 1

2r
@rðr@rw�Þ � 1

2
@r

�
1

r
@rðrwþÞ

�

þ 1

2r
wþ@rA3

� þ 1

r
A3
�@rwþ � 1

2r2
ðA3

�Þ2wþ

þ
�
�2

g
þ w2þ � w2� � ðA3

� þ 1Þ2
2r2

�
w�; (7)

0 ¼ @2z�þ 1

rg
@rðr@r�Þ � 2

g
ðw2þ þ w2�Þ�; (8)

0 ¼ @zðg@zA3
�Þ þ r@r

�
1

r
@rA

3
�

�
þ r@rðw2� � w2þÞ

þ ðwþ þ w�Þ@rA3
� þ rðwþ þ w�Þðw2� � w2þÞ: (9)

These equations can be solved numerically, subject to
appropriate boundary conditions. At the boundary of AdS
at z ¼ 0, the fields have the limiting forms

w�¼hO�izþ . . . ; �¼��	zþ . . . ; BðrÞ¼1

r
@rA

3
�;

(10)

where
ffiffiffiffiffiffiffiffiffiffiffihO�i

p
are interpreted as the two components of the

superconducting order parameter (the square root is neces-
sary since O� has mass dimension 2, whereas the super-
conducting order parameter should have mass dimension
1), � is the chemical potential, 	 is the charge density, and
BðrÞ is the magnetic field. In our numerical solution,
we specify the value of �, as well as the conditions
w�ðz ¼ 0Þ ¼ 0 and @zA

3
� ¼ 0. As discussed in Ref. [13],

this last condition is a Neumann boundary condition,
which, unlike the more commonly used Dirichlet condi-
tion, allows for the presence of a dynamical gauge field in
the boundary theory, and also, according to the AdS/CFT
dictionary, leads to vanishing of the current operator in the
boundary theory. At the horizon (z ¼ z0), we require
� ¼ 0 and A3

� be regular. At the vortex core (r ¼ 0), the

boundary conditions are w� ¼ 0, A3
� ¼ 0, and @r� ¼ 0.

Finally, far from the vortex core at the edge of our solution

JAMES M. MURRAYAND ZLATKO TEŠANOVIĆ PHYSICAL REVIEW D 83, 126011 (2011)

126011-2



domain (r ¼ R), we require @rw� ¼ 0, @r� ¼ 0, and
A3
� ¼ 1. This last condition ensures that there is one quan-

tum of magnetic flux passing through the vortex region
[13], with

R
d2rBðrÞ ¼ 2�. To obtain our numerical

solutions we have used the COMSOL 3.4 package [17].
Figure 1 shows the spatial profile of the two components

of the superconducting order parameter for an isolated
vortex, through which a single quantum of magnetic flux
penetrates the superconductor. It can be seen that, as the
order parameter approaches its bulk value far from the
vortex core, the w� component has a slightly smaller
amplitude than the wþ component. This is a consequence
of the breaking of time-reversal symmetry, and the fact that
the two components do not couple to the external field in
the same way. The difference between the two components
will grow as the field increases; however, vortices will tend
to proliferate at higher fields, so that the picture of an
isolated vortex eventually ceases to be valid. The hump
at r� 0:2 is an interesting feature that appears to be
present at all temperatures. It may arise from the fact that
the gradient terms in our theory are different from those in
the usual Ginzburg-Landau theory, where such a hump is
generally not present [16].

The lower part of Fig. 1 shows the profile of the
magnetic field near the vortex core. The exponential
decay of the field with distance from the vortex core is
a general property of superconductors and is also seen in
the conventional Ginzburg-Landau theory. It is interesting
to compare the size of the vortex core (the so-called
‘‘coherence length’’) 
� 0:1 to the penetration depth of
the magnetic field �� 3 [18]. The ratio of these quantities
defines the Ginzburg-Landau parameter � � �=
� 30.
The fact that � � 1 means that the holographic p-wave
superconductors are strongly type II and are therefore
expected to exhibit a vortex lattice solution near an upper
critical magnetic field Hc2. Most of the superconductors
that attract widespread theoretical interest, including the
high-temperature cuprate superconductors, fall in this
regime.
We begin our discussion of the superconducting proper-

ties near the upper critical field by considering the case of
an ordinary, nonholographic p-wave superconductor in a
magnetic field. In this case the ground state that is realized
is known to depend on the coefficients of the kinetic terms
in the free energy. For a two-dimensional superconductor
with two complex components, the kinetic terms allowed
by symmetry are K1ðDi�jÞ�Di�j, K2ðDi�iÞ�Dj�j, and

K3ðDi�jÞ�Dj�i, and the ground state that is realized

depends on the values of these coefficients [19]. For ðK2 þ
K3Þ=K1 < 0 the free energy is not bounded from below and
the theory is unstable. (This is true at least for the line-
arized version of the theory. The theory may still be stable
when higher order terms are included.) In the stable region,
one of two possible ground states is realized. For ðK2 þ
K3Þ=K1 > 0 and K2 � K3 > ðK2 þ K3Þ2=ð2K1 þ K2 þ
K3Þ only one order parameter component is nonzero (e.g.
�þ � �1 þ i�2 is nonzero if the field is in the þẑ direc-
tion), and this component is in the lowest (n ¼ 0) Landau
level. Such a state shall be denoted as j0iþ. On the other
hand, for K2 � K3 < ðK2 þ K3Þ2=ð2K1 þ K2 þ K3Þ, both
order parameter components are nonzero, and there is a
mixture of n ¼ 0 and n ¼ 2 Landau levels (e.g. the state is
of the form cþj2iþ þ c�j0i� if the field is in the þẑ
direction, where the coefficients will generally depend on
temperature and field). Following Ref. [19], we call these,
respectively, the A and U phases. Writing out the Yang-
Mills Lagrangian from Eq. (1) in terms of the fields w�, it
can be shown that the coefficients in our theory areK1 ¼ 1,
K2 ¼ 0, and K3 ¼ �1, so it appears that we are on the
boundary between the stable and unstable regions, and
also—if we assume that the phase boundary remains un-
changed for the holographic superconductor—on the
boundary between the A and U phases described above.
One can imagine changing the coefficients of these gra-
dient terms by hand, thereby moving away from this criti-
cal point, but in that case we would no longer be dealing
with pure Yang-Mills theory, which has the attractive
feature of having no adjustable parameters.

FIG. 1 (color online). (Top) Spatial profile of the wþ (solid
line) and w� (dashed line) components of the superconducting
order parameter for an isolated vortex in a magnetic field at
temperature T=� ¼ 0:032. (Bottom) Magnetic field profile for
the same vortex configuration.
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Of course, the extent to which these results are relevant
for holographic superconductors ought to be questioned.
Since our ansatz leads to a Lagrangian in which there are
no terms coupling gradients in the z direction to those in
the xy plane, the criterion for stability should remain the
same as in the nonholographic case. Also, by assuming that
one order parameter component vanishes and employing
separation of variables, it is shown below that the A phase
is a solution in the stable region of the phase diagram for
the holographic case. Separation of variables, however,
cannot be used to obtain the more complicated U phase
described above. It is possible that there is an analogue of
this phase in the holographic superconductor, but because
the U phase in the nonholographic case is a complicated
function involving multiple Landau levels, we expect
that the same would be true in the holographic case.
Characterizing such a state would most likely involve
minimizing numerically the free energy of variational
wave functions, and the problem of determining the exact
form of such a state and comparing its energy with that of
the A phase is an interesting problem left for future study. It
is important to note, however, that the criterion given above
for distinguishing the A and U phases will not necessarily
hold in the holographic case, so it is possible that the A
phase is in fact the unambiguous ground state for the
particular Lagrangian that defines our theory. We therefore
proceed pragmatically, assuming stability and the exis-
tence of a state with w� ¼ 0 and following the original
approach of Abrikosov [20], which was also used in
Refs. [14,15]. (If B< 0, the following discussion holds if
we replace wþ ! w�.)

Since there will not be rotational symmetry for the
vortex lattice as there was for the isolated vortex, we
once again take all fields to be functions of all three spatial
variables, with Aa

� ¼ Aa
�ðx; y; zÞ. In order to make notation

more transparent and to allow for easier comparison with
the existing literature on superconductivity, we now switch
to more conventional notation in which the superconduct-
ing order parameters are represented by two complex
scalar fields. Letting

�1;2 ¼ A1
x;y þ iA2

x;y; �� ¼ 1ffiffiffi
2

p ð�1 � i�2Þ; (11)

the Yang-Mills part of the action in Eq. (1) can be ex-
pressed as

SYM ¼ 1

2q2�2

Z
d4x

�
ð@z�Þ2 þ 1

g
ðr�Þ2 þ�2

g
j�þj2

� g

�
j@z�þj2 þ ð@zAÞ2

�
� 1

2
jDx�þj2

� 1

2
jDy�þj2 �

�
@xAy � @yAx þ 1

2
j�þj2

�
2

þ 1

2i
½Dx�þðDy�þÞ� � ðDx�þÞ�Dy�þ�

�
; (12)

where we have assumed that we are in the A phase de-
scribed above and sufficiently close to the upper critical
field that we can set the second order parameter component
�� ¼ 0. Here and in what follows, the gradient operator is
defined as r � ð@x; @yÞ, and to simplify notation we have

let A3
i ! Ai.

As was done in Refs. [14,15], near the upper critical
field, we can define � � ðHc2 �HÞ=Hc2 and expand the
fields:

�ðx; y; zÞ ¼ �ð0Þ þ ��ð1Þ þOð�2Þ;
Ax;yðx; y; zÞ ¼ Að0Þ

x;y þ �Að1Þ
x;y þOð�2Þ�þ;

ðx; y; zÞ ¼ �1=2�ð1Þ
þ þ �3=2�ð2Þ

þ þOð�5=2Þ: (13)

To leading order near Hc2, the electromagnetic fields are
� ¼ �ð1� z=z0Þ, A3

y ¼ xHc2, and A3
x ¼ 0. The higher

order terms take into account the backreaction of the
bosonic field on the electromagnetic fields. The magnetic
field in the boundary theory is H � ð@xAy � @yAxÞjz¼0.

Taking the equation of motion for �þ from Eq. (12) and
letting �þðx; y; zÞ ¼ mþðx; z;pÞeipy gives

0¼@zðg@zmþÞþ1

2
@2xmþþ

�
�2

g
�1

2
ðHc2xþpÞ2�3

2
Hc2

�
mþ;

(14)

where we have neglected the term�jmþj2mþ, since mþ is
small nearHc2. We note here that the vortex lattice solution
for the p-wave superconductor was not obtained in
Ref. [15] because the gauge field ansatz in that paper
contained a complex phase factor, so that A� � eipy. In

our work, it is the complex bosonic field �þ that is given
the phase factor, which, in the language of the original

gauge fields, corresponds to A� � e2py�
3
. This is necessary

to obtain the term �ðHc2xþ pÞ2 in Eq. (14). The distinc-
tion is important because, as we described above, the gauge
field in this theory is real, with the role of the real and
imaginary parts of the usual Ginzburg-Landau order
parameter being played here by the �1 and �2 directions
in SUð2Þ space.
Taking advantage of the linearity of Eq. (14), we can

again use separation of variables, letting mþðx; z;pÞ ¼
	ðzÞðx;pÞ. We then obtain the following eigenvalue
equations:

0 ¼ �@2Xn þ X2n � �nn; (15)

0¼@zðg@z	nÞþ
�
�2

g

�
1� z

z0

�
2�Hc2

2
ð�nþ3Þ

�
	n; (16)

where X � ffiffiffiffiffiffiffiffi
Hc2

p ðxþ p=Hc2Þ. The first of these is just a
harmonic oscillator equation, which is solved by the
Hermite polynomials:

nðx;pÞ ¼ e�X2=2HnðXÞ: (17)
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Here n ¼ 0; 1; 2; . . . denotes the Landau energy level, and
the corresponding eigenvalues are given by �n ¼ 2nþ 1.
The Abrikosov vortex lattice is given by a superposition of
the lowest energy (n ¼ 0) solutions:

mþðx; y; zÞ ¼ 	0ðzÞ
X
j

cje
ipjy0ðx;pjÞ; (18)

where the cj are coefficients that determine the structure of

the vortex lattice. As shown in Refs. [14,15,21], the upper
critical field Hc2 can be calculated at a given temperature
by finding the highest field at which Eq. (16) has a non-
vanishing solution, indicating the presence of a super-
conducting condensate. The resulting phase diagram is
shown in Fig. 2. We alert the reader to the characteristic
upward curvature of Hc2. This curvature, stemming from
Eq. (16), is intrinsic to our theory and is thus reflective of
the effects of field-induced correlations captured within the
holographic approach.

We next investigate the nature of the vortex lattice solu-
tion near Hc2. It is well known that the free energy in an
ordinary (s-wave) Ginzburg-Landau theory is minimized
when the vortex cores form a triangular lattice, and this has
also been shown to be the case for a holographic s-wave
superconductor [14]. Here we follow a similar approach to
find the configuration that minimizes the free energy of the
holographic p-wave superconductor. While our analysis is
complicated somewhat compared to the s-wave case by the
quartic term and the many gradient terms that appear in
Eq. (12), we shall find that–just as in the s-wave case–the
triangular vortex lattice minimizes the free energy.

Since all quantities are time-independent, the free en-
ergy is given by� ¼ �SYMOS =

R
dt, where SYMOS is the action

evaluated with the fields �þ, Ax;y, and � on shell. The

equation of motion for �þ following from Eq. (12) is

0 ¼ @zðg@z�þÞ þ 1

2
ðDx þ iDyÞðDx � iDyÞ�þ

þ�2

g
�þ þ ð@xAy � @yAxÞ�þ � 1

2
j�þj2�þ: (19)

Multiplying this equation by ��þ and integrating over
space, combining this result with Eq. (12) gives the action
with �þ evaluated on shell:

SYMð ��þÞ ¼ �1

2q2�2

Z
d4x

�
�ð@z�Þ2 � 1

g
ðr�Þ2 þ gð@zAÞ2

þ ð@xAy � @yAxÞ2 � 1

4
j ��þj4

�
; (20)

where integration by parts has been used, and a bar denotes
fields evaluated on shell. We assume that the scalar field
�þ has compact support in the ðx; yÞ coordinates, so that
the contributions from the boundaries x ¼ const and y ¼
const vanish when we integrate by parts. Furthermore,
there is no boundary contribution from the horizon due to
the regularity condition, and none from the AdS boundary
at z ¼ 0 due to the boundary condition �þðz ¼ 0Þ ¼ 0.
Similarly, the on-shell conditions for the fields� and Ai

can be calculated from Eq. (20) and the result substituted
back into the action, yielding the action with all fields
evaluated on shell

SYMOS ¼ 1

2q2�2

�
1

4

Z
d4xgj ��þj4 þ

Z
d3x �Ai@z �Aijz¼0

�
: (21)

Here there is no boundary contribution from the � terms
upon integration by parts due to the compact support in
the ðx; yÞ coordinates and the boundary condition �ðz ¼
0Þ ¼ 0. As discussed in Ref. [14], the boundary contribu-
tions from the gauge fields at the horizon can also be
ignored since they are independent of the field �þ, and
our interest here is in finding the configuration of �þ that
minimizes the free energy. The boundary term at z ¼ 0
for the field Ai does not in general vanish, however; and,
according the AdS/CFT dictionary, the expectation value
of the current operator in the boundary theory is propor-
tional to @zAi.
The leading nonzero correction to the action is atOð�2Þ,

so the free energy can be expressed as� 	 �ð0Þ þ �2�ð2Þ,
with

�ð2Þ ¼ �1

2q2�2

Z
dx

�
1

4

Z
dzgj�ð1Þ

þ j4 þ Að1Þ
i @zA

ð1Þ
i jz¼0

�
:

(22)

For simplicity we no longer use the bar to denote fields that
are on shell. In order to evaluate Eq. (22), we need to obtain

an expression for Að1Þ
i . At Oð�Þ, the equation of motion

following from Eq. (12) is

½@zðg@zÞ þ 2r2�Að1Þ
i ¼ �jð1Þi þ 1

2�ij@jj�ð1Þ
þ j2; (23)

where we have defined

FIG. 2. Upper critical magnetic field for the wþ component of
the superconducting order parameter. The lower left part of the
phase diagram is the superconducting region, and the upper right
is the normal state. Note the upward curvature, which is a direct
consequence of the z dependence in Eq. (16).
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jð1Þi � 1

2i
½�ð1Þ�

þ Dð0Þ
i �ð1Þ

þ � ðDð0Þ
i �ð1Þ

þ Þ��ð1Þ
þ �: (24)

We have also chosen the gauge condition @iAi ¼ 0 and
applied it in deriving Eq. (23). It is important to note that
Eq. (24) describes currents in the bulk theory, and is
distinct from the boundary current operator alluded to
above. Furthermore, since �þðz;xÞ � ðxÞ, which de-
scribes the ground state of a simple harmonic oscillator,

it is a simple matter to show [22] that jð1Þi ¼
� 1

2 �ij@jj�ð1Þ
þ j2. The antisymmetric symbol satisfies �ji ¼

��ij and �12 ¼ 1.

The solution to Eq. (23) can be expressed as

Að1Þ
i ðz;xÞ ¼ aiðxÞ �

Z
dz0dx0GBðz; z0;x� x0Þjð1Þi ðz0;x0Þ;

(25)

where aiðxÞ is the homogeneous part of the solution
satisfying �ij@iaj ¼ �Hc2, and the Greens function GB

satisfies

½12@zðg@zÞ þ r2�GBðz; z0;x� x0Þ ¼ ��ðz� z0Þ�ðx� x0Þ;
GBðz ¼ 0;xÞ ¼ lim

z!z0
gðzÞGBðz; z0;xÞ ¼ 0: (26)

We can now use Eq. (25) to evaluate the second term in
Eq. (22):

Z
dxAð1Þ

i @zA
ð1Þ
i

¼
Z
dz0dx0dxaiðxÞ@zGBðz;z0;x�x0Þjð1Þi ðz0;x0Þ

¼Hc2

2

Z
dz0dx0dx@zGBðz;z0;x�x0Þj�ð1Þ

þ ðz0;x0Þj2; (27)

where in the second equality integration by parts and
rGBðz; z0;x� x0Þ ¼ �r0GBðz; z0;x� x0Þ were used.
From the boundary condition in Eq. (26), the integral of
GB can be performed:

Z
dxGBðz; z0;xÞ ¼

Z minðz;z0Þ

0

dz00

gðz00Þ : (28)

Using this result along with Eq. (27), we obtain the follow-
ing expression for the free energy:

�ð2Þ ¼ �1

4q2�2

Z
dzdx

�
1

2
gj�ð1Þ

þ j4 þHc2j�ð1Þ
þ j2

�
: (29)

As pointed out in Ref. [14], however, Eq. (29) is not our

final result, since it depends on the normalization of �ð1Þ
þ .

This ambiguity in normalization is resolved by considering

nonlinearity. From Eq. (19), the equation of motion for�ð1Þ
þ

is L̂�ð1Þ
þ ¼ 0, where we have defined the differential

operator

L̂ � @zðg@zÞ þ 1

2
ðDx þ iDyÞð0ÞðDx � iDyÞð0Þ

þ ð�ð0ÞÞ2
g

þHc2: (30)

Also following from Eq. (19) is the equation of motion

for �ð2Þ
þ , which can be expressed as L̂�ð2Þ

þ ¼ J, where

J� i

2
ðAxþ iAyÞð1ÞðDx� iDyÞð0Þ�ð1Þ

þ

þ i

2
ðDxþ iDyÞð0Þ½ðAx� iAyÞð1Þ�ð1Þ

þ �

þ
�
ð@xAy�@yAxÞð1Þ�2

g
�ð0Þ�ð1Þþ1

2
j�ð1Þ

þ j2
�
�ð1Þ
þ : (31)

With this equation of motion, we obtain the following
identity:

0 ¼
Z

d3x½�ð1Þ�
þ J � �ð1Þ�

þ L̂�ð2Þ
þ �

¼
Z

d3x½�ð1Þ�
þ J � ðL̂�ð1Þ

þ Þ��ð2Þ
þ � ¼

Z
d3x�ð1Þ�

þ J; (32)

where integration by parts along with the boundary condi-
tion �þðz ¼ 0Þ ¼ 0 was used to obtain the second line.

Again using integration by parts and jð1Þi ¼ � 1
2 �ij@jj�ð1Þ

þ j2
in Eq. (32), we obtain the condition

0¼
Z
d3x

�
1

4
j�ð1Þ

þ j4�
�
@xA

ð1Þ
y �@yA

ð1Þ
x þ2

g
�ð0Þ�ð1Þ

�
j�ð1Þ

þ j2
�
:

(33)

In order to evaluate Eq. (33) we must determine the form

of �ð1Þ. At Oð�Þ, the equation of motion for � is

ðg@2z þr2Þ�ð1Þ ¼ j�ð1Þ
þ j2�ð0Þ: (34)

This equation has solution

�ð1Þðz;xÞ ¼
Z

dx0 Z dz0
�ð0Þðz0Þ
gðz0Þ Gtðz; z0;x� x0Þ


 j�ð1Þ
þ ðz0;x0Þj2; (35)

where Gtðz; z0;x� x0Þ is the Green function satisfying

ðg@2z þr2ÞGtðz; z0;x� x0Þ ¼ �gðzÞ�ðz� z0Þ�ð2Þðx� x0Þ:
(36)

In order to make further progress, we expand the
Greens functions from Eqs. (26) and (36) in a basis of
eigenfunctions:

Gtðz; z0;xÞ ¼
X
�


�ðzÞ
y
�ðz0ÞG2ðx; �Þ

�gðzÞ@2z
�ðzÞ ¼ �
�ðzÞ

�ð0Þ ¼ 0 ¼ 
�ðz0Þ; (37)

and
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GBðz;z0;xÞ¼
X
�

��ðzÞ�y
�ðz0ÞG2ðx;�Þ

�1

2
@z½gðzÞ@z��ðzÞ�¼���ðzÞ

��ðz¼0Þ¼ lim
z!z0

gðzÞ�0ðzÞ¼0: (38)

where the Greens function G2 satisfies

ðr2 � �ÞG2ðx; �Þ ¼ ��ðxÞ: (39)

Because of Eqs. (25) and (35), the free energy in this
theory takes a nonlocal form, as opposed to the usual,
nonholographic Ginzburg-Landau theory, which is com-
pletely local. This is due to the fact that the Ginzburg-
Landau theory is a low energy effective expansion,
whereas the AdS theory presented here retains the physics
from all energy scales [14]. To get a local effective theory,
we recognize that, in the long wavelength limit, G2ðx; �Þ
decays much more quickly than j�ð1Þ

þ ðxÞj2, so we can
approximate

Z
dx0G2ðx� x0; �Þjðx0Þj2 	 jðxÞj2

�
: (40)

Using Eqs. (25) and (35), we can now give an explicit
form of the condition Eq. (33) in the long wavelength limit:

0 ¼
Z

d3x

��
1

4
� 2

g
�ð0Þ�ð1Þ

�
j�ð1Þ

þ j4 �Hc2j�ð1Þ
þ j2

� j�ð1Þ
þ j2r2

Z
d3x0GBðz; z0;x� x0Þj�ð1Þ

þ ðz0;x0Þj2
�

	
Z

d3x

��
	4

4
� �ðzÞ	2

2

�
jj4 �Hc2	

2jj2
�
: (41)

To obtain the first equality we have again used integration
by parts and r0GBðz; z0;x� x0Þ ¼ �rGBðz; z0;x� x0Þ,
and the second equality gives the approximate form in
the long wavelength limit, using Eqs. (37)–(39). We have
also defined

�ðzÞ � 4�ð0Þ

g

X
�


�

�

Z
dz0

�ð0Þðz0Þ
gðz0Þ 	2ðz0Þ
y

�ðz0Þ: (42)

By combining Eqs. (41) and (29), we can now give an
approximate, local expression for the free energy density
that is independent of the normalization of the order
parameter:

�

V
¼ 1

V
½�ð0Þ þ �2�ð2Þ þ . . .�

	 �ð0Þ

V
� 2ðHc2 �HÞ2h	2i2h2	4 � �	2i

q2�2�h	4 � �	2i2 ; (43)

where h. . .i denotes spatial average, and the Abrikosov
parameter is given by

� � hjj4i
hjj2i2 : (44)

Since the free energy density in Eq. (43) is negative,
minimizing the free energy corresponds to minimizing �.
It is well known that the vortex lattice distribution that
minimizes � is the triangular vortex lattice, for which � ¼
1:159. This was also the result found for the holographic
s-wave superconductor [14].
In conclusion, we have shown the existence of a vortex

solution in a holographic p-wave superconductor at low
magnetic fields, as well as a vortex lattice solution near the
upper critical magnetic field,Hc2.Hc2 exhibits a character-
istic upward curvature, intrinsic to our theory, which re-
flects the effects of field-induced correlations captured by
the holographic approach. The free energy was found to be
minimized by the triangular vortex lattice. In the future it
would be interesting to extend this theory to a BCS-like
theory of fermions in AdS [23], which would give insight
into the possible types of p-wave pairing in holographic
superconductors, as well as the tantalizing possibility of
Majorana fermions, which are known to exist as bound
states in the vortex cores of chiral p-wave superconductors.
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