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We expand on the results of our recent letter [Phys. Rev. Lett. 106, 091601 (2011)], where we presented

new recursion relations for correlation functions of the stress-tensor and conserved currents in conformal

field theories with an AdSdþ1 dual for d � 4. These recursion relations are derived by generalizing the

Britto-Cachazo-Feng-Witten (BCFW) relations to amplitudes in anti-de Sitter space (AdS) that are dual to

boundary correlators, and are usually computed perturbatively by Witten diagrams. Our results relate

vacuum-correlation functions to integrated products of lower-point transition amplitudes, which corre-

spond to correlators calculated between states dual to certain normalizable modes. We show that the set of

‘‘polarization vectors’’ for which amplitudes behave well under the BCFW extension is smaller than in

flat-space. We describe how transition amplitudes for more general external polarizations can be

constructed by combining answers obtained by different pairs of BCFW shifts. We then generalize these

recursion relations to supersymmetric theories. In AdS, unlike flat-space, even maximal supersymmetry is

insufficient to permit the computation of all correlators of operators in the same multiplet as a stress-tensor

or conserved current. Finally, we work out some simple examples to verify our results.
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I. INTRODUCTION

The Britto-Cachazo-Feng-Witten (BCFW) recursion re-
lations [1,2] have attracted interest because they provide a
novel way of calculating S-matrix elements in gauge and
gravity theories. These relations reproduce the answers
provided by standard Feynman-diagram perturbation the-
ory but are far more efficient. This provides an immediate,
practical motivation for these investigations: the study of
scattering amplitudes that are of phenomenological rele-
vance at particle accelerators. Indeed, using the BCFW
relations and associated on-shell techniques at one-loop
[3–10], Berger et al. [11] were able to calculate the next-to-
leading order correction for the production ofW þ 4-jets at
the Large Hadron Collider (LHC)—a calculation that had
remained out of the reach of conventional Feynman dia-
gram techniques. Earlier, two groups used similar tech-
niques to understand the production of W þ 3-jets at both
the Tevatron and the LHC [12–14].

Another example, which is relevant to quantum gravity,
comes from scattering amplitudes of gravitons. If the
Hilbert action is expanded in metric fluctuations, one
obtains an infinite series of interaction vertices of ever
increasing complexity; for example, the four-point vertex
already has 2850 terms. However, the interactions of
gravitons are not really that complicated: the final answers
for scattering amplitudes are quite simple. In fact,
DeWitt, who first worked out scattering amplitudes for
gravitons, commented that ‘‘the tediousness of the algebra
involved . . .combined with the fact that the final results are
ridiculously simple, leads one to believe that there must be
an easier way.’’[15] The BCFW recursion relations are this

‘‘easier way.’’ They reduce the computation of all graviton
scattering amplitudes down to the computation of the on-
shell three-point function, which is completely determined
by Lorentz invariance.
This leads us to a second, more fundamental, reason for

the interest in the BCFW relations. Since the BCFW
recursion relations are ostensibly so different from
Feynman diagrams but, yet, provide a shortcut to the final
answer, we would like to find a formulation of quantum
field theory (QFT) in which these recursion relations,
rather than Feynman diagrams, are the ‘‘natural’’ objects
of study. A new such formulation of QFT, if it were to be
discovered, would certainly be important for our under-
standing of basic physics.
The search for such a formulation has attracted much

recent interest. An important attempt was made by Witten
[16], who tried to formulate gauge theory as a string theory
in twistor space. Although this did not succeed entirely, it
led to the discovery of the BCFW recursion relations. More
recent work that has aimed at uncovering the underlying
physics in these relations includes a reformulation of the
BCFW relations in twistor space [17,18] and the attempt to
find a Grassmannian integral [19,20] which would produce
the leading singularities of scattering amplitudes at all
loops and the BCFW recursion relations at tree-level. For
other recent extensions to higher-loops, we refer the reader
to [21,22].
This program of reformulating quantum field theory is

ambitious, but has not yet succeeded. Nevertheless, it is
clear that the secret of the efficiency of the BCFW recur-
sion relations, and on-shell techniques in general, is that
they make reference only to the physical degrees of free-
dom in a theory. On the other hand, this comes at the price
of manifest locality. In a rough sense, this is analogous to*suvrat@hri.res.in
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the way in which the path-integral formulation of QFT
makes Lorentz-invariance manifest but obscures unitarity;
the Hamiltonian formulation, on the other hand, makes
unitarity manifest but obscures Lorentz invariance. The
on-shell formulation that we are looking for would make
the simplicity of amplitudes and physical degrees of free-
dom manifest but would perhaps obscure locality.

All the studies that we have referred to above were
carried out in flat-space. In fact, until recently, it was
believed that on-shell techniques apply only to quantum
field theories in flat-space. This is because they rely heavily
on the analytic properties of amplitudes, which change
drastically in curved spacetime. In a recent letter [23],
we pointed out that the BCFW recursion relations could
be generalized to gauge and gravity theories in anti-de
Sitter space (AdS). By the AdS/CFT correspondence, this
gives new and surprising recursion relations for correlators
in the boundary conformal field theory (CFT).

The physical intuition underlying this surprising result is
as follows. The BCFW recursion relations are predicated
on the behavior of Yang-Mills (YM) and gravity ampli-
tudes when two of the external momenta are stretched off
the infinity in a ‘‘complex direction.’’ Although this is not
strictly a high energy limit, it is nonetheless true that the
amplitude is dominated by interactions between a soft
background and a highly boosted particle at a single point
[24]. In this limit, we do not expect this highly boosted
particle to see the curvature of the neighboring spacetime
region. Viewed from this perspective, the properties of an
amplitude under the BCFW extension should not change
much as we go from flat-space to curved space, except for
one crucial difference: in flat-space, the location of this
interaction-point does not matter, whereas in curved space
it does. So, in AdS we need to integrate over the different
points where this interaction can occur. (This is similar to
the intuition used in [25].) This process leads to the modi-
fied recursion relations that we present below. A higher-
point correlator is broken down into the integral of the
product of two lower-point correlators. Just as in flat-space,
we can continue this process till we are left only with three-
point functions.

Once again, this is of interest for two reasons. First, the
inordinate complexity of gravity is exacerbated when we
expand metric fluctuations about AdS. As a result, even the
smallest nontrivial correlators, like the four-point function
of the stress-tensor in strongly coupled N ¼ 4 Super-
Yang-Mills theory (SYM) that is dual to the scattering of
four-gravitons in the bulk, have never been computed
directly.1 Correlators of the stress-tensor are of particular
interest because their leading behavior is ‘‘universal’’ in

any conformal field theory with a gravity dual due to the
fact that tree-level graviton amplitudes are not sensitive to
the matter-content of the theory. Since, as in flat-space, the
repeated application of our recursion relations allows us to
reduce complicated amplitudes down to three-point func-
tions, we expect that our new recursion relations will
greatly simplify the computation of these correlators. On
the other hand, as we discuss in more detail in Sec. VII,
these relations are also of interest for formal reasons—both
for what they teach us about quantum gravity in asymptoti-
cally anti-de Sitter spaces and for what they teach us about
conformal field theories with a gravity dual.
Finally, we should mention one interesting feature of our

results. If we set out to compute a vacuum-correlator in the
boundary theory, with all normalizable modes switched off
in the bulk, the recursion relations lead us to correlators
computed in the presence of specific states; in the bulk,
this corresponds to turning on some normalizable modes.
We will call these generalized correlators ‘‘transition
amplitudes.’’
These transition amplitudes have a nice physical inter-

pretation in Lorentzian AdS. There has been much recent
discussion of the subtleties associated with Lorentzian
AdS/CFT; these subtleties are not too important here,
especially since we are at zero temperature. However, the
reader who is concerned about this may instead prefer to
work all the time in the Euclidean picture and only analyti-
cally continue the results at the end. In the Euclidean
picture, the intermediate objects that we obtain in our
recursion relations do not have any direct physical inter-
pretation (except as the analytic continuation of Lorentzian
transition amplitudes), but they are well defined formal
quantities that one can compute in perturbation theory.
A brief overview of this paper is as follows. We start

with a review of perturbation theory in AdS in Sec. II. We
then proceed to define and discuss transition amplitudes in
Sec. III. The central results in the paper are derived in
Sec. IV where we derive new recursion relations for tran-
sition amplitudes in Yang-Mills theory and gravity.
A further extension of our recursion relations in Sec. V

allows us to compute transition amplitudes in supersym-
metric theories, including N ¼ 4 SYM and the theory on
multiple M5 branes in the supergravity limit. Perturbative
computations in supersymmetric theories are often tedious;
the recursion relations that we present ameliorate this by
using a generalization of Nair’s on-shell superspace [28].
We would suggest that the reader, who is interested just in
the results of this paper, should read [23] first and then turn
here for details.

II. REVIEW OF PERTURBATION THEORY

We will work in Poincare coordinates where the
metric is

ds2 ¼ g��dx
�dx� ¼ z�2ðdz2 þ �ijdx

idxjÞ: (2.1)

1This correlator may, in principle, be extracted from simpler
correlators using superconformal invariance [26,27] but this has
never been done explicitly either. On the other hand, as far as
know, its direct computation using Witten diagrams has not even
been attempted.
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Note that we are using the mostly positive signature for the
boundary metric. Poincare invariance in d-dimensions
makes it convenient to Fourier transform functions of xi

and we will call the conjugate variables—ki—‘‘momenta.’’
These are really momenta in the dual conformal field
theory. Note that we will use boldface for tensors and
vectors in d or dþ 1 dimensions, like x or k, but not for
their components. While considering momenta in a
n-particle amplitude, we will often use the index m to
run over the various particles from 1 to n; these have
momenta from k1 to kn. At times, to lighten the notation,
especially when we are dealing with ‘‘polarization vec-
tors’’ �m, below we might raise the particle-number index
i.e. write �m instead; this does not have any significance.

The indices i, j are reserved for the d-dimensional
spacetime coordinates. We will avoid raising and lowering
these indices; for example, xi naturally has a raised index,
while ki or a gauge-field Aa

i naturally has lowered indices.
However, when we need to take a dot product of two
d-dimensional vectors, we will use the flat-space metric.
On the other hand, �, � run over all dþ 1 dimensions.
When we raise or lower one of these indices, we will use
the full metric, including the factors of z. Finally, the index
0 will refer to the z-direction while the boundary coordi-
nates run from 1 . . . d.

Perturbation theory in AdS is carried out through Witten
diagrams. This requires two crucial ingredients: the bulk-
to-boundary propagator, and the bulk-to-bulk propagator.
The bulk-to-boundary propagator is a certain kind of solu-
tion to the equations of motion—called a non-normalizable
solution—with some special boundary conditions. We dis-
cuss these two physical quantities for scalars, gauge-fields,
and gravity below. These results are well known but, at
times, such as in the expression for the gauge and gravity
propagators, we were unable to find them in the literature
in the exact form that we required. So, we have tried to be
as detailed as possible.

A. Scalars

We start by describing solutions to the wave equation
and then go on to describe propagators in AdS.

1. Solutions to the Wave Equation

Consider a minimally coupled massless scalar. Its equa-
tion of motion is

h� ¼ 0 ) @�g
�� ffiffiffiffiffiffiffi�g
p

@�� ¼ 0: (2.2)

Poincare invariance in d-dimensions tells us that all solu-
tions can be written as linear combinations of �kðx; zÞ ¼
eik�x�ðzÞ where �k satisfies

ð@zz1�d@z � z1�dk2Þ�k ¼ 0: (2.3)

Here, k2 ¼ �ijkikj is taken with the flat boundary metric.

If k is timelike, which means k2 < 0, then there are two
solutions to (2.3)

normalizable: �ðzÞ ¼ z��0J�ðjkjzÞ;
non-normalizable �ðzÞ ¼ z��0Y�ðjkjzÞ;

(2.4)

where J� and Y� are Bessel functions of the first and second

kind, respectively. Moreover, jkj ¼ ffiffiffiffiffiffiffiffijk2jp
, � ¼ d

2 and
2 �0

is some constant. Any linear combination of these solu-
tions is also a solution to the equation of motion.
On the other hand, if k is spacelike, then the requirement

that the solution be regular in the interior of AdS fixes the
solution to be

�ðzÞ ¼ z��0K�ðjkjzÞ; for k2 > 0; (2.5)

whereK is the modified Bessel function of the second kind.
Note that the analytic continuation of (2.5) to timelike

momenta gives a solution involving the Hankel function of
the first kind3

�ðzÞ ¼ z��0

�

2
i�þ1Hð1Þ

� ðjkjzÞ

¼ z��0

�

2
i�þ1ðJ�ðjkjzÞ þ iY�ðjkjzÞÞ; for k2 < 0:

(2.6)

If we are calculating time-ordered correlation functions on
the boundary, then this is the correct bulk-to-boundary
propagator [29,30]. This is because, as we approach the
Poincare horizon at z ¼ 1, this bulk-to-boundary propa-
gator ensures that positive energy waves are ingoing
whereas negative energy waves are outgoing.
In some contexts, we will find that the distinction be-

tween these solutions is unimportant. We will then write
�kðx; zÞ ¼ �0e

ik�xE�ðk; zÞ where z��E�ðk; zÞ is one of the
Bessel functions, K�ðkzÞ, J�ðkzÞ, Y�ðkzÞ, or a linear com-
bination of these functions.

2. Propagator

We now turn to the bulk to bulk propagator. Here, we
will just call this the propagator. The propagator is the
Green’s function that satisfies (in dþ 1 dimensions),

hGðx; z; x0; z0Þ ¼ i
�dðx� x0Þ�ðz� z0Þffiffiffiffiffiffiffi�g

p : (2.7)

Note that the left hand side is invariant under coordinate
transformations and the

ffiffiffiffiffiffiffi�g
p

ensures that this is also true

for the right hand side, because it cancels the transforma-
tion of the � function. (See Eq. (3.49) of [31].) Under a
coordinate transformation with Jacobian J, we have

2We hope this notation will not cause confusion with the use of
� as a spacetime index.

3The factor of �
2 i

�þ1 is customary in the definition of the
modified Bessel functions. We should also add here that we are
not being very precise about the overall normalization of these
solutions since this is not important for any part of the analysis in
this paper.
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�dðx� x0Þ�ðz� z0Þ ! �dðx� x0Þ�ðz� z0Þ=J andffiffiffiffiffiffiffi�g
p ! ffiffiffiffiffiffiffi�g

p
=J. With the metric (2.1) we have

ffiffiffiffiffiffiffi�g
p ¼

1
zdþ1 .

After we Fourier transform from x to k

Gkðz; z0Þ ¼
Z

Gðx; z; x0; z0Þe�ik�ðx�x0Þddx; (2.8)

the Eq. (2.7) becomes

zdþ1 @

@z
z1�d @Gk

@z
� z2k2Gk ¼ i�ðz� z0Þzdþ1: (2.9)

Using the identity,

Z
zJ�ðpzÞJ�ðp0zÞdz ¼ �ðp� p0Þ

p
; (2.10)

we see that the solution to (2.9) is

Gkðz; z0Þ ¼
Z �ipdp

ðk2 þ p2 � i�Þ z
�J�ðpzÞJ�ðpz0Þðz0Þ�; (2.11)

and, as usual,

Gðx; z;x0; z0Þ ¼
Z ddk

ð2�ÞdGkðz;z0Þeik�ðx�x0Þ

¼
Z �iddk

ð2�Þd
dp2

2

eik�ðx�x0Þz�J�ðpzÞJ�ðpz0Þðz0Þ�
ðk2þp2� i�Þ ;

(2.12)

We draw the attention of the reader to one property of
the momentum-space propagator which will be important
to us below. When the denominator of its integrand goes
on-shell i.e. when p2 ¼ �k2, the numerator breaks up into
a sum over a product of normalizable modes. This is the
same as what happens in flat-space, and is expected be-
cause the propagator is just a two-point function.

B. Gauge fields

We now turn to vector fields in AdS. These are dual to
conserved currents on the boundary. Both the solutions to
the equations of motion and the propagator depend on the
choice of gauge. Here, we will choose axial gauge so that
for the gauge field Aa

� in the bulk: Aa
0 ¼ 0. Note that we do

not italicize the color-index a.
The bulk action is

S ¼ �1

4

Z ffiffiffiffiffiffiffi�g
p

Fa
��F

��;addxdz: (2.13)

To go to ‘‘axial gauge’’, we add a gauge-fixing term
�
P

aðAa
0Þ2 and take � ! �1. This freezes Aa

0 ¼ 0. We

also set the coupling constant, gYM ¼ 0 for now, although
we will turn it on later to examine interactions in this
theory. With these choices, we have the gauge-fixed action

Saxial ¼ 1

2

Z
½Aa

i @�z
3�d@	A

a
j�

�	�ij

� z3�dAa
i @k@lA

a
j�

ik�jl�ddxdzþ SBaxial: (2.14)

Note that we have used the fact that Aa
0 ¼ 0 and also

integrated by parts; SBaxial is the resultant boundary term,

which does not affect the equations of motion.
From (2.14), we can read off both the solutions to the

free-equations of motion and the propagator. Solutions to
the equations of motion,

Aa
i ðx; zÞ ¼

Z
Aa
i ðk; zÞeþik�xddx; (2.15)

must satisfy

k �Aaðk; zÞ ¼ 0; (2.16)

in the gauge Aa
0ðk; zÞ ¼ 0 and also

@0z
3�d@0A

a
i � k2z3�dAa

i ¼ 0: (2.17)

For timelike k, this has the two solutions

normalizable: Aa
i ðk; zÞ ¼ �ai z

�1J�1
ðjkjzÞ;

non-normalizable: Aa
i ðk; zÞ ¼ �ai z

�1Y�1
ðjkjzÞ:

(2.18)

Here, �1 ¼ �� 1 and the polarization vector � must
satisfy

k � �a ¼ 0: (2.19)

The timelike bulk-to-boundary propagator is a linear com-
bination of these solutions that has the correct boundary
conditions at z ! 1:

Aa
i ðk; zÞ ¼ �ai z

�1Hð1Þ
�1
ðjkjzÞ; for k2 < 0: (2.20)

On the other hand, for spacelike k, we have the unique
solution:

Aa
i ðk; zÞ ¼ �ai z

�1K�1
ðjkjzÞ; for k2 < 0: (2.21)

This is also the bulk-to-boundary propagator for spacelike
momentum and its analytic continuation to timelike mo-
menta gives (2.20). Inverting the quadratic operator in
(2.14) leads to the propagator:

Gaxial;ab
ij ðx;z;x0;z0Þ

¼
Z �iddkdp2

2ð2�Þd eik�ðx�x0Þ
�ðzz0Þ�1J�1

ðpzÞJ�1
ðpz0ÞT ij�

ab

ðk2þp2� i�Þ
�
;

(2.22)

where T ij ¼ �ij þ kikj
p2 . Once again, we emphasize that at

k2 ¼ �p2, T ij just projects vectors onto the space or-

thogonal to k and so the numerator of (2.22) breaks up
into the sum over a product of normalizable modes.
Comparison with Liu-Tseytlin: We pause to compare our

propagator to the one given by Liu and Tseytlin [32].
Referring to Eq. 4.6 of their paper (from version 4 on the
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arXiv), we see that, in the presence of a bulk-source T, we
can write the quadratic action as

2SLT ¼
Z dzdz0Dðk; x; x0Þdp2

2zdþ1ðz0Þdþ1
TiðzÞ

�
�ij � kikj

k2

k2 þ p2

�

� Tjðz0Þz�1J�1
ðjkjzÞðz0Þ�1J�1ðjkjz0Þ

þ
Z

T0ðx; zÞT0ðx0; zÞ 1
k2

Dðk; x; x0Þdz
zdþ5

: (2.23)

Note that (a) we have adopted the notation

D ðk; x; x0Þ � ddxddx0
ddk

ð2�Þd e
ik�ðx�x0Þ: (2.24)

(b) We have raised indices for the currents, which we have
denoted by T to avoid confusion with Bessel functions; this
leads to slightly different factors of z. Moreover, we have
only displayed the z dependence in the source, which may
also depend on x. (c) We have a minus sign in the second
term by virtue of having k2 rather than @2 and
(d) �1 ¼ d�2

2 . On the other hand, we also have

2Saxial ¼
Z dzdz0Dðk; x; x0Þdp2

2zdþ1ðz0Þdþ1
TiðzÞ

��ij þ kikj
p2

k2 þ p2

�

� Tjðz0Þz�1J�1
ðjkjzÞðz0Þ�1J�1

ðjkjz0Þ; (2.25)

so that

2SLT � 2Saxial ¼
Z dzdz0Dðk; x; x0Þdp2

2zdþ1ðz0Þdþ1
TiðzÞ

��kikj
k2

� kikj
p2

k2 þ p2

�
Tjðz0Þz�1J�1

ðjkjzÞðz0Þ�1J�1
ðjkjz0Þ

þ
Z

T0ðzÞT0ðzÞ 1
k2

Dðk; x; x0Þdz
zdþ5

¼
Z dzdz0Dðk; x; x0Þdp2

2zdþ1ðz0Þdþ1
TiðzÞ

��kikj

k2p2

�
Tjðz0Þz�1J�1

ðjkjzÞðz0Þ�1J�1
ðx0; z0Þ

þ
Z

T0ðzÞT0ðzÞ 1
k2

Dðk; x; x0Þdz
zdþ5

: (2.26)

We now use the identities

Z 1

0
J�1

ðpzÞJ�1
ðpz0Þdp

p
¼ 
ðz� z0Þ

2�1

�
z0

z

�
�1 þ
ðz0 � zÞ

2�1

�
z

z0

�
�
;

@iT
i ¼� 1ffiffiffiffiffiffiffi�g

p @0
ffiffiffiffiffiffiffi�g

p
T0; (2.27)

where the second line comes from current conservation and
is useful because we can replace kikj ! @i@

0
j. Note that

one derivative pulls down an i and the other pulls down a
(� i), so there is no overall minus sign. Substituting this
into the equation above, and integrating by parts, we see
that

2ðSLT�SaxialÞ¼�
Z dzdz0Dðk;x;x0Þ

zdþ1ðz0Þdþ1

1

k2
T0ðzÞT0ðz0ÞP 
;z;z0

þ
Z
T0ðzÞT0ðzÞDðk;x;x0Þ

k2
dz

zdþ5
(2.28)

where we have defined

P 
;z;z0 � @2

@z@z0

�
z�1ðz0Þ�1

2�1

�

ðz� z0Þ

�
z0

z

�
�1

þ 
ðz0 � zÞ
�
z

z0

�
�1
��

: (2.29)

Carefully working out the derivative, we find

P 
;z;z0 ¼ @

@z0

�
@

@z
ððz0Þ2�1
ðz� z0Þ þ z2�1
ðz0 � zÞÞ

�

¼ @

@z0
½ðz0Þ2�1�ðz� z0Þ � z2�1�ðz0 � zÞ

þ 2�1z
2�1�1
ðz0 � zÞ�

¼ @

@z0
2�1z

2�1�1
ðz0 � zÞ ¼ 2�1z
2�1�1�ðz0 � zÞ:

(2.30)

Substituting this into (2.28), we see that everything cancels
out miraculously and we get

SLT � Saxial ¼ 0: (2.31)

So, our propagator is the same as the propagator given by
Liu and Tseytlin although the two are written in slightly
different forms.

C. Gravity

Now, we turn to gravitons propagating in AdS. We
expand gravity fluctuations about a background metric
G�� ¼ g�� þ h��, where g�� is the background and h��

contains the fluctuations. We can take the quadratic gravity
action from [33]. As in the subsection above, boundary
terms affect neither the equations of motion nor the propa-
gator, so we will neglect them here. The quadratic action is
given by
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S ¼ �1

64�G

Z ddxdz

zdþ1
ð~h��hh�� þ 2~h��R�	��h

	�

þ 2r	 ~h	�r� ~h
�
�Þ; (2.32)

where ~h�� ¼ h�� � 1
2g

��h�g�, and all covariant de-

rivatives are with respect to the background metric.
We want to analyze this action, when the background

metric is the AdS metric, in axial gauge h�0 ¼ 0. Before

we parse this action, let us write down a few simple
identities. The connection coefficients are given by

�
	
� ¼ 1

2
g	�ð@�g� þ @g�� � @�g�Þ

¼ 1

z
ð�	

0�� � �0
��

	
 � �0

�
	
�Þ: (2.33)

Using these coefficients, we see that

r	h�� ¼ @	h�� � ��
	�h�� � ��

	�h��

¼ @	h�� þ 1

z
ð2�0

	h�� þ �0
�h	� þ �0

�h�	Þ

¼ 1

z2
ð@	ðz2h��Þ þ z�0

�h	� þ z�0
�h�	Þ: (2.34)

In particular, in the action, we have a term of the kindffiffiffiffiffiffiffi�g
p

g�	g��1g��1r�h�1�1
r	h��

¼ z1�d��	���1���1½@�ðz2h�1�1
Þ þ z�0

�1
h��1

þ z�0
�1
h�1��½@	ðz2h��Þ þ �0

�zh	� þ z�0
�h�	�: (2.35)

Note that when we expand this product out, the cross-terms
all contract to zero with our choice of gauge. However, we
are left withffiffiffiffiffiffiffi�g

p
g�	g��1g��1r�h�1�1r	h��

¼ z1�d���1���1½��	@�ðz2h�1�1
Þ@	ðz2h��Þ

þ 2z2h��h�1�1�: (2.36)

If we integrate this by parts, we find

Z
x;z

ffiffiffiffiffiffiffi�g
p

g�	g��1g��1r�h�1�1
r	h��

�
Z
x;z

���1���1½�z2��	h��@	z
1�d@�ðz2h�1�1

Þ
þ 2z3�dh��h�1�1

�; (2.37)

where � indicates that the equality holds up to boundary
terms that are unimportant for our purpose, and we have
adopted the notation

R
x;z �

R
ddxdz. Note that in contrast,

for a scalar, the Laplacian is justffiffiffiffiffiffiffi�g
p

hh ¼ �	�@	z
1�d@�h: (2.38)

The action in (2.32) also has a term that reads

�1

2
r	

~h��r�
~h�1�1

g�	g��1g��1 ;

with ~h�� ¼ h�� � 1
2hg��. When we expand this term out,

we get three-types of terms: tensor-tensor, scalar-scalar and
tensor-scalar. Let us look at these terms in a little more
detail. The tensor-tensor term is

� ffiffiffiffiffiffiffi�g
p
2

r	h��r�h�1�1
g�	g��1g��1

¼ �z1�d

2
½@	ðz2h��Þ þ z�0

�h	� þ z�0
�h�	�½@�ðz2h�1�1

Þ
þ z�0

�1
h��1 þ z�0

�1
h�1����	���1���1

¼ �z1�d

2
½���1ðik	Þðz2h��Þðik�Þðz2h�1�1

Þ
þ z2h�	h�1����	���1 : (2.39)

There are two tensor-scalar terms, so we have added a
factor of 2 below. However, there is another factor of 12 from

the coefficient of the scalar in the definition of ~h. We also
have an overall positive sign because the minus sign in the
coefficient and the relative minus sign between the tensor
and scalar cancel. The tensor-scalar term is nowffiffiffiffiffiffiffi�g
p
2

r	h��r�hg�1�1
g�	g��1g��1

¼ 1

2
z1�d½@	ðz2h��Þ þ z�0

�h	�

þ z�0
�h�	�@�ðz2h�2�2

��2�2Þ�����	

¼ 1

2
z1�d½z4ðik	Þðik�Þh���

	����h�2�2
��2�2

þ h�	�
�	z@zðz2h�2�2

��2�2Þ�: (2.40)

Writing h ¼ z2��	h�	, the second term in the bracket

above is

1

2
z�dh@zh ¼ 1

4
z�d@zh

2 � h2
d

4
z�ðdþ1Þ; (2.41)

where we have integrated by parts to get the last term.
Putting (2.41) and (2.39) together, we find that

Z
x;z

� ffiffiffiffiffiffiffi�g
p
2

r	
~h��r�

~h�1�1
g�	g��1g��1

¼
Z
x;z

�
z5�d

2
���1��	���1k	h��k�h�1�1

� z5�d

2
k	k�h��h�2�2

�	������2�2

þ 1

8zdþ1
hhhþ ðd� 2Þ

4zdþ1
h2
�
: (2.42)

We now add the simple contribution from the Riemann
tensor to (2.42) and (2.37). This allows us to derive solu-
tions to the equations of motion and, by inverting the
quadratic part of this action, we also obtain the propagator
in axial gauge. In this gauge, the solutions to the equations
of motion are given by transverse traceless tensors in
d-dimensions
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hij ¼ �ijz
�2E�ðk;zÞeik�x; h0� ¼ 0; ki�

ij ¼ 0; �ii ¼ 0:

(2.43)

The propagator is

Ggrav
ij;kl ¼

Z �
eik�ðx�x0Þz��2J�ðpzÞJ�ðpz0Þðz0Þ��2

ðk2 þ p2 � i�Þ

� 1

2

�
T ikT jl þT ilT jk �

2T ijT kl

d� 1

���iddkdp2

2ð2�Þd ;

(2.44)

where T ij ¼ �ij þ kikj=p
2. A comparison similar to the

one done above for the gauge field shows that this agrees
with the propagator given in [32], although it is written in a
different form.

III. TRANSITION AMPLITUDES

The AdS/CFT prescription relates a field� in the bulk to
an operator O on the boundary and states that

Z
AdS

e�Sj�ðz;xÞ !
z!0

�0ðxÞ ¼ he
R

�0ðxÞOðxÞddxiCFT: (3.1)

By differentiating the right and left hand sides with respect
to �0, we get CFT correlators of O on the right hand side
and Witten diagrams on the left hand side, in the limit
where the string theory in AdS can be treated perturba-
tively. For a review of Witten diagrams, see [34].

The usual correlators we get in this manner are vacuum
correlators, which is what the Euclidean path integral
naturally calculates. In this paper, it will be physically
more illuminating to consider the Lorentzian analogue of
(3.1) (which must be carefully defined [29]) and consider
correlators evaluated between states. More precisely, con-
sider CFT operators Oðk31Þ; . . .Oðk3n3

Þ and states s, s0 that
are dual, respectively, to linear combinations of normal-
izable modes with momenta k11; . . . k1n1

and k21; . . .k2n2

in the bulk. An important object in our study will be the
transition amplitude

TðklmÞð2�Þd�d

�X
lm

klm

�
¼ hsjOðk31Þ . . .Oðk3n3

Þjs0i: (3.2)

We have an overall momentum-conserving delta-function
because of translational invariance on the boundary. We
have explicitly extracted this in the definition of T above.
Physically, we may think of js0i, hsj as specifying data
along the past and future horizons of the Poincare patch;
we are then asking for the probability that the operators
Oðk3mÞ will induce a transition between these states. Since
js0i, hsj are dual to classical solutions in the bulk, these are
coherent states.

Transition amplitudes are not usually considered in the
literature although they were discussed briefly in [35–37].
Nevertheless, they are very natural objects to compute in
perturbation theory. The perturbative prescription for com-
puting them is as follows. We draw bulk-bulk diagrams as

usual. Then we contract the legs with momenta in the set
k3m with bulk-to-boundary propagators (non-normalizable
modes), and the other legs, which carry momenta in the set
k1m or k2m, with normalizable modes. So, a transition
amplitude is merely obtained by replacing some of the
bulk-to-boundary legs of a Witten diagram with normal-
izable modes. A vacuum-correlator is, of course, just a
special case of a transition amplitude where all normal-
izable modes are switched off.
It was pointed out in [35] that a transition amplitude in

the Poincare patch may be thought of as a correlation
function in global AdS. To see this, consider computing a
Witten diagram in global AdS, as shown in Fig. 1, with
sources S1, S2, S3, S4, and the initial and final boundary
conditions set to the vacuum. This is evidently a four-point
vacuum-correlator in the boundary theory. From the point
of view of the Poincare patch, however, the sources S1 and
S2 are invisible. Their effect is to create some boundary
conditions on the past and the future horizons. This is
precisely a transition amplitude.
The problem with this analogy, however, is that if we

want to correctly compute the correlation function in
global AdS, we need to integrate over all points where
the interaction takes place, including points that are outside
the Poincare patch. So, the analogy is strictly correct only
if we use sources that are ‘‘aimed’’ to allow for interactions
within the Poincare patch. For this reason—although this
point of view is conceptually important—we will not fol-
low this analogy further since it is simpler to deal directly
with the perturbative prescription for transition amplitudes.

S4

vac

vac

s’

s

S1

S2

S3

FIG. 1 (color online). Poincare Transition Amplitudes as
Vacuum Correlators in global AdS.
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Below, we will consider transition amplitudes,
Tðkm; �amÞ, that depend on a set of discrete momenta,
and also on polarization vectors for gauge-bosons and
gravitons. The reader should note that some of the km,
�am may correspond to normalizable modes, and others to
non-normalizable modes. Since we wish to treat these
cases symmetrically, our notation will leave this implicit,
although the context should suffice to prevent any
confusion.

It is clear from this discussion that our transition ampli-
tudes have a nice physical interpretation in Lorentzian
AdS. On the other hand, we can also consider the formulae
below in Euclidean space—where transition amplitudes
continue to be well defined formal objects in perturbation
theory—and then analytically continue the results to
Lorentzian space.

Ward Identities

Transition amplitudes in Yang-Mills theory or gravity in
AdS obey Ward identities, just like flat-space S-matrix
elements. To see the form that these identities take, let us
note that the structure of perturbation theory tells us that
transition amplitudes are produced by the action of a multi-
linear operator on a set of (normalizable or non-
normalizable) solutions to the equations of motion. For
example, in Yang-Mills theory, with Aam

�mðx; zÞ drawn from
(2.18) or (2.21)

T ¼ GðAa1
�1ðx; zÞ; . . .Aan

�nðx; zÞÞ: (3.3)

In flat-space we usually do not have to think of multi-
linear operators acting on the equations of motion—the
S-matrix element is simply some tensor, which comes from
a sum of amputated Feynman diagrams, dotted with the
polarization vectors. Here, since we have not Fourier trans-
formed with respect to the z-coordinate, the ‘‘amputated’’
Green’s function could contain derivatives in z that can act

on the z-dependent pieces of the solutions to the equations
of motion. This is why we need to consider linear operators
that are more general than tensors here.
In Yang-Mills theory, these operators obey Ward identi-

ties:

Gðr�1
�a1ðx; zÞ; Aa2

�2
ðx; zÞ; . . .Aan

�n
ðx; zÞÞ ¼ 0; (3.4)

for any �a1ðx; zÞ. For gravity, these Ward identities can be
written

Gðrð�1
t�1Þðx; zÞ; h�2�2

ðx; zÞ; . . . h�n�n
ðx; zÞÞ ¼ 0; (3.5)

for any vector field t�1
ðx; zÞ.

IV. BCFW RECURSION

Consider a n-point transition amplitude with momenta
k1; . . . kn. We choose a d-dimensional null-vector q, which
has the property that

q � k1 ¼ q � kn ¼ q2 ¼ 0: (4.1)

q is not unique but, in general, some of its components will
be complex. With some choice of q, we now consider a
one-parameter momentum-conserving deformation of the
transition amplitude, which we implement via

k 1 ! k1 þ qw; kn ! kn � qw; (4.2)

where w is a complex parameter. We will examine in turn,
what happens to transition amplitudes involving scalars,
gauge bosons and gravitons under this extension.

A. Scalars

We start with a massless �3 theory because its pertur-
bation theory is simple and illustrative. Consider a four-
point vacuum correlator in this theory. There are three
terms that contribute to this.4

Tðk1; k2;k3;k4Þ ¼
Z idz1dz2dp

2

2ðz1z2Þdþ1

�
z�1H

ð1Þ
� ðjk1jz1Þz�1Hð1Þ

� ðjk2jz1Þz�1J�ðpz1Þz�2J�ðpz2Þz�2Hð1Þ
� ðjk3jz2Þz�2Hð1Þ

� ðjk4jz2Þ
ðk1 þ k2Þ2 þ p2

þ z�1H
ð1Þ
� ðjk1jz1Þz�1Hð1Þ

� ðjk3jz1Þz�1J�ðpz1Þz�2J�ðpz2Þz�2Hð1Þ
� ðjk2jz2Þz�2Hð1Þ

� ðjk4jz2Þ
ðk1 þ k3Þ2 þ p2

þ z�1H
ð1Þ
� ðjk1jz1Þz�1Hð1Þ

� ðjk4jz1Þz�1J�ðpz1Þz�2J�ðpz2Þz�2Hð1Þ
� ðjk3jz2Þz�2Hð1Þ

� ðjk2jz2Þ
ðk1 þ k4Þ2 þ p2

�
; (4.3)

where � ¼ d
2 as usual. The first point to note is that if we

extend k1 and k4 using (4.2), the analytic properties of the
integral (4.3) in the w plane are quite complicated. This
might, at first sight, seem like an obstruction to the use of
the BCFW recursion relations. However, the key point is
that the integrand of (4.3) is a rational function of w. Note
that this is crucially dependent on the fact that the BCFW
extension does not change the norm of k1 or k4, and so

does not affect the Bessel function. A rational function can
be reconstructed from a knowledge of its behavior at
infinity, the location of its poles and its residues there.

4The z-integrals in (4.3) need to be regulated, but this does not
affect our analysis. We discuss this briefly at the end of
section VI.
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The first two terms (which we call the s- and t-channel terms) inside the square brackets of (4.3) have poles at finite w:

wsðpÞ ¼ � ðp2 þ ðk1 þ k2Þ2Þ
ð2q � k2Þ ; wtðpÞ ¼ � ðp2 þ ðk1 þ k3Þ2Þ

ð2q � k3Þ : (4.4)

We emphasize that the position of these poles depends on the value of p. The residues at these poles are

Rs ¼ �i

4q � k2 � ½�iz3��d�1
1 Hð1Þ

� ðjk1jz1ÞHð1Þ
� ðjk2jz1ÞJ�ðpz1Þ�½�iz3��d�1

2 J�ðpz2ÞHð1Þ
� ðjk3jz2ÞHð1Þ

� ðjk4jz2Þ�;

Rt ¼ �i

4q � k3 � ½�iz3��d�1
1 Hð1Þ

� ðjk1jz1ÞHð1Þ
� ðjk3jz1ÞJ�ðpz1Þ�½�iz3��d�1

2 J�ðpz2ÞHð1Þ
� ðjk2jz2ÞHð1Þ

� ðjk4jz2Þ�:
(4.5)

However, these residues have another nice feature. The boundary momentum that runs through the s-channel propagator is
k0s ¼ �k1 � k2 � qws. Note that, by construction, at w ¼ ws, we have p

2 ¼ jk0sj2. Therefore, each bracketed term is the
integrand for a 3-point function.

There is also a pole at w ¼ 1 in (4.3), because the integrand of the u-channel term, which involves a contact interaction
between k1 and k4, goes to a constant at large w. The residue at this pole cannot be written as the product of the integrands
of three-point amplitudes and it must be computed explicitly. If we denote the value of this Witten diagram byB (this is the
‘‘boundary term’’ from w ¼ 1), then we see that the following relation holds

Tðk1; k2; k3; k4Þ ¼ Bþ
Z � �iT 2

s

2ðp2 þ ðk1 þ k2Þ2Þ
þ �iT 2

t

2ðp2 þ ðk1 þ k3Þ2Þ
�
dp2;

T 2
s � Tðk1 þ qwsðpÞ; k2;�k1 � k2 � qwsðpÞÞTðk1 þ k2 þ qwsðpÞ; k3; k4 � qwsðpÞÞ;

T 2
t � Tðk1 þ qwtðpÞ; k3;�k1 � k3 � qwtðpÞÞTðk1 þ k3 þ qwtðpÞ; k2; k4 � qwtðpÞÞ: (4.6)

It is easy to see that the same structure persists for n-point
amplitudes. The key point is that the perturbative rules for
the integrand of theWitten diagram are very similar to those
of flat-space Feynman diagrams except for Bessel function
factors that appear in the numerator. However, these Bessel
functions never see the BCFW deformation (By construc-
tion, this does not change the norm of k1 and kn which is all
the Bessel function is sensitive to). In particular, this inte-
grand is a rational function of w. Poles in the finite w plane
occur only when the denominator of some propagator van-
ishes. Precisely when this happens, as we have emphasized
above, the numerator of the propagator breaks up into a sum
of a product of normalizable modes. These modes combine
with the other terms to make up a product of the integrand
of two transition amplitudes.

There are two other points worth noting. The first is that
the mode from the propagator that enters both transition
amplitudes—on the left and the right—is normalizable. So,
even if we start out by computing a vacuum correlator, the
residues at the poles of its integrand comprise the product
of two transition amplitudes, each of which contains one
normalizable mode. The second is that the momenta that
enter these transition amplitudes depend on p from the
propagator. Therefore, the recursion relations relate a
higher-point correlator to the integrated product of two
lower-point correlators.

All that remains is to list the positions of the poles. Poles
at finite w are in one to one correspondence with all

possible partitions of the momenta into two sets with k1
in one, and kn in the other. In the �3 theory under dis-
cussion (or any theory with a polynomial interaction in�),
there is also a pole at w ¼ 1. The residue at this pole
cannot be written as the product of lower-point transition
amplitudes but must be explicitly calculated by the sum of
all Witten diagrams where k1 and kn meet at a point.
Thus, for a n-point amplitude, we have the following

recursion relations

Tðk1; . . . knÞ ¼ Bþ X
f�g;m

Z �iT 2

2ðp2 þ K2Þdp
2;

T 2 � Tðk1ðpÞ; . . . k0mÞTð�k0m; . . . knðpÞÞ:
(4.7)

The sum is over all ways of partitioning the momenta into
two sets fk1;k�2

; . . . k�m
g and fk�mþ1

; . . . kng, with k1 in

one and kn in the other. Also,

K ¼ k1 þ
Xm
2

k�m
; wðpÞ ¼ �ðK2 þ p2Þ=ð2K � qÞ;

k1ðpÞ ¼ k1 þ qwðpÞ; knðpÞ ¼ kn � qwðpÞ;
k0m ¼ �K� qwðpÞ: (4.8)

The ‘‘boundary term,’’B, is the contribution from the pole
at w ¼ 1, comprising the sum of all diagrams where k1
and kn meet at a point. As we pointed out above, the mode
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corresponding to k0m in (4.7) will always be normalizable.
This is implicit in (4.7).

B. Gauge fields

We now turn to the more interesting case of non-Abelian
gauge fields. Our main task is to show that, in this case, the
boundary termB is zero. Hence, the recursion relations for
transition amplitudes in Yang-Mills theory form a closed
set. In particular, we can entirely bypass the computation
of Witten diagrams, once we have the three-point ampli-
tudes in hand. We will follow, and generalize, the approach
of [24].

The first step is to expand the gauge-fields about a
background

A a
� ¼ Aa

� þ aa�; (4.9)

where Aa
� is the background and the fluctuations comprise

aa�. We also choose background field gauge, so that the

quadratic action for aa� is

2L ¼ D�a
a
�D

�a�;a þ ð2F��;afabc þ R���bcÞab�ac�:
(4.10)

We can think of our n-point scattering amplitude as a two-
point function in this gauge—involving momenta k1 þ qw
and kn � qw—and put the rest of the dynamics into the
background field Aa

�. The advantage of this gauge is that

we can independently choose a gauge for Aa
�, which we

choose using

q �Aa ¼ 0: (4.11)

If we wanted to compute bulk correlation functions, then
we would also have to work out the propagator in back-
ground field gauge. However, since we are only interested
in bulk-transition amplitudes (which are like flat-space on-
shell S-matrix elements), the Ward identities (3.4) tell us
that we can continue to use the propagator (2.22).
Furthermore, we note that this propagator itself may be
written as

Gaxial;ab
�	 ðx; z; x0; z0Þ ¼ �ab

Z �iddkdp2

2ð2�Þd
�
eik�ðx�x0Þ ðzz0Þðd�2Þ=2Jðd�2Þ=2ðpzÞJðd�2Þ=2ðpz0Þð��	 � �0

��
0
	Þ

ðk2 þ p2 � i�Þ

þ ð@�c ðx; zÞ � �0
�

@c ðx;zÞ
@z Þð@0	c �ðx0; z0Þ � �0

	
@c �ðx0;z0Þ

@z0 Þ
p2ðk2 þ p2 � i�Þ

�
; (4.12)

where

c ðx; zÞ ¼ eik�xzðd�2Þ=2Jðd�2Þ=2ðpzÞ; (4.13)

and we have extended � to dþ 1 dimensions, by defining
�00 ¼ 1. (Recall that 0 refers to the z-component, not the
time-component.) The Ward identities (3.4) now tells us
that, in the computation of transition amplitudes, we can
instead use

Gaxial;ab
�	 �

Z �iddkdp2

2ð2�Þd

�
�
eik�ðx�xÞ0ðzz0Þðd�2Þ=2Jðd�2Þ=2ðpzÞJðd�2Þ=2ðpz0Þ��	

ðk2 þ p2 � i�Þ

þ �0
��

0
	ð@c ðx;zÞ

@z
@c �ðx0;z0Þ

@z0 � p2Þ
p2ðk2 þ p2 � i�Þ

�
: (4.14)

Now, the form of the propagator in (4.14) makes it clear
that every propagator comes with a factor of 1

w . On the

other hand, factors of w can appear only through derivative
interactions. Our choice of q-lightcone gauge gets rid of
almost all these factors. The only time that we get an OðwÞ
vertex is in a diagram where all the background fields
interact with themselves and then interact with the fluctu-
ating field through a single line. This line carries momen-
tum �ðk1 þ knÞ, which is orthogonal to q; so, we cannot
make it obey the choice of gauge (4.11).

The reason for going through this procedure is to point
out that, at large w, the dominant contribution to the
transition amplitude is

Z �
A�;afabcða�;b1 r�a

c
n;� � a�;cn r�a

b
1�Þ

þ 2F��;aab1�a
c
n�f

abc þ O

�
1

w

��
ddxdz

zdþ1
; (4.15)

where a1, an belong to (2.18) or (2.21). Below, we will
suppress the color-factors, which are unimportant for our
purposes.
We choose the polarization for a1 by �1 ¼ q, and

define t by a1� � w�1ð@��� t�Þ, where � ¼
eiðk1þq!Þ�xEðd�2Þ=2ðk1; zÞ. By the Ward identity, now, in-

stead of a1�, we can use w�1t� in (4.15). As a result, the

terms in the integrand of (4.15) die off at large w if (a) �n
does not grow at large w (which requires �n � q ¼ 0) and
(b) k1 � �n ¼ 0. In d ¼ 4, this forces us to take �n ¼ q
also. For d > 4, we can choose an �n � q that is orthogo-
nal to k1, kn, q.
With this choice of �1 ¼ q and these constraints on �n,

we can reconstruct the integrand, up to terms that integrate
to zero, using its poles at finite w. Repeating the argument
above, we get the recursion relation [using the same nota-
tion as (4.7)]

SUVRAT RAJU PHYSICAL REVIEW D 83, 126002 (2011)

126002-10



Tðk1; �1; . . . kn;�nÞ ¼
X

f�g;m;�0m

Z �iT 2

2ðp2 þK2Þdp
2;

T 2 � Tðk1ðpÞ;�1; . . . k0m; �0mÞTð�k0m; �0m; . . . knðpÞ; �nÞ:
(4.16)

This has no boundary term and the sum now also runs over
all normalized polarization vectors for k0m. The definitions
of (4.8) continue to hold.

These recursion relations are shown schematically in
Fig. 2. Say we set out to compute a four-point vacuum-
vacuum correlator. A typical Witten diagram involves three
ingredients: a bulk-bulk propagator shown by the heavy
line in the middle (green), four insertions of a source on the
boundary shown by the small crosshatched circles, and
four bulk-boundary propagators shown by the lines from
the boundary to the bulk (blue). The recursion relations
(4.16) convert this to the integrated product of two three-
point functions. This is done by cutting open the bulk-bulk
propagator and replacing it with a product of two normal-
izable modes shown by the dotted lines (red). Since these
modes are normalizable, the small solid circle (blue) on the
boundary is not really the insertion of a source but repre-
sents a coherent state. We need to integrate over the
momentum running through these normalizable modes,
which reproduces the result of the sum of Witten diagrams.

Note that the crucial ingredient in our derivation above
was the leading large w behavior of the integrand. In
particular, we need the OðwÞ piece, but to derive the results
above, we do not need the Oð1Þ or Oð1wÞ pieces. There is

another route to this method that is somewhat more direct.
Instead of using the background field method, we can just
do perturbation theory in q-lightcone gauge for the gauge-
field. In this gauge, the qw momentum does not propagate
in the numerator; so it is clear that every propagator comes
with a factor of 1

w . Except for the unique vertex mentioned

above, there are also no interaction vertices that are pro-
portional to w in this gauge. This immediately leads to the
OðwÞ term above. As long as one of the polarization vectors
is q, this analysis together with the Ward identity (3.4) is
enough to derive the falloff of the integrand at large w.

C. Gravity

We now turn to the case of graviton scattering.
Say that we are considering a n-point transition amplitude
Tðk1; . . .knÞ. To analyze the amplitude when we

BCFW-extend k1 ! k1 þ qw and kn ! kn � qw, we go
to background field gauge where we consider the two-point
function of gravitons with these momenta in a background
of soft gravitons with momenta k2; . . . kn�1.
We have already expanded the gravity action about a

classical background in (2.32). However, we need to be
cautious because the background metric now also contains
the fluctuations induced by the gravitons with momenta
k2; . . . kn. To differentiate it from the AdS metric, below,
we will denote it by gb�� (b stands for background) and its

inverse by g��
b . After adding the background gauge-fixing

term, the gravity action becomes

S ¼ �1

64�G

Z
x;z

ffiffiffiffiffiffiffiffiffiffi�gb
p ðg�	

b g��b g�b r�
~h	�rh��

þ 2~h�1�1
R�	��h�g

��1

b g��1

b g
	�
b g�b Þ; (4.17)

up to boundary terms, which do not affect the bulk Green’s
functions and where we have written the factors of the
inverse metric explicitly for reasons that will shortly be-
come clear.
It is convenient to break up the background metric into a

‘‘pure’’ AdS part and another part that comes from the
fluctuations caused by the gravitons in our amplitude.
We write

H�� � g
��
b � g��; (4.18)

where g�� is the inverse of the metric in (2.1). We choose
q-lightcone gauge, which means that

q�H
�� ¼ 0: (4.19)

The split in (4.18) is not arbitrary since the AdS metric is
the zero-momentum part of the background.
Now, we work with the propagator (2.44), which corre-

sponds to treating the AdS part of the quadratic action
exactly but the H�� as a perturbation. Note that if we
were to expand out (4.17), in terms ofH the answer would
be inordinately complicated. Fortunately, we are only in-
terested in the Oðw2Þ part of the amplitude and this is easy
to determine.
As above, there is a unique set of diagrams that contrib-

ute to this action. In these, H�� carries the momentum
�k1 � kn ¼ P

n�1
i¼2 ki, for which (4.19) cannot be chosen.

The leading Oðw2Þ part of the transition amplitude then
comes from

Z
x;z

ffiffiffiffiffiffiffiffiffiffi�gb
p ½H��ð�k1 � kn; zÞq�q�w2g	�g�

� h	�ðk1 þ qw; zÞh�ðkn � qw; zÞ þ OðwÞ�: (4.20)

Note that we have performed the x integral and imposed
momentum conservation. So, the functions H and h in the
expression above are written as functions of the momenta
and the radial coordinate only.
As in the case of gauge fields above, this result may be

alternately derived by going to q-lightcone gauge from the

FIG. 2 (color online). Recursion Relations.
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start. Note that the terms that appear at OðwÞ and Oð1Þ
above are significantly more complicated than in flat-
space, but we do not need their explicit forms.

Consider the case where the polarization for h��ðk1 þ
qw; zÞ, as defined in (2.43), is �1�� ¼ q�q�. With c 1

defined by

c 1ðx; zÞ � z�2Ed=2ðk1; zÞeiðk1þqwÞ�x; (4.21)

we can write (after restoring the x dependence in h)

h��ðk1þqw;x;zÞ
¼q�q�z

�2Ed=2ðk1;zÞeiðk1þqwÞ�x

¼ 1

w

�
rð�q�Þc 1�k1ð�q�Þc 1��0

ð�q�Þ
@c 1

@z
��

	
��q	c 1

�

¼ 1

w

�
rð�q�Þc 1�k1ð�q�Þc 1��0

ð�q�Þ
@c 1

@z
þ2qð��0

�Þ
c 1

z

�

� 1

w
rð�q�Þc 1� 1

w
qð�t�Þ; (4.22)

where the last line defines a vector field tðx; zÞ, and we
have used (2.33) to go from the first to the second line.
However, since the dependence of t on x continues to be of

the form eiðk1þqwÞ�x, this itself may be further rewritten
using

1

w
qð�t�Þ ¼ 1

w2

�
rð�t�Þ � k1ð�t�Þ �

�0
ð�@t�Þ
@z

� �	
��t	

�

� 1

w2
rð�t�Þ þ 1

w2
tð2Þ��ðx; zÞ; (4.23)

where tð2Þ�� is a symmetric tensor field that is defined by the
equation above. The Ward identity (3.5) now tells us that
instead of using h��ðk1 þ qw; x; zÞ, we can instead use
1
w2 t

ð2Þ
��ðx; zÞ in (4.20).

Next, note that h��ðkn � qw; x; zÞ does not itself grow at

large w, provided it has a polarization that is orthogonal to
q. So, we see that the following conditions are sufficient for
the integrand to behave well:

(1) �n��t
ð2Þ
	�g�	g�� ¼ 0,

(2) �n��q	g
�	 ¼ 0.

There is an additional possibility. If �n itself has a factor of
q, then we can repeat (4.22) to pull down another factor of
1
w . In that case, condition 2 above is automatically satisfied

but we can relax condition 1.
Hence, we see that the graviton transition amplitude is

well-behaved under the following conditions:
(1) �nij ¼ qðivjÞ, where v � q ¼ 0 or

(2) �nij ¼ v1
ðiv

2
jÞ, where v

m � q ¼ vm � k1 ¼ 0.

The first set above includes the case where v ¼ q. Also,
just the requirement that �n be a valid polarization vector
implies that v � kn ¼ v1 � v2 ¼ v1 � kn ¼ v2 � kn ¼ 0.

Of course, we can interchange the role of �1 and �n above.
So, if we take �nij ¼ qiqj, then we can have �1ij ¼ qðivjÞ,
where v � q ¼ v � k1 ¼ 0 or �1ij ¼ v1

ðiv
2
jÞ, where v

m � q ¼
vm � kn ¼ vm � k1 ¼ 0.
With these conditions on the polarization vectors we find

the following recursion relations

Tðk1; �1; . . .kn; �nÞ ¼
X

f�g;m;�0m

Z �iT 2

2ðp2 þ K2Þdp
2;

T 2 � Tðk1ðpÞ; �1; . . . k0m; �0mÞTð�k0m;�0m; . . . knðpÞ; �nÞ:
(4.24)

The sum over k0m is again over all valid polarization vectors
for this momentum and the other quantities in (4.24) are
defined the same way as in (4.16) and (4.7). In particular,
the definitions of (4.8) continue to apply. These recursion
relations are structurally identical to (4.16) although we
should remember that each polarization vector, �m, above
is a two-index tensor in (4.24), and only a vector in (4.16).

D. Polarization vectors

As we have pointed out above, given a transition ampli-
tude with some external polarization vectors, we cannot
typically compute it by means of a single BCFWextension.
However, since the amplitude depends linearly on the
polarization vectors, we can often decompose it into a
sum over amplitudes, each of which behaves well under
some BCFW extension.
To see this more clearly, say that we are interested in a

correlator of operators OI where the capital I index indi-
cates that these operators transform in some representation
of SOðd� 1; 1Þ. A n-point correlator of these operators can
be written as

TI1...Inðk1; . . . knÞ � hOI1ðk1Þ . . .OInðknÞi; (4.25)

where TI1...In is some tensor of the Lorentz group.
Computing the correlator is the same as computing all
components of T.
There are further constraints on the (4.25). For example,

it must be invariant under a simultaneous interchange of
km and kn, and Im, and In. Second, T must be conserved
with respect to each momentum when we are dealing with
conserved currents or the stress-tensor. There are many
additional constraints [38] that come from conformal in-
variance, which strongly restrict the form of T in (4.25) for
small n. However, these are easier to see in position space,
and we will not use them in this section.
If we dot (4.25) with some external polarization vectors,

�1; . . . �n, we find

hOI1ðk1Þ . . .OInðknÞ�1I1 . . .�nIni ¼ TI1...Inðk1; . . .knÞ�1I1 . . .�nIn :
(4.26)

If we had some means of computing the left hand side for
arbitrary polarizations, this would enable us to extract all
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the components of T. However, the BCFW extension that
we have described above puts constraints on the polariza-
tion vectors. Can we recover information about all compo-
nents by combining different pairs of BCFW extensions?

We will consider the four-point function in detail below.
As we mentioned above, there are dynamical constraints
on this correlator; however, we will only focus on the fact
that it must be conserved. This is because if we can show,
without using any other dynamical information, that all
possible components of T in (4.25) in a four-point function
are accessible by our methods, then this would be sufficient
to show that arbitrary n-point correlators are also
accessible.

To see this, consider what happens if we add a fifth index
to (4.25). The recursion relations (4.16) and (4.24) place
constraints only on pairs of polarization vectors. So, if all
possible four-point tensor structures are calculable by
choosing and extending pairs from k1 . . .k4, then we can
choose the polarization vector for k5 arbitrarily. Moreover,
every allowed conserved five-index tensor can be written
as

TI1...I5ðk1; . . .k5Þ ¼
X
�

TI1...I4
� ðk1; . . .k5ÞvI5

� ðk1; . . .k5Þ; (4.27)

where v� is a list of vector functions, which are orthogonal
to k5, indexed by �. Evidently, if we can choose the
polarization vector �5 arbitrarily and we can also access

all tensors TI1...I4
� , then we can also access any five-index

tensor.
While the computability of all four-point tensor struc-

tures is sufficient to ensure the computability of higher-
point structures, it is not necessary. In some cases (such as
gravity in d ¼ 5), as we will see below, it is not possible to
compute all possible tensor-structures for the four-point
correlator. However, adding additional particles now gives
us more choices of BCFW extensions and, for a sufficient
number of external particles, we can once again access all
allowed tensor structures.

1. Polarizations for Gauge Bosons

Let us start with the case of d ¼ 4. For each momentum,
km, there are three allowed polarization vectors. So, a four-
point correlator T has, a priori, 34 ¼ 81 possible compo-
nents. On the other hand, given a pair of momenta, say k1
and k4, there are two choices of q, which we denote by q1

and q2. The constraints worked out in Sec. IVB now tell us
that we either take �1 ¼ q1, �4 ¼ q1 or �1 ¼ q2, �4 ¼ q2.
The polarization vectors for k2 and k3 can be arbitrary
and there are 3� 3 ¼ 9 combinations of these. So, extend-
ing momenta k1 and k4 should allow us to compute
2� 9 ¼ 18 components of T.

We can choose 6 distinct pairs with 4 particles.
So, by making all possible BCFW extensions, we get
18� 6 ¼ 108 pieces of data about the components of T.
One would naively think that this forms an overcomplete

basis for the 81 numbers that we wish to extract. However,
this is a little too quick. This is because, if T is of the form

Ti1i2i3i4 ¼ �j1j2j3j4
�
�i1
j1
� k1j1k

i1
1

k1
2

��
�i2
j2
� k2j2k

i2
2

k2
2

�

�
�
�i3
j3
� k3j3k

i3
3

k3
2

��
�i4
j4
� k4j4k

i4
4

k4
2

�
; (4.28)

it will be invisible to all our choices of BCFW extension.
So, we can compute only 80 components of T using all 6
BCFW extensions. Fortunately, this is not a problem since
the choice of T in (4.28) is completely antisymmetric under
the simultaneous exchange of any pair of indices and
momenta. For example, interchanging ðk1; i1Þ and ðk2; i2Þ
changes the sign of (4.28). Consequently, this tensor struc-
ture is inconsistent with the symmetries of the correlator
and is not allowed. So, we can compute all possible tensor-
structures in correlators of conserved currents, in d ¼ 4, by
means of the BCFW extension.
We now turn to d ¼ 5. Each momentum has 4 possible

associated polarization vectors; so T has, a priori, a total of
44 ¼ 256 components for a four-point correlator. Given a
pair of momenta, say k1 and k4, we now have a continuous
family of choices for q. Moreover, if we choose �1 ¼ q, we
can also take �4 ¼ v4, where v4 is a vector orthogonal to q
and k4. Similarly, by taking �4 ¼ q, we can take �1 ¼ v1,
orthogonal to q and k1. The polarizations for k2 and k3 can,
again, be arbitrary. Focusing, momentarily, only on the
indices corresponding to i1 and i4, a general 2-index con-
served tensor can be written as

Ti1i4 ¼ Ti1i4
tl þ A�j1j4

�
�i1
j1
� ki11 k1j1

k21

��
�i4
j4
� ki44 k4j4

k24

�
;

(4.29)

where A is some constant and Ttl is (a) traceless and (b)
conserved with respect to both k1 and k4. The polarization
combinations above allow us to detect all components of
Ttl but are insensitive to the presence of A.
Since Ttl has 8 components, making all possible choices

of polarizations for k2 and k3 gives us 8� 16 ¼ 108 pieces
of data. Now, making all 6 possible BCFW extensions
gives us 6� 108 ¼ 648 pieces of data. Also, for gauge
bosons in d ¼ 5, there is no inaccessible tensor like (4.28).
So, by making all possible BCFWextensions, we obtain an
overcomplete set of equations for the 256 allowed compo-
nents of T that can all, hence, be determined.
The calculation for d � 6 goes as follows. There are d�

1 possible polarizations for each momentum leading to
ðd� 1Þ4 independent components. Given a pair k1, k4
we now not only have a d� 4 parameter continuous family
of choices for q, we can also choose v1 and v4 in several
different ways, provided we keep them orthogonal to q.
Hence, just as above, in the i1, i4 space we can detect all
tensors that are conserved with respect to k1 and k4 and are
traceless. There are ðd� 2Þ2 � 1 linearly independent
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tensors of this sort. So, one BCFW extension gives us
ðd� 1Þ2½ðd� 2Þ2 � 1� pieces of data. The six possible
BCFW extensions give us 6ðd� 1Þ2½ðd� 2Þ2 � 1� pieces
of data that form an overcomplete set for the ðd� 1Þ4
independent allowed components of T in d-dimensions.5

2. Polarizations for gravitons

We now turn to the case of gravity. We start with d ¼ 4
and then go on to higher d. As we will see below this
analysis has similarities but also important differences with
the analysis for gauge bosons.

Polarization vectors for a graviton with momentum k are
given by symmetric traceless tensors that are orthogonal to
k. In d ¼ 4, this implies that we have 5 possible polar-
izations for each momentum. As we pointed out above, if
we extend k1 and k4 there are two possible choices of q,
which we denote by q1 and q2. If we choose the polariza-
tion vector for particle k1 by �1ij ¼ qiqj, (where q is either

of the two allowed choices) then we must choose �4ij ¼
qiqj or �4ij ¼ qðiv4

jÞ, where, as above, v4 is a vector or-

thogonal to q and k4. The choice of �
4
ij ¼ qiqj also behaves

well under the BCFW extension if we choose �1ij ¼ qðiv1
jÞ,

where v1 is orthogonal to q and k1. The polarizations for k2
and k3 can be arbitrary.

So, extending k1 and k4 by q1 allows us to calculate
3� 25 ¼ 75 combinations of polarizations. Extending k1
and k4 by q2 allows us to calculate another 75. So, with
all 6 possible BCFW extensions we can compute
6� ð75þ 75Þ ¼ 900 polarization-combinations. Naively,
this would seem to give an overcomplete set for the 625
distinct components of T.

However, as above, this is not quite correct. In particular,
consider a T of the form

Ti1j1...i4j4 ¼ S1234½�i1...i4�j1...j4�; (4.30)

where the operator S1234 symmetrizes its argument in
ði1; j1Þ, ði2; j2Þ, ði3; j3Þ, ði4; j4Þ, makes it traceless in these
pairs, and projects the ðim; jmÞ component orthogonal to
km. The T in (4.30) cannot be detected by any of the 900
BCFW extensions described above. Moreover, unlike in
the case of gauge bosons, this tensor is symmetric under
the simultaneous interchange of Lorentz indices and mo-
menta. For example, if we interchange ði1; j1Þ and ði4; j4Þ,
and also interchange k1 and k4 then T returns to itself,
because each � tensor contributes a factor of (� 1) leading
to an overall factor of unity. We are also not aware of any

other argument that would allow us to exclude this term.
So, more precisely, the BCFW procedure allows us to
compute 624 out of the 625 components of a general T.
It would be interesting to understand the coefficient of

this term for the four-point function of stress-tensors given
Einstein gravity in AdS5. Also, it would be nice if confor-
mal invariance or other restrictions allowed us to fix this
term; the studies of [26,27] might be useful in this context.
Notice that this problem does not occur for five- and

higher-point amplitudes in d ¼ 4. There is no tensor, in
four dimensions, that is completely antisymmetric in five
indices. So, for higher-point amplitudes it seems possible
to compute any polarization-combination using the BCFW
extension.
We now turn to d ¼ 5. Each momentum has 9 possible

associated polarization vectors; hence, T has a total of
94 ¼ 729 components for a four-point correlator. The im-
portant difference from d ¼ 4 is that given a pair of
momenta, say k1 and k4, we now have a continuous family
of choices for q. Once again, if we choose �1ij ¼ qiqj, we

can take �4 ¼ �1 or �4ij ¼ qðiv4
jÞ. In d ¼ 6 and higher, as

we will see below, we have additional choices for �4 that
are not available here. This is because in d ¼ 6 (or higher),
there are two (or more) linearly independent vectors that
are orthogonal to q, k1 and k4.
Let us focus, momentarily, only on the indices corre-

sponding to k1, which are i1, j1, and the indices corre-
sponding k4, which are i4, j4. For the sake of simplicity in
this analysis, we also assume (without loss of generality for
our purposes) that k1 is orthogonal to k4.
First, we consider the number of linearly independent

polarization-combinations we can obtain by taking �1ij ¼
qiqj and �4ij ¼ qiqj or �

4
ij ¼ qiv

4
j , and let us, for the sake

of illustration, also choose v4 to be orthogonal to all three
k1, k4, and q. If the indices i1, j1, i4, j4 run only over the
three-dimensional subspace orthogonal to k1 and k4, then
given a tensor that is symmetric and traceless in each of
ði1; j1Þ and ði4; j4Þ we can write

Ti1j1i4j4 ¼ Ti1i4j1j4
ð4Þ þ �i1i4lTlj1j4

ð3Þ þ �i1i4Tj1j4
ð2Þ þ �i1i4Tj1j4

ð1Þ
þ Tð0Þ�i1i4�j1j4 þ ði1 $ j1Þ þ ði4 $ j4Þ: (4.31)

Here, the subscript under each tensor indicates which
representation of SOð3Þ it belongs to. (The SOð3Þ is the
group of rotations in the three-dimensional space orthogo-
nal to k1 and k4.) So, Tð4Þ;Tð3Þ;Tð2Þ are completely sym-

metric and traceless in any pair of indices, and Tð1Þ is

antisymmetric.
By just using �1ij ¼ qiqj and �4ij ¼ qiqj, we can com-

pletely extract the Tð4Þ term in (4.31). To see this, note that,

in this orthogonal 3 dimensional subspace, we can choose
q as

q ¼
�
1;
x2 � 1

2ix
;
x2 þ 1

2x

�
: (4.32)

5In fact, we have already seen that

d
4

� �

of these components must be zero. However, we have to put this
in from the start only for d ¼ 4; in higher d, the recursion
relations will allow us to compute these components and verify
that they vanish.
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Dotting T with four-copies of q, we find

Ti1j1i4j4qi1qj1qi4qj4 ¼ Ti1j1i4j4
ð4Þ qi1qj1qi4qj4 : (4.33)

We can extract the coefficients of x4; x3; . . . x�3; x�4 in this
dot product by allowing x to run over various values. More
precisely, we could take x ¼ ei
 and Fourier transform in 

that would give us these 9 different coefficients. These
correspond exactly to the 9 different components of Tð4Þ.
Now, consider taking v4 to be orthogonal to both k1 and k4.
If we now take �4ij ¼ qðiv4

jÞ, with v4 orthogonal to both k1
and k4, then we can also extract the Tð3Þ term in (4.31). This

gives us 7 more terms.
So far, we have considered tensors that are orthogonal to

both k1 and k4. However, we are also allowed tensors of the
form

ðT0Þi1j1i41ð3Þ þ ðT0Þi1j11i4ð3Þ :

This tensor has one leg along the direction of k1, which is
indicated by the index 1 in the superscript, and the other
indices i1, j1, i4 run in the space orthogonal to both k1 and
k4. We have chosen this tensor to be completely symmetric
in these three-indices and placed a prime-symbol on it to
distinguish it from the Tð3Þ that appeared above. This is an

allowed tensor structure because it is conserved (recall that
we have taken k1 � k4 ¼ 0) and, by construction, it is
symmetric in its last two indices. By taking v4 ¼ k1, we
can now extract the 7 components of this tensor.

If we also take �4ij ¼ qiqj and allow �1ij ¼ qiv
1
j , then we

get a total of 9þ 7� 4 ¼ 37 components. Combining the
81 polarizations from �2, �3 we get 37� 81 ¼ 2997 com-
ponents. The six different BCFW extensions lead us to
2997� 6 ¼ 17982 different polarization-combinations,
which would seem to form a highly overcomplete basis
for the 94 ¼ 6561 distinct possibilities.

However, we need to be careful. As above, any tensor of
the form (all indices now again run over all 5 dimensions)

Ti1j1...i4j4 ¼ S1234½Ai1...i4
1 Aj1...j4

2 �; (4.34)

where A1, A2 are tensors that are antisymmetric in any
interchange of indices, cannot be detected by BCFW
extensions.

Even with a five-point correlator, we cannot detect the
part of the correlation function that is proportional to

Ti1j1...i5j5 ¼ S12345½�i1...i5�j1...j5�: (4.35)

So, in this case, we can get only 95 � 1 out of the 95

distinct polarization combinations. For six- and higher-
point correlators, there are no completely antisymmetric
tensors and we can get all possible polarizations using the
BCFW extension.

We will not explicitly work out the combinatorics
for d ¼ 6 and higher since they are very similar to the
calculations above. One important distinction is if we
choose �1ij ¼ qiqj, we can choose �4ij ¼ v41

ði v
42
jÞ where

v41 � v42 ¼ 0 and both these vectors are orthogonal to q,
k1, k4. This allows us to also detect tensors of the form
(4.34) or (4.35). So, for d ¼ 6 or higher, we can compute
all polarization-combinations using the BCFW extension.

V. SUPERSYMMETRIC THEORIES

We now turn to the generalization of these recursion
relations to theories with supersymmetry. In this section we
will use the easily derived fact that as long as the particles
that we are BCFW extending are gravitons or gauge bo-
sons, the behavior of the amplitude at w ! 1 is not
affected by the presence of additional matter particles.
Moreover, (4.16) and (4.24) continue to hold for Yang-
Mills theory and gravity coupled to matter with the modi-
fication that the sum over polarizations must be expanded
to run over these particles as well.
The basic idea here is the same as the one used in the

extension of the BCFW-recursion relations to supersym-
metric theories in flat-space [7,39,40]. As we have pointed
out above, the behavior under BCFW extension of ampli-
tudes with external gravitons or gauge bosons is better than
that of amplitudes with external scalars or fermions. In fact,
if we BCFW-extend external scalars, our recursion relations
would involve an unwieldy boundary term that would need
to be calculated explicitly using Witten diagrams.6

In theories with supersymmetry, however, we can relate
amplitudes involving external matter particles to ampli-
tudes involving gluons or gravitons. In flat-space, inN ¼
4 SYM (N ¼ 8 SUGRA), we can always convert at least
two particles in a scattering amplitude to negative-helicity
gluons (gravitons) [7,39]. In theories with less supersym-
metry, such as N ¼ 2 SYM, we can still convert two
particles, either to negative-helicity gluons or to positive-
helicity gluons [40].
In AdS, the situation is somewhat different. In d ¼ 4, for

example, the constraints on the polarization-vectors for
gauge bosons that we have enumerated above can be
summarized by stating that for the amplitude to behave
well, it is necessary for both BCFW-extended particles to
have the same polarization vector. However, even maximal
supersymmetry does not always allow us to transform two
particles to gluons or gravitons with the same polarization
vector. Consequently, we cannot compute correlation func-
tions involving arbitrary operators in the same multiplet as
a conserved current or the stress-tensor. However, it is
possible to compute a subset of correlators.

6We should mention here that the physical intuition that
underlies this paper: the fact that BCFW-deformed amplitudes
are dominated by interactions at a small number of points, was
also used to study these amplitudes in Yang-Mills theory coupled
to matter. If we consider a single BCFW-extended matterline
interacting with gauge bosons, the powers of w in the amplitude
are correlated with the number of color-generators that appear.
This leads to some surprising cancellations in gauge theories
with matter at one-loop [40,41].
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Before we show this in detail, we remind the reader that
AdSdþ1 supergroups do not exist for d > 6, and we are
interested in the cases d ¼ 4, 5, 6 [42]. The reader may be
more comfortable thinking about superconformal algebras
in flat-space. However, although this algebra is very power-
ful, since we are working in momentum space, wewill only
use its super-Poincare subgroup.

A. Supersymmetric Theories with d ¼ 4

We start by examining the case for d ¼ 4. For simplicity,
and consistency with standard notation, we consider a
Euclidean metric on the boundary in this section. In d ¼
4, the superconformal group is SUð2; 2jN Þ. For N ¼ 4,
we have the 16 supercharges QI

�, �Q _�I and their conformal
partners SI�, �S _�I. (We follow the conventions of [43], so I is
an R-symmetry index and �, _� are spacetime spinor in-
dices; see also [44].) We will not make any use of the SI�,
�S _�I supercharges at all here.
The stress-tensor multiplet forN ¼ 4 is enumerated in

[44,45] and, for the reader’s convenience, we list its state
content in Table I. The charges that we have tabulated are
the charges under dilatations, which form a SOð2Þ sub-
group, rotations of the boundary coordinates, which con-
stitute a SOð4Þ subgroup, and the R-symmetry SUð4Þ. A
number in brackets next to the dilatation charge indicates
the multiplicity. A minus sign indicates that the state-
content of this representation must be subtracted off from
the state-content of the positive representations. This oc-
curs when some conformal representation becomes short.
If we construct conformal representations through a field
theory, these negative states are indicative of the equations
of motion like, for example, the fact that the stress-tensor

must be conserved. (See [46] for other examples.) The
stress-tensor itself is the representation with a dilatation
charge of 4 that is invariant under the R-symmetry and
transforms as a (1,1) under the SOð4Þ.
We are actually interested in the transformation proper-

ties of the states in this representation under the super-
Poincare group. So, we discard the SOð2Þ information and
reduce the SOð4Þ representations under the little group
SOð3Þ. This procedure leads to the representations listed
in Table II. There are no negative states in this picture
because the equations of motion, such as the conservation
of the stress-tensor, are built in from the start.
They key point, and the reason for doing this, is that the

resultant representations of the Poincare group are all
obtainable by starting with the lowest-helicity state of the
stress-tensor (which has helicity �2) and acting on it with
the positive-helicity supercharges.
We now state this more formally. Say that we wish to

BCFW-extend the momenta k1 and kn. We can choose two
linearly independent null vectors to span the two dimen-
sional vector space that is spanned by these momenta. We
choose these vectors to be

n 1 ¼ �1
��1; n2 ¼ �2

��2; (5.1)

where �m and ��m are spinors [47]. In particular, we have
k1 ¼ a11n1 þ a12n2 and kn ¼ an1n1 þ an2n2 where the a
are some coefficients. We also choose the vector q by

q� _� ¼ �1�
��2 _�: (5.2)

This is clearly null and orthogonal to k1 and kn.
Next, we assemble the vector of 2N -supercharges:

QAþ ¼ fhQI; �2i; ½ �Q1; ��1�g. A runs over 1 . . . 2N because
there are N distinct Q-supercharges and also N distinct
�Q-supercharges in this list. These are our ‘‘positive helic-
ity’’ supercharges. The component of the stress-tensor with
maximally-negative helicity is

TABLE I. Stress-Tensor Multiplet in d ¼ 4 with N ¼ 4:
Conformal Representations.

SOð2Þ SOð4Þ SUð4Þ
2 0,0 0,2,0

5=2 0, 1=2 1,1,0

5=2 1=2, 0 0,1,1

3 0,0 0,0,2

3 0,0 2,0,0

3 0,1 0,1,0

3 1=2, 1=2 1,0,1

3 1,0 0,1,0

7=2 0, 1=2 1,0,0

7=2 1=2, 0 0,0,1

7=2 1=2, 1 0,0,1

7=2 1, 1=2 1,0,0

(2) 4 0,0 0,0,0

4 1,1 0,0,0

ð�Þ4 0,0 1,0,1

ð�Þ9=2 0, 1=2 0,0,1

ð�Þ9=2 1=2, 0 1,0,0

ð�Þ5 1=2, 1=2 0,0,0

TABLE II. Stress-Tensor Multiplet in d ¼ 4 with N ¼ 4:
Poincare representations.

SOð3Þ SUð4Þ
(2) 0 0,0,0

0 0,0,2

0 0,2,0

0 2,0,0

1=2 0,0,1

1=2 0,1,1

1=2 1,0,0

1=2 1,1,0

(2) 1 0,1,0

1 1,0,1

3=2 0,0,1

3=2 1,0,0

2 0,0,0
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T��ðk1Þ ¼ Ti1j1ðk1Þqi2qj2�i1i2�j1j2 ; (5.3)

with an analogous definition for T��ðknÞ.
We can generate all states in the stress-tensor multiplet

given in Table II by acting on this operator with all possible
combinations of the supercharges. More precisely, given
a list of Grassmann parameters �A, where A again runs
from 1 . . . 2N , we then construct the two functions (with
m ¼ 1 or m ¼ n)

Tmð�Þ ¼ Uþð�ÞT��ðkmÞUþð��Þ; Uþð�Þ � eQ
A
þ�A:

(5.4)

The expansion of these operators in the 2N Grassmann
parameters �A contains all the original operators listed in
Table II. With N ¼ 2, a similar expression exists for
operators in the same multiplet as a conserved current.

We pause to note that the existence of a form like (5.4)
for the operators in a representation implies that the
representation is half-Bogomol’nyi-Prasad-Sommerfeld
(BPS). This is because every state in the representation is
annihilated by half of the supercharges; for example, the
highest weight state is annihilated by all the supercharges
of ‘‘negative’’ helicity. Of course, not all half-BPS repre-
sentations have this form. Fortunately, in d ¼ 4, 5, 6 every
half-BPS representation that contains a stress-tensor or a
conserved current can be written in this form.

Now, consider a n-point correlator that involves two
operators from (5.4) with the same Grassmann parameter
and n� 2 other operators, which we denote below by the
composite operator OC. The fact that this correlator is
invariant under supersymmetry transformations implies

hT1ð�ÞTnð�ÞOCi ¼ hT��ðk1ÞT��ðknÞO0
Ci; (5.5)

where O0
C � Uþð��ÞOCUþð�Þ. The right hand side can

be computed by BCFW recursion as explained above.
So, supersymmetry allows us to compute a ‘‘diagonal’’

subset of correlators i.e correlators of operators in the
stress-tensor multiplet where at least two Grassmann pa-
rameters are the same.

In our analysis above, we could have made a different
choice of q. This choice is given by

ðq2Þ� _� ¼ �2�
��1 _�: (5.6)

This is also null and orthogonal to k1 and kn. Under
rotations in the subspace orthogonal to k1 and kn, the
transformation of this vector q2 is opposite to the trans-
formation of the vector q. When we used q as a polarization
vector, we referred to it as having ‘‘negative helicity.’’ In
this terminology, q2 has ‘‘positive helicity.’’ Instead of
building all states in the stress-tensor multiplet by acting
with positive-helicity supercharges on the state with
maximally-negative helicity, we could instead build these
states by acting on the state with maximally-positive he-
licity with the negative-helicity supercharges. This analy-
sis allows us to compute a correlator of operators in the

same multiplet as the stress-tensor using the other possible
BCFW extension, which depends on q2 above. This gives
us another diagonal subset of correlators. However, the
union of these two diagonal subsets is still smaller than
the full set of correlators.
In certain cases, superconformal symmetry places strong

constraints on correlation functions. For example, the full
four-point correlator in N ¼ 4 SYM, can be reduced to
one independent function in position space [26,27]. So, in
principle, even the diagonal subset above should give
enough information to entirely determine the correlator.
It would be nice to translate this analysis of constraints to
momentum space and see this explicitly. But, in general,
we would like to compute correlators where all Grassmann
parameters are arbitrary. This is possible with flat-space
amplitudes; the difficulty here is that we have stricter
constraints on the polarization-combinations that behave
well under the BCFW extension.

B. Supersymmetric Theories with d ¼ 6

We now turn to d ¼ 6. The bosonic subgroup of the
d ¼ 6 superalgebra is SOð6; 2Þ 	 Spð2N Þ that has maxi-
mal compact subgroup SOð2Þ 	 SOð6Þ 	 Spð2N Þ. The
supercharges live in a 6 dimensional chiral-spinor repre-
sentation (with eigenvalues 
1=2 under rotations in the
ð2i� 1; 2iÞ plane) and in an R-symmetry group Spð2N Þ
where N is 1 or 2. (We follow the same conventions as
[48].)
We already know from our analysis of nonsupersym-

metric graviton scattering that d ¼ 6 allows for a larger
range of polarization-vectors that behave well under the
BCFW extension. In particular, if we are extending k1 and
kn in d ¼ 4, we are forced to take �1 ¼ �n. However, we
have more options in d ¼ 6. For example, given two
vectors v1, v2 that are orthogonal to each other and to q,
k1, kn, we can choose �1ij ¼ qiqj and �nij ¼ v1

ðiv
2
jÞ. This is

reflected in the fact that apart from the diagonal subset
above, supersymmetric theories in d ¼ 6 allow for another
calculable subset of correlators, which we now describe.
For simplicity, we choose a basis so that k1 ¼

ð1; 0; 0; 0; 0; 0Þ and kn ¼ ða; b; 0; 0; 0; 0Þ where a and b
are arbitrary. We also define two vectors, q1 ¼
ð0; 0; 0; 0; 1; iÞ and qn ¼ ð0; 0; 1; i; 0; 0Þ. We now form two
arrays of 4N supercharges each: QA

1þ ¼ fQI

1=2;
1=2;1=2g,

and QA
nþ ¼ fQI


1=2;1=2;
1=2g.
Then, for the case of maximal supersymmetry, which is

N ¼ 2, we make the following definitions:

T��ðk1Þ ¼ Tijðk1Þqi1qj1; T��ðknÞ ¼ TijðknÞqinqjn;
U1ð�Þ ¼ exp½QA

1þ�A�; Unð�Þ ¼ exp½QA
nþ�A�;

(5.7)

where we have raised indices using the flat-space metric. If
we go through the procedure of listing all representations
in the stress-tensor multiplet [49] and then reducing them
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under the little group, we again find that all operators in a
single multiplet are accessible by expanding the smooth
functions,

T1ð�Þ ¼ U1ð�ÞT��ðk1ÞU1ð��Þ;
Tnð�Þ ¼ Unð�ÞT��ðknÞUnð��Þ; (5.8)

in the Grassmann parameters �A.

Note that we could have contracted TijðknÞ with qi1qj1 in
(5.7), but we have made a different choice above. The
reason for this choice is that we can now compute any
correlator that can be written as

hU1ð�1ÞUnð�nÞT��ðk1ÞT��ðknÞOCUnð��nÞU1ð��1Þi;
(5.9)

using BCFW recursion. This subset of correlators is sig-
nificantly larger than the diagonal subset that we described
for d ¼ 4 above. This is because the expression (5.9)
involves three-fourths of the supercharges, whereas the
diagonal subset just involves half. Moreover, we remind
the reader that it is possible to make different choices (in
fact, a continuous family of choices) for q1 and qn above.7

This greatly enlarges the set of correlation functions that
we can compute in maximally supersymmetric theories in
d ¼ 6, but it appears that this is still not enough to compute
every correlator.

In theories with N ¼ 1 supersymmetry, the analysis
above can be repeated for multiplets that contain a con-
served current. Since this is almost identical to our analysis
above, we will not repeat it explicitly.

C. Supersymmetric Theories with d ¼ 5

In d ¼ 5, the supercharges are spinors under SOð5Þ and
the R-symmetry SUð2Þ. This algebra has a half-BPS mul-
tiplet containing a conserved current and we can compute
diagonal correlators of operators in this multiplet. This
analysis is very similar to the analysis for d ¼ 4 and d ¼
6 above.

However, the stress-tensor lives in a quarter-BPS multi-
plet [50]. As we pointed out above, this means that not all
operators in this multiplet can be reached via the analogue
of (5.4). However, as in theories with reduced supersym-
metry in flat-space [40], the analogue of (5.4) still spans a
subspace of operators. In this subspace, we can compute
diagonal correlators.

VI. EXAMPLES

In this section, we present a few simple calculations with
gauge fields to illustrate the results that we have described
above. Since the Ward identity is usually familiar in mo-
mentum space and not in the form (3.4), we start by
showing how it works in AdS. Then, we verify the

w ! 1 behavior for a four-point gauge amplitude.
Finally, most transition amplitudes receive a divergent
contribution from the space near the boundary, which
corresponds to z ! 0. This needs to be regulated by cutting
the space off at z ¼ �. At the end of this section, we briefly
point out that this does not affect the validity of our
recursion relations.

A. Verification of the ward identity for a three-point
function

We will now turn on the coupling constant and examine
the action for Yang-Mills theory in AdS5. The action is

S ¼ �1

4

Z ffiffiffiffiffiffiffi�g
p

Fa
��F

��;addxdz; (6.1)

where

Fa
�� ¼ r�A

a
� �r�A

a
� þ gYMf

abcAb
�A

c
�: (6.2)

Expanding (6.1) using (6.2), we see that perturbative
Witten diagrams have a very similar structure to flat-space
perturbation theory, except that we need to replace the
momenta in flat-space Feynman diagrams with covariant
derivatives.
We will now use this to verify the Ward identity for the

three-point function in Yang-Mills theory. Our object, in
doing this toy calculation, is just to illustrate the use of the
Ward identity in the form (3.4). The full three-point tran-
sition amplitude is proportional to

T ¼
Z
x;z

a
�
1 ða�2r�a3� � a�3r�a2�Þ þ a

�
2 ða�3r�a1�

� a�1r�a3�Þ þ a�3 ða�1r�a2� � a�2r�a1�Þ; (6.3)

where we have suppressed an unimportant overall color-
factor and a single factor of gYM and we remind the reader
that

R
x;z �

R
ddxdz. Here, the am are any solutions to the

equations of motion. We now want to show that if we take

a1� ¼ r��; (6.4)

then this expression vanishes. We see that in this case

T ¼
Z
x;z
½r��ða�2r�a3� � a�3r�a2�Þ þ a

�
2 ða�3r�r��

�r��r�a3�Þ þ a�3 ðr��r�a2� � a�2r�r��Þ�:
(6.5)

We will assume that we can integrate by parts and discard
boundary terms. Below, we write equivalences up to inte-
gration by parts with a � sign. We have

r��ða�2r�a3� � a�3r�a2�Þ ��ð�r�a
�
2r�a3�

� a�2ha3� þr�a
�
3r�a2� þ a�3ha2�Þ: (6.6)

The second term inside the integral (6.5) is

7One special case is q1 ¼ qn, in which case (5.9) reduces to a
diagonal subset.
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a
�
2 a

�
3r�r��� a

�
2 r�a3�r����ðr�r�ða�2 a�3Þ

þ r�ða�2 r�a3�ÞÞ: (6.7)

The third term is

a
�
3 ðr��r�a2� � a�2r�r��Þ
� ��ðr�ða�3 r�a

�
2Þ þ r�r�a

�
3 a

�
2Þ: (6.8)

Parts of the second and third term cancel because

r�r�a
�
2 a

�
3 �r�r�a

�
3 a

�
2 ¼ ðr�a

�
3r�a

�
2 þ a�3r�r�a

�
2 þr�a

�
2 r�a

�
3 þ a

�
2 r�r�a

�
3Þ

� ðr�a
�
3r�a

�
2 þ a�3r�r�a

�
2 þr�a

�
2 r�a

�
3 þ a

�
2 r�r�a

�
3Þ

¼ a�3r�r�a
�
2 � a�3r�r�a

�
2 þ a

�
2 r�r�a

�
3 � a

�
2 r�r�a

�
3 ¼ 0: (6.9)

In the last line above, we have used the fact that both
commutators of covariant derivatives lead to the Ricci
tensor, but with opposite signs.

The remainder of the second and third terms can be
added to the first term to get something that vanishes by
the equations of motion. In the first term, after a little bit of
manipulation above, we get

�½ða�3ha2� � a�3r�r�a
�
2 Þ � ða�2ha3� � a�2r�r�a

�
3 Þ�;
(6.10)

which vanishes when a2 and a3 are solutions to the equa-
tions of motion. Note that our calculation did not involve
any choice of gauge. This is important because to derive
(4.16), we needed to use the Ward identity twice, which is
justified because the only assumption in (3.4) is that every
Aam
�m

is a solution to the equation of motion. This assump-
tion continues to hold even after we make a replacement of
the form (6.4), and sowe are allowed to make multiple such
replacements.

B. Verification of BCFW for a four-point function

We now verify the BCFW recursion relations (4.16) for a
four-point amplitude. We are really interested in the be-
havior of this amplitude at w ! 1 under the extension
(4.2). What we will check here is that the integrand of
this amplitude is a rational function of w with no pole at
w ! 1. The recursion relations (4.16) then automatically
follow from the comment under (2.22).

First, let us understand the structure of perturbation
theory. Consider a four-point correlator where the four
momenta are k1; . . . k4. To evaluate this, we need to draw
four Witten diagrams: the s, t, u channel diagrams and a
diagram involving a four-point contact interaction. Now,
the integrand of the s-channel diagram evaluates to (up to
factors that we will be careful about below in the actual
computation)

�1

2
½a�1ða�2 r

$
�Þ þ a�1r

$�
a2� � a�2a

�
1 r
$

��
�G��½a3r

$�
a4 � ðr$�a

�
3 Þa�4 þ ðr$�a

�
4 Þa�3 �;

where Ar$B � ArB� BrA for two vector fields A and
B. G is the propagator and am are solutions to the equa-
tions of motion.

Now, the key point is that if we are in axial-gauge, then
G has indices only along the boundary directions. All
covariant derivatives are covariant derivatives of vector
fields. If we take the various am also to have indices only
along the Poincare directions (i.e choose axial gauge), then
we can replace all covariant derivatives by ordinary de-
rivatives along the boundary directions. This simplification
occurs only for the four-point amplitude. Of course, the
fact that we are in AdS shows up (a) in additional factors of
z and (b) in the propagator. But, apart from this, the
expressions we obtain for the integrand essentially match
those given by axial-gauge perturbation theory in flat-
space. So, we now start by reviewing how the BCFW
extension works in flat-space and then generalize our
calculation to AdS. To further simplify our computation,
we restrict ourselves to color-ordered amplitudes. (See [47]
for a review.) The full amplitude can be completely recon-
structed from the color-ordered amplitudes, so we do not
lose any information by doing this.

1. BCFW in flat-space axial gauge:

The rules for color-ordered amplitudes in flat-space are
given in page 11 of [47]. The three- and four-point vertices
are8

V3 ¼ iffiffiffi
2

p ½ð�1 � �2Þð�3 � ðk2 �k1ÞÞþ ð�3 � �1Þð�2 � ðk1 �k3ÞÞ

þ ð�2 � �3Þð�1 � ðk3 �k2ÞÞ�;
V4 ¼ i½ð�1 ��3Þð�2 ��4Þ� 1

2
ð�1 ��2Þð�3 ��4Þ

� 1

2
ð�1 ��4Þð�2 ��3Þ�; (6.11)

where the �n are now polarization vectors.9 There are three
diagrams that contribute to the four-point correlator.

8Note that the choice of axial gauge does not affect these
vertices.

9As we pointed out in section III, in flat-space perturbation
theory we only need to make reference to the polarization
vectors, whereas in AdS we need to consider the solution to
the equation of motion associated to a given polarization vector
because this has a nontrivial dependence on z.
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The four-point vertex, the s-channel diagramwhere 1 and 2
meet at a point, and the t channel diagram where 1 and 4
meet at a point. We are dealing only with color-ordered
correlators, so we do not need to worry about the
u-channel.

These three terms are given by

T1 ¼ i

�
ð�1 � �3Þð�2 � �4Þ � 1

2
ð�1 � �2Þð�3 � �4Þ

� 1

2
ð�1 � �4Þð�2 � �3Þ

�
; (6.12)

which comes from the four-point vertex. The s-channel
diagram gives

T2 ¼ i

2½ðk1 þk2Þ2 þp2� ½fð�1 ��2Þðk2 �k1Þi

þð2�2 �k1Þ�i1 � 2ð�1 �k2Þ�i2g
�
�ij þ

KiKj

p2

�

�fð�3 ��4Þðk4 �k3Þj þ 2ð�4 �k3Þ�j3 � 2ð�3 �k4Þ�j4g�;
(6.13)

where K ¼ �ðk1 þ k2Þ ¼ ðk3 þ k4Þ and we have chosen
the notation p ¼ K0 to indicate the analogy with AdS.
Note that when the terms in brackets are dotted with the
part of the propagator that contains K, we get some sim-
plifications because we get

ð�2 � k1Þð�1 �KÞ � ð�1 � k2Þð�2 � KÞ
¼ ð�2 � k1Þð�1 � k2Þ � ð�1 � k2Þð�2 � k1Þ ¼ 0: (6.14)

This leads to

T2 ¼ i

2½ðk1 þ k2Þ2 þ p2�
�
fð�1 � �2Þðk2 � k1Þi

þ ð2�2 � k1Þ�i1 � 2ð�1 � k2Þ�i2g�ijfð�3 � �4Þðk4 � k3Þj
þ 2ð�4 � k3Þ�j3 � 2ð�3 � k4Þ�j4g þ ð�1 � �2Þð�3 � �4Þ

� ðk21 � k22Þðk24 � k23Þ
p2

�
: (6.15)

The third term is just obtained by left-shifting ð1; 2; 3; 4Þ !
ð4; 1; 2; 3Þ. This gives us

T3 ¼ i

2½ðk4 þ k1Þ2 þ p2� ½fð�4 � �1Þðk1 � k4Þi

þ ð2�1 � k4Þ�i4 � 2ð�4 � k1Þ�i1g�ijfð�2 � �3Þðk3 � k2Þj
þ 2ð�3 � k2Þ�j2 � 2ð�2 � k3Þ�j3g þ ð�4 � �1Þð�2 � �3Þ

� ðk24 � k21Þðk23 � k22Þ
p2

�: (6.16)

The full answer is

T ¼ T1 þ T2 þ T3: (6.17)

We now analyze this with some specific choices for
�1 and �4.
�1 ¼ �4 ¼ q: We start with this case because this is

the case we are most interested in for AdS. Let us take
k1 ! k1 þ qw, k4 ! k4 � qw, and then consider the be-
havior of the four-point amplitude. Naively, it would seem
that we have Oð1Þ terms but we would like all of them to
cancel. (The OðwÞ terms cancel automatically here.)
Note that since q � k1 ¼ q � k4 ¼ 0, we have q � k2 ¼

�q � k3. Also, with this choice of polarization vectors
T3 ¼ 0. The Oð1Þ terms in T2 are

lim
w!1T2 ¼ iw

2� 2ðq � k2Þw ðq � �2Þðq � �3Þðq � k2Þ
� wð�2þ 2þ 2þ 2� 4þ 2� 4Þ

¼ �i

2
ðq � �2Þðq � �3Þ: (6.18)

Also, we have

lim
w!1T1 ¼ i

2
ðq � �3Þðq � �2Þ; (6.19)

so that

lim
w!1ðT1 þ T2 þ T3Þ ¼ 0: (6.20)

�1 ¼ q, and �4 � q, and �4 � k1 ¼ �4 � q ¼ 0: This is the
other case that is admissible for gauge fields in AdS. In this
case, we see that the expression for T1 becomes

T1 ¼ i½ðq � �3Þð�2 � �4Þ � 1

2
ðq � �2Þð�3 � �4Þ�: (6.21)

The expression for T2 becomes

T2 ¼ i

4k2 � q ½fðq � �2Þð�3 � �4Þðq � k3Þ � 2ðq � �2Þð�4 � k3Þðq � �3Þ � 2ð�2 � qÞð�3 � �4Þðq � k3Þ þ 4ð�2 � qÞð�4 � k3Þðq � �3Þg
þ f2ð�3 � �4Þðq � k2Þðq � �2Þ � ð�3 � �4Þðq � �2Þðq � k2Þ þ 2ðq � �3Þðq � �2Þðð�4 � k2Þ � ð�4 � k1ÞÞ
� 4ðq � �3Þðq � k2Þð�4 � �2Þg� þO

�
1

w

�
(6.22)

This simplifies to
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T1 ¼ �i

k2 � q
�
ðq � �2Þðq � �3Þðk1 � �4Þ þ ðq � �3Þðq � k2Þð�4 � �2Þ � 1

2
ð�3 � �4Þðq � k2Þðq � �2Þ

�
þO

�
1

w

�

¼ �i

k2 � q ½ðq � �2Þðq � �3Þðk1 � �4Þ� � iðq � �3Þð�4 � �2Þ þ i

2
ð�3 � �4Þðq � �2Þ þO

�
1

w

�
: (6.23)

There are also Oð1Þ terms in T3. These are given by

T3 ¼ �2ið�4 � k1Þ
2ðk1 þ k4Þ2

½ð2q � k3Þð�2 � �3Þ þ ðq � �2Þð2�3 � k2Þ

� 2ð�2 � k3Þðq � �3Þ� þ
�
1

w

�
: (6.24)

With �4 � k1 ¼ 0, we see that once again

lim
w!1ðT1 þ T2 þ T3Þ ¼ 0: (6.25)

We now turn to the analysis in AdS.

2. BCFW in AdS

We will now demonstrate that with a simple trick, the
calculation above can be generalized to show that the
integrand of the AdS transition amplitude behaves well
under the BCFW extension. When we generalize to the
computation of the AdS transition amplitude, the interac-
tion vertices change only in that we get factors of z when
we dot vectors into one another and when we raise vectors.
Say, we start with all vectors—am and km—lowered. The
am are, as above, solutions to the equations of motion with
polarization vectors �m. Then, while keeping the notation
b � c ¼ bicj�

ij and writing factors of z explicitly, we can

adapt the result (6.15) to AdS:

T2 ¼
Z dz

zdþ1

dz0

ðz0Þdþ1

dp2

2

i

2½ðk1 þ k2Þ2 þ p2� z
4ðz0Þ4z�1ðz0Þ�1J�1

ðpzÞJ�1
ðpz0Þ

�
fða1 � a2Þðk2 � k1Þi þ ð2a2 � k1Þai1

� 2ða1 � k2Þai2g�ijfða3 � a4Þðk4 � k3Þj þ 2ða4 � k3Þaj3 � 2ða3 � k4Þaj4g þ ða1 � a2Þða3 � a4Þ ðk
2
1 � k22Þðk24 � k23Þ

p2

�
;

(6.26)

Here, we have performed the integral over the boundary
directions and imposed momentum conservation at each
vertex. We also remind the reader that �1 ¼ d�2

2 . The am

remain functions of the radial coordinate. It is important to
note that a1 and a2 are functions of z while a3 and a4 are
functions of z0, although we have not shown this explicitly
in (6.26) to lighten the notation.

On the other hand,

T1 ¼
Z idz

zdþ1
z4
�
ða1 � a3Þða2 � a4Þ � 1

2
ða1 � a2Þða3 � a4Þ

� 1

2
ða1 � a4Þða2 � a3Þ

�
: (6.27)

At first sight it looks like under the BCFW extension the
expression (6.27), which is an integral over a single space-
time point, and the expression (6.26), which involves an
integral over two spacetime points, will behave very differ-
ently. The trick is to split the single point in (6.27) by using
the Bessel function closure relation:

Z
J�1

ðpzÞJ�1
ðpz0Þ dp

2

2
¼ �ðz� z0Þ

z
: (6.28)

This allows us to write

T1 ¼ i
Z dz

zdþ1

dz0

ðz0Þdþ1

dp2

2
z4ðz0Þ4

�
�
ða1ðzÞ � a3ðz0ÞÞða2ðzÞ � a4ðz0ÞÞ

� 1

2
ða1ðzÞ � a2ðzÞÞða3ðz0Þ � a4ðz0ÞÞ

� 1

2
ða1ðzÞ � a4ðz0ÞÞða2ðzÞ � a3ðz0ÞÞ

�

� z�1J�1
ðpzÞðz0Þ�1J�1

ðpz0Þ: (6.29)

Note that the factors of z work out correctly. When we
integrate over p in (6.29), we set z ¼ z0 and get an extra
factor of 1z . So, the total power of z works out to 8þ 2�1 �
2ðdþ 1Þ � 1 ¼ 4� ðdþ 1Þ, which is the same as (6.27).
In this form, we can repeat the calculations above for

both choices of external polarization vectors. Under the
BCFW extension (4.2), it is clear that the Oð1Þ term in the
integrand cancels between T1 and T2. Note that we do not
need to worry about T3, since its Oð1Þ contribution van-
ishes in AdS also. The recursion relations (4.16) now
follow from Cauchy’s residue theorem for the integrand.
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C. Divergences from the Boundary

This is a good place to pause and examine divergences
from the boundary. Position-space CFT correlators have
short-distance divergences when two points come close to
each other. When we transform these correlators into mo-
mentum space, we integrate over all positions; we cannot
exclude the configurations where two points coincide. In
the momentum-space transition amplitudes that we have
been considering, the short-distance singularities of
position-space correlators manifest themselves in diver-
gent contributions from the part of the integral near the
boundary. To regulate these divergences, we need to cut off
the space at some finite value z ¼ �, and then discard the
terms that, when Fourier transformed, lead to short-
distance singularities.

This does not affect our recursion relations, which just
rely on the fact that the integrand is a rational function
of the momenta, which can be recovered from its resi-
dues. So, these recursion relations do not see the limits
of the radial-integrals. This is clear in the example
above, where we never needed to know the range of z
or z0.10 Hence, if we allow the z and z0 integrals to run
from ð�;1Þ instead of ð0;1Þ, our computation will be
unaffected.

VII. RESULTS AND DISCUSSION

The key objects of study in this paper were transition
amplitudes, which are defined precisely in (3.2). These
include vacuum correlators of the boundary theory as a
special case. We showed that these transition amplitudes
obey the recursion relations (4.16) in conformal field theo-
ries with a bulk Yang-Mills dual and the recursion relations
(4.24) in CFTs with a bulk gravity dual. For interacting
bulk scalars, we need to add an additional boundary term
that is shown explicitly in (4.7). These recursion relations
reproduce the results of tree-level Witten diagrams but are
more efficient.

The conditions on polarization vectors, for a transition
amplitude to be well-behaved under the BCFW extension,
are stronger than in flat-space. For Yang-Mills theory these
are enumerated in Sec. IVB and for gravity, they are given
in Sec. IVC. We showed that for a bulk Yang-Mills theory,
even without using constraints imposed by conformal
symmetry, any arbitrary configuration of external polariza-
tion vectors could be built up by combining different
BCFW extensions. This is also true for gravity in d ¼ 6
and higher. For gravity in d ¼ 4, we can calculate 624 out
of 625 possible polarization-combinations for a four-point
function and all possible polarizations for five- and higher-
point functions. For gravity in d ¼ 5, we need at least six

external particles before we can access all possible
polarization-combinations.
In Sec. V, we generalized these recursion relations to

theories with supersymmetry. Supersymmetry allows us
to compute additional correlators where we can convert
at least two operators to conserved currents or stress-
tensors with appropriate polarizations. However, the
stronger constraints on the polarization-combinations,
which are well-behaved under a BCFW extension, im-
plies that not all correlators of operators in the same
supersymmetry multiplet as the stress-tensor or a con-
served current are calculable by these techniques. In
particular, for operators in the same multiplet as the
stress-tensor in d ¼ 4, maximal supersymmetry allows
us to compute the diagonal subset of operators (5.5). In
d ¼ 6, a larger subset of operators is accessible: apart
from the diagonal subset we can also calculate operators
of the form (5.9).
There are several directions in which this investigation

can be extended.11 In flat-space, the BCFW recursion
relations turn out to be surprisingly useful at one and
higher loops. It would be nice to generalize this to AdS.
This would incorporate 1

N corrections in the bulk. On the

other hand, it would also be interesting to try and incorpo-
rate �0 corrections. A version of the BCFW recursion
relations also seems to work for flat-space string theory
[54–56]. What about string theory in AdS? Is it at least
possible to extend these recursion relations to simple non-
local theories, as one can do with noncommutative theories
[57] in flat-space?
In another direction, it would be interesting to under-

stand if there is an analogue of the ‘‘twistor-transform’’
that allowed the authors of [17] to write down a simple
equation for the generating function of scattering ampli-
tudes. Particularly, if we could make precise the intuition
of Sec. III and write transition amplitudes as correlators
in global AdS, we would get a simple equation for the
generating function of stress-tensor operators on the
boundary. In some sense, this would be a ‘‘master-field’’
equation for strongly coupled N ¼ 4 SYM. Yet another
interesting question in this direction is whether we can
use these recursion relations to restrict the possible set of
conformal field theories that have gravity duals [58].
There are several other interesting properties of scatter-
ing amplitudes in flat space such as the Kawai-Lewellen-
Tye relations between gauge and gravity amplitudes [59].
Do these hold, albeit in a modified form, in AdS?
Finally, the physical intuition presented in this paper

suggests that these techniques would go through in
the presence of a black hole in the bulk. This would
now correspond to stress-tensor correlators computed at

10We emphasize that we did need to fix the limits of the
p-integral in (6.28). We also required the fact that z and z0
vary over the same range.

11One line of inquiry, which is somewhat orthogonal to the
perspective here, but quite interesting, is to explore whether an
analogue of these recursion relations can be written for Mellin-
transformed position-space correlators [51–53].
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finite-temperature on the boundary. The two-point func-
tion for the stress-tensor calculated for thermal N ¼ 4
SYM in this manner [60] has been quite important for
investigations at the Relativistic Heavy Ion Collider. It
would be fascinating to explore whether four- and
higher-point correlators also have phenomenological
implications for heavy-ion physics and in other
systems.
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