
Many-body contributions to Green’s functions and Casimir energies

K.V. Shajesh* and M. Schaden†

Department of Physics, Rutgers, The State University of New Jersey, 101 Warren Street, Newark, New Jersey 07102, USA
(Received 15 March 2011; published 29 June 2011)

The multiple scattering formalism is used to extract irreducible N-body parts of Green’s functions

and Casimir energies describing the interaction of N objects that are not necessarily mutually disjoint.

The irreducible N-body scattering matrix is expressed in terms of single-body transition matrices. The

irreducible N-body Casimir energy is the trace of the corresponding irreducible N-body part of the

Green’s function. This formalism requires the solution of a set of linear integral equations. The irreducible

three-body Green’s function and the corresponding Casimir energy of a massless scalar field interacting

with potentials are obtained and evaluated for three parallel semitransparent plates. When Dirichlet

boundary conditions are imposed on a plate the Green’s function and Casimir energy decouple into

contributions from two disjoint regions. We also consider weakly interacting triangular and parabolic

wedges placed atop a Dirichlet plate. The irreducible three-body Casimir energy of a triangular and

parabolic wedge is minimal when the shorter side of the wedge is perpendicular to the Dirichlet plate. The

irreducible three-body contribution to the vacuum energy is finite and positive in all the cases studied.
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I. INTRODUCTION

The total energy E12 of two static disjoint objects may be
decomposed as,

E12 ¼ E0 þ �E1 þ�E2 þ�E12; (1)

where E0 is the energy of the vacuum (medium) without
objects,�E1 and�E2 are (self)-energies required to create
the objects individually in isolation, and �E12 is the
change in energy due to their interaction. The interaction
energy�E12 is finite for disjoint objects if it is mediated by
an otherwise free quantum field whose interaction with the
objects is described by local potentials. It is the only
contribution to the total energy that depends on the position
and orientation of both objects and determines the forces
between them. Casimir found that the electromagnetic
force between two parallel neutral metallic plates does
not vanish [1] and that the associated Casimir energy
�E12 may be interpreted as arising from changes in the
zero-point energy due to boundary conditions imposed on
the electromagnetic field by the metallic plates. Zero-point
energy contributions to the energies �Ei of individual
objects in general diverge but the change �E12 due to the
presence of two disjoint objects is finite.

Reliable extraction of finite Casimir energies for a long
time appeared to be restricted to very special geometries,
like parallelepipeds [2–4], spheres [5,6], and cylinders [7].
A multiple scattering formulation for computing Casimir
energies of smooth objects was developed by Balian and
Duplantier [8,9] but it relied heavily on idealized boundary

conditions. Kenneth and Klich only recently observed [10]
that �E12 may be computed independent of single-body
contributions to the energy and is always finite for disjoint
objects. This two-body interaction energy is compactly
expressed [10,11] in terms of the free Green’s function,
G0, and transition operators, T1, T2, associated with the
individual objects,

�E12 ¼ 1

2

Z 1

�1
d�

2�
Tr ln½1�G0T1G0T2�

¼ 1

2

Z 1

�1
d�

2�
Tr ln½1� ~T1

~T2�; (2)

where we have defined partly amputed transition operators
~Ti ¼ G0Ti, i ¼ 1, 2. For potential scattering the interaction
energy may equivalently be expressed [12] in terms of the
potentials Vi and the corresponding Green’s functions Gi

satisfying GiVi ¼ G0Ti.
In deriving Eq. (2) one formally subtracts divergent self-

energies and avoids the question of whether these diver-
gences have any physical significance. One, in particular,
circumvents the issue raised in [13,14] of how they should
be treated in the context of gravity, a problem that has so
far only been considered for parallel plates [15–17].
Although it does not address such conceptual points, the
irreducible contribution of Eq. (2) suffices to explain ex-
perimental measurements of Casimir forces between two
disjoint objects. Since the interaction energy for disjoint
objects is finite, errors due to numerical or other approx-
imations to Eq. (2) can be controlled. This has now been
demonstrated by explicit calculations for a number of
geometries and physical situations [18–21].
In this article we examine a recently proposed extension

of these ideas to more than two bodies. It was shown in [22]
that the irreducibleN-body part of the total energy remains
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finite if the N objects have no common intersection. We
here explicitly evaluate the irreducible three-body part,
�E123, of the total energy,

E123 ¼ E0 þ�E1 þ �E2 þ �E3 þ �E12 þ �E23

þ �E31 þ �E123; (3)

in several cases and verify that�E123 remains finite even as
irreducible two-body contributions diverge. The formal
expression for �E123 given in [22] is considerably more
involved than Eq. (2),

�E123 ¼ 1

2

Z 1

�1
d�

2�
Tr ln½1þ X12f ~T1

~T2
~T3X23

þ ~T1
~T3

~T2X32 � ~T1
~T2

~T1
~T3 � ~T1

~T3
~T2

~T3X23

� ~T1
~T2

~T3
~T2X32gX13�; (4)

where the Xij’s are solutions to the integral equations,

½1� ~Ti
~Tj�Xij ¼ 1: (5)

We here obtain and evaluate alternate expressions for
irreducible Casimir energies that do not involve a loga-
rithm. The article is organized as follows. In Sec. II we
derive Faddeev-like equations for the scattering matrix
associated with N-objects and extract their irreducible
N-body parts. The associated N-body Green’s functions
are expressed in terms of one-body transition matrices
describing scattering off each object individually. The
procedure is illustrated for N ¼ 2, and N ¼ 3, for which
explicit solutions are obtained. The method is generaliz-
able to higher N. The general solutions of Sec. II are used
to obtain the Green’s functions for two and three semi-
transparent plates in Sec. III. The irreducible three-body
contribution to the Green’s function for three semitrans-
parent plates is found to exactly cancel the two-body
interaction of the outer plates when Dirichlet boundary
conditions are imposed on the central plate.

In Sec. IV we express the irreducible N-body contribu-
tion to the Casimir energy in terms of the N-body part of
the transition matrix. This avoids the computation of the
logarithm of an integral operator, but requires one to solve
a set of linear Faddeev-like integral equations for the
N-body transition matrix. In Sec. V we use this formalism
to obtain irreducible two- and three-body contributions to
the Casimir energy of two and three semitransparent plates.
The three-body contribution again cancels the two-body
interaction from the outer plates when Dirichlet boundary
conditions are imposed on the central plate.

In Sec. VI, we specialize to the case when two of the
three potentials are weak. For point potentials we prove
that the irreducible two-body Casimir energy is always
negative whereas the irreducible three-body contribution
is positive. The proof immediately generalizes to any form

of the weakly interacting potentials. We also derive ex-
pressions for irreducible two- and three-body contributions
to the Casimir energy when the weak potentials have trans-
lational symmetry and the third potential represents a
Dirichlet plate parallel to the symmetry axis. Some of the
expressions for the irreducible two-body contributions ap-
pear to not have been noted in earlier studies. We obtain the
irreducible three-body contribution to the Casimir energy
in this semiweak approximation, and verify independently
that it is positive and finite.
In Sec. VII we use these results to investigate the irre-

ducible three-body Casimir energy of a weakly interacting
wedge placed atop a Dirichlet plate forming a waveguide
of triangular cross section. The potentials forming the
triangular waveguide overlap and the irreducible two-
body contributions to the vacuum energy diverge. How-
ever, the irreducible three-body Casimir energy is well
defined as long as the supports of the three potentials
have no common overlap. The irreducible three-body
Casimir energy is minimal (and vanishes) when the shorter
side of the wedge is perpendicular to the Dirichlet plate.
Inspired by the study in [23], we investigate the depen-
dence of the irreducible three-body Casimir energy on the
cross-sectional area and perimeter of the triangular wave-
guide. To emphasize that the finiteness of the irreducible
three-body Casimir energies is not only due to the sub-
traction of corner divergences, we, in Sec. VIII, consider a
waveguide with weakly interacting sides of parabolic cross
section that touch a Dirichlet plate. The conclusions for
weak triangular wedges generalize to parabolic wedges
with only minor changes in interpretation.
The explicit calculations in this article support the gen-

eral results of [22]. The irreducible three-body contribution
to the Casimir energy in the examples considered here is
always positive. It furthermore is continuous (and in this
sense is analytic in the corresponding parameter) when two
of the bodies approach each other and intersect.
Many-body effects can give significant corrections to

two-body contributions. The three-body correction for the
interaction of an atom with a bilayer, discussed in [24], can
amount to 15% [22]. Further, it is possible to envision
scenarios in which all two-body contributions are nullified
[25] and many-body interactions dominate. This could be
of interest for precision experiments that seek to minimize
extraneous influences.

II. MANY-BODY GREEN’S FUNCTIONS

The free Green’s function of a massless scalar field
in Euclidean space-time satisfies the partial differential
equation

½�r2 þ �2�G0ðx;x0Þ ¼ �ð3Þðx� x0Þ; (6)

where r2 is the Laplacian of flat three-dimensional space.
It is related to the corresponding free Green’s function of
Minkowski space-time by a Euclidean (Wick) rotation.
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The ‘‘one-body’’ Green’s function, Gi, associated with the
time-independent potential, ViðxÞ, describing the interac-
tion with the i-th object satisfies

½�r2 þ �2 þ ViðxÞ�Giðx;x0Þ ¼ �ð3Þðx� x0Þ: (7)

The two-body Green’s function Gij solves a similar equa-

tion with the potential (Vi þ Vj) associated with a pair of

objects,Gijk denotes the three-body Green’s function to the

potential (Vi þ Vj þ Vk), etc. The potentials ViðxÞ of this
model [26,27] are proportional to �-functions that simulate
the interaction of the scalar field with classical objects.
Infinitely strong �-function potentials enforce Dirichlet
boundary conditions at the surface of the objects.

One obtains a formal solution to Eq. (7) by consi-
dering the differential operator as an integral kernel, and
manipulating the kernels as if they were matrices. To
emphasize the correspondence between integral kernels

and matrices, we replace: ½�r2
xþ�2��ð3Þðx�x0Þ!G�1

0 ,

ViðxÞ�ð3Þðx� x0Þ ! Vi, and �
ð3Þðx� x0Þ ! 1. Using ordi-

nary matrix algebra one obtains the formal solution to
Eq. (7) in the form

Gi ¼ G0 �G0TiG0; (8)

where the transition matrix Ti is given by

Ti ¼ Við1þG0ViÞ�1 ¼ ð1þ ViG0Þ�1Vi

¼ Vi � ViG0Vi þ ViG0ViG0Vi � . . . : (9)

The second term in Eq. (8) is interpreted as due to
scattering off the i-th object. It corresponds to the integral
operator,

G0TiG0!
Z
d3x1

Z
d3x01G0ðx�x1ÞTiðx1;x

0
1ÞG0ðx0

1�x0Þ:
(10)

In the following, symbolic equations often are more com-
pactly written1 in terms of partly amputated operators.
Equations for the physical operators are obtained by re-

placing every partly amputated Greens-function ~Gi, poten-
tial ~Vi, and scattering matrix ~Ti, by,

~G i ! GiG
�1
0 ; ~Vi ! G0Vi; and ~Ti ! G0Ti:

(11)

A. Many-body scattering theory

The partly amputated N-body Green’s function satisfies
the equation

½1þ ~V1 þ ~V2 þ . . .þ ~VN� ~G1...N ¼ 1: (12)

The numbers in the subscript of ~G1...N relate to the respec-
tive potentials. We may treat the sum of potentials in

Eq. (12) as a single potential and thus proceed as for a
single-body. The solution may again be written in the form

~G 1...N ¼ 1� ~T1...N; (13)

where the N-body transition matrix ~T1...N satisfies the
equation

½1þð ~V1þ ~V2þ . . .þ ~VNÞ� ~T1...N ¼ð ~V1þ ~V2þ . . .þ ~VNÞ:
(14)

The solution to Eq. (14) is an infinite series similar to the
one in Eq. (9), whose terms can be regrouped into compo-

nents ~Tij
1...N , that begin with the i-th potential and end with

the j-th potential. For N potentials we have N2 such
components representing transitions from the i-th to the
j-th object. This decomposition of the N-body transition
matrix is of the form,

~T 1...N ¼ XN
i¼1

XN
j¼1

~Tij
1...N ¼ Sum½~T1...N�; (15)

where the symbol Sum½A� stands for the sum of all ele-
ments of the matrix A. The matrix form of the N-body
transition operator is

~T 1...N ¼

~T11
1...N

~T12
1...N � � � ~T1N

1...N
~T21
1...N

~T22
1...N � � � ~T2N

1...N

..

. ..
. . .

. ..
.

~TN1
1...N

~TN2
1...N � � � ~TNN

1...N

0
BBBB@

1
CCCCA; (16)

where each component is an integral operator.
Inserting Eq. (15), and introducing Kronecker-� integral

operators, Eq. (14) is equivalent to the following set of
integral equations:X

k

½�ik þ ~Vi� ~Tkj
1...N ¼ ~Vi�ij: (17)

In matrix notation this set of equations is

½1þ ~Vdiag þ ~�V
1...N� � ~T1...N ¼ ~Vdiag; (18)

where we have introduced general matrix symbols

�A
1...N ¼

0 A1 A1 � � � A1

A2 0 A2 � � � A2

A3 A3 0 � � � A3

..

. ..
. ..

. . .
. ..

.

AN AN AN � � � 0

0
BBBBBBBBB@

1
CCCCCCCCCA
;

Adiag ¼

A1 0 0 � � � 0

0 A2 0 � � � 0

0 0 A3 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � AN

0
BBBBBBBBB@

1
CCCCCCCCCA
:

(19)

1This is like setting G0 ¼ 1.
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Using these definitions with Eq. (9) we write,

½1þ ~Vdiag� � ~Tdiag¼ ~Vdiag and ½1þ ~Vdiag� � ~�T
1...N ¼ ~�V

1...N;

(20)

and use in Eq. (18) to derive

½1þ ~�T
1...N� � ~T1...N ¼ ~Tdiag: (21)

The set of linear integral equations of Eq. (21) are often
referred to as Faddeev’s equations [28,29] for nuclear
many-body scattering, but apparently have been known
[30,31] in the context of ‘‘optical models’’ for atomic
nuclei since the 1950’s and may have been used in earlier
optical studies. The closely related approach in [32,33] is
known as Martin-Schwinger-Puff many-body theory.

Equation (13) relates theN-body Green’s function ~G1;...N

to the N-body transition matrix ~T1;...N satisfying Eq. (14).

Faddeev’s equations of Eq. (21) reduce the problem of
solving Eq. (14) for the N-body transition matrix to that

of inverting ½1þ ~�T
1...N� by solving a set of N linear

integral equations. Remarkably, �T
1...N depends only on

single-body transition operators. The norm of �T
1...N is

less than unity (because the norm of single-body transition
matrices is) and Faddeev’s equations can, at least in prin-
ciple, be solved by (numerical) iteration [29].

B. N ¼ 2: Two-body interaction

Using Eq. (12) the Green’s function equation for N ¼ 2
has solution given by Eq. (13), where the transition matrix
is obtained by inverting the Faddeev’s equation in Eq. (21)
to yield

~T 12 ¼ ½1þ ~�T
12��1 � ~Tdiag

¼ X12 0
0 X21

� �
~T1 � ~T1

~T2

� ~T2
~T1

~T2

" #
: (22)

The integral operators Xij in Eq. (22) satisfy Eq. (5).

Summing the components of ~T12 we obtain the total tran-
sition matrix as

~T 12 ¼ Sum½~T12� ¼ ½1� X12
~G1� þ ½1� X21

~G2�: (23)

The total two-body transition matrix ~T12 can be decom-
posed into its irreducible one- and two-body parts,

~T 12 ¼ ~T1 þ ~T2 þ �~T12; (24)

with

~T1 ¼
~T1 0

0 0

" #
; ~T2 ¼

0 0

0 ~T2

" #
;

�~T12 ¼
X12 0

0 X21

" #
~T1

~T2
~T1 � ~T1

~T2

� ~T2
~T1

~T2
~T1

~T2

" #
: (25)

The irreducible two-body transition matrix �~T12 includes
all contribution with scattering off both potentials.
Equation (24) and the definition in Eq. (13) imply the
following decomposition of the partly amputated two-
body Green’s function

~G 12 ¼ 1� ~T1 � ~T2 � �~T12; (26)

where �~T12 ¼ Sum½�~T12�. Summing the four indepen-
dent two-body transitions of Eq. (25), the irreducible
two-body transition operator in terms of the single-body
transition matrices ~T1 and ~T2 is

�~T12 ¼ Sum½�~T12� ¼ ð1� X12Þ ~G1 þ ð1� X21Þ ~G2:

(27)

C. N ¼ 3: Three-body interaction

One proceeds similarly for three bodies. In this case the
formal solution to the Faddeev’s equation, of Eq. (21), is

~T 123¼
X1½23� 0 0
0 X2½31� 0
0 0 X3½12�

2
4

3
5

�
~T1 � ~T1

~G3
~T2X32 � ~T1

~G2
~T3X23

� ~T2
~G3

~T1X31
~T2 � ~T2

~G1
~T3X13

� ~T3
~G2

~T1X21 � ~T3
~G1

~T2X12
~T3

2
64

3
75;

(28)

where the ~Gi’s are related to ~Ti’s by Eq. (8) and the
two-body effective Green’s functions, Xij, (i � j), solve

Eq. (5). The three-body effective Green’s functions, Xi½jk�,
(i � j � k), satisfy the equation

Xi½jk�½1� ~Ti
~Tjk� ¼ Xi½jk�½1� ~Ti

~Gj
~TkXjk � ~Ti

~Gk
~TjXkj�

¼ 1: (29)

The total transition matrix in this case is

~T 123¼Sum½~T123�
¼½1�X1½23� ~G1�þ½1�X2½31� ~G2�þ½1�X3½12� ~G3�:

(30)

The transition matrix may again be decomposed into
irreducible parts

~T 123 ¼ ~T1 þ ~T2 þ ~T3 þ�~T12 þ�~T23 þ�~T31 þ�~T123;

(31)

where
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�~T12 þ�~T23 þ �~T31 ¼
X12

~T1
~T2

~T1 þ X13
~T1

~T3
~T1 �X12

~T1
~T2 �X13

~T1
~T3

�X21
~T2

~T1 X21
~T2

~T1
~T2 þ X23

~T2
~T3

~T2 �X23
~T2

~T3

�X31
~T3

~T1 �X32
~T3

~T2 X31
~T3

~T1
~T3 þ X32

~T3
~T2

~T3

2
64

3
75 (32)

is obtained using the N ¼ 2 expressions of Eq. (25). The new irreducible three-body part is

�~T123 ¼
ð1� X12 � X13 þ X1½23�Þ ~T1 ½ ~T1X21 � X1½23� ~T1

~G3X23� ~T2 ½ ~T1X31 � X1½23� ~T1
~G2X32� ~T3

½ ~T2X12 � X2½31� ~T2
~G3X13� ~T1 ð1� X23 � X21 þ X2½31�Þ ~T2 ½ ~T2X32 � X2½31� ~T2

~G1X31� ~T3

½ ~T3X13 � X3½12� ~T3
~G2X12� ~T1 ½ ~T3X23 � X3½12� ~T3

~G1X21� ~T2 ð1� X31 � X32 þ X3½12�Þ ~T3

2
64

3
75: (33)

The decomposition of Eq. (31) carries over to the decom-
position of the Green’s function

~G123 ¼ 1� ~T1 � ~T2 � ~T3 ��~T12

��~T23 � �~T31 � �~T123: (34)

Summing the nine independent three-body transitions in
Eq. (33) we find that

�~T123 ¼ Sum½�~T123�
¼ �ð1� X12 � X13 þ X1½23�Þ ~G1 � ð1� X23 � X21

þ X2½31�Þ ~G2 � ð1� X31 � X32 þ X3½12�Þ ~G3: (35)

Although not quite as obvious as for two-body scattering,
closer inspection reveals that each component of �~T123

indeed involves scattering off all three bodies. A similar
procedure can be used to obtain scattering matrices and
their irreducible parts for more than three bodies.

III. GREEN’S FUNCTIONS FOR PARALLEL
SEMITRANSPARENT �-PLATES

We now apply this formalism to derive the Green’s
functions for parallel semitransparent plates of infinite
extent described by �-function potentials

ViðxÞ ¼ �i�ðz� aiÞ; (36)

where ai specifies the position of the i-th plate on the z
axis, and �i > 0 is the coupling parameter. In the limit
�i ! 1 the potential of Eq. (36) simulates a plate with
Dirichlet boundary conditions. The translation symmetry
in the x-y plane can be exploited and Eq. (7) written in
terms of the dimensionally reduced Green’s function,
giðz; z0Þ, defined by

Giðx;x0; �Þ ¼
Z d2k

ð2�Þ2 e
ik?�ðx�x0Þ?giðz; z0;�Þ; (37)

where x? is the component of x in the x-y plane. k? is the
corresponding Fourier component, and �2 ¼ �2 þ k2

?,
k2
? ¼ k2x þ k2y. Since the potentials of Eq. (36) do not

depend on the transverse dimensions, the Green’s functions
G1...N for N parallel plates also correspond to dimension-
ally reduced g1...N .

A. N ¼ 1: Green’s function for a single
semitransparent plate

When substituted in Eq. (7), Eq. (37) implies that
giðz; z0Þ solves a one-dimensional ordinary inhomogeneous
second order differential equation with a �-function poten-
tial that can be solved explicitly, to obtain,

giðz; z0Þ ¼ 1

2�
e��jz�z0j �

��i

1þ ��i

1

ð2�Þ2 e
��jz�aije��jz0�aij;

(38)

where ��i ¼ �i=2�, and � was defined after Eq. (37). We
also arrive at this solution by starting from Eq. (8), which
for the dimensionally reduced Green’s function reads

giðz; z0Þ ¼ g0ðz� z0Þ � riðzÞtiriðz0Þ; (39)

where g0ðz; z0Þ is the dimensionally reduced free Green’s
function, and riðzÞ ¼ g0ðz� aiÞ. Equation (6) implies that

g0ðz; z0Þ ¼ 1

2�
e��jz�z0j; riðzÞ ¼ 1

2�
e��jz�aij: (40)

It will be convenient to define,

�r iðzÞ¼2�riðzÞ¼e��jz�aij; and �rij¼e��jai�ajj ¼e��aij ;

(41)

where for notational convenience we have defined aij ¼
jai � ajj. The dimensionally reduced transition matrix in

Eq. (39) is found by summing the series in Eq. (9).
Translational invariance in transverse directions and the
�-function potential render all integrals trivial and the
series can be resummed to give

tiðz; z0Þ ¼ 2��ti�ðz� aiÞ�ðz0 � aiÞ; �ti ¼
��i

1þ ��i

:

(42)

In the Dirichlet limit (�i ! 1) the transition matrix
simplifies further to �tDi ¼ 1. Inserting the dimensionally
reduced transition matrix of Eq. (42) in Eq. (39) reproduces
the explicit solution of Eq. (38).
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B. N ¼ 2: Green’s function for parallel
semitransparent plates

The previous procedure is readily extended to compute
the Green’s function of N semitransparent plates located at
z ¼ ai, i ¼ 1; 2; . . . ; N, and described by potentials of the
form given by Eq. (36) with associated strengths �i.
Generalization of Eq. (39) in particular gives the relation

g1...Nðz; z0Þ ¼ g0ðz� z0Þ � rðzÞT � t1...N � rðz0Þ; (43)

between the dimensionally reduced Green’s function
g1...Nðz; z0Þ and the corresponding components of the di-
mensionally reduced transition matrix. The vector rðzÞ
constructed out of the dimensionally reduced free
Green’s function originating or ending at a plate is given by

r ðzÞT ¼ ½r1ðzÞ; r2ðzÞ; . . . ; rNðzÞ�

¼ 1

2�
½e��jz�a1j; e��jz�a2j; . . . ; e��jz�aN j�: (44)

An advantage of this approach is that the Faddeev integral
equations, Eq. (21), collapse to algebraic equations for the
dimensionally reduced transition matrix t1...N due to the
translational symmetry and the �-function potentials.
The transition matrix decouples from the r vector, which
leads to considerable simplification in the evaluation of the
Green’s function. A similar simplification occurs for con-
centric cylinders and concentric spheres.

The dimensionally reduced two-body transition matrix
can be read out from Eq. (22) once the corresponding Xij

has been evaluated. With the single-body transition matri-
ces of Eq. (42) all integrals evaluate trivially and the
solution of Eq. (5) for Xij is

Xij ¼ Xji ¼ 1

�ij

;

�ij ¼ 1� �ti �rij �tj �rji ¼ 1� �ti �tje
�2�aij :

(45)

Using Eq. (22), the dimensionally reduced transition
matrix for two plates is

t ij ¼ 2�

�ij

�ti ��ti �rij �tj
��tj �rji �ti �tj

� �
: (46)

Equation (46) inserted in Eq. (43) gives the Green’s func-
tion for two semitransparent parallel plates. In the Dirichlet
limit, �ti ! �tDi ¼ 1, we have �ij ! �D

ij ¼ ð1� e�2�aijÞ,
and the transition matrix for two Dirichlet plates simplifies
to

t D
ij ¼

�

sinh�aij

e�aij �1
�1 e�aij

� �
: (47)

From Eq. (24) we similarly obtain the irreducible two-body
part of the dimensionally reduced transition matrix as

�tij ¼ �2�

�ti

�
1� 1

�ij

�
�ti

�rij
�ij

�tj

�tj
�rji
�ji

�ti �tj

�
1� 1

�ij

�
2
664

3
775

¼ 2�

�ij

�ti �rij �tj �rji �ti ��ti �rij �tj
��tj �rji �ti �tj �rji �ti �rij �tj

" #
; (48)

which in the Dirichlet limit simplifies to

�tDij ¼
�

sinh�aij

e��aij �1
�1 e��aij

� �
: (49)

The two-plate Green’s function has been obtained pre-
viously [18] in a more direct manner. We reproduced it
using the multiple scattering method because this approach
readily generalizes to more than two plates.

C. N ¼ 3: Green’s function for three parallel
semitransparent plates

The three semitransparent plates i, j, and k, of in-
finite extent and parallel to the xy plane are described
by potentials of the form given in Eq. (36). Without loss
of generality we assume that ai < aj < ak (see Fig. 1).

In the previously introduced notation this implies that
aij þ ajk ¼ aik. The vector rðzÞ in Eq. (44) now has three

components.
The dimensionally reduced three-body transition matrix

is obtained by solving Eq. (29) for Xi½jk� using the Xij of

Eq. (45). For three semitransparent parallel plates one
finds that

Xi½jk�Xjk ¼ 1

�ijk

;

�ijk ¼ 1� �ti �rij �tj �rji � �tj �rjk �tk �rkj � �tk �rki �ti �rik

þ 2�ti �rij �tj �rjk �tk �rki: (50)

Using Eq. (50) in Eq. (28) we obtain

FIG. 1 (color online). Three parallel plates. Plates i and k are
separated by distances aij and ajk from the center plate j.
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t ijk ¼ 2�

�ijk

�ti�jk ��ti �rij½k� �tj ��ti �rik½j� �tk
��tj �rji½k� �ti �tj�ki ��tj �rjk½i� �tk
��tk �rki½j� �ti ��tk �rkj½i� �tj �tk�ij

2
64

3
75;

(51)

where

�r ij½k� ¼ �rij � �rik �tk �rkj: (52)

It is apparent from the solutions for the N ¼ 2 and N ¼ 3
case that terms contributing to the transition matrix in the
multiple scattering expansion depend exponentially on the
length of the path of propagation. Expanding the inverse
determinants �ij and �ijk gives all paths contributing to

the scattering operator. This is particularly transparent in
our essentially one-dimensional example.
From Eq. (33) the dimensionally reduced, irreducible,

three-body transition matrix is similarly evaluated as

�tijk ¼ 2�

�ti

�
1� 1

�ij
� 1

�ik
þ �jk

�ijk

�
�ti

�
�rij
�ij

� �rij½k�
�ijk

�
�tj �ti

�
�rik
�ik

� �rik½j�
�ijk

�
�tk

�tj

�
�rji
�ji

� �rji½k�
�ijk

�
�ti �tj

�
1� 1

�ji
� 1

�jk
þ �ik

�ijk

�
�tj

�
�rjk
�jk

� �rjk½i�
�ijk

�
�tk

�tk

�
�rki
�ki

� �rki½j�
�ijk

�
�ti �tk

�
�rkj
�kj

� �rkj½i�
�ijk

�
�tj �tk

�
1� 1

�ki
� 1

�kj
þ �ij

�ijk

�

2
66666664

3
77777775: (53)

It is interesting to consider the situation when Dirichlet
boundary conditions hold on the j-th plate between the
other two plates. Taking the limit �tj ! �tDj ¼ 1, the deter-
minant for three parallel plates is found to factorize into a
product of two-body determinants,

�i1k ¼ �i1�k1 ¼ ð1� �tie
�2�aijÞð1� �tke

�2�ajkÞ; (54)

where replacing the subscript of a plate by 1 denotes
Dirichlet boundary conditions on that plate. In this situ-
ation, �rik½1� ¼ ð1� �tDj Þ �rik ¼ 0, �ri1½k� ¼ e�aij�k1, �rk1½i� ¼
e�ajk�i1, and Eq. (51) simplifies to

t i1k ¼ 2�

�ti
1

�i1
��ti

�rij
�i1

0

� �rji
�1i

�ti
1

�i1
þ 1

�k1
� 1 � �rjk

�k1
�tk

0 ��tk
�rkj
�k1

�tk
1

�k1

2
6664

3
7775: (55)

This leads to the observation that

t i1k ¼ ti1 þ tk1 � tDj ¼ ti þ tDj þ tk þ �ti1 þ �tk1:

(56)

Comparing Eq. (56) with the decomposition of the three-
body transition matrix into irreducible one- and two-body
parts in Eq. (31) this implies

�ti1k þ�tik ¼ 0; (57)

which confirms the notion that modes in the two half-
spaces on either side of a Dirichlet plate are independent
and that correlations between them must vanish. The irre-
ducible three-body correlations in this limit therefore must
cancel irreducible two-body correlations between objects
on opposite sides of the plate. Taking the Dirichlet limit on
the central plate in Eq. (53) this is verified explicitly,

�ti1k ¼ 2�

�ti

�
1� 1

�ik

�
0 �ti

�rik
�ik

�tk

0 0 0

�tk
�rki
�ki

�ti 0 �tk

�
1� 1

�ki

�
2
66664

3
77775 ¼ ��tik;

(58)

where we have used Eq. (48).
Let us finally consider the case when Dirichlet boundary

conditions are imposed on all three plates. The three-body
determinant again factorizes, �D

ijk ¼ �D
ij�

D
jk ¼

ð1� e�2�aijÞð1� e�2�ajkÞ, and

tDijk ¼ 2�

e�aij

2 sinh�aij
� 1

2 sinh�aij
0

� 1
2 sinh�aij

e�aij

2sinh�aij
þ e�ajk

2sinh�ajk
� 1 � 1

2 sinh�ajk

0 � 1
2 sinh�ajk

e�ajk

2 sinh�ajk

2
666664

3
777775

¼ tDi þ tDj þ tDk þ�tDij þ�tDjk; (59)

in the limit of three Dirichlet plates. This implies
�tDijk þ �tDik ¼ 0, and is explicitly verified by Eq. (53) or

Eq. (58),

�tDijk ¼ � �

sinh�aik

e��aik 0 �1
0 0 0
�1 0 e��aik

2
64

3
75 ¼ ��tDik;

(60)

using Eq. (49).

IV. MANY-BODY CASIMIR ENERGIES

Casimir energies are finite parts of the vacuum energy
that describe its dependence on configurations of macro-
scopic objects. The interaction of classical objects with
quantized fields at low energies can be described by
background potentials. It is known [14,22,34–36] that
such a semiclassical description for the interaction with
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a quantized field suffers of (local) ultraviolet divergences.
A proper treatment of the interaction at high energies
requires modeling of the quantum fluctuations associated
with the objects. One fortunately sometimes is able to
isolate parts of the vacuum energy that depend only on
global changes of the system and can be reliably computed
in semiclassical approximation. In the following we sys-
tematically determine irreducible parts of the vacuum en-
ergy for a given number of classical objects. These
irreducible N-body Casimir energies diverge only if all N
potentials describing the classical objects have a region of
common support [22].

Let E0 be the (infinite) vacuum energy associated with
zero-point fluctuations of a massless scalar field in the
absence of all background potentials, ViðxÞ. The change
in vacuum energy in the presence of N objects associated
with the background potential, V ¼ P

iVi, can be derived
using field theory techniques, for example, in [18,27], to be

E1...N � E0 ¼ � 1

2

Z 1

�1
d�

2�
2�2 TrðG1...N �G0Þ

¼ � 1

2

Z 1

�1
d�

2�
Tr ln ~G1...N

¼ � 1

2

Z 1

�1
d�

2�
Tr lnð1� ~T1...NÞ: (61)

These expressions have recently been dubbed the Trace-
G-formula and Trace-Log-G-formula, respectively. For
frequency independent potentials, the relation between
them is established by differentiating Eq. (7),

� d

d�2
G ¼ GG; (62)

and ignoring a boundary term.
To proceed further we generalize Eqs. (26) and (34) and

decompose a Green’s function involving N potentials into
irreducible N-body parts,

G1...N ¼ G0 þ
X
i

�Gi þ
X
i<j

�Gij þ . . . : (63)

Using Eq. (62), the irreducible one-, two-, and three-body
parts of the Green’s functions can be written in the form
(i � j � k)

�Gi ¼ Gi �G0 ¼ � d

d�2
ln
Gi

G0

; (64a)

�Gij ¼ Gij � �Gi ��Gj ¼ � d

d�2
ln
GijG0

GiGj

; (64b)

�Gijk ¼ Gijk � �Gij ��Gjk ��Gki � �Gi

��Gj � �Gk ¼ � d

d�2
ln
GijkGiGjGk

GijGjkGkiG0

; (64c)

which is a (cascading) recursive definition that can be
extended to higher N.

Equations (61) and (63) imply a corresponding decom-
position of the vacuum energy into irreducible N-body
contributions,

E1...N ¼ E0 þ
X
i

�Ei þ
X
i<j

�Eij þ . . . ; (65)

where

�E1...N ¼ � 1

2

Z 1

�1
d�

2�
2�2 Tr�G1...N: (66)

As shown in [22], and as will be explicitly verified in
examples below, the irreducible N-body contribution to
the vacuum energy diverges only if all N potentials have
a common support. One-body vacuum energies thus are
generically divergent, whereas two-body Casimir energies
diverge only if the two bodies intersect (and thus could be
viewed as one). More interestingly though, three-body
Casimir energies diverge only when all three objects
have a common intersection—the three bodies need not
be mutually disjoint and could, for instance, be arranged to
form a triangle.
Equation (13) relates the irreducible N-body contribu-

tion of the Green’s functions to the irreducible N-body
transition matrix,

Tr�G1...N ¼ �Tr�T1...NG0G0 ¼ Tr�T1...N

d

d�2
G0:

(67)

The support of delta-function potentials Vi is restricted to
the surface Si of the i-th object and components of the
transition matrix at most have support on the union of two
such surfaces. It is therefore convenient to formally define
a vector RðxÞ, and a matrix R, with components

R iðxÞ :¼ G0ðx� yÞjy2Si ; Rij :¼ G0ðx� yÞjx2Si
y2Sj

:

(68)

Using these definitions in Eq. (62) we have

� d

d�2
R ¼

Z
d3xRðxÞ �RðxÞT: (69)

Writing the irreducible N-body transition operator in
Eq. (67) in matrix notation and using Eq. (69), we express
the irreducible N-body contribution to the vacuum energy
of Eq. (66) in the form

�E1...N ¼ � 1

2

Z 1

�1
d�

2�
2�2 Tr

�
�T1...N � d

d�2
R

�
: (70)

The trace in the last expression is over matrix indices and
includes integrals over the lower dimensional surfaces of
the associated objects. Note also that Eq. (70) involves the
irreducible N-body transition matrix, T1...N, not its partly

amputated cousin ~T1...N .
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V. CASIMIR ENERGIES FOR PARALLEL
SEMITRANSPARENT �-PLATES

We illustrate this formalism by evaluating the irreduc-
ible (scalar) Casimir energy for semitransparent parallel
plates described by potentials of the form given in Eq. (36).
Exploiting translational invariance parallel to the plates in
Eq. (70), the irreducible N-body Casimir energy per unit
area is described by dimensionally reduced quantities

�E1...N

LxLy
¼ � 1

6�2

Z 1

0
�4d�Tr

�
�t1...N � d

d�2
r

�
; (71)

where Lx and Ly are the (infinite) lengths of the plates

in x and y direction, respectively. The integrals on � , kx,
and ky, are performed using polar variables, which effec-

tively amounts to replacing �2 ! 2�2=3, where � was
defined after Eq. (37). The dimensionally reduced transi-
tion matrices, �t1...N , for N ¼ 2 and N ¼ 3 are, respec-
tively, given by Eqs. (48) and (53). The derivative of the
dimensionally reduced free Green’s function in this case is
the matrix

� d

d�2
r ¼

Z 1

�1
dzrðzÞ � rðzÞT ¼ 2

ð2�Þ3

1 ð1þ �a12Þe��a12 � � � ð1þ �a1NÞe��a1N

ð1þ �a21Þe��a21 1 � � � ð1þ �a2NÞe��a2N

..

. ..
. . .

. ..
.

ð1þ �aN1Þe��aN1 ð1þ �aN2Þe��aN2 � � � 1

2
66664

3
77775; (72)

where aij is the distance between the i-th and j-th parallel
plate defined previously.

A. N ¼ 1, 2: Irreducible one- and two-body
Casimir energy for semitransparent plates

The irreducible one-body vacuum energy per unit area
associated with the i-th plate diverges. Equation (71) gives
it as the integral

�Ei

LxLy
¼ 1

12�2

Z 1

0
�2d��ti; (73)

with �ti defined in Eq. (42). The one-body vacuum energies
are ultraviolet divergent at any nonvanishing coupling, but
do not depend on the relative position of the plates and
therefore do not contribute to forces between them.

The irreducible two-body Casimir energy per unit area
associated with plates i and j is obtained by inserting
Eqs. (48) and (72) (for N ¼ 2) in Eq. (71),

�Eij

LxLy

¼ � 1

12�2

Z 1

0
�2d�

�
1

�ij

� 1

�
� ½2�aij þ ð1� �tiÞ þ ð1� �tjÞ�; (74)

where the two-body determinant is given by Eq. (45).
Equation (74) for the Casimir interaction energy of two
semitransparent plates was obtained previously in [27]. In
the Dirichlet limit, �ti ! 1, Eq. (74) simplifies to the well-
known Casimir energy for a massless scalar field satisfying
Dirichlet boundary conditions on a pair of parallel plates,

�ED
ij

LxLy

¼ � 1

12�2

Z 1

0
�2d�

2�aij

e2�aij � 1
¼ � �2

1440

1

a3ij
:

(75)

Equations (74) and (75) are finite and negative for two
disjoint plates.

B. N ¼ 3: Three-body Casimir energy
for three parallel plates

The irreducible three-body Casimir energy of three
plates is similarly obtained by inserting Eqs. (53) and
(72) (for N ¼ 3) in Eq. (71),

�Eijk

LxLy

¼ 1

12�2

Z 1

0
�2d�

�
�ti

�
1� 1

�ij

� 1

�ik

þ �jk

�ijk

�
þ 2ð1þ �ajkÞ

�
1

�jk

� 1

��
1� �rjk½i�e�ajk

�jk

�ijk

�

þ �tj

�
1� 1

�ji

� 1

�jk

þ �ik

�ijk

�
þ 2ð1þ �aikÞ

�
1

�ik

� 1

��
1� �rik½j�e�aik

�ik

�ijk

�
þ �tk

�
1� 1

�ki

� 1

�kj

þ �ij

�ijk

�

þ 2ð1þ �aijÞ
�
1

�ij

� 1

��
1� �rij½k�e�aij

�ij

�ijk

��
: (76)
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When Dirichlet boundary conditions are imposed on the
central j-th plate, the relation between irreducible two- and
three-body transition matrices noted in Eq. (57) implies a
corresponding relation between two- and three-body
Casimir energies,

�Ei1k þ�Eik ¼ 0: (77)

This is explicitly verified by using the factorization of the
three-body determinant in Eq. (54) and the Dirichlet limits
for �rij½k� given after Eq. (54) in Eq. (76), and identifying the
irreducible two-body energy of Eq. (74) in the result.

In the Dirichlet limit for all three plates the irreducible
three-body Casimir energy cancels the well-known two-
body interaction between the outer Dirichlet plates,

�ED
ijk

LxLy

¼ �2

1440

1

a3ik
¼ ��ED

ik

LxLy

; (78)

where aik is the distance between the outer plates.
This cancellation is to be expected on physical grounds

and serves to check the calculation. For semitransparent
plates the cancellation is not complete and the irreducible
three-body contribution to the total Casimir energy can be
significant for parallel plates. Note that the sign of the

irreducible N-body contribution to the scalar Casimir en-
ergy alternates. Although not apparent from the expression
of Eq. (76), this irreducible three-body contribution to the
Casimir energy is positive for any positive couplings �1,
�2, �3 and any relative position of the three plates. For
parallel semitransparent plates we thus verify the more
general result obtained in [22]. Also, as discussed in [22]
and noted previously, the three-plate Casimir energy di-
verges only if all three plates coincide.
In the following we will see that these generic results for

the sign and analyticity of the three-body scalar Casimir
energy hold in the limit where two of the three potentials
are weak and need only be accounted for to leading order.

VI. THREE-BODY SCALAR CASIMIR
INTERACTION FOR SEMIWEAK COUPLING

We now consider irreducible vacuum energies for three
bodies when two of the three potentials, V1 and V2, are
weak and need only be taken to leading order. No restric-
tion is imposed on the potential V3 describing the third
body. To the leading order we thus approximate T1 � V1

and T2 � V2 in Eq. (9). The three-body transition matrix of
Eq. (28) in this semiweak approximation simplifies to

~TW
123 ¼

1 0 0
0 1 0
0 0 XW

3½12�

2
64

3
75 ~V1 � ~V1ð1� ~T3Þ ~V2 � ~V1ð1� ~V2 þ ~T3

~V2Þ ~T3

� ~V2ð1� ~T3Þ ~V1
~V2 � ~V2ð1� ~V1 þ ~T3

~V1Þ ~T3

� ~T3ð1� ~V2Þ ~V1 � ~T3ð1� ~V1Þ ~V2
~T3

2
64

3
75: (79)

Here XW
3½12� satisfies Eq. (29), which to leading semiweak

approximation is solved by

XW
3½12� ¼ 1þ ~T3ð1� ~V1Þ ~V2 þ ~T3ð1� ~V2Þ ~V1

þ ~T3
~V1

~T3
~V2 þ ~T3

~V2
~T3

~V1: (80)

The transition matrix in semiweak approximation of
Eq. (79) may again be decomposed into its irreducible
one-, two-, and three-body parts, leading to the semiweak
version of Eq. (31). From Eq. (25) the irreducible two-body
transition matrices in semiweak approximation are,

�~TW
12 ¼

0 � ~V1
~V2

� ~V2
~V1 0

" #
;

�~TW
i3 ¼ 0 � ~Vi

~T3

� ~T3
~Vi

~T3
~Vi
~T3

" #
;

(81)

with i ¼ 1, 2. Similarly approximating Eq. (33), the
three-body transition matrix in semiweak approximation
becomes,

�~TW
123 ¼

0 ~V1
~T3

~V2
~V1

~G3
~V2

~T3
~V2

~T3
~V1 0 ~V2

~G3
~V1

~T3
~T3

~V2
~G3

~V1
~T3

~V1
~G3

~V2 � ~T3
~V1

~G3
~V2

~T3 � ~T3
~V2

~G3
~V1

~T3

2
64

3
75; (82)

where ~G3 ¼ 1� ~T3.
Casimir energies in the semiweak approximation are obtained using Eqs. (66) and (67). Inserting Eq. (81) in Eq. (67) we

have to this approximation,

�Tr�GW
12 ¼ Tr

�
�TW

12 �
d

d�2
R

�
¼ d

d�2
Tr½G0V1G0V2�; (83a)

�Tr�GW
i3 ¼ Tr

�
�TW

i3 �
d

d�2
R

�
¼ d

d�2
Tr½G0ViG0T3�; ði ¼ 1; 2Þ: (83b)
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The corresponding irreducible three-body contribution using Eq. (82) in Eq. (67) is

� Tr�GW
123 ¼ Tr

�
�TW

123 �
d

d�2
R

�
¼ � d

d�2
Tr½G0V1G0T3G0V2 þG0V2G0T3G0V1 �G0T3G0V1G0T3G0V2�: (84)

Inserting Eq. (83) in Eq. (66), and integrating by parts, the
irreducible two-body Casimir energies in semiweak ap-
proximation are

�EW
12¼�1

2

Z 1

�1
d�

2�
Tr½G0V1G0V2�; (85a)

�EW
i3 ¼�1

2

Z 1

�1
d�

2�
Tr½G0ViG0T3�; ði¼ 1;2Þ; (85b)

verifying results reported in [12]. The corresponding irre-
ducible three-body contribution to the Casimir energy in
semiweak approximation using Eq. (84) in Eq. (66) is

�EW
123 ¼

1

2

Z 1

�1
d�

2�
Tr½G0V1G0T3G0V2 þG0V2G0T3G0V1

�G0T3G0V1G0T3G0V2�: (86)

In the following we evaluate Eqs. (85) and (86) for some
special cases.

A. Weak point potentials

Weak point potentials of the form,

ViðxÞ ¼ �i�
ð3Þðx� xiÞ; (87)

for i ¼ 1, 2, allow one to explicitly perform the integrals in
Eqs. (85) and (86). In this case we have

�EW
12 ¼ ��1�2

2

Z 1

�1
d�

2�
½G0ðx1 � x2Þ�2 < 0; (88)

and, using Eq. (8) in Eq. (85b),

�EW
i3 ¼��i

2

Z 1

�1
d�

2�
fG0ð0Þ�G3ðxi;xiÞg<0; ði¼1;2Þ;

(89)

because the integrand in braces is positive for positive V3.
The irreducible two-body contributions to the vacuum
energy thus are negative for weak point potentials. We
similarly obtain that the irreducible three-body correction
to the vacuum energy,

�EW
123 ¼

�1�2

2

Z 1

�1
d�

2�
f½G0ðx1 � x2Þ�2

� ½G3ðx1;x2Þ�2g> 0; (90)

in this case is positive for any (positive) potential V3. Note
that the irreducible three-body Casimir energy in semi-
weak approximation diverges only if x1 ¼ x2 is in the
support of V3.

The pattern in the sign of the irreducible N-body
contribution is consistent with the findings of [22].
Furthermore, since any positive potential is a (positive)

superposition of point potentials, this pattern of the signs of
irreducible N-body contributions extend to any shape of
the objects in semiweak approximation. This is explicitly
verified by the following examples.

B. Weak potentials with translational
symmetry parallel to a Dirichlet plate

We consider a Dirichlet plate and weak potentials that do
not depend on the Cartesian coordinate x,

Vi ¼ Viðy; zÞ; for i ¼ 1; 2; and

V3 ¼ �3�ðz� a3Þ; with �3 ! 1: (91)

To evaluate Eqs. (85) and (86) for such potentials we
require the operator G0T

D
3 G0 for a Dirichlet plate. In order

to exploit the translational symmetry in x direction we
write the solution to Eq. (6) for the free Green’s function
in the form

G0ðjx1 � x2j; �Þ ¼
Z d2k

ð2�Þ2 e
ik�ðx1�x2Þ? e

��jz1�z2j

2�

¼
Z 1

�1
dkx
2�

eikxðx1�x2ÞK0ð ��d12Þ
2�

¼ e�j�jjx1�x2j

4�jx1 � x2j ; (92)

where d12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðy1 � y2Þ2 þ ðz1 � z2Þ2

p
is the projected dis-

tance in the x1 ¼ x2 plane, and ��2 ¼ k2x þ �2. K0ðxÞ is the
modified Bessel function of zero order. Note that � defined
after Eq. (37) satisfies �2 ¼ ��2 þ k2y. Using the first equal-

ity of Eq. (92) and the dimensionally reduced transition
matrix of a Dirichlet plate given in Eq. (42) one can show
that

��GD
3 ðx1;x2; �Þ ¼ ½G0T

D
3 G0�ðx1;x2; �Þ

¼ G0ðjx1 � �x2j; �Þ

¼
Z 1

�1
dkx
2�

eikxðx1�x2Þ K0ð �� �d12Þ
2�

; (93)

where �x2 ¼ ðx2; y2;�z2 þ 2a3Þ, and �d12 is the length of
the shortest path between x1 and x2 in the (x1 ¼ x2)
plane that reflects off the Dirichlet plate. For a Dirichlet
plate at z ¼ a3, this distance is given by �d212 ¼ðy1 � y2Þ2 þ ðjz1 � a3j þ jz2 � a3jÞ2. A geometrical in-
terpretation of d12 and �d12 is shown in Fig. 2.
Substituting Eq. (93) in Eq. (8) leads to

GD
3 ðx1;x2; �Þ ¼ G0ðjx1 � x2j; �Þ �G0ðjx1 � �x2j; �Þ;

(94)
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which is antisymmetric under reflection about the Dirichlet
plate. Note that if x1 and x2 are on opposite sides of the
plate, �d12 ¼ d12, and GD

3 vanishes.

Substituting Eq. (92) for the free Green’s functions, and
Eq. (93) for the irreducible Green’s function of a Dirichlet
plate in Eqs. (85) and using the identity

Z 1

0
��d ��K0ð ��xÞ ¼ 1

x2
; (95)

the irreducible two-body Casimir energies per unit length
in semiweak approximation for potentials with transla-
tional symmetry are

�EW
12

Lx

¼ � 1

32�3

Z
d2r1

Z
d2r2

V1ðr1ÞV2ðr2Þ
d212

; (96a)

�EW
i3

Lx

¼ � 1

32�2

Z
d2r

ViðrÞ
jzj2 ; ði ¼ 1; 2Þ: (96b)

The Casimir energy in Eq. (96a) for two weakly interacting
objects with translational symmetry was previously ob-
tained in [37]. The Casimir energy for a Dirichlet plate
weakly interacting with an object possessing translational
symmetry was obtained in [12], but was given as a series
involving modified Bessel functions. The expression in
[12] generally is much harder to evaluate than Eq. (96b).
The simplification in Eq. (96b) was achieved by using the
effective Green’s function for a Dirichlet plate in Eq. (93).
For many potentials, the evaluation of the Casimir energy
by Eq. (96b) is immediate. We can, for example, calculate
the two-body Casimir energy for a cylinder of radius a,
described by the weak potential Vcyl ¼ ��ðr� aÞ, inter-
acting with a Dirichlet plate positioned at z ¼ R> a. From
Eq. (96b) one readily finds,

�EW
Cyl-DP

Lx

¼ � 1

32�2

Z 1

0
rdr

Z 2�

0
d�

��ðr� aÞ
jr sin�� Rj2

¼ � �a

16�

1

R2

�
1� a2

R2

��ð3=2Þ
; (97)

which reproduces the expression in [12]. A similarly sim-
plified evaluation is expected for an arbitrary surface with
translational symmetry weakly interacting with a Dirichlet
plate parallel to the symmetry axis.
The irreducible three-body Casimir energies for transla-

tionally invariant weak potentials and a Dirichlet plate can
be similarly evaluated using Eq. (86). The first two terms in
Eq. (86) involve the product of the free Green’s function,
G0, with the irreducible Green’s function for a Dirichlet
plate given in Eq. (93). The last term requires the product
of two irreducible one-body Green’s functions. A useful
identity for the product of two modified Bessel functions of
zeroth order is

Z 1

0
��d ��K0ð ��xÞK0ð ��yÞ ¼ 1

x2 � y2
ln

�
x

y

�
!x!y 1

2x2
: (98)

Inserting Eqs. (92) and (93) in Eq. (86) to write the Green’s
functions in terms of modified Bessel functions, and then
using Eq. (98), we obtain

�EW
123

Lx

¼ 1

32�3

Z
d2r1

Z
d2r2

V1ðr1ÞV2ðr2Þ
�d212

Q

�
d212
�d212

�
;

(99)

where the distances d12 and �d12 were introduced earlier and
are shown in Fig. 2. The function

QðxÞ ¼ � 2 lnx

1� x
� 1 (100)

is bounded by 1 � QðxÞ � 1� 2 lnx in the relevant

domain 0< x ¼ d2
12
�d2
12

< 1. This implies that the three-

body Casimir energy of Eq. (99) is always positive and
bounded by

1

32�3

Z
d2r1

Z
d2r2

V1ðr1ÞV2ðr2Þ
�d212

� �EW
123

Lx

� 1

32�3

Z
d2r1

Z
d2r2

V1ðr1ÞV2ðr2Þ
�d212

�
1� 2 ln

�
d212
�d212

��
:

(101)

�d12 is the distance between a point on the first object and
another point on the reflected image of the second object
(see Fig. 2). It vanishes only at points where the two weak
objects and the Dirichlet plate are concurrent. The irreduc-
ible three-body Casimir energy in the semiweak approxi-
mation of Eq. (99) thus is finite if the three objects have no
point in common. This contribution, in particular, does not
diverge as the objects approach the plate or each other,
corroborating the findings in [22]. Note that the lower
bound in Eq. (101) is the two-body Casimir energy be-
tween weak potentials of Eq. (96a), but with the reflected
object (d12 ! �d12) and of opposite sign. The irreducible
three-body Casimir energy approaches the lower bound for
d2
12
�d212

� 1 and thus partially cancels the irreducible two-body

FIG. 2 (color online). The distances d12 and �d12. The effective
distance �d12 is the shortest distance between the two points for a
path that reflects off the Dirichlet plate at z ¼ a3. It also is the
shortest distance between ðy1; z1Þ and a mirror image of the point
ðy2; z2Þ with respect to the z ¼ a3 line.
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energy if one or both objects approach the Dirichlet plate.
In fact, if the two weakly interacting objects are entirely on
opposite sides of the Dirichlet plate, the lower bound is
achieved because �d12 ¼ d12 and the three-body Casimir
energy cancels the two-body interaction energy between
them precisely.

The following examples demonstrate the finiteness,
sign, and analyticity, of three-body contributions to

Casimir energies for cases in which irreducible one-and
two-body contributions to the vacuum energy diverge.

VII. TRIANGULAR WEDGE
ON A DIRICHLET PLATE

We first consider a triangular wedge with two sides
described by weak potentials atop a Dirichlet plate at z ¼
0, forming a waveguide of triangular cross section:

V1ðy; zÞ ¼ �1�ð�zþm�ðy� aÞÞ�1; with �1 � �ðy�min½0; a�Þ�ðmax½0; a� � yÞ; (102a)

V2ðy; zÞ ¼ �2�ð�zþm�ðy� bÞÞ�2; with �2 � �ðy�min½0; b�Þ�ðmax½0; b� � yÞ; (102b)

V3ðzÞ ¼ �3�ðzÞ; with �3 ! 1: (102c)

The sides of the wedge have slopes m� ¼ � cot� and
m� ¼ � cot�, and lengths

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ a2

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ b2

p
, re-

spectively. The constraint m�a ¼ m�b ¼ �h forces the
sides to intersect at (y ¼ 0, z ¼ h), where h is the height of
the triangle. The base of the triangle formed then measures
jb� aj. Note that the Dirichlet plate at z ¼ 0 is of infinite
extent. This triangular wedge on a Dirichlet plate is de-
picted in Fig. 3. Suitable parameters for describing the
triangular waveguide are ðh;�; �Þ, or (h, ~a ¼ a=h, ~b ¼
b=h). Without loss of generality we measure all lengths
in multiples of the height h. The triangle then has height
h ¼ 1 and the parameter space for the triangle is�1< a,
b <1, or, equivalently, ��=2<�, �<�=2.

Observe that all irreducible two-body Casimir energies
in Eq. (96) diverge due to ultraviolet contributions from the
corners of the triangle where pairs of potentials overlap.
More precisely, the integrand �EW

12 diverges when d12 � 0
near the vertex of the wedge. The integrand of �EW

i3

diverges when zi � 0 near the corner with the Dirichlet
plate. The irreducible three-body Casimir energy,�EW

123, in

Eq. (99) on the other hand is finite because �d12 never
vanishes in the integration region. Substituting the poten-
tials of Eq. (102) for the semiweak triangular waveguide in
Eq. (99) and evaluating the z integrals gives

E ð�;�Þ ¼ �EW
123

Lx

�
�1�2

32�3

��1

¼ j~a ~b j
Z 1

0

Z 1

0

du1du2
�u212

Q

�
u212
�u212

�
; (103)

where we have rescaled the integration variables,
y1 ¼ jaju1 and y2 ¼ jbju2 by the respective lengths. All
distances have been expressed in units of h: d12 ¼ hu12
and �d12 ¼ h �u12, with

�u212 ¼ ð~au1 � ~bu2Þ2 þ ½j1� u1j þ j1� u2j�2; (104a)

u212 ¼ ð~au1 � ~bu2Þ2 þ ðu1 � u2Þ2: (104b)

With the function QðxÞ defined in Eq. (100) the three-body
interaction energy of Eq. (103) is finite and can be eval-
uated numerically. In Fig. 4 we plot Eð�;�Þ as a function
of the angles � and�. The three-body interaction energy is
always positive and vanishes (and is minimized) only for
� ¼ 0, or � ¼ 0. It is minimal when the shorter side of the
wedge is perpendicular to the Dirichlet plate. Wedges with
angles �< 0<� or �< 0<� are energetically pre-
ferred over wedges with angles �, �> 0 or �, �< 0.
The three-body Casimir energy diverges only when all
three sides of the triangle have a point in common, i.e.
when � ¼ �, or � ¼ �� ¼ ��=2.
Abalo, Milton, and Kaplan, recently [23] investigated

the dependence of the Casimir energy on the area and
perimeter of triangular waveguides on which Dirichlet
boundary conditions were imposed. Although only interior
modes were taken into account and divergences associated
with corners and single-body vacuum energies were re-
moved ad hoc, they found that the dimensionless Casimir
energy of their triangular wave guides closely follow a
universal function of the dimensionless ratio (P2=A) of
the perimeter P and area A of the cross section. This would
imply that the Casimir energy of triangular wave guides
depends on just one, rather than two, dimensionless pa-
rameters. Although we cannot expect a similar depen-
dence, the universal behavior observed in [23] prompted
us to also investigate the dependence of the semiweak

FIG. 3 (color online). Weakly interacting triangular wedge on
a Dirichlet plate. The objects are of infinite extent in the
x-direction. The weakly interacting sides of the wedge (in red)
have finite length.
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three-body Casimir energy on the dimensionless perimeter
~p ¼ ðP=hÞ and dimensionless area ~s ¼ ðA=h2Þ of the
triangular waveguide. It is also of interest to inquire for
what configuration the energy of a triangular waveguide is
minimized if the cross-sectional area is kept fixed. The
dimensionless area ~s and perimeter ~p of the triangular
wedge are given by

A

h2
¼ ~s ¼ 1

2
j~b� ~aj; (105a)

P

h
¼ ~p ¼ j~b� ~aj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~a2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~b2

p
: (105b)

The parameter space of a triangular wedge in this case is

~s 	 0, and ~p 	 2~sþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~s2

p 	 Maxð2; 4~sÞ. See Fig. 6.
The inequality, ~p > 4~s, is a consequence of the triangle
inequality. In Fig. 5 we plot the energy as a function

of ~a for fixed area: A ¼ h2, or j~b� ~aj ¼ 2, or
j tan�� tan�j ¼ 2. The three-body Casimir energy for a
waveguide of given cross-sectional area is minimal when
the shorter side of the wedge is perpendicular to the
Dirichlet plate (� ¼ 0 or � ¼ 0½� ¼ tan�1ð�2Þ�). In the
intermediate region the energy is extremal for an isosceles

triangle ð�~a ¼ ~b ¼ 1) with Eð�1; 1Þ ¼ 0:893112 . . . . The
dashed curve in Fig. 5 represents the approximation

Eð~a; ~bÞ � j~a ~b j obtained by setting the dimensionless in-
tegral in Eq. (103) to 1. Remarkably, this extremely simple
expression for the irreducible three-body energy is accu-
rate to better than 10% everywhere. We also show reflec-
tions of the curves to illustrate that the discontinuities in
the slope are entirely due to the absolute value in the

prefactor j~a ~b j and the integral itself is analytic.
We rewrite the irreducible three-body Casimir energy as

a function of the cross-sectional area and perimeter by
inverting Eqs. (105) to obtain

~a ¼
�� ~	� ~s; if ~b > ~a;

� ~	þ ~s; if ~b < ~a;
(106a)

~b ¼
�� ~	þ ~s; if ~b > ~a;

� ~	� ~s; if ~b < ~a;
(106b)

where

~	 ¼ 1

2~p

ð~p� 2~sÞ
ð~p� 4~sÞ ½~pð~p� 4~sÞf~pð~p� 4~sÞ � 4g�1=2: (107)

Substituting Eqs. (106) in Eq. (103), the three-body
Casimir energy as a function of perimeter and area is

FIG. 5 (color online). Eð~a; ~bÞ as a function of ~a for fixed area,
A ¼ h2. The irreducible three-body Casimir energy is minimal
when the shorter side of the wedge is perpendicular to the
Dirichlet plate (~a ¼ 0 or ~b ¼ 0). The maximum in the inter-
mediate region corresponds to the unstable equilibrium of an
isosceles triangle. The dashed curves are the approximation
Eð~a; ~bÞ � j~a ~b j obtained by replacing the integrals in Eq. (103)
with unity. The dotted curves are reflections about the E ¼ 0
line.

FIG. 4 (color online). Casimir Landscape: Eð�;�Þ as a function of the opening angles � and � for a weakly interacting triangular
wedge on a Dirichlet plate. The valley connecting the �> � region with the �< � region is an artifact caused by limited numerical
accuracy. The valley should be replaced by a very thin and infinitely high wall describing the sharp change in energy when all surfaces
overlap. On the right, the shapes of the triangles are matched to the respective regions of the �-� plane.
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E ð~s; ~pÞ ¼ j ~	2 � ~s2j
Z 1

0

Z 1

0

du1du2
�u212

Q

�
u212
�u212

�
; (108)

where the rescaled distances in terms of area and perimeter
are given by

�u212 ¼ ½ ~	ðu1 � u2Þ þ ~sðu1 þ u2Þ�2 þ ½j1� u1j
þ j1� u2j�2; (109a)

u212 ¼ ½ ~	ðu1 � u2Þ þ ~sðu1 þ u2Þ�2 þ ðu1 � u2Þ2: (109b)

In Fig. 6 the irreducible three-body contribution to the
vacuum energy of a semiweak wedge is plotted as a
function of dimensionless area and perimeter of the cross
section. The energy now is minimal along the curve

~p ¼ 1þ 2~sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4~s2

p
¼

� 2þ 2~sþOð2~sÞ2 2~s < 1;

1þ 4~sþO
�
1
2~s

�
2~s > 1;

(110)

which corresponds to right-angled triangles. The energy
diverges along the line ~p 	 2, ~s ¼ 0, which corresponds to
the two sides of the wedge coinciding (� ¼ �). In Fig. 6

the curve ~p ¼ 1þ 2~sþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4~s2

p
for s 	 0 corresponds

to right triangles of minimal energy, and the boundary of

the parameter space at ~p ¼ 2~sþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~s2

p
for ~s 	 0 is

associated with isosceles triangles.
We do not observe that Eð~s; ~pÞ is a function of ~p2=~s only.

The rather good approximation obtained by ignoring the
dependence on the integral in Eq. (108), suggests that the
energy approximately is given by

E ð~s; ~pÞ � j ~	2 � ~s2j ¼ j4ð~p� 2~sÞ2 � ~p2ð~p� 4~sÞ2j
4~pð~p� 4~sÞ ;

(111)

a somewhat involved function of the perimeter and area.

VIII. PARABOLIC WEDGE
ON A DIRICHLET PLATE

To explicitly verify that not just corner divergences have
been subtracted in the irreducible three-body contribution
to the vacuum energy [22], we also consider a weakly
interacting parabolic wedge on a Dirichlet plate. It is
described by the potentials

V1ðy; zÞ ¼ �1�ð�zþ �ðy� aÞ2Þ�1; with �1 � �ðy�min½0; a�Þ�ðmax½0; a� � yÞ; (112a)

V2ðy; zÞ ¼ �2�ð�zþ �ðy� bÞ2Þ�2; with �2 � �ðy�min½0; b�Þ�ðmax½0; b� � yÞ; (112b)

V3ðzÞ ¼ �3�ðzÞ; with �3 ! 1: (112c)

The parameters � and � here give the foci of the parabolas
and have dimensions of inverse length. The constraint
�a2 ¼ �b2 ¼ h implies that the two parabolas intersect
at (y ¼ 0, z ¼ h). See Fig. 7. As in the case of the wave
guide with triangular cross section, the base has length
jb� aj and the height of the wedge above the Dirichlet
plate is h. The parameter regions are:�1< a, b <1, or,

equivalently, 0 � �, �<1. We measure lengths in multi-
ples of h and use parameters ðh; ~a ¼ a=h; ~b ¼ b=hÞ to
describe it.
We proceed exactly as for the triangular wedge and find

that the three-body Casimir energy of a parabolic wedge is
also given by Eq. (103), except that the distances now are
given by

FIG. 6 (color online). Irreducible three-body Casimir energy of a semiweak triangular waveguide as a function of the cross-sectional

area and perimeter. This energy vanishes and is minimal along the line ~p ¼ 1þ 2~sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4~s2

p
.
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�u212 ¼ ð~au1 � ~bu2Þ2 þ ½ð1� u1Þ2 þ ð1� u2Þ2�2; (113a)

u212 ¼ ð~au1 � ~bu2Þ2 þ ½ð1� u1Þ2 � ð1� u2Þ2�2: (113b)

The three-body Casimir energy of a parabolic wedge
on a Dirichlet plate also is minimized when either ~a ¼ 0,

� ¼ 1, or ~b ¼ 0, � ¼ 1. Because of the constraint,
�a2 ¼ �b2 ¼ h, the shorter side of the parabolic wedge
in this case degenerates to a straight line perpendicular to
the Dirichlet plate. Most of the analysis of the waveguide
with two sides of parabolic cross section is the same as for
a triangular one with only minor changes in interpretation.
We note that the rescaled area and perimeter of the para-
bolic wedge are

~s ¼ 1

3
j~b� ~aj; (114a)

~p ¼ j~b� ~aj þ ~a

2

�
~a2

2
sinh�1 2

~a2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

~a4

s �

þ
~b

2

�~b2
2
sinh�1 2

~b2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

~b4

s �
: (114b)

The three-body Casimir energy of a semiweak parabolic
wedge is shown in Fig. 8. The approximation of replacing
the integral by unity is not very accurate in this case,
but the overall dependence of the irreducible three-body

energy of a parabolic waveguide on the parameters ~a and ~b
is qualitatively similar to that of a triangular one.

IX. DISCUSSION

In Casimir studies one generally is interested in depen-
dence of the vacuum energy of massless quantum fields on
the presence of objects whose interaction with the quantum
fields is treated semiclassically, with quantum fluctuations
of the fields describing the objects themselves being dis-
regarded. This leads to an effective action with ultraviolet
divergent contributions associated with geometrical prop-
erties of the objects reflected by the coefficients [38,39] in
the asymptotic expansion of the heat kernel [34,40,41].
The corresponding ultraviolet divergences in the vacuum
energy are proportional to the spatial volume, surface
areas, curvatures, as well as number and type of corners
or intersections of the objects. They depend only on local
geometric properties of the system.
Fortunately, there also are nonlocal contributions to the

vacuum energy that do not depend on the high energy
description of the model and can be reliably obtained in
semiclassical approximation. The best known of these is
the force between disjoint classical objects due to vacuum
fluctuations, first obtained for parallel metallic plates by
Casimir [1]. It has since been shown that this force is
always finite [10] and that the associated finite contribution
to the vacuum energy may be computed for arbitrary
objects in terms of the single-body scattering matrices
with Eq. (2). The investigation of generalized pistons in
[42,43] suggested that one may isolate finite parts of the
vacuum energy that describe the forces between objects
even if these are not mutually disjoint. These ideas were
formalized in [22] where irreducible N-body contributions
to the vacuum energy were defined recursively and shown
to be finite unless the N-bodies have a common intersec-
tion. For a scalar field whose interaction withN-objects are
semiclassically described by positive local potentials, the
irreducible contribution to the vacuum energy furthermore
was found to be positive for an odd, and negative for an
even, number of objects.
We have here put these general considerations on a much

more practical and concrete footing and developed a for-
malism to extract and compute irreducible N-body contri-
butions from the single-body transition matrices. Starting
from Faddeev’s equations in Eq. (21), the irreducible parts
of the N-body scattering matrix were extracted recursively.
We used this formalism to compute several examples of
irreducible two- and three-body Casimir energies. All our
two-body results have been obtained previously, but we
were able to reproduce some of them in a much simpler and
direct manner. Our three-body results for irreducible
Casimir energies are new. The irreducible three-body con-
tributions to the Casimir energy of parallel semitransparent
plates was obtained analytically and indeed remains finite
when two of the three plates overlap. We showed explicitly

FIG. 8 (color online). Irreducible three-body Casimir energy
for a parabolic waveguide of given cross-sectional area. See
Fig. 5 for description.

FIG. 7 (color online). Weakly interacting parabolic wedge on a
Dirichlet plate.
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how the irreducible three-body contribution precisely can-
cels the irreducible two-body Casimir energy of the outer
plates when Dirichlet boundary conditions are imposed on
the central plate—providing a raison-d’être for both, the
existence and sign, of the three-body contribution to the
force. For semitransparent plates the cancellation is not
complete but can be sizable.

In Sec. VI we analyze the irreducible three-body inter-
action in semiweak approximation. In this approximation
we are able to compute the irreducible three-body Casimir
energy for objects that are not mutually disjoint and whose
irreducible two-body contributions diverge. The irreduc-
ible three-body contributions to the vacuum energy of a
waveguide constructed by placing a weakly interacting
triangular or parabolic wedge on top of a Dirichlet plate
was found to be finite and computable without intermediate
regularization. Our examples demonstrate that not only
corner divergences, but also divergences related to curva-
ture are subtracted by this procedure. We also explicitly
verified that the irreducible three-body contribution to the
vacuum energy of a massless scalar field is positive.

To develop a better understanding in a nonperturbative
setting, we are currently investigating the irreducible three-
body vacuum energy of a triangular waveguide formed by
imposing Dirichlet boundary conditions on three intersect-
ing infinite planes (the geometry is similar to that of Fig. 3,
but with sides of infinite extent). In the limit of an

extremely flat triangular cross section, we intend to com-

pare the numerical results with analytic calculations. We

further wish to extend these methods to the physically
relevant electromagnetic case. Although irreducible

three-body contributions to the vacuum energy are ex-

pected to remain finite, we so far have no rigorous state-

ments about their sign for vector fields. They may be

responsible for catalytic dissociation of van der Waals

molecules near conducting surfaces. In [44] the interaction

of two objects in the presence of conducting walls is

analyzed and nonmonotonic behavior of the Casimir force

is observed. The analysis has been extended to situations

where the two objects are immersed in fluids to attain
repulsive effects [45]. The scalar analog of this setup for

two weakly interacting point potentials near a Dirichlet

plate was illustrated in [25] using Eqs. (88) and (90) of

Sec. VIA. Interestingly, it is at least conceptually feasible

to directly measure irreducible electromagnetic three-body

contributions to the vacuum energy by balancing off irre-

ducible two-body parts [25].
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