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We show how to construct supersymmetric actions for higher-derivative scalar field theories of the form
P(X, ¢), where X = —(d¢)?/2m*, within the context of d = 4, /N = 1 supersymmetry. This construc-
tion is of general use, and is applied to write supersymmetric versions of the Dirac-Born-Infeld action. Our
principal application of this formalism is to construct the supersymmetric extension of the ghost-
condensate. This allows us to study the interplay between supersymmetry, time-dependent backgrounds

and violations of the null energy condition.
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L. INTRODUCTION

Generic compactifications of string theory lead to a
number of scalar fields, or moduli, in the resulting effective
four-dimensional theory. The moduli describe the compac-
tification geometry, gauge connections and the positions of
branes in the internal space. Although at late times one
requires these fields to be fixed at a minimum of their
potential, it is generally believed that in the very early
Universe, close to the time of the big bang or before,
some of these moduli might have played an important
dynamical role. The effective actions for these scalar fields
contain higher-derivative kinetic terms, which can become
significant at larger energy while remaining within the
regime of validity of the theory.

One example is Dirac-Born-Infeld (DBI) inflation [1,2],
where the scalar field describing the position of a brane
plays the role of the inflaton field and drives a phase of
accelerated expansion of the Universe. In this scenario,
interesting new dynamics arise precisely because of the
higher-derivative kinetic terms. Because of nonlinearly
realized symmetries, the effective DBI theory remains
valid for large brane velocity provided the acceleration
is small. The higher-derivative form leads to distinct
predictions for cosmological observables—in this case,
equilateral-type non-Gaussianity in the primordial density
fluctuations [2,3].

Higher-derivative scalar field actions also play a central
role in ekpyrotic theories [4-17] and other bouncing cos-
mologies [18-21], in which the big bang is preceded by an
era of slow contraction. See [22] for a review. ekpyrotic
ideas were originally presented within the context of het-
erotic M-theory [23-30] and heterotic M-theory cosmol-
ogy [31-35], with the geometric and five-brane moduli
playing the essential role [36—41]. In the pre-big bang
epoch, quantum fluctuations in the scalar fields lead to a
nearly scale invariant spectrum of density perturbations
with significant non-Gaussianities [ 15,42—50], as reviewed
in [51]. A key prediction is that the primordial gravitational
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wave spectrum has a strong blue tilt and, hence, negligible
amplitude on large scales [4,52,53].

Central to the viability of bounce scenarios is a smooth
cosmological transition from contraction to expansion.
This requires violating one of the most important energy
conditions in general relativity, the null energy condition
(NEC). For this to occur, the cosmology must pass through
an epoch in which the sum of the effective energy density
and pressure is negative, p + p < 0. Unfortunately, it was
shown in [54] that if the ““‘usual’ scalar contributions to the
stress-energy—that is, theories possessing two-derivative
kinetic energy with any number of scalar fields, arbitrary
relativistic fluids and solids—violate the NEC, then
they necessarily contain ghosts or gradient instabilities.
However, it was realized that certain higher-derivative
theories, specifically those with second-order equations
of motion, provide a loophole to this theorem [21,54-56].
The first example of this was the ghost condensate [57,58].
This allows for ghost-free NEC violations leading to a
smooth bounce [55]. A second example is the recently
proposed Galileon scalar field theories [56,59]. Whether
or not these theories can be realized in string theory has yet
to be determined [60,61]. But, from a purely low-energy
perspective, they offer consistent ghost-free field theories
which achieve NEC violation and, hence, bouncing cos-
mology. New ekpyrotic theory, in particular, successfully
merges an ekpyrotic contracting phase with a ghost-
condensate phase—leading to the big bang and the present
epoch of expansion [13,14].

In many cases of interest, the four-dimensional actions
ought to be supersymmetric. There are several reasons for
this. The first is that the configurations in which some
amount of supersymmetry is preserved are also those
which we trust the most, as the residual supersymmetry
protects the action from large and difficult to calculate
corrections. Secondly, one expects these theories to
arise from compactifications of superstrings to four dimen-
sions. Such vacua often retain some degree of supersym-
metry. From the point of view of phenomenology, the most
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interesting case to consider is that of minimal N = 1
supersymmetry and, hence, we will restrict our attention
to that case. In this paper, we show how to construct
supersymmetric extensions of scalar field theories whose
kinetic terms are of the form P(X, ¢), where P is an
arbitrary function that is analytic in X = —(d¢)>/2m*
and ¢ around zero. For example, the above-mentioned
DBI theory is of this type [62]. Hence, our results offer
an N = 1 supersymmetric framework in which to study
DBI inflation.

Ghost condensate actions are also of this form. The
supersymmetrized ghost condensate theory presented
here offers a concrete setting in which to explore the
relationship between supersymmetry, time-dependent
backgrounds and NEC violation. As elaborated below,
we find that, not unexpectedly, the marriage of supersym-
metry and NEC violation is not one without friction.
Indeed, aside from ¢, one now has to worry about the
stability of the other component fields—the second
real scalar field y, the spinor ¢, and the auxiliary field
F—required by supersymmetry. (In this paper, we will
always take ¢ to be one scalar component of a chiral
superfield.) For “pure” P(X) ghost condensate theory,
we find that, as usual, the spatial gradient of ¢ perturba-
tions vanishes at the ghost condensate point and becomes
negative in the NEC-violating region. Nevertheless, the
dispersion relation for ¢ can be stabilized by including
supersymmetric higher-derivative terms that leave the ac-
tion for the other components fields unchanged at quadratic
order. The fluctuations in the second scalar field y, how-
ever, come out entirely wrong—the time-derivative piece
vanishes, whereas the spatial gradient has the wrong sign.
Once again, however, we find supersymmetric corrections
to the action that make the y fluctuations—both temporal
and spatial—stable. Finally, the time-derivative kinetic
term for the fermions is healthy, but their gradient term is
of the wrong sign. But in this case, we are unable to find a
simple modification to the action with the superfield ex-
pressions we have analyzed. Thus, within the context of
supersymmetric P(X) theories and their simple general-
izations, the fermion spatial gradient term has the wrong
sign, though the nature and physical implications of this
potential instability remains unclear to us. It is worth
advertising that in the supersymmetric extensions of
more general higher-derivative scalar theories, the fluctua-
tions in all component fields—including spinors—can
have correct sign temporal and gradient kinetic terms
around NEC-violating solutions. This is the case, for ex-
ample, in Galileon theories. We will present these results,
including a complete supersymmetrization of Galileon
theories, in a forthcoming publication.

The paper is organized as follows. In Sec. II, we describe
the steps in supersymmetrizing P(X, ¢) theories, starting
from the simplest X and X? terms (Sec. Il A), generalizing
to X" (Sec. IIB) and culminating in the general P(X, ¢)
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case (Sec. IIC). In Sec. III, we apply these results to
construct the supersymmetric version of the DBI action,
for arbitrary warp factor. We then turn our attention to
supersymmetric ghost condensation (Sec. IV), including a
complete analysis of perturbations around the ghost con-
densate solution. We recap the key results and outlook for
future directions in Sec. V.

II. SUPERSYMMETRIC P(X, ¢)

We will work in superspace, as this approach makes the
invariance of our actions under supersymmetry transfor-
mations automatic. Our strategy is to first rewrite the non-
supersymmetric Lagrangian function P(X, ¢) as a series in
powers of X with field-dependent coefficients:

P(X, )= Y a,(¢)X", (1)

neN*

where

_ b s,
X - 2m4 (ad))z 2m4 (¢ d) d),z)- (2)

Here, m is a mass scale introduced so as to render X
dimensionless. For most of the paper, we will set this
mass equal to 1, in order to minimize the amount of clutter
in our formulae and because it is straightforward to rein-
state the m-dependence if required. Space-time indices are
denoted by wu, v, ..., spatial indices by i, j, ... and time
derivatives by overdots. Our goal is to construct the super-
space expressions for the individual terms a,X", using
chiral and antichiral superfields ® and ®* respectively,
as well as the superspace derivatives D and D (our notation
and conventions are those of Wess and Bagger [68]). More
precisely, the chiral superfield ® consists of a complex
scalar A = (¢p + iy)/ V2, with ¢ and y real scalars, an
auxiliary field F and a Weyl spinor ¢ ,. We will be inter-
ested in superspace Lagrangians which reduce to the form
a,X" when y = F = ¢y, = 0. In fact, we first analyze the
case where the functions a, are constant. It will then be
straightforward to extend our formulae to include the case
of field-dependent coefficients.

Before embarking on this program, we should clarify
one point. We will construct theories invariant under global
supersymmetry, even though we have in mind applications
to cosmology. This is because, as we will see, the salient
features of the supersymmetric extension are already con-
tained in the globally supersymmetric theories. However,
since we have in mind eventual coupling to gravity, the
overall sign of the actions considered here is meaningful
and will, therefore, be chosen appropriately. This will be
particularly important when we look at the ghost conden-
sate model.

A. X and X?

In order to set our notation, let us briefly review the
standard construction of the supersymmetric extension of
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X. A chiral superfield ® has a component expansion in
superspace that reads

_ 1 _
© = A+i000A, + 000 00A + 60F + 204

2

with the complex scalar A(x), the auxiliary field F(x) and
the spinor ¢ ,(x) being functions of the ordinary space-
time coordinates x*. Spinor indices which we do not write
out explicitly are understood to be summed according to
the convention 6 = 6, and 4 § = ,6%. The super-
symmetric action is given by

004, o"0, 3)

f d*xd* 0Pt P = f d*x®1®|,p55, 4
where
DT D|yy55 =JATDA + JADA" — S04 0A" + F'F

i-_ i-

— A A+ F*F+%(¢,w“(0 — ot ).

(&)

To obtain the last line we have used integration by parts, as
well as an identity involving the o matrices [68]. After
rewriting the complex scalar A in terms of the real fields ¢
and y as

1
\/__2_

we can see that the above action contains X = — 1 (d¢)*;
becoming identical to it when we set y = F = ¢, = 0.
We now want to find a supersymmetric version of X2. As
it turns out, this is the most crucial part of our calculation.
As we will see, once one has the supersymmetric version of
X2, it is straightforward to use this expression as a building
block to construct the supersymmetric extensions of higher
powers of X. Above, we saw that the superspace integral of
®td gave us a Lagrangian containing (9¢)>. We now
want to generate kinetic terms involving two more fields
and two more space-time derivatives. The supersymmetry
algebra states that the anticommutator of the superspace
derivatives D and D is proportional to the momentum
operator, which is a space-time derivative,
{D,, D} = —2ic"% .9 @)

aa® ur

A=—(¢ +iy) (6)

Hence, we need to insert two more D’s and two more D’s
into our superfield expression, as well as another ® and
®T. (We will comment on superfields involving four ®’s,
or three ®’s and one P, in a footnote below.) A priori,
there is a large number of possible terms to consider.
However, for each integrand containing more than two
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derivatives acting on a single superfield, one can use
integration by parts to get a sum of terms with at most
two derivatives on any field. Similarly, for each term con-
taining fewer than two derivatives acting on any superfield
(in fact, the only such term is D®D®DDPTDPT) we can
use integration by parts to get a sum of terms, each con-
taining a field on which two derivatives act. Hence, we
need only consider terms which contain at least one field
with two derivatives acting on it. All other terms, possibly
after using integration by parts, can be obtained from linear
combinations of these. This leaves eight terms:

D*®D*dt dpt ®)
D*OPDP DDt ©)
D2ototpDODP (10)
DDODDOT DDt (11)

DDO®DDP P12 (12)
DD®TDDdt P? (13)
DDODODPT Pt (14)
DD®TDOTDDOD. (15)

(Here and throughout this paper, derivatives are under-
stood to act only on the nearest superfield. For example,
D*OD?*Ot oDt = (D2P)(D>*PT)DDT.) However, the
last four terms can in fact be related to the first four using
integration by parts, so really there are only four possible
terms. Their superspace integrals yield the following
Lagrangians when restricted to the complex scalar A:

D*®OD*®t O, 5, = 16AA*TAOA*  (16)
D*®PDPT DDy, = 16AL0AIA* - A (17)
D2®tDTDDODD|yp55 = 16A* A IA - A (18)

= 8[AA"JADA™ + ATJA0A™ - 9A™ + A"[JA™9A - 0A
+ (9A - 0A)(0A*0A¥)]. (19)

The real part of (0A - dA)(0A* - 9A*) reduces to X? and,
hence, this is the term that we want [69]. We can isolate it
by taking an obvious linear combination of the above
terms, namely, — & - [(16) + (17) + (18)] + & - (19). This
linear combination can in fact be rewritten, using integra-
tion by parts, as the single term - D®DPDPTDPT. In
terms of all of the component fields (up to quadratic order
in the spinor i), it is given by
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EchDcI)DcI)TDcI)f =000 0[(0A)?(0A*)> —2F*F0A - 0A* + F*?F? — %(l,ba'”‘(})‘(fylﬂ,,,)A”uA,*}\
i ~ 7 * . 1.,V * . v * i 7 * *
+ E((ﬂ),,O’”O'"G’"l//)Ay#A"A Fipot A AT, — it ot A LAY, + 5 Yot (A%, 0A — A A%
1 -1 1 _ ; i _
+ 5(FDA — 9F0A) Y +§(F*DA* — OF A" Y + EFA,M(WMUWV — 3, ")

1 _ _ 3i _ _
+ EF*A,*M(%U”UW — oty ,) + 3F*F(¢,MU’*¢ — oty )

+ % Yot §(FF:, — F'F )]+ 2i0 0(0A 00+ A%, — N2i00(9A* ) yotA ,
+V200FA (iF ya”8 + 5" a* §A,) + 20 0 F*A ,(—iFOa* i + a* G 0A%,)

— %59(&\)2[& - %00(8A*)2¢ i+ 2ot 0) (00" A LAY, +2F FOYO

+i00*O(FA , f f —F*AS, pip) + %aeﬁ{y + %ééF*le W + 2FF(F*0 + FO )
+ipoty(FAY, — F*A ) (20)

D 0090‘%(3@4. (21)

This superfield has a number of special properties:

(1) It is a “clean” supersymmetric extension of X2, in the sense that this superfield contains X> and no other
purely ¢-dependent terms. (Just to make this point clear: we did not want to obtain something like
¢¢ ()%, which, after integration by parts, would include (9¢)*, but would also generate additional unwanted
terms.)

(2) We might have expected to find a term containing (JA - 9A*)?, which, in terms of the real scalars ¢ and y, would
have given the Lagrangian ; ((9¢)* + (9 x)?)*. However, this is not what supersymmetry provides. Instead one gets
(0A)*(9A*)?, which corresponds to the Lagrangian

(GARGA) = L (08 + 3 ()" = 3 (8P (OX + (9 - )" (2)

An interesting feature is the last term, which mixes ¢ and y. Note that if we restrict our attention to purely
time-dependent fields, the above Lagrangian reduces to the O(2)-invariant form %(d)z + x?)2, as one would also obtain
from (A - 9A*)%. On the other hand, the dependence of the supersymmetric term (22) on spatial gradients is more
involved.

(3) Although we will discuss the auxiliary field in more detail later on, here we simply point out that, despite it
containing higher derivatives, the superfield action (20) does not generate a kinetic term for F.

(4) With the spinor set to zero (which can be done consistently, as there are no terms linear in /), the only nonzero
component of superfield (20) is the top #6 § component—all lower components vanish. This property renders this
term particularly useful as a building block for constructing larger terms that include X2, as we will elaborate on in
the next section.

For completeness, we should add that there exists a second, inequivalent way of removing the unwanted terms from
Eq. (19), which involves subtracting off the term J ®2DD®DD®1 plus its Hermitian conjugate [70]. The end result is
proportional to (® — ®1)2DD®DD DT, and this term also represents a supersymmetric extension of X2. Up to quadratic
order in fields other than ¢, its components read
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~ 1 (® — O1PDDODDV! = 0003] 3 (56)* + ;ISP (OXP = (GSPXTX ~ Db + DX b

S LB — 2P0 0O) — LGSR~ Yot )

i
2

3 bub Ut~ ot i) | + 04V 0046 (00~ 5)

+=(09)’x(00y , 070 +6000",) — 200 0xd , b (0" + Gyr”)

S

)=

This superfield shares a number of properties with Eq. (20):
it is also a clean supersymmetric extension of X2, and does
not contain a kinetic term for the auxiliary field F.
Moreover, up to the order considered above, the fermionic
terms are identical for both supersymmetric extensions.
This implies that, to a large extent, it does not matter which
of the two superfield extensions of X* we use. However, the
term (23) does not reduce to its top component when the
fermion is set to zero. This fact, together with the presence
of numerous undifferentiated occurrences of the second
scalar y, renders this second version less useful in the
construction of supersymmetric extensions of X" for
n > 2, and we will thus use the former expression (20)
for the remainder of this work.

B. X"

We have just seen that the supersymmetric extension of
X? enjoys the property that this superfield, when the spinor
is set to zero, contains only the top component proportional
to #9006, and no lower components (this is possible,
incidentally, because it is a vector superfield). Moreover,

16

_ [_%(a(A + A*))2]"72[(8A)2(8A*)2 — 2F*FOA - 0A" —

_ _ _ _ n—2
iD(I)DCI)DCIDTDCDTI:%{D, DY® + &1){D, DYD + qﬁ)]

(IRO0FD § +00 F0u) = (68700 I —(5 8700 8x , — 10038V

D0 7+ QAP O0XF — BTXF) + 18R X(OW — 1) =5 (0

(23)

this top component contains the term (d¢)*. Hence, it is
now easy to construct supersymmetric terms that contain
(d¢p)* as a factor, such as the X" terms. Using the super-
symmetry algebra (7), we have

3%{0, DY® + dH)D, DD + 1)
1
= — 5(6 ¢)? + higher components. (24)

Hence, one can generate supersymmetric extensions of X",
n = 2 by considering the superfields

X" C %D(DDCDDCI)*DCI)*

X [%{D, DY@ + DD, DY + cpf)]’“2

0000
(25)

More precisely, up to quadratic order in the fields ¢ and F,
we have

0606 6,quad

i - 5 % i v~ v #
E(wa'“a"‘a"’t,b,,,)A,MA’/\ + E(tp,,,a' arotP)A LAY

. Jv * . v * i Jr(AF — *
F PO PA LAY — RO A LA S o AL DA — 4,004 )]

n—2
2

+

n—2 1 wno P73 . .
+ 1 [— 1004+ 4) ] ALAY AT+ AVNA,,

[— L0+ A*))Z]"‘?A - AT) (AN (APt o — A N(0A ot b

— AL )iyt at o . (26)

Writing A in terms of the real scalars ¢ and y, and restricting to quadratic order in y, this becomes
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%DCDD(I)DCI)*D_CI)T

x [31—2{1), PY® + OHYD, BH® + c1>+)]"72

666 6,quad
= X"+ X" N9x)* + X" 2(d¢ - 9x)* + 2X" ' FF

FXT (0t~ gt
(= DX, (B o). @D)

There are closely related terms which are also of inter-
est, namely

1 - _
1—6ZD<I>DcI>DcI>TD<I>T[{D, D} — dt)
X {D’ D_}(q)Jr - (I)):”@()é 9,quad
— _X2(8X)2’ (28)

l—éSDq)D(I)D_CD*DCDT[{D, DY@ + OHYD, DD — B

X [{D, D}((I) + (I)T){D; D}((I)T - (I))]lt‘)ﬂéé,quad
=X%(9¢ - Ix)* (29)

These terms do not contribute to P(X, ¢). However, they
have the feature that, from a model-building point of
view, they can change the properties of fluctuations of
the y field independently from of those of ¢ (and )
when ¢ develops a time- or space-dependent vev. We
will return to this point when discussing the ghost conden-
sate background in Sec. IV.

Note also that one can take combinations of (27) and
(28) which resum to the terms

_ _ _ _ n—2
%DCDDCI)DCI)*DCD*(% D@DD@*)

0006
D (0A)2(9A*)?(—0A - 9A*)" 2, (30)
Such terms allow us to obtain a supersymmetric extension

that is symmetric in terms of ¢ and Y, as it consists of
terms of the form

(G087 + 36x0° =5 @drx? + (06 -0
3087 — 5002 G1)

Moreover, in terms of time dependence alone, this gives
the simple extension

() rls )

which preserves the functional form of P.
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C. The supersymmetric extension of P(X, ¢)

So far, we have only shown how to construct super-
symmetric versions of X". It is straightforward, however,
to multiply these terms by field-dependent coefficients.
Note that

L t k: k k—1 a7
I:\/E(CD-F(D)] * + 2kt Oy + 0 §)

— k¢ 10t by, + - (33)

Now consider
1 N Sht Hdt
E(QD + OT) RD(PD(DD(I) DD 054

k -
— KX+ ) — Z(;[)k—l Yo' T oMY b X .

k -
—\/—§¢k71¢0"¢(3¢)2xﬂ o (34)

Hence, the only effect of multiplying the superfield (20) by
[(® + ®1)/y/2]F is to multiply all terms that either do not
contain y, ¢ and F, or are at most quadratic in these fields,
by ¢*. All other contributions are cubic and higher-order in
fields other than ¢ (we only wrote out the two leading
terms). We do not need the higher-order terms for our
purposes. However, it is straightforward to work them
out should they be required. The same argument will go
through for the terms (27) when they are multiplied by
[(® + ®T)/V/2]F. Once again, to quadratic order in fields
other than ¢, they simply get multiplied by ¢*.

Hence, it is now clear that a supersymmetric extension
of

Sp= f d*xP(X, ¢) = f d*x Y a,($)X" (35)

neN*

is given by

d + ot
SSUSY = f d*xd*0K(®, ®T) + f dixd’o Z“"(i)
n=2 \/z
1

X —DcDD(DDcI)fD‘d)’r[i{D, DY® + ®T)
16 32
_ n—2
X {D, D{(® + @T)] , (36)

where an(%r;-)i) is the same function as a,(¢). For the

standard kinetic term X, we have written the supersym-
metric generalization as the integral of the Kéhler potential
K(®, ®1). This leads to the action —a,(¢)dAIA*, where
a1(¢) = K gq+lgp—g—o- To quadratic order in fields other
than ¢, action (36) reduces to
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SusY, = / d*xa ()] X

- %(8){)2 + F*F
Wt = ot |

+X"2(9¢p - D x)?

+ S a @] X+ X o2

n=2

i _ :
+2X" IR+ X li(w,ﬂtﬂ‘lﬂ—d/a"‘gb'ﬂ)

0= DX 2,8, G~y i) |
(37)

It is important to realize that this action is not the unique
supersymmetric extension of P(X, ¢). For example, cer-
tain terms, such as (28) and (29), can be added since they
change the resulting dependence on the second real scalar
X, but do not change the purely ¢-dependent terms.

Following up on our discussion at the end of the last
section, we can make use of the terms (30) to write a
supersymmetric extension for which the derivative terms
are symmetric in ¢ and y. This is given by

SUSY,symmetric
SP

O + of
= fd“xd“BK(qD, <1>+)+fd4xd4eza( )

n=2

-2
X %DCDD(I)DCD*D(I)*(S DDcDDDcD‘r) . (38)

This action has the same dependence (up to quadratic
order) on F and ¢ as (36) above.

Let us briefly discuss the auxiliary field F. In (36), there
are some interaction terms that are quadratic in the spinor
¢ and involve derivatives on F which cannot be removed
using integration by parts (an example is provided by the
final top-component term coming from (20)). However,
there is no pure kinetic term for F, nor any term such as
(0A - 0A™)(9F - 0F*), which would act as a kinetic term
for F in a background with a nonzero vev of (9 ¢)?. This is
fortunate, since it implies that F' has not become a prop-
agating field. In order to show more explicitly how to
eliminate the auxiliary field, let us consider the supersym-
metric version of X + bX? for some dimensionless con-
stant b (a similar analysis will apply to the X" terms with
n > 2). Then the equation of motion for F is

b
— . * k2 * *

Co(gy) -

3 _ - _
—5’ (Y o — ot ) + F  ipor

—A* w0y — ot Tty )

n %(lpoﬂ ;Z),MF]. (39)
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We can solve this equation perturbatively as a series in
b/m* by writing F=F,+ F, +--- where F, is at
order (b/m®)!. To lowest order, F, = 0. At the next order,
we find

b ) 1 )
F = W[—DA*W —J0AT- o)

— LAt = oty )] (40)

When plugged back into the action, this leads to the terms
b? , -
AL=ZOADA Yy it (D)

which are all corrections to the higher-order interaction
terms. These do not alter the vacuum or stability properties
of the theory and, hence, we need not consider them for
our analysis.

Even though this goes beyond the scope of the present
paper, we note that in the presence of a superpotential W,
the elimination of the auxiliary field leads to interesting
new terms. In that case, the lowest order solution is Fy =
—90W*/9A*, as usual. At the next order, we find

F = %[—DA*W ~Loaratu)

——A* W0 at i — ot at )

WAt 4 2%(%)
0A" 0A \ 0A"

3i oW* - _
+ (Y ot — ot )

2 aA*

w
— g e =y e, L @)

Plugging this back into the action leads to corrections at
order O(b/m*) of the form (for example)

b . b . - - b
— VA 9A™, WV!(@b,#a’“tp—tpo“tﬂ‘M), WVZ'

m
(43)

: : * IW IW*
where the lowest order potential is V(A, A*) = A o4 In

other words, there are corrections to both the kinetic and
potential terms, proportional to the potential itself. This
may lead to interesting new effects for models where the
potential contributes significantly to the dynamics.

As a final comment: above, we solved the equation for F
as a series expansion around the usual solutions; that is, we
assumed that the higher-derivative kinetic terms provide a
suitably small correction. However, the equation for F is
cubic, and there may be other branches of solutions that are
not continuously connected to the usual solutions when the
higher-derivative terms are switched off. This may lead to
an entirely new role for the “auxiliary” field . We leave
an investigation of this subject to future work.
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III. AN EXAMPLE: SUPERSYMMETRIC
DBI ACTIONS

We can immediately apply our formalism to write super-
symmetric versions of DBI actions of the form

WL f(@)ag) — 1. (4d)

L DBI —

f (¢)

The prototypical DBI theory describes a D3-brane moving
radially (with ¢ parameterizing the radial position of the
brane) in AdSs space in the context of the AdSs X §3
compactification of type IIB string theory; in that case
[1] f(¢) = ¢4, but we will leave the function f arbitrary
here. In fact, the string theoretic origin of the action (44) is
irrelevant to this paper—here, our goal is simply to show
how to obtain linearly realized N = 1 supersymmetric
extensions of it. (Which particular such supersymmetric
extension will arise in a given string theoretic context will
depend on all the details of the specific compactification
considered.) In terms of X, we can rewrite the action as
the series

L o = Z( Jrian o as)

n=2

and hence we can immediately obtain a supersymmetric
version of this action by inserting into (36) the relations
K = ®t® and

e = —f(q)%f)" 1( Joorao)

In components, up to quadratic order in fields other than ¢,
this yields (37) with a; = 1 and a,~, as just given.

A different supersymmetric version of the DBI action,
which treats the ¢ and y kinetic terms more symmetri-
cally, can be obtained using (38), giving

2\ [P+ dH\n-1
SUSY_]d40q)T(D__Z<2)f( )
4 n 2
n=2

_ _ 1_
><D<1>Dq>DcI>’qu>’f( 4DD<I>DD<I>T) . (47)

Looking at time-dependence only, with the auxiliary field
set to zero and where we write out only the interactions of
the fermion with ¢ (up to quadratic order in fermions), this
resums to the Lagrangian
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SUSY

) L i= s @+ -1
+ i g0 — YO )

1
X [Z(zn - 1)(2)f(¢)"1(—d>2)”1]

n=1

- L it e @+ -

f(@)
+i( oo — Yo Olﬁo)f(¢)¢2
x[;— 1], (48)

V1 - f(#)¢’

where we have used

(% - ")(1%1) N G - n)n!(;—! - n!(é—(;;—)!n)!

=%<—n%) (49)

Without pursuing this topic in the present paper, we simply
note that, interestingly, the characteristic relativistic factor

\/1 — f¢? has moved to the denominator in the fermionic
term.

IV. THE SUPERSYMMETRIC
GHOST CONDENSATE

Arguably, the most surprising property of P(X) theories
is the fact uncovered in [57] that, in these theories, the NEC
can be violated in a controlled way under certain circum-
stances. This is an astonishing result, since NEC violations
are usually considered to be pathological. They tend to be
associated with the appearance of ghost fields, that is,
physical fluctuations with the wrong-sign kinetic term,
which render the vacuum unstable. The way in which
this fate is circumvented for P(X) theories is through a
combination of higher derivative effects and because such
theories admit a time-dependent, Lorentz symmetry-
breaking vacuum—the ghost condensate—which we re-
view below.

We are interested in studying the supersymmetric ver-
sion of the ghost condensate theory, for a number of
reasons. First of all, it should be interesting just to see
what we get. Higher-derivative scalar theories have, to our
knowledge, not been studied in the context of minimal
four-dimensional supersymmetry. One aspect of this
work is simply to show how such supersymmetric models
can be constructed. Secondly, it will be interesting to see
what effects the NEC violation has on the various addi-
tional fields, that is, y, ¥, and F, that are required by
supersymmetry. One might expect anything from no effect
at all, to the extra fields spoiling the viability of the model
altogether. Thirdly, it is not clear at present whether or not
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the ghost-condensate model can be obtained as an effective
theory from a string theoretic setup [60]. Reformulating the
model in a supersymmetric fashion may help in elucidating
this question. And finally, NEC violations are required to
describe certain types of dynamics in a cosmological
context at high energy. Examples include nonsingular cos-
mological bounces (such as those considered in new ek-
pyrotic models [13,14]), as well as the dynamics of the
internal dimensions in Kaluza-Klein models of inflation
(see [71-73]). Since supersymmetry may be a relevant
symmetry of nature at high energies, this provides further
motivation for supersymmetrizing the effective ghost con-
densate theory.

A. A brief review of ghost condensation

For a Lagrangian £ = P(X), the equation of motion is
given by

d i
E(P,qu) =0, (50)

where we assume that the solution does not depend on
spatial position. Typically, one takes ¢ = constant, which
is evidently a solution of the above equation. However, the
equation of motion also allows for solutions with constant
X. These corresponds to having a vev of ¢ that grows
linearly with time,

¢ = ct, (51)

where c is a constant. Any constant will do. However, for
future reference, we bear in mind that in a cosmological
context, the equation of motion becomes

%(a@,xqﬁ) —0, (52)

where a(r) is the scale factor of the universe. This equation
implies that Hubble friction drives the evolution close to a
local extremum of P(X) where Py = 0.

The explicit time dependence of solution (51) breaks
Lorentz invariance, and this leads to interesting properties.
First of all, evaluating the energy and pressure densities
one finds

p=2XPy—P;, p=P (53)

so that p + p = 2XP x. Since by definition X > 0, the
NEC can be violated if Py < 0. That is, if we are close
to an extremum of P(X), then on one side the NEC is
satisfied while on the other it is not. For small fluctuations
S8 (t, X) around the solution (51), the Lagrangian can be
expanded to quadratic order in derivatives as

1 . .
L quaa = E[(ZXP,XX + Px)(0d)* — PxSp '8¢ ;] (54)

As a result of Lorentz-breaking, the coefficients in front of
the time and space pieces are unequal. We see that the
condition for the absence of a ghost is
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2XP gy + Py >0, (55)

which is automatically satisfied close to a local minimum of
P(X) and, importantly, for some distance into the NEC-
violating region itself. Hence, in this theory, the NEC can
be violated without the appearance of a ghost field. The
price one pays is that the spatial gradient term, proportional
to Py, is now very small and, more worryingly, has the
wrong sign when the NEC is violated. This signals a
gradient instability whose effects, happily, can be miti-
gated by introducing additional higher-derivative terms,
such as —(CJ¢)?, into the Lagrangian. Because of the
smallness of P x in the regime of interest, such terms do
indeed become relevant, and they imply that the model can
remain stable over a certain time scale. In cosmology, if
one wants to consider theories in which the Universe
transitions, in a smooth way, from a pre-big bang contract-
ing phase to the standard expanding phase, then during this
bounce the NEC must be violated. If the cause of NEC
violation is a ghost condensate, then a constraint on the
model is that the time scale over which the gradient insta-
bility is harmless must be at least as long as it takes for the
Universe to bounce [55]. See, for example, [13,55] for a
detailed stability analysis.

B. The supersymmetric ghost condensate

The ghost condensate arises as a solution of the equation
of motion close to a local minimum of P(X), for a positive
value of X. By expanding around the minimum and rescal-
ing the field ¢ so that the minimum lies at X = 5 (this
corresponds to choosing ¢ = 1), one can write the proto-
typical ghost condensate action as

[d“x[—x + X2 = [d4x[+%(a¢)2 + %((9(;5)4].
(56)

We now want to supersymmetrize this action. Using (5)
and (20), we obtain (setting F = 0 and up to quadratic
order in y and )

[SUSY — I:—cp’rq) + %DCI)DCDD_@TD_QD*]

0060
1 1 1 1
= +§(3¢)2 + Z(5¢)4 + 5(8,\/)2 - 5(3¢)2(3X)2
(0 03 = S (W0t — o)
SO~ )
~ bz (W~ Yo ) (57)

The bosonic equations of motion are

O¢ =Od(xX,uXp — 4 )
—2047(b b, + X ux) —20xx* b, (58)
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Ox=0x(d b, — x*xu) = 2X*" X uX» T & ud0)
— 20ty . (59)

These can be solved with either one or two ghost conden-
sates; that is, the general solution is of the form

¢ = ct, X = dt (60)

However, without loss of generality, one can set d = 0.
To see this, note that under the normalized field
redefinitions ¢’ = (cp + dy)/(c2 + d*)'? and y' =
(dp — cx)/(c? + d*)'/?, the ¢’ field corresponds purely
to the ghost condensate while y’ vanishes. The fermion
classical solution, of course, is zero. To assess the stability
of the supersymmetric ghost condensate, we can expand in
small fluctuations around the background as (now setting

c=1)
b =1+t 3), =8yt %)

(61)

X = 6x(t %),

The result, to quadratic order, is

LY = (82 +0-8¢'8¢; +0- (5 + dx'dx,

435600050 = 5905,

- % é(w,ia"éib —8Yaisi,). 62)

The first line reproduces the standard result (54) for the
single ¢ field ghost condensate, as it must. That is, the time
derivative term is ghost-free but, at the minimum of P(X),
the spatial gradient term for 6 ¢ vanishes. Furthermore, it
would have a small coefficient with the wrong sign if we
went into the NEC-violating region, as discussed below
Eq. (55). This gradient instability can be cured by includ-
ing other higher-derivative terms in the Lagrangian (that go
outside of the P(X) framework), such as —(CJ¢)?. The
most obvious superfield expression containing this term in
its highest component is
1

——D*®D*Pt |000‘0‘ =

—OAOA* + 9F* - OF
16

- % iﬁ’MO"LDJZI + %.Dwo*‘l_ﬁ,#.
(63)

The trouble with this expression is that it also includes a
kinetic term for F, thus rendering the auxiliary field dy-
namical! However, other supersymmetric terms, which do
not have this drawback, can fulfill the role of stabilizing the
¢ gradient. The simplest such example is
1 o _ _
- WDq>DcI>D<I>‘fD<1>T[{D, DHD, DH® + 1) Pl pp56,quaa
= —(Hs¢)%, (64)

where we have evaluated this up to quadratic order in
fluctuations in a ghost-condensate background. To that
order, (64) does not contain the auxiliary field F (or y
and ¢) at all.
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Having seen how the gradient instability of ¢ can be
addressed in a manner similar to the usual nonsupersym-
metric case, we now turn our attention to the new fields
introduced by supersymmetry. As is evident from (62), the
fluctuations of the second scalar y come out entirely
wrong. First, there is no time-derivative term for y (and
in the NEC-violating region, the coefficient becomes
ghostlike) while the spatial gradient term is of the wrong
sign. Taken at face value, this would be a serious instability
of the model. It would essentially ruin the viability of
the supersymmetric ghost condensate—at least in the
most interesting, NEC-violating regime. We show in the
Appendix that this bad behavior of y is due entirely to
the fact that ¢ and y enter (57) in a symmetric way, and
that this problem cannot be cured by looking at a deformed
vacuum for one or both of the scalars. It follows that
additional higher-derivative terms that are symmetric in
¢ and y, such as (30), will not resolve this problem.
However, as soon as we break the symmetry between ¢
and y, the y fluctuations can be stabilized. With this in
mind, consider the supersymmetric terms in (28) and (29),
each of which violates this symmetry. For example, the
linear combination 8 - (28) — 4 - (29) yields

%D@D@D‘@TD‘@[{D, DD — o)
XAD, DHPT — D)]l4p5 5 quaa
- %D@D@D@fﬁ@f[{u, DY@ + ®1)
x {D, D}(® — ®H{D, DY® + 1)
XAD, DH®T — D)]l4974,quaa
= —2(0¢)*(9x)> = (0)* (8¢ - Ix)*. (65)

Adding this to Lagrangian (57), and expanding to quadratic
order around the ghost condensate, changes both the time
and spatial gradients of y in (62) to
LEL%%Y =+ (8x)?—8xdx;t... (66)
This renders the y fluctuations stable, without changing
anything else. Whether such terms would arise in a
more fundamental derivation of the ghost condensate
superfield action remains, of course, to be seen. However,
from a purely effective field theory standpoint there is no
instability associated with the second scalar field y.
Finally, let us examine the fluctuations of the spinor ¢
around the ghost condensate. We see from (62) that,
although the magnitudes of the two coefficients are equal,
the time-derivative term is ghost-free while the spatial
gradient term has the wrong sign [74]. Note that this is
not the same kind of gradient instability as occurs for ¢.
There, the coefficient of the spatial derivative term is zero
or small and, hence, higher-derivative terms can play a role
in guaranteeing stability over an extended time period. For
¢, on the other hand, the coefficient of the wrong-sign
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spatial gradient term is not small. It follows that the in-
clusion of higher-derivative terms, such as those in (63), is
necessarily irrelevant. The situation for the fermion, there-
fore, is more akin to that of the second scalar y, whose
deep wrong-sign spatial gradient had to be corrected by the
addition of a new second order term—the sum of the two
kinetic spatial gradients having the correct sign. However,
within the context of the superfield expressions we have
analyzed—with the same number of fields and derivatives
as the X" terms—we are unable to find a fermionic analog
of this mechanism. That is, within the context of the super-
symmetric extension of the pure P(X) theory, the fermion
kinetic spatial gradient term has the wrong sign.

Be this as it may, it is unclear to us whether this is
actually an instability. First of all, unlike the scalar fields
where a wrong-sign kinetic term destabilizes the classical
vacuum, the background classical fermion is necessarily
zero. Furthermore, as discussed in the next subsection, the
supersymmetric ghost condensate spontaneously breaks
supersymmetry and, hence, ¢ is a Goldstone fermion.
When coupled to supergravity, one expects ¢ to be
“eaten”” by the super-Higgs mechanism and removed
from the massless spectrum. Finally, an instability could
arise by spontaneous fermion creation from the vacuum.
However, showing this actually occurs would require a
consistent quantization of such wrong-gradient fermions
on a curved background and a study of their backreaction
on the geometry. For these reasons, we are, at the moment,
agnostic about whether or not the wrong-sign spatial fer-
mion kinetic term is a physical problem. A study of all of
the above issues is underway.

We want to emphasize that if one is prepared to expand
the discussion to supersymmetric extensions of Galileon
scalar field theories, then, in addition to retaining the good
kinetic behavior of the scalar fields, both the temporal and
spatial parts of the fermion kinetic energy can easily be
made to have the correct sign. That is, the fermion is both
ghost-free and without a gradient instability. A proof of
this result, and a complete exposition of supersymmetric
Galileon theory, will be presented in a forthcoming
publication.

For completeness, we present the entire supersymmetric
extension of the P(X) ghost condensate theory, combining
all of the terms discussed independently above. The result is

£ ?][lggg Condensate
= —(I)fq)lgeég + 1_16DQ)D(I)D_Q)JFD_(DJF|0099
_ _ 1 _ _
+ DcDDcI)DcD*DcD*[ - F[{D, DD, D{® + dT)T?
1 _ _
551D, DY(® — OTHD, DY(DT — @)

(D, DX® + dH){D, DYD — <1>f)]2] 67)

1
_W[

0066
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In components, writing out all the terms that are relevant for
a stability analysis in a ghost condensate background, this
corresponds to

L SUSY
Ghost Condensate,quad

— 40P + (G — (1) O + (007
- %(a¢)2(ax>2 —20¢) 0y + (0¢ - ax)°
= 090 P+ S (W~ Yot ,)
<[=1=3002] = bubg b= horin
(68)

C. A new form of supersymmetry breaking

The supersymmetric ghost condensate is unusual in yet
another way. Consider the supersymmetry transformation
of the spinor,

S = iv201Ed A + V2EF. (69)

Ordinarily, spontaneous breaking of supersymmetry is
achieved by having a nonzero, constant vev of the
dimension-two auxiliary field F, thus rendering the trans-
formation inhomogeneous. The spinor ¢ then becomes
the Goldstone fermion of the spontaneously broken
supersymmetry.

With the ghost condensate, we find ourselves in a new
situation. In this vacuum, the vev of F vanishes. Now,
however, supersymmetry is broken by the scalar field A
getting a nonzero and, moreover, linearly time-dependent
vev (A) = ($)//2 = ¢/~/2, where we restore the arbitrary
dimension-two constant. Therefore,

S = V2010, 8A = o Ec. (70)

As previously, the fermion transforms inhomogeneously
and, hence, supersymmetry is spontaneously broken. For
the ghost condensate, however, the inhomogeneous term
arises from the linear time-dependent vev of ¢ rather than
from the F-term. The scale of supersymmetry breaking
corresponds to the scale of the ghost condensate.

It would be of interest to explore this mechanism within
the context of supergravity. There, one would expect the
Goldstone fermion to be eaten by the gravitino, and to
render the latter massive. However, because of the
wrong-sign spatial kinetic term of the spinor in a ghost
condensate background—as discussed in the previous sub-
section—there may well be subtleties involved. We leave
this intriguing question to future work.
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V. DISCUSSION

In this paper, we have established a formalism which
enables us to write the supersymmetric extensions of scalar
field theories of the P(X, ¢) type. This is accomplished by
first constructing the supersymmetric version of X2. Using
this as a building block for higher powers of X, any
function P(X, ¢) can be reconstructed as a series expan-
sion. Immediate applications of this formalism are super-
symmetric versions of DBI-type actions and of the ghost
condensate model, which can be embedded in cosmologi-
cal scenarios of the very early universe.

The ghost condensate theory was studied in some detail.
We discovered that it leads to a new form of spontaneous
supersymmetry breaking where it is not the auxiliary field
but, rather, the dynamical scalar field itself that acquires a
vev. This has a number of interesting properties. In par-
ticular, since the vacuum breaks Lorentz invariance, the
Lagrangian describing the fluctuations of the two real
scalars and the spinor belonging to a chiral multiplet is
explicitly Lorentz-violating. At first sight, the scalar de-
grees of freedom appear to be unstable, but we have shown
how their instabilities can be cured. For the spinor, the
situation is more complicated, as it appears to have a
wrong-sign spatial kinetic term. This (possible) instability
can be removed by extending the framework under con-
sideration to more general higher-derivative scalar field
theories, including models of the Galileon type. Such
theories are closely related to P(X, ¢) theories [75], and
will be the subject of a following paper.

We can foresee a number of applications and extensions
of our current work. For example, the DBI action is used in
many models of the early universe that are derived from (or
inspired by) string theory, and in many of these situations
the action should be formulated in a supersymmetric way.
It will be interesting to see if our results here can lead to
new insights in that respect. Also, for early Universe
models of the ekpyrotic type, in which the current expand-
ing phase of the universe is preceded by a contracting
phase, the bounce that links these two phases must neces-
sarily involve a violation of the NEC. The P(X, ¢) theories
are candidates for an effective description of this type of
dynamics, and our work can be used to study this in a
supersymmetric way, as may well be appropriate at higher
energy.

An important, but laborious, extension of this work
would be to reformulate the higher-derivative scalar ac-
tions in supergravity. Not only would such an extension
constitute the most appropriate setting for discussing cos-
mological applications, but it would also be interesting to
examine the fate of the Goldstone fermion generated in the
supersymmetric ghost condensate model. Finally, we hope
that our results can help elucidate the connection of
P(X, ¢) theories with string theory. It is, at present, not
entirely clear whether the ghost condensate model can be
derived as an effective theory from string theory. We
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believe our superfield expressions can be helpful in clar-
ifying this issue, and furthering our understanding of the
relationship between string compactifications and effective
field theories.
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APPENDIX: P(1¢* + 1 ¥*) AND NEC VIOLATION

When the time-dependent part of the Lagrangian is
O(2)-symmetric under the interchange of ¢ and y, that
is, when the Lagrangian is a function of ¢»> + %2, one can
prove that whenever the NEC is violated a ghost must
appear, regardless of what the time-dependent vacuum
might be. The implication of this is the following: if one
wants a theory with controlled and viable violations of the
NEC, then the symmetry between ¢ and y must be broken.
Here is the proof.

Assume that the purely time-dependent Lagrangian is
given by

L = P(Y), (A1)

where Y =1 ¢? + 1 42, Then the energy density and pres-
sure are

p=2YPy—P; (A2)
p =P, (A3)

and the condition for NEC violation is
p+p=2YP,<O. (A4)

Since Y > 0 by definition, the condition for NEC violation
becomes

Py <O. (AS)
We can assess the stability properties of the theory by

expanding the Lagrangian to quadratic order in the field
fluctuations. We find
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1 . L 1 .
‘Equad = §P¢ ¢(5¢)2 + P¢X5¢6X + EP,)'(X(‘SX)z

(Pyyd* + Py)(80)?

Py[Pyy(d* + ) + Pyl
2(Pyyd* + Py)

N —

+

(5x)% (A6)
where the cross term is removed by defining the new
variable 5§ = 5¢ + Pyyo x

7,45, Ox. Hence, the conditions
for stability are
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Pyyd*+ Py >0; (A7)

Py[Pyy(d* + X*) + Py]>0. (A8)

These cannot be satisfied simultaneously with the NEC-
violation condition P y < 0. This proves that there must be
a ghost field as soon as the NEC is violated.
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