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Hugo Garcı́a-Compeán†

Departamento de Fı́sica, Centro de Investigación y de Estudios Avanzados del IPN,
P.O. Box 14-740, 07000 México D.F., México
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The Weyl-Wigner-Groenewold-Moyal formalism of deformation quantization is applied to cosmologi-

cal models in the minisuperspace. The quantization procedure is performed explicitly for quantum

cosmology in a flat minisuperspace. The de Sitter cosmological model is worked out in detail and the

computation of the Wigner functions for the Hartle-Hawking, Vilenkin and Linde wave functions are done

numerically. The Wigner function is analytically calculated for the Kantowski-Sachs model in (non)

commutative quantum cosmology and for string cosmology with dilaton exponential potential. Finally,

baby universes solutions are described in this context and the Wigner function is obtained.
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I. INTRODUCTION

One of the fundamental problems of cosmology is the
initial singularity. It is commonly believed that near this
singularity, the physical evolution is governed by quantum
mechanics. In the quantum cosmology framework, the
whole Universe is represented through a wave function
satisfying the Wheeler-DeWitt equation [1]. It is well
known that it represents the low energy approximation of
string theory, however it contains some nontrivial leading
order information. The development of quantum cosmol-
ogy started at the beginning of the ’80s of last century and
one of its main ideas is that the Universe could be sponta-
neously nucleate out from nothing [2–10]. After nuclea-
tion, the Universe can enter into a phase of inflationary
expansion and continues its evolution to the present time.
However, there are several important questions that remain
to be solved, like the general definition of probability, time
and boundary conditions [11]. In order to find a unique
solution of the Wheeler-DeWitt equation, it is necessary to
impose boundary conditions. In the case of quantum
mechanics, there is an external setup and the boundary
conditions can be imposed safely, however in four-
dimensional quantum cosmology there is nothing external
to the Universe and the question of which one is the correct
prescription for the boundary condition of the Universe is
controversial [12]. There are several proposals for the
correct boundary conditions in quantum cosmology, for

example, the no-boundary proposal of Hartle and
Hawking [7], the tunneling proposal of Vilenkin [10] and
the proposal of Linde [8]. In a recent development in
quantum cosmology, a principle of selection in the land-
scape of string vacua has been proposed in [13], in the
context of the minisuperspace. Moreover in [14] different
cosmologies were defined in terms of a wave function on a
compact world sheet of system of parafermions. Much of
the information is encoded in the wave function as a
function of the moduli space.
Another important issue is how to extract information of

theWheeler-DeWitt equation. In general, the configuration
space used in quantum cosmology is an infinite dimen-
sional space called superspace and it is not amenable to
work with. In the study of homogeneous universes, the
infinite dimensional space is truncated to finite degrees of
freedom, therefore obtaining a particular minisuperspace
model. The reduction of superspace to minisuperspace is
not a rigorous approximation scheme, however there is the
hope that minisuperspace maintains some of the essential
features of quantum cosmology. In classical cosmology,
homogeneity and isotropy are fundamental to describe the
Universe at large scale and therefore it is expected to have a
minisuperspace description in quantum cosmology.
At very early times of the Universe, even before the

Planck time, the Universe should be described by means of
quantum cosmology that could take into account effects
from string theory, supersymmetry and noncommutativity.
String cosmology [15], quantum wormholes, baby uni-
verses and supersymmetric quantum cosmology have be-
come very intensive research areas in quantum cosmology.
Quantum wormholes [16] are instanton solutions and are
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important in the Euclidean path integral formulation. In the
third quantization approach, which is an adequate descrip-
tion of topology change in the path integral quantization,
the wave function is transformed into a quantum field
operator which includes operators that create and destroy
the so-called baby universes.

Supersymmetric quantum cosmology is one of the main
research areas [17–20]. At the time of quantum creation of
the Universe it is possible that supersymmetry would not
yet be broken and therefore could have very important
consequences in the evolution of the Universe. Other
very interesting effects that could arise in the very early
Universe are the effects of noncommutativity [21].

At the end of the late 1980s and early 1990s quantum
decoherence, the transition from quantum physics to
classical physics was an active research area in quantum
cosmology [22,23] (for more recent reviews, see [24,25]).
In Refs. [26–30], quantum cosmology is developed in the
phase space and the use ofWigner function is shown to be a
very useful approach to study decoherence. In fact, quan-
tum mechanics in phase space is an appropriate formalism
to describe quantum mechanical systems (for a review, see
[31]). The description using the Wigner function has been
of considerable interest and usefulness in quantum optics,
nuclear and particle physics, condensed matter, statistical
physics, etc. In particular, the description of semiclassical
properties and the analysis of the classical limit is more
clear in the Wigner function formalism. The classical limit
from quantum cosmology was studied also in [30,32],
where the use of Wigner function and quantum mechanics
in phase space is fundamental. It has been argued that
quantum decoherence is achieved if the density matrix is
coarse-grained, i.e. averaged over configuration or phase
space variables, or in an alternative way, if the system
interacts with some environment which is not monitored.
However, the existence of classical correlations is another
characteristic of the classical limit and requires the pres-
ence of sharp peaks of the Wigner function, but a coarse
graining produces a spreading of the distribution in phase
space. The former arguments demand a subtle coarse
graining in which there is a delicate balance between the
existence of classical correlations and decoherence. A
coarse graining could be modeled by a Liouville equation
with friction and diffusion terms [30]. Some other further
results are described in Refs. [33,34].

The quantum mechanics in phase space is only one part
of a complete and consistent type of quantization termed:
deformation quantization. In this paper, we formulate quan-
tum cosmology in terms of deformation quantization and
rewrite some results of [30,32] in the context of this formal-
ism. We will assume that the superspace (of 3-metrics) is
flat and a Fourier transform can be defined. This is fairly
valid for the ample set of examples in two dimensions that
we present in this paper. The case of curved minisuperspace
will be discussed in a future communication.

The deformation quantization formalism is an alterna-
tive approach to the canonical and path integral quantiza-
tions and has its origins in the seminal works by Weyl [35],
Wigner [36], Groenewold [37], Moyal [38], and Vey [39],
and is based on the idea of treating with quantum mechan-
ics on the phase space. In 1978, Bayen, Flato, Fronsdal,
Lichnerowicz and Sternheimer [40] introduced its final
form in which the quantization is understood as a defor-
mation of the classical algebra of observables instead of a
change in the nature of them. This quantization arises as a
deformation of the usual product algebra of the smooth
functions on the classical phase space and then as a defor-
mation of the Poisson bracket algebra. The deformed
product is called the ?-product which has been proved to
exist for any symplectic manifold [41], [42] and more
recently shown by Kontsevich [43] that it also exists for
any Poisson manifold. These results in principle allow us to
perform the quantization of arbitrary Poissonian or sym-
plectic systems and to obtain in an easier way the classical
limit due to the nature of the ?-product. Our aim is to
introduce this formalism in quantum cosmology and apply
the results to simple models.
The structure of the paper is as follows. In Sec. II, we

survey the canonical Hamiltonian formalism of general
relativity and its canonical quantization. In Sec. III, we
construct the Stratonovich-Weyl quantizer, the star-product
and the Wigner functional. Section IV is devoted to apply
the deformation quantization procedure to several minis-
uperspace models and to obtain their Wigner function. In
Sec. IVA, we treat the de Sitter model and calculate
numerically the Wigner function for the Hartle-Hawking,
Vilenkin and Linde wave functions. In Sec. IVB, we
calculate analytically the Wigner function for the
Kantowski-Sachs model in (non)commutative quantum
cosmology and we interpret the results. In Sec. IVC, we
obtain the Wigner function for string cosmology with
dilaton exponential potential in terms of the Meijer’s func-
tion. Besides, in Sec. IVD theWigner function for the baby
universes solutions is calculated by means of the Moyal
product and the annihilation and creation operators.
Finally, in Sec. V we give our final remarks.

II. CANONICAL FORMALISM OF
GENERAL RELATIVITY

In this section, we briefly overview the Hamiltonian
formalism of general relativity. Our presentation will not
be complete, and detailed information can be found in
Refs. [1,44]. Our intention is only to introduce the notation
and conventions for future reference along the paper.

A. Hamiltonian formalism

We start from the ADM decomposition of general rela-
tivity and consider a pseudo-Riemannian manifold ðM;gÞ
which is globally hyperbolic. Thus, spacetime M can
be decomposed as M ¼ �� R where � is an spatial
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hypersurface and the metric of a foliation is ds2 ¼
g��dx

�dx� ¼ �ðN2 �NiNiÞdt2þ 2Nidx
idtþ hijdx

idxj,

with signature ð�;þ;þ;þÞ. Here hij is the intrinsic metric

on the hypersurface�, N is the lapse function and Ni is the
shift vector.

The space of all Riemannian 3-metrics and scalar matter
configurations � on � is the so-called superspace
Riemð�Þ ¼ fhijðxÞ;�ðxÞjx 2 �g. Let us denote the space
of Riemannian metrics on � as Metð�Þ ¼ fhijðxÞjx 2 �g
which is an infinite dimensional manifold. The moduli
spaceM is then defined as the configuration space (super-
space) modulo the group of diffeomorphisms Diffð�Þ,
i.e. M ¼ Riemð�Þ

Diffð�Þ or for pure gravity M ¼ Metð�Þ
Diffð�Þ .

The corresponding phase space for pure gravity
(Wheeler’s phase superspace) �� ffi T�Metð�Þ is given

by the pairs �� ¼fðhijðxÞ;�ijðxÞÞg, where �ij ¼ @LEH

@ _hij
and

LEH is the Einstein-Hilbert Lagrangian. In the following,
we will deal with fields at the moment t ¼ 0 (on �) and we
put hijðx; 0Þ � hijðxÞ and �ijðx; 0Þ � �ijðxÞ.

The dynamics of general relativity coupled to matter in
this foliation is encoded in the variation of the following
action:

S¼
Z
dtL¼ 1

16�GN

�Z
M
d4x

ffiffiffiffiffiffiffi�gp ð4RðgÞ�2�Þ

þ2
Z
@M

d3x
ffiffiffi
h
p

K

�
þSm; (1)

where 4RðgÞ is the scalar curvature in four dimensions
depending on the spacetime pseudo-Riemannian metric
g��, g is the determinant of g��, GN is the gravitational

constant in N dimensions, � is the cosmological constant,
K is the trace of the extrinsic curvature Ki

i compatible with
hij and Sm is the matter action. For the case of scalar field

matter subject to a potential Vð�Þ, we have that

S m ¼
Z
M
d4x

ffiffiffiffiffiffiffi�gp �
� 1

2
g��@��@��� Vð�Þ

�
: (2)

The action (1) can then be written as

S ¼
Z

dtd3xð�0 _N þ �i _Ni � NH? � NiH iÞ; (3)

where H? and H i are given below. Thus, the canonical
Hamiltonian is given by

HC ¼
Z

d3xð�0 _N þ �i _Ni þ �ij _hij þ ��
_�Þ � L

¼
Z

d3xð�0 _N þ �i _Ni þ NH? þ NiH iÞ; (4)

where �0 ¼ @L
@ _N

and �i ¼ @L
@ _Ni and �� ¼ @L

@ _�
. The corre-

sponding equations of motion for N and Ni yield the
Hamiltonian constraint and the momentum constraint,
respectively

H?ðxÞ ¼ 4�2Gijkl�
ij�kl �

ffiffiffi
h
p
4�2
ð3R� 2�Þ

þ 1

2

ffiffiffi
h
p �

�2
�

h
þ hij�;i�;j þ 2Vð�Þ

�
¼ 0; (5)

H iðxÞ¼
ffiffiffi
h
p
2�2
ðG0

i �2�2T0
i Þ¼�2�ij

jjþhij�;j��¼0; (6)

where �2 ¼ 4�GN ,
3RðhÞ is the scalar curvature of �,

Gijkl ¼ 1
2h
�1=2ðhikhjl þ hilhjk � hijhklÞ, jj denotes cova-

riant derivative with respect to hij and h is its determinant.

In this way, the Poisson bracket between hij and �kl is

given by

fhijðxÞ; �klðyÞgPB ¼ 1

2
ð�k

i �
l
j þ �k

j�
l
iÞ�ðx� yÞ; (7)

which is one of the most important structures for
quantization.

B. Canonical quantization

The most employed formalism to quantize a physical
system is the canonical quantization which can be applied
in general relativity. In this section, we describe briefly the
general procedure to obtain the quantum equations. In the
h-representation, the usual promotion of canonical coor-
dinates hijðxÞ, �ðxÞ and �ij, �� to the operators can be

done in the following form: ĥijjhij;�i ¼ hijjhij;�i,
�̂ijjhij;�i ¼ �iℏ �

�hijðxÞ jhij;�i, �̂jhij;�i ¼ �ðxÞjhij;�i
and �̂�jhij;�i ¼ �iℏ �

��ðxÞ jhij;�i. These operators sat-

isfy the commutation relations

½ĥijðxÞ; �̂klðyÞ� ¼ iℏ
2
ð�k

i �
l
j þ �k

j�
l
iÞ�ðx� yÞ: (8)

The constraints (5) and (6) have to be imposed at the
quantum level in the form

Ĥ ?j�i ¼ 0; Ĥ ij�i ¼ 0: (9)

In the coordinate-representation, we have

�
�4�2Gijkl

�2

�hij�hkl
þ

ffiffiffi
h
p
4�2
ð�3RðhÞ þ 2�þ 4�2T̂00Þ

�
��½hij;�� ¼ 0; (10)

where hhij;�j�i ¼ �½hij;�� and T̂00¼� 1
2h

�2

��2þ
1
2h

ij�;i�;jþVð�Þ. This constraint is called the Wheeler-

DeWitt equation. For pure gravity, we have

�
�4�2Gijkl

�2

�hij�hkl
þ

ffiffiffi
h
p
4�2
ð�3RðhÞþ2�Þ

�
�½hij�¼0;

(11)
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where hhijj�i ¼ �½hij�. In the general case, the Wheeler-

DeWitt equation is not amenable to extract physical
information of the system. In order to obtain useful infor-
mation, it is a common practice to reduce the number of
degrees of freedom. In the following sections we will
consider models with one and two degrees of freedom.

III. DEFORMATION QUANTIZATION OF
WHEELER’S PHASE-SUPERSPACE

In this section, we work in a flat superspace with flat
metric Gijkl. This case will allow us to introduce the Weyl-

Wigner-Groenewold-Moyal (WWGM) formalism for
gravitational systems in a direct way since the existence
of the Fourier transform is warranted. The more compli-
cated cases of curved (mini)superspaces will be left for a
future work. The deformation quantization of gravity in
ADM formalism and constrained systems is described in
more detail in Refs. [45]. We want to point out that in this
section the calculations are formal just as is the case of path
integrals in field theory and in order to obtain some physi-
cal results additional considerations need to be imple-
mented depending on the specific system.

A. The Stratonovich-Weyl quantizer

Let F½hij; �ij;�; ��� be a functional on the phase space
�� (Wheeler’s phase superspace) and let ~F½�ij; �ij;�;��
be its Fourier transform. By analogy to the quantum me-
chanics case, we define the Weyl quantization rule as
follows [35–43,45–53]:

F̂ ¼W ðF½hij; �ij; �; ���Þ
:¼

Z
D
�
�ij

2�

�
D
�
�ij

2�

�
D
�
�

2�

�
D
�
�

2�

�
� ~F½�ij; �ij;�;��Û½�ij; �ij;�;��; (12)

where the functional measures are given by Dhij ¼Q
xdhijðxÞ etc., fÛ½�ij; �ij;�;��:ð�ij; �ij;�;�Þ 2 ��g is

the family of unitary operators given by

Û½�ij;�ij;�;�� :¼ exp

�
i
Z
dxð�ijðxÞĥijðxÞþ�ijðxÞ�̂ijðxÞ

þ�ðxÞ�̂ðxÞþ�ðxÞ�̂�ðxÞÞ
�
; (13)

with ĥij, �̂
ij, �̂ and �̂� being the field operators defined as

ĥijðxÞjhij;�i ¼ hijðxÞjhij;�i and

�̂ijðxÞj�ij; ��i ¼ �ijðxÞj�ij; ��i;
�̂ðxÞjhij;�i ¼ �ðxÞjhij;�i and

�̂�ðxÞj�ij; ��i ¼ ��ðxÞj�ij; ��i:

(14)

These states form basis satisfying the completeness rela-
tions while operators satisfy the usual commutation rules.
Using the well-known Campbell-Baker-Hausdorff for-
mula, the completeness relations and the standard commu-

tation rules we can write Û½�ij; �ij;�;�� in the following
form

Û½�ij;�ij;�;��¼
Z
DhijD�exp

�
i
Z
dxð�ijðxÞhijðxÞ

þ�ðxÞ�ðxÞÞ
���������hij�

ℏ�ij

2
;��ℏ�

2

	

�


hijþ

ℏ�ij

2
;�þℏ�

2

��������: (15)

It is easy to show, from (15), that one can obtain the
following properties:

TrfÛ½�ij;�ij;�;��g¼�½�ij��
�
ℏ�ij

2�

�
��½���

�
ℏ�
2�

�
; (16)

TrfÛy½�ij;�ij;�;�� �Û½�0ij;�0ij;�0;�0�g

¼�½�ij��0ij��
�
ℏ
2�
ð�ij��0ijÞ

�

��½���0��
�
ℏ
2�
ð���0Þ

�
; (17)

where Tr is the trace in some representation.
Eqs. (15) and (12) lead to write

F̂ ¼
Z

D
�
�ij

2�ℏ

�
DhijD

�
��

2�ℏ

�
D�F½hij; �ij; �; ���

� �̂½hij; �ij;�; ���; (18)

where the operator �̂ is given by

�̂½hij; �ij; �; ���

¼
Z

D
�ℏ�ij

2�

�
D�ijD

�
ℏ�
2�

�
D� exp

�
�i

Z
dxð�ijðxÞ

� hijðxÞ þ �ijðxÞ�ijðxÞ þ�ðxÞ�ðxÞ þ �ðxÞ��ðxÞÞ
�

� Û½�ij; �ij;�;��: (19)

It is evident that the operator �̂ is the Stratonovich-Weyl
quantizer. One can easily check the following properties

of �̂
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ð�̂½hij; �ij;�; ���Þy ¼ ð�̂½hij; �ij;�; ���Þ; Trf�̂½hij; �ij; �; ���g ¼ 1;

Trf�̂½hij; �ij; �; ��� � �̂½h0ij; �0ij;�0; �0��g ¼ �

�
�ij � �0ij

2�ℏ

�
�½hij � h0ij� � �

�
�� � �0�

2�ℏ

�
�½���0�:

(20)

Now it is possible to obtain the inverse map of W by
multiplying (12) by �̂½hij; �ij; �; ���, taking the trace of
both sides and using (17) we get

F½hij; �ij; �; ��� ¼ Trf�̂½hij; �ij;�; ���F̂g: (21)

One can also express �̂½hij; �ij;�; ��� in a very useful
form by inserting (15) into (19). Thus, one gets

�̂½hij;�ij;�;���
¼

Z
D�ij

Z
D�exp

�
� i

ℏ

Z
dxð�ijðxÞ�ijðxÞþ�ðxÞ��ðxÞÞ

�

�
��������hij��ij

2
;���

2

	

hijþ

�ij

2
;�þ�

2

��������: (22)

B. The star-product

Now we define the Moyal ?-product. Let F ¼
F½hij; �ij; �; ��� and G ¼ G½hij; �ij;�; ��� be some

functionals on �� that correspond to the field operators F̂

and Ĝ respectively, i.e. F½hij; �ij; �; ��� ¼W�1ðF̂Þ ¼
Trð�̂½hij; �ij; �; ���F̂Þ and G½�ij; hij;��;�� ¼
W�1ðĜÞ ¼ Trð�̂½�ij; hij;��;��ĜÞ. The functional cor-

responding to the product F̂ Ĝ will be denoted by ðF ?

GÞ½hij; �ij; �; ��� and after some long but direct calcu-

lations we have that

ðF ? GÞ½hij; �ij;�; ���
:¼W�1ðF̂ ĜÞ ¼ Trf�̂½hij; �ij; �; ���F̂ Ĝg; (23)

gives rise to

ðF?GÞ½hij;�ij;�;���
¼F½hij;�ij;�;���exp

�
iℏ
2
P
$�

G½hij;�ij;�;���; (24)

where the operator P
$

is defined as follows:

P
$

:¼
Z

dx

�
�
 

�hijðxÞ
�
!

��ijðxÞ �
�
 

��ijðxÞ
�
!

�hijðxÞ
�

þ
Z

dx

�
�
 

��ðxÞ
�
!

���ðxÞ �
�
 

���ðxÞ
�
!

��ðxÞ
�
: (25)

This is precisely the Moyal ?-product.

C. The Wigner functional

In the deformation quantization formalism, the Wigner
function plays a very important role and in the same way as
for the finite number of degrees of freedom we are going to
define the Wigner functional. Let �̂ be the density operator
of a quantum state. The functional �W½hij; �ij; �; ���
corresponding to �̂ reads

�W½hij;�ij;�;���¼Trf�̂½hij;�ij;�;����̂g

¼
Z
D
�
�ij

2�ℏ

�
D
�

�

2�ℏ

�
exp

�
� i

ℏ

Z
dxð�ijðxÞ�ijðxÞþ�ðxÞ��ðxÞÞ

�

�


hijþ

�ij

2
;�þ�

2

���������̂
��������hij�

�ij

2
;���

2

	
: (26)

For a pure state of the system �̂ ¼ j�ih�j, the Eq. (26) gives

�W½hij; �ij; �; ��� ¼
Z

D
�
�ij

2�ℏ

�
D
�

�

2�ℏ

�
exp

�
� i

ℏ

Z
dxð�ijðxÞ�ijðxÞ þ �ðxÞ��ðxÞÞ

�

���
�
hij �

�ij

2
;�� �

2

�
�

�
hij þ

�ij

2
;�þ �

2

�
; (27)

where hhij;�j�i ¼ �½hij;�� is the wave function of the Universe.

The expected value of an arbitrary operator F̂ can then be obtained by means of �̂ as

hF̂i ¼ Trð�̂ F̂Þ
Trð�̂Þ ¼

R
Dð �ij

2�ℏÞDhijDð��

2�ℏÞD��W½hij; �ij;�; ���Trð�̂½hij; �ij; �; ���F̂ÞR
D�ijDhijD��D��W½hij; �ij; �; ��� : (28)
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It is now possible to write the equivalent of the constraints
Eqs. (9) in terms of the ?-product and the Wigner func-
tional as

H ? ? �W½hij; �ij; �; ��� ¼ 0; (29)

H i ? �W½hij; �ij; �; ��� ¼ 0; (30)

where H? and H i are given by (5) and (6) respectively.
We term Eq. (29) the Wheeler-DeWitt-Moyal equation. It
is important to mention that the dynamics is completely
governed by these equations and that their explicit form
depends of the particular system considered. These equa-
tions will be useful in the cosmological models which we
will discuss in the following section. Also, we want to note
that the real and imaginary parts of Eq. (29), encoded in the
?-product, are the generalized mass condition and the
Wheeler-DeWitt-Vlasov transport equation presented in
[29] for flat minisuperspace.

IV. DEFORMATION QUANTIZATION
IN THE MINISUPERSPACE

Now we proceed to study the application of the defor-
mation quantization construction to some models in quan-
tum cosmology. The general construction exposed in the
previous section in terms of functional integrals is defined
in the whole superspace of three-metrics and is necessary
in a general case, however as a first approach we will deal
with some models in the minisuperspace due to their
simplicity and because they have been widely studied in
the literature by other methods. Our intention is to obtain
the Wigner function for these important cases and to
motivate a further study using deformation quantization.
We consider that this first step is necessary in order to gain
some experience to eventually apply the deformation quan-
tization formalism to curved phase space. It is known that
this formalism has a natural extension to these situations
(see [42,43]) and allows another suitable extensions or
generalizations.

A. de Sitter cosmological model

As a first example we will deal with a minisuperspace
model where the phase-space is bidimensional. We are
going to calculate the Wigner function from the Wheeler-
DeWitt-Moyal equation and also from its integral expres-
sion. Let us start with a minisuperspace (where the degrees
of freedom are reduced to just one represented by the scale
factor of the Universe) corresponding to the Friedmann-
Robertson-Walker metric

ds2 ¼ l2p½�N2dt2 þ a2ðtÞd�2
3�; (31)

where a is the scale factor of the Universe, N is the lapse
function, d�2

3 is the metric of the unit three-sphere, lp ¼
2=3Lp and Lp denotes the Planck length. Introducing new

variables q ¼ a2 and ~N ¼ qN [54] the Hamiltonian H?
cast out in an easy form

H ? ¼ 1

2
ð�4p2 þ �q� 1Þ; (32)

where � is the cosmological constant in Planck units. In the
coordinate-representation, the Hamiltonian acquires a sim-
ple form and its dynamics corresponds to a particle in a
linear potential. TheWheeler-DeWitt equation comes from
the Hamiltonian constraint (10) and is written as

�
4"2

d2

dq2
þ �q� 1

�
�ðqÞ ¼ 0: (33)

Depending on the boundary conditions, it can be found
[11] the Vilenkin wave function

�VðqÞ ¼ 1

2
Ai

�
1� �q

ð2�"Þ2=3
�
þ i

2
Bi

�
1� �q

ð2�"Þ2=3
�
; (34)

the Hartle-Hawking wave function

�HHðqÞ ¼ Ai

�
1� �q

ð2�"Þ2=3
�
; (35)

and the Linde wave function

�LðqÞ ¼ �iBi
�
1� �q

ð2�"Þ2=3
�
; (36)

where AiðxÞ and BiðxÞ are the Airy functions of first and
second class, respectively.
One of the main differences between the Hartle-

Hawking, Linde and Vilenkin wave functions is their be-
havior in the region q > 1=�. The Vilenkin tunneling wave
function has the following expression:

�V ¼ c�ðqÞ; (37)

the Hartle-Hawking wave function is

�HH ¼ cþðqÞ þ c�ðqÞ; (38)

and the Linde wave function is written as

�L ¼ cþðqÞ � c�ðqÞ; (39)

where c�ðqÞ, cþðqÞ describe an expanding and contract-
ing Universe, respectively. In the classical allowed region
q > 1=� the WKB solutions are

c� ¼ ½pðqÞ��1=2 exp
�
�i

Z q

1=�
pðq0Þdq0 	 i�

4

�
; (40)

where pðaÞ ¼ ½�UðaÞ�1=2 ¼ 1
2 ½�q� 1�1=2. From the

WKB wave function (40) we have

p̂c�ðqÞ 
 �pc�ðqÞ: (41)
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Taking into account that

p ¼ � _q

4 ~N
; (42)

the Eq. (41) confirms the already given interpretation for
c�ðqÞ, i.e. negative values of p correspond to an expand-
ing Universe. Therefore, the Vilenkin wave function in-
cludes only an expanding component while the Hartle-
Hawking and Linde wave functions include expanding
and contracting universes with equal weight (for a different
interpretation see [55]). In fact, for large values of q these
wave functions have the following expressions:

�VðqÞ 
 ð2�ℏÞ1=6
2½�2ð�q� 1Þ�1=4 e

�iS; (43)

�HHðqÞ 
 ð2�ℏÞ1=6
½�2ð�q� 1Þ�1=4 cosS

¼ ð2�ℏÞ1=6
2½�2ð�q� 1Þ�1=4 ðe

iS þ e�iSÞ; (44)

�LðqÞ 
 i
ð2�ℏÞ1=6

½�2ð�q� 1Þ�1=4 sinS

¼ ð2�ℏÞ1=6
2½�2ð�q� 1Þ�1=4 ðe

iS � e�iSÞ; (45)

where

S ¼ 1

3�ℏ
ð�q� 1Þ3=2 � �

4
: (46)

Now we proceed to calculate the Wigner function directly
by solving the Wheeler-DeWitt-Moyal Eq. (29)

H ? ? �W ¼ 0; (47)

where the corresponding Moyal ?-product is given by

? ¼ exp

�
i"

2
P
$�
¼ exp

�
i"

2

�
@
 

@q

@
!

@p
� @
 

@p

@
!

@q

��
: (48)

Taking in consideration the exponential power series ex-
pansion we have

1

2
ð�4p2 þ �q� 1Þ

�X1
n¼0

1

n!

�
i"

2

�
n
P
$n

�
�W ¼ 0; (49)

which can be written as

ð�4p2þ�q�1Þ�Wþ i"

2
�@p�Wþ4i"p@q�W

þ"2@2q�W¼0: (50)

If we define a new variable z ¼ 4p2 � �qþ 1, the imagi-
nary part of the former equation is identically zero and for
the real part we obtain a new form of the Eq. (50)

"2�2 d
2�W

dz2
� z�W ¼ 0; (51)

whose solution is

�W ¼ c1 Ai

�
4p2 � �qþ 1

ð"�Þ2=3
�
: (52)

In order to obtain the last result, the formalism assumes the
existence of the integral representation for the Wigner
function, where the range of integration is from minus to
plus infinity in the variable q. However, the valid range
interval for the variable q is positive but still the Wigner
function is very similar to (52) because of the exponential
decay for positive values of the argument of AiðxÞ. Last
equation indeed admits another solution corresponding to

Bið4p2��qþ1
ð"�Þ2=3 Þ, but in this case, the Airy function BiðxÞ is

divergent for positive x and this part cannot be included as
a suitable Wigner function. In fact, in order to obtain an
appropriate solution from (47), the potential could be
complemented by an infinite barrier avoiding the existence
of negatives values for q. However, the implementation of
this procedure is very cumbersome as it has been shown in
[56,57] and it is not convenient to develop it here.
Instead of this, we can calculate the Wigner function

using the following integral expression [36]

�Wðq; pÞ ¼
Z 1
�1

d�

2�"
exp

�
�i �

"
p

�
��

�
q� �

2

�
�

�
qþ �

2

�
:

(53)

Employing the convolution theorem and the Fourier trans-
form of the Airy function we get the Wigner function for
the Hartle-Hawking wave function

�Wðq; pÞ ¼ 21=3

�ðℏ�Þ1=3 Ai

�
4p2 � �qþ 1

ðℏ�Þ2=3
�
: (54)

The last result was obtained integrating out from minus to
plus infinity in the variable q (in fact, this result was
already derived in [30]). However, the wave function is
only valid defined for positive values of the scale factor and
the q variable. Because of the fact that the Airy function
AiðxÞ presents an exponential decay for positive values of
x, the Wigner function is very similar to the expression
obtained in terms of the Airy function. If we restrict the
range of integration of q for positive values, the computa-
tion for an analytical expression of the Wigner function is
very complicated. This problem is similar as the one we
faced for the Wheeler-DeWitt-Moyal equation. We cope
with this complication by implementing a Fortran code in
order to calculate numerically the Wigner function. The
result is given in Figs. 1 and 2, where the continuous line
corresponds to the classical trajectory (56) and the dashed
line to the trajectory (57).
For the Vilenkin wave function, it is very difficult to get

an analytical expression for the Wigner function directly
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from (53) even using the WKB approximation for the wave
function taking into account that the integration should be
restricted for positive values of q. Again, we performed a
numerical analysis to obtain the results that are depicted in
Figs. 3 and 4, where the meaning of the continuous and
dashed lines are the same as in the Hartle-Hawking case.

As before, the Linde Wigner function is very compli-
cated to work with. We calculated the Wigner function
numerically and its behavior is presented in Figs. 5 and 6.

These plots can be described using the WKB approxi-
mation for the wave function and the general statements
presented in [30]. In terms of the WKB density matrix
�WKB the evaluation of

�Wðq;pÞ
 1

�ℏ

Z 1
�1

d	expð�2ip	Þ�WKBðqþ	;q�	Þ
(55)

FIG. 2. Hartle-Hawking Wigner function density projection. It
can be observed that the classical trajectory does not coincide
with the highest peaks of the Wigner function.

FIG. 3. The Vilenkin Wigner function. It is observed a clear
maximum and fewer oscillations compared with the Hartle-
Hawking case.

FIG. 4. The density projection of the Vilenkin Wigner func-
tion. The classical trajectory is at some parts on the maxima of
the Wigner function and has only one branch.

FIG. 1. The Hartle-Hawking Wigner function (ℏ ¼ � ¼ 1).
The figure shows many oscillations due to the interference
between wave functions of expanding and contracting universes.

FIG. 5. Wigner function for the Linde wave function. The
figure shows a reduction in the amplitude of the oscillations
compared to the Hartle-Hawking.
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for the Hartle-Hawking wave function includes four terms
of the form: expðiSðqþ	Þ�iSðq�	ÞÞ, expð�iSðqþ	Þ�
iSðq�	ÞÞ, expðiSðqþ	ÞþiSðq�	ÞÞ, expð�iSðqþ	Þþ
iSðq�	ÞÞ. These terms come from the products cþðqþ
	Þc �þðq�	Þ, c�ðqþ	Þc �þðq�	Þ, cþðqþ	Þc ��ðq�
	Þ, c�ðqþ 	Þc ��ðq� 	Þ, respectively. By means of the
stationary phase approximation, each one of the former
terms will contribute to the Wigner function in different
regions bounded by the classical trajectory

p2 ¼ 1

4
ð�q� 1Þ; (56)

and by the trajectory

p2 ¼ 1

8
ð�q� 1Þ; (57)

which corresponds to points where the path integral has a
saddle point at zero momentum [30], i.e. where the classi-
cal action changes sign. In the upper region of the phase
space between the classical trajectory and the dashed curve
the Wigner function has contributions mainly coming from
the first term in the density matrix. The region inside the
dashed curve receives the principal contributions form the
second and third terms of the density matrix. The fourth
term of the density matrix has a saddle point in the bottom
part of phase space between the classical trajectory and the
dashed curve and as a consequence it contributes predomi-
nantly in this region (see Fig. 2).

The Linde Wigner function has a similar structure like
the Hartle-Hawking case, but there is one important dif-
ference: the interference terms between contracting and
expanding universes have an opposite sign with respect to
Hartle-Hawking. The consequence of this difference is the
reduction of the amplitudes of the oscillations inside the
classical trajectory (see Fig. 5).

The Wigner function for the Vilenkin wave function
only receives a contribution from the density matrix cor-
responding to c�ðqþ 	Þc ��ðq� 	Þ and it has a predomi-
nantly contribution only in the lower region of phase space
between the classical trajectory and the dashed line. This
behavior is reflected in Fig. 4. It is important to mention
that decoherence of the Vilenkin Wigner function appears
to be easier taking into account that large amplitude terms
due to interference between collapsing and expanding
universes are not present near p ¼ 0.
We discuss now the interpretation of these numerical

results. For the Hartle-Hawking Wigner function, we see
an oscillatory behavior where the largest peaks are not on
the classical trajectory but away from it by a distance of

Oðℏð2=3ÞÞ, we can appreciate this fact in the density plot. It
should be remarked the existence of oscillations of the
Wigner function that are not near of the classical trajectory,
however the heights of these peaks decreases with the
distance to the classical trajectory.
The Wigner function for the Linde wave function

present a similar pattern, in general terms, like the
Hartle-Hawking wave function, however it is possible to
see some differences. We can appreciate more fluctuations
of the Wigner function inside the region corresponding to
the classical trajectory than the Hartle-Hawking Wigner
function. Furthermore, the amplitude of the oscillations are
smaller for the Linde wave function than for Hartle-
Hawking. The largest peaks of the Wigner function corre-
spond to the classical trajectory.
In the case of the Wigner function for the Vilenkin

wave function, the classical trajectory is at some parts of
the curve at the middle of the largest peaks of the
Wigner function, i.e. the Vilenkin Wigner function has
the largest peaks more closely to the classical trajectory
than the Hartle-Hawking Wigner function, but only in
one part. This behavior is expected, as we explained
above, due to the fact that the Vilenkin wave function
represents the tunneling wave function and as a conse-
quence there is only one part of the classical trajectory
corresponding to negative values of the momenta (ex-
panding Universe).

B. Kantowski-Sachs model

Another interesting case to deal with under the defor-
mation quantization procedure is the cosmological
Kantowski-Sachs model [58]. We consider the metric in
the Misner parametrization [59]

ds2¼�N2dt2þe2
ffiffi
3
p


dr2þe�2
ffiffi
3
p


e�2
ffiffi
3
p

�

�ðd�2þsin2�d’2Þ: (58)

Choosing a particular factor ordering the Wheeler-DeWitt
equation takes the following form:

ð�P2
� þ P2


 � 48 expð�2 ffiffiffi
3
p

�ÞÞ�ð�; 
Þ ¼ 0; (59)

FIG. 6. The density projection of the Linde Wigner function.
In this case, the classical trajectory coincides with the highest
peak of its corresponding Wigner function.
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where P� ¼ �iℏ @
@� and P
 ¼ �iℏ @

@
 . The solutions of

the former equation are given by [59]

��� ð�; 
Þ ¼ e�i�
ffiffi
3
p


Kið�=ℏÞ
�
4

ℏ
e�

ffiffi
3
p

�

�
; (60)

where Ki�ðxÞ is the MacDonald function of imaginary
order. The normalized � part of the wave function is

��ð�Þ ¼ 31=4

�ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh

�
��

ℏ

�s
Kið�=ℏÞ

�
4

ℏ
e�

ffiffi
3
p

�

�
(61)

which satisfy [60]Z 1
�1

d����ð�Þ��0 ð�Þ ¼ �ð�2 � �02Þ: (62)

In order to write the Wheeler-DeWitt-Moyal Eq. (29), it is
very useful to employ the next relation

fðx; pÞ ? gðx; pÞ ¼ f

�
xþ iℏ

2
~@p; p� iℏ

2
~@x

�
gðx; pÞ: (63)

In this way, we obtain the following equation:

�
�
�
P� � iℏ

2
~@�

�
2 þ

�
P
 � iℏ

2
~@


�
2

� 48e�2
ffiffi
3
p ð�þiℏ

2
~@P� Þ

�
�ð�; P�; 
; P
Þ ¼ 0; (64)

which can be split into two equations corresponding to its
real part�
�P2

�þ
ℏ2

4
@2�þP2


�
ℏ2

4
@2
�48e�2

ffiffi
3
p

�cosð ffiffiffi
3
p

ℏ@P�
Þ
�
�

¼0; (65)

and its imaginary part

½ℏðP�@�Þ � ℏðP
@
Þ þ 48e�2
ffiffi
3
p

� sinð ffiffiffi
3
p

ℏ@P�
Þ�� ¼ 0:

(66)

If we propose �ð�; P�; 
; P
Þ ¼ ��ð�; P�Þ�
ð
;P
Þ,
and taking into account that ei

ffiffi
3
p

ℏ@xfðxÞ ¼ fðxþ i
ffiffiffi
3
p

ℏÞ
and also that for free particle in the 
 parameter @
�
¼0,

we get from Eq. (66)

@2���ð�; P�Þ ¼ � 48
ffiffiffi
3
p

i

ℏP�

e�2
ffiffi
3
p

�ð�ð�; P� þ i
ffiffiffi
3
p

ℏÞ � �ð�; P� � i
ffiffiffi
3
p

ℏÞÞ � 576

ℏ2

e�2
ffiffi
3
p

�

P2
� þ 3ℏ2

½�ð�; P� þ 2i
ffiffiffi
3
p

ℏÞ

� 2�ð�; P�Þ þ �ð�; P� � 2i
ffiffiffi
3
p

ℏÞ � i
ffiffiffi
3
p

ℏ
P�

ð�ð�; P� þ 2i
ffiffiffi
3
p

ℏÞ � �ð�; P� � 2i
ffiffiffi
3
p

ℏÞÞ�: (67)

Using the last equation in (65), we finally obtain

� P2
���ð�; P�Þ � 12

ffiffiffi
3
p

iℏ2e�2
ffiffi
3
p

�

P�

½��ð�; P� þ i
ffiffiffi
3
p

ℏÞ � ��ð�; P� � i
ffiffiffi
3
p

ℏÞ� � 144ℏ2e�4
ffiffi
3
p

�

ðP2
� þ 3ℏ2Þ ½��ð�; P� þ 2i

ffiffiffi
3
p

ℏÞ

� 2��ð�; P�Þ þ ��ð�; P� � 2i
ffiffiffi
3
p

ℏÞ� þ 144
ffiffiffi
3
p

iℏ3e�4
ffiffi
3
p

�

P�ðP2
� þ 3ℏ2Þ ½��ð�; P� þ 2i

ffiffiffi
3
p

ℏÞ � ��ð�; P� � 2i
ffiffiffi
3
p

ℏÞ�

� 24e�2
ffiffi
3
p

�½��ð�; P� þ i
ffiffiffi
3
p

ℏÞ þ ��ð�; P� � i
ffiffiffi
3
p

ℏÞ� ¼ �P2

��ð�; P�Þ: (68)

It is hard to obtain directly a solution to this equation, so we will follow a different approach and will use the integral
representation for theWigner function. Using the following result (see Sec. 19.6 formula (25) in [61] and the comment in [62])

Z 1
0

dwðwzÞ1=2w��1K�ða=wÞK�ðwzÞ ¼ 2���5=2a�G40
04

�
a2z2

16

���������� �

2
;
��� �

2
;
1

4
þ �

2
;
1

4
� �

2

�
; (69)

where G40
04ða2z216 j ���2 ;����2 ; 14þ �

2 ;
1
4� �

2Þ is a special case of Meijer’s G function (see Sec. 5.3 in [63])

Gmn
pq

�
z

�������� ai; i ¼ 1; . . . ; p
bj; j ¼ 1; . . . ; q

�
; (70)

we calculate the Wigner function for the� part

��ð�; P�Þ ¼ 31=2

2�4ℏ2
sinh

�
��

ℏ

�Z 1
�1

dyKið�=ℏÞ
�
4

ℏ
e�

ffiffi
3
p ð��ðℏ=2ÞyÞ

�
e�iyP�Kið�=ℏÞ

�
4

ℏ
e�

ffiffi
3
p ð�þðℏ=2ÞyÞ

�
: (71)

Then, we obtain the following expression for the Wigner function:

��ð�;P�Þ¼sinhð��=ℏÞ
�3

e
ffiffi
3
p

�

16ℏ2

�
2

ℏ
e�

ffiffi
3
p

�

��ð2iP�=
ffiffi
3
p

ℏÞ
G40

04

�
16

ℏ4
e�4

ffiffi
3
p

�

��������1

4
þi

�
�

2ℏ
þ P�ffiffiffi

3
p

ℏ

�
;
1

4
þi

���
2ℏ
þ P�ffiffiffi

3
p

ℏ

�
;
1

4
þ i�

2ℏ
;
1

4
� i�

2ℏ

�
:

(72)
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Now, employing the Meijer’s function property

x�Gmn
pq

�
x

�������� ai; i ¼ 1; . . . ; p
bj; j ¼ 1; . . . ; q

�

¼ Gmn
pq

�
x

�������� ai þ �; i ¼ 1; . . . ; p
bj þ �; j ¼ 1; . . . ; q

�
; (73)

the Eq. (72) can be written in the following form:

��ð�; P�Þ ¼ sinhð��=ℏÞ
�3

e
ffiffi
3
p

�

16ℏ2
G40

04

�
16

ℏ4
e�4

ffiffi
3
p

�

��������1

4

þ i

�
�

2ℏ
þ P�

2
ffiffiffi
3
p

ℏ

�
;
1

4
þ i

���
2ℏ
þ P�

2
ffiffiffi
3
p

ℏ

�
;
1

4

þ i

�
�

2ℏ
� P�

2
ffiffiffi
3
p

ℏ

�
;
1

4
þ i

���
2ℏ
� P�

2
ffiffiffi
3
p

ℏ

��
:

(74)

It is possible to verify that the Wigner function indeed
satisfies Eq. (68).
In order to extract physical information, we plot the

Wigner function for several values of �. We can say
from Figs. 7 and 8 that the classical trajectory is near the
highest peaks of the Wigner function for values close to
� ¼ 1. For values of � smaller than 1, we can see from
Figs. 9 and 10 that there are fewer oscillations but the
classical trajectory does not correspond to the highest
peaks; in fact, there is an ample region where the Wigner
function is large. For values of � bigger than 1, the Figs. 11
and 12 show an increment in the number of oscillations of
Wigner function and the peaks of the oscillations are far
away from the classical trajectory. We can conclude that
the quantum interference effects are enhanced for larger
values of �.

FIG. 10. Kantowski-Sachs Wigner function density projection
for � ¼ 0:5. It can be observed that the value of the Wigner
function is large in an ample area.

FIG. 7. The Wigner function for the Kantowski-Sachs wave
function for � ¼ 1. The number of oscillations are maxima
around P� ¼ 0.

FIG. 8. Density projection of the Kantowski-Sachs Wigner
function for � ¼ 1. It can be observed that classical trajectory
is close to the exterior peaks of the oscillations.

FIG. 9. The Kantowski-Sachs Wigner function for � ¼ 0:5.
Few oscillations are present for this case with a clear maximum
around � ¼ 6 and P� ¼ 0.

DEFORMATION QUANTIZATION OF COSMOLOGICAL MODELS PHYSICAL REVIEW D 83, 125030 (2011)

125030-11



Recently, the noncommutative version of the
Kantowski-Sachs model has been studied in [21], and it
turns out interesting to analyze it using the deformation
quantization formalism. Now, from the previous results we
can present the noncommutative version of the Kantowski-
Sachs model. We consider a Kantowski-Sachs cosmology
with a noncommutative parameter �. The operator algebra
in the phase space is given by

½Z	;�Z

� ¼ iℏ�	
; ½Z	; Z
� ¼ i�"	
;

½�Z	
;�Z


� ¼ 0;
(75)

where Z	 ¼ ð�; 
Þ and �Z	
¼ ðP�; P
Þ. Of course, fur-

ther generalizations can be implemented in the general
case with ½�Z	

;�Z

� � 0.

The noncommutative Wheeler-DeWitt equation is writ-
ten as�
� @2

@�2
þ @2

@
2
þ48expð�2 ffiffiffi

3
p

�þ ffiffiffi
3
p

�P
Þ
�
�ð�;
Þ¼0;

(76)

where P
 ¼ �iℏ @
@
 . The solutions are given by [21]

��� ð�;
Þ¼e�i�
ffiffi
3
p


Kið�=ℏÞ
�
4

ℏ
exp

�
� ffiffiffi

3
p �

�	
ffiffiffi
3
p
2
��

���
:

(77)

We choose the corresponding � part of the wave function
as

’�� ð�Þ ¼ 31=4

�ℏ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh

�
��

ℏ

�s

� Kið�=ℏÞ
�
4

ℏ
exp

�
� ffiffiffi

3
p �

�	
ffiffiffi
3
p
2

��

���
; (78)

which reduces to the wave function for the noncommuta-
tive case when � ¼ 0. Following a similar procedure as for
the commutative case, we are able to write the Wheeler-
DeWitt-Moyal equation in the following form:

�
�
�
P� � iℏ

2
~@�

�
2 þ

�
P
 � iℏ

2
~@


�
2

� 48 exp

�
�2 ffiffiffi

3
p �

�	
ffiffiffi
3
p
2

��þ iℏ
2

~@P�

���
� ��ð�; P�; 
; P
Þ ¼ 0; (79)

and the corresponding difference equation is

� P2
��

�
�ð�; P�Þ � 12

ffiffiffi
3
p

iℏ2e�2
ffiffi
3
p ð�	ð ffiffi3p =2Þ��Þ

P�

½��
�ð�; P� þ i

ffiffiffi
3
p

ℏÞ � ��
�ð�; P� � i

ffiffiffi
3
p

ℏÞ� � 144ℏ2e�4
ffiffi
3
p ð�	

ffiffi
3
p
2 ��Þ

ðP2
� þ 3ℏ2Þ

� ½��
�ð�; P� þ 2i

ffiffiffi
3
p

ℏÞ � 2��
�ð�; P�Þ þ ��

�ð�; P� � 2i
ffiffiffi
3
p

ℏÞ� þ 144
ffiffiffi
3
p

iℏ3e�4
ffiffi
3
p ð�	ð ffiffi3p =2Þ��Þ

P�ðP2
� þ 3ℏ2Þ

� ½��
�ð�; P� þ 2i

ffiffiffi
3
p

ℏÞ � ��
�ð�; P� � 2i

ffiffiffi
3
p

ℏÞ� � 24e�2
ffiffi
3
p ð�	ð ffiffi3p =2Þ��Þ½��

�ð�; P� þ i
ffiffiffi
3
p

ℏÞ þ ��
�ð�; P� � i

ffiffiffi
3
p

ℏÞ�
¼ �P2


�
�
�ð�; P�Þ: (80)

FIG. 12. Kantowski-Sachs Wigner function density projection
for � ¼ 4. The classical trajectory (near the P� axis at the upper
and bottom part of the figure) is far away from the peaks of the
Wigner function.

FIG. 11. Kantowski-Sachs Wigner function for � ¼ 4. There
is a considerable increase in the number of oscillations centered
at P� ¼ 0.
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The solution to this equation is again difficult to obtain in a direct way but employing the integral representation of the
Wigner function we can calculate the corresponding noncommutative Wigner function from

���
� ð�; P�Þ ¼ 31=2

2�4ℏ2
sinh

�
��

ℏ

�Z 1
�1

dyKið�=ℏÞ
�
4

ℏ
e�ð3=2Þ��e�

ffiffi
3
p ð��ðℏ=2ÞyÞ

�
e�iyP�Kið�=ℏÞ

�
4

ℏ
e�ð3=2Þ��e�

ffiffi
3
p ð�þðℏ=2ÞyÞ

�
: (81)

Thus, we find

���
� ð�; P�Þ ¼ sinhð��=ℏÞ

�3

e
ffiffi
3
p ð�	ð ffiffi3p =2Þ��Þ

16ℏ2

�
2

ℏ
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ffiffi
3
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G40
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�
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þ P�ffiffiffi

3
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�
;
1

4
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2ℏ
;
1

4
� i�

2ℏ

�
: (82)

Just as in the previous commutative Kantowski-Sachs case, we can rewrite the former equation as

���
� ð�; P�Þ ¼ sinhð��=ℏÞ

�3

e
ffiffi
3
p ð�	ð ffiffi3p =2Þ��Þ
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� iP�
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ffiffiffi
3
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ℏ

��
: (83)

We can verify that this expression fulfils the Eq. (79) and
the noncommutative effect corresponds to a displacement
in the � variable.

The noncommutativity consequences can be seen more
transparently if we consider a wave packet weighted by a
Gaussian

�ð�; 
Þ ¼N
Z 1
�1

e�að��bÞ2cþ� ð�; 
Þd�: (84)

The resulting values of Eq. (83) are introduced in the
Wigner function (53) and the integral is performed numeri-
cally for a value of 
 ¼ 0. The result is plotted in Figs. 13
and 14 for the values a ¼ 4 and b ¼ 1. Figures 15 and 16
correspond to � ¼ 0 and Figs. 13 and 14 correspond to
� ¼ 4. Here, we are interested in describing which is the

effect of the � parameter. Figures 15 and 16 show that for
� ¼ 0 there is only one preferred semiclassical state of the
Universe. Figures 13 and 14 show a significative difference
consisting in having several smaller picks representing
semiclassical states of lower probability. The additional
states contribute to a landscape of vacua since these new
vacua can be reached by tunneling. Summarizing, at the
semiclassical level, it is confirmed the observation made
in Ref. [21] concerning that the noncommutativity of the
minisuperspace leads to new possible states of the Universe
which contribute to its evolution at early stages. Another
approach of this subject using the phase space has been
considered in [64].

FIG. 13. Kantowski-Sachs noncommutative Wigner function
weighted by a Gaussian. Several peaks of different amplitudes
in the Wigner function can be observed around the Gaussian
form. These are interpreted as different universes connected by
tunneling.

FIG. 14. The density projection of the Kantowski-Sachs non-
commutative Wigner function weighted by a Gaussian. Because
of the noncommutativity, more peaks and oscillations appears
around P� ¼ 0.
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C. String cosmology with dilaton exponential potential

Now we can treat the case of string cosmology [65] with
dilaton exponential potential in the same way as in the
previous subsection. We consider the D ¼ 4 tree level
string effective action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�gp �

Rg � 1

2
ð@Þ2 � VðÞ

�
; (85)

where g�� is the Einstein frame metric, g is its determi-

nant, Rg is the Ricci scalar compatible with g��, 

denotes the dilaton and we consider the dilaton potential
VðÞ ¼ V0e

	. We use the following metric

ds2 ¼ �NðtÞ2
aðtÞ2 dt

2 þ aðtÞ2�ijdx
idxj; (86)

and NðtÞ is the lapse function. By means of the following
new variables

x ¼ 1

6
ln

�ðuþ vÞðu� vÞ2
8

�
; z ¼ 1

6
ln

�
2ðuþ vÞ
ðu� vÞ2

�
;

(87)

where u ¼ ða22 cosh2Þ and v ¼ ða22 sinh2Þ, theWheeler-

DeWitt equation is written in the gaugeN�1 ¼ 1
2 ðu� vÞ as

follows [66]:

H ?c ðx; zÞ ¼
�
@2

@x2
� @2

@z2
þ 9V0e

6x

�
c ðx; zÞ ¼ 0: (88)

The solution is expressed in terms of Bessel function in the
x variable and as a free wave in the z variable, therefore the
wave function is

c ðx; zÞ ¼ e�ikzJ�ik=3ð
ffiffiffiffiffiffi
V0

p
e3xÞ; (89)

where k is the separation constant. We choose the delta
function normalization for the wave function. In this case,
it is convenient to use the wave function in the x variable

c�kðxÞ ¼
ffiffiffi
3
p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhð�kÞp ðJik=3ð

ffiffiffiffiffiffi
V0

p
e3xÞ � J�ik=3ð

ffiffiffiffiffiffi
V0

p
e3xÞÞ;

(90)

where it satisfies (see section (4.14) in [67,68])

Z 1
�1

dxc �ðxÞ�kc ðxÞ�k0 ¼ �ðk2 � k02Þ: (91)

We proceed now to obtain the expression for the
Wheeler-DeWitt-Moyal equation; again it is convenient
to use (63). We get�
�
�
Px � iℏ

2
~@x

�
2 þ

�
Pz � iℏ

2
~@z

�
2 þ 9V0e

6xþi3ℏ ~@Px

�
� �ðx; Px; z; PzÞ ¼ 0; (92)

which can be separated in its real part

�
�P2

x þ ℏ2

4
@2x þ P2

z � ℏ2

4
@2z þ 9V0e

6x cosð3ℏ@Px
Þ
�

� �ðx; Px; z; PzÞ ¼ 0; (93)

and its imaginary part

½ℏðPx@xÞ�ℏðPz@zÞþ9V0e
6x sinð3ℏ@Px

Þ��ðx;Px;z;PzÞ¼0:

(94)

If we propose � ¼ �xðx; PxÞ�zðz; PzÞ, and consider that
for a free particle in the z parameter @z�z ¼ 0, we get
from Eq. (93)

FIG. 15. The Kantowski-Sachs Wigner function weighted by a
Gaussian function. It can be observed the Gaussian form be-
tween � ¼ 1 and � ¼ 2 centered at P� ¼ 0 with some very
smooth oscillations around P� ¼ 0.

FIG. 16. Kantowski-Sachs Wigner function density projection
weighted by a Gaussian. There is a clear maximum with some
other transversal oscillations around P� ¼ 0.
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ℏPx@
2
x�xðx; PxÞ ¼ � 27

2
iV0e

6xð�xðx; Px þ 3iℏÞ � �xðx; Px � 3iℏÞÞ � 81

4ℏ
ðV0e

6xÞ2
ðP2

x þ 9ℏ2Þ ½Pxð�xðx; Px þ 6iℏÞ � 2�xðx; PxÞ

þ �xðx; Px � 6iℏÞÞ þ 3iℏð�xðx; Px � 6iℏÞ � �xðx; Px þ 6iℏÞÞ�: (95)

Using the former equation in (92) we finally obtain

�P2
z�xðx; PxÞ ¼ �P2

x�xðx; PxÞ þ 27iℏV0

4Px

e6xð�xðx; Px þ 3iℏÞ � �xðx; Px � 3iℏÞÞ þ 9V0

2
e6xð�xðx; Px þ 3iℏÞ

þ �xðx; Px � 3iℏÞÞ � ð9V0e
6xÞ2

42PxðP2
x þ 9ℏ2Þ ½ðPx � 3iℏÞ�xðx; Px þ 6iℏÞ � 2Px�xðx; PxÞ

þ ðPx þ 3iℏÞ�xðx; Px � 6iℏÞ�: (96)

This difference equation is complicated to solve in a direct way so as with the Kantowski-Sachs case we use the integral
representation of the Wigner function. Employing the following result (see Sec. 19.3 formula (45) in [61]), we can
calculate the Wigner function in terms of the Meijer’s function

Z 1
0

x��1J�ðaxÞJ�ðbx�1Þdx ¼ 2��1a��G20
04

�
a2b2

16

���������2 ; �þ�
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;
���
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;��
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�
: (97)

Then, we obtain

�xðx; PxÞ ¼ 1

8ℏ� sinð�kÞ
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0e

12x

16ℏ4

��������i
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ðkþ PxÞ; i6 ðk� PxÞ; i6 ð�k� PxÞ; i6 ð�kþ PxÞ

�

þG20
04

�
V2
0e

12x

16ℏ4

��������i

6
ðkþ PxÞ; ik6 ð�k� PxÞ; i6 ðk� PxÞ; i6 ð�kþ PxÞ

��
: (98)

We want to note that it is also possible to write the Wigner
function in terms of the hypergeometric function 0F3 em-
ploying [69]. This is a straightforward but long calculation
that we will not present here.

It can be verified that �x given by Eq. (97) satisfies the
Eq. (95).

D. Baby universes

In this subsection, we will consider another example of
the use of the deformation quantization formalism to
wormhole solutions in general relativity [70–72]. Here,
we will have a system with two coordinates of the flat
minisuperspace (2 degrees of freedom).

We are going to consider a baby Universe with confor-
mal matter 0 and a three-metric hij defined on a Cauchy

hypersurface S of a closed wormhole Universe. The matter
is represented by a conformal invariant scalar field ex-
panded in hyper-spherical harmonics Qn of the surface S
given by 0 ¼ 1

a

P
nfnQn, where a is the scale factor and

fn are orthonormal modes. The metric on S is given by
hij ¼ a2 � ð�ij þ "ijÞ. Here �ij is the metric of a unit

three-sphere S3 and "ij ¼
P

nðan�ijQn þ bnPijn þ
cnSijn þ dnGijnÞ. The Qn’s are the scalar harmonics of

the 3-sphere, Pijn is a suitable combination of Qn, Sijn
is defined in terms of the transverse vector harmonics
and Gijn are the transverse traceless tensor harmonics

on S.
On the gravitational part, in a suitable gauge (an ¼ bn ¼

cn ¼ 0) of hij on S and considering the case without

gravitons (dn ¼ 0), one can express the three-metric sim-
ply as: hij ¼ a2 ��ij. Thus, the wave function � is a

function of the scale factor a and the harmonic modes of
the scalar field fn. This wave function fulfills the Wheeler-
DeWitt Eq. (10) of the form

�X
n

�
� @2

@f2n
þ n2f2n

�
�

�
� @2

@a2
þ a2

��
�ða; fnÞ ¼ 0;

(99)

where we have implemented the canonical relation on the
momenta p̂fn ¼ �iℏ @

@fn
and p̂a ¼ �iℏ @

@a .

In the context of quantum cosmology, the solution fac-
torizes in a purely gravitational part and a purely matter
part. Both of them correspond to harmonic oscillators and
the solution is given by
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�ða; fnÞ ¼ AHmðaÞ exp
�
� a2

2

�
�Y

n

Hmn
ðfn

ffiffiffi
n
p Þ

� exp

�
� nf2n

2

�
; (100)

where HmðxÞ are the Hermite polynomials and A is a
normalization constant. This solution satisfies the bound-
ary conditions such that c ða; fnÞ ! 0 as a! 1 and it is
regular at a ¼ 0.

Here it is assumed, as in [71], that the zero-point energy
of the gravitational sector will precisely compensate the
zero-point energy of the matter oscillators as it happens in
a supersymmetric theory. This solution represents a closed
Universe carrying m scalar particles in the n-th mode.
Thus, the ground state j�0i will correspond to m ¼ 0
and n ¼ 0, i.e., the absence of matter particles and con-
sequently excited states of the scale factor part.

The wave function factorization �ða; fnÞ ¼
c 0ðaÞ �Qnc nðfnÞ comes from the inner product between
ha; fnj and jc 0; c ni. The ground state is given by j�0i ¼
jc 0ia � jc 0if.

Let b̂ and b̂y the annihilation and creation operators of
the ma-th modes of the gravitational sector defined by

b̂j0a; mfi ¼ 0 and ½b̂y�ma j�0i ¼ jma;mfi. Now, let d̂

and d̂y the annihilation and creation operators of the

mf-th modes of scalar particles defined by d̂jma; 0fi ¼ 0

and ½d̂y�mf j�0i ¼ jma;mfi. The combination yields

b̂ � d̂j0a; 0fi ¼ 0 and ½b̂y�ma � ½d̂y�mf j�0i ¼ jma;mfi.
In the WWGM formalism, we have the following gen-

eral stationary Wheeler-DeWitt-Moyal equation:

HB ? �Wða; pa; fn; pfnÞ ¼ 0; (101)

where �W ¼ �Wða; pa; fn; pfnÞ is the Wigner function and

HB stands for the baby Universe Hamiltonian

HB ¼ Hf þHa; (102)

where

Hf ¼
X
n

ðp2
fn
þ!2

nf
2
nÞ (103)

with !n ¼ n and

Ha ¼ p2
a þ a2: (104)

The Moyal product is given by

f ? g ¼ f exp

�
iℏ
2
P
$

B

�
g; (105)

where the corresponding Poisson operator has the follow-
ing form:

P
$

B ¼ P
$

f þ P
$

a

¼X
n

�
@
 

@fn

~@

@pfn

� @
 

@pfn

~@

@fn

�
þ @
 

@a

~@

@pa

� @
 

@pa

~@

@a
:

(106)

We can write down �W0 ¼ �a
W0 � �f

W0, then we can sepa-

rate (100) into two parts

Ha ? �a
W0ða; paÞ ¼ �E�a

W0ða; paÞ; (107)

and

Hf ? �f
W0ðf; pfÞ ¼ E�f

W0ðf; pfÞ: (108)

Therefore, we have that the Eq. (100) at the order ℏ can be
written as

X
n

�
!2

nfn � @�
f
W0

@pfn

� pfn �
@�f

W0

@fn

�
� a � @�

a
W0

@pa

þ pa � @�
a
W0

@a
¼ 0; (109)

where �W0 is the Wigner function for the ground state.
Thus, the solution to this equation is given by

�W0ðpa; a; pfn ; fnÞ
¼ �a

W0ða; paÞ � �f
W0ðfn; pfnÞ

¼ A exp

�
� 2

ℏ
ðp2

a þ a2Þ
�
�Y

n

exp

�
� 2

ℏ
ðp2

fn
þ!2

nf
2
nÞ
�
:

(110)

The density matrix for all excited states is given by

�̂ r;s ¼ ½b̂y�r � ½d̂y�sj�0ih�0j½d̂y�s � ½b̂y�r: (111)

The WWGM formalism allows us to compute from this
density matrix the general Wigner function for all excited
states [53]

½�W�m;n ¼ ½b�� ? � � � ? ½b�� ? ½d�� ? � � � ? ½d�� ? �W0

? ½d�� ? � � � ? ½d�� ? ½b�� ? � � � ? ½b��: (112)

It is straightforward to show that it leads to the solution

�Wðpa; a; fn; pfnÞ
¼ A exp

�
� 2

ℏ
ðp2

a þ a2Þ
�
Lm

�
4

ℏ
ðp2

a þ a2Þ
�

�Y
n

exp

�
� 2

ℏ
ðp2

fn
þ!2

nf
2
nÞ
�
Lmn

�
4

ℏ
ðp2

fn
þ!2

nf
2
nÞ
�
:

(113)

Here, LmðxÞ is the Laguerre polynomial of degree m.
Remember that they are related to the Hermite polynomials
through the familiar formula Lnðx2 þ y2Þ ¼ ð�1Þn2�2n�P

n
m¼0

1
m!ðn�mÞ!H2mðxÞH2n�2mðyÞ. The case for the minimal
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coupling scalar matter follows a similar treatment and will
not be discussed here, but analogous formulas can be
obtained for this case.

V. FINAL REMARKS

In this paper, we have constructed the WWGM formal-
ism in the flat superspace (and phase superspace). The
WWGM correspondence is explicitly developed and
the Stratonovich-Weyl quantizer, the star product and the
Wigner functional are obtained. These results can be used
in general situations, but in a first approach we applied the
formalism to some interesting minisuperspace models
widely studied in the literature, in particular, we used the
Moyal star product to describe some relevant cosmological
models in phase space.

We studied de Sitter quantum cosmology using the
Hartle-Hawking, Vilenkin and Linde boundary conditions,
where we have found numerically the Wigner function for
all of these cases.

For the Hartle-Hawking wave function, the behavior of
the Wigner function presents many oscillations due to
interference terms between the wave functions of expand-
ing and contracting universes. Similarly as in Ref. [30], our
result shows that the highest peaks of the Wigner function
do not coincidewith the classical trajectory of the Universe.

The Linde Wigner function has a similar behavior to the
Hartle-Hawking case, where there are also expanding and
contracting components of the wave function. The main
difference in their corresponding Wigner functions is just a
sign in the interference terms between the expanding and
contracting wave functions and as a consequence it pro-
duces a reduction in the amplitude of the oscillations inside
the classical region.

In the case of the Vilenkin tunneling wave function, we
notice that the Wigner function has fewer oscillations
compared to the Hartle-Hawking Wigner function. This
is explained by the fact that there are fewer oscillation
effects because there is only an outgoing wave. In this case,
the classical trajectory corresponds almost to the maxima
of the peaks of the Wigner function.

However, the classical limit for these three models is
difficult to obtain due to the existence of oscillations in the
Wigner functions. It is important to note that decoherence
of the Vilenkin Wigner function is in principle simpler to
obtain since the interference terms are absent because there
is only an expanding Universe around p ¼ 0.

For the Kantowski-Sachs cosmological model, we found
the Wheeler-DeWitt-Moyal equation which is equivalent
to a differential-difference equation. We found its exact
solution in terms of the Meijer’s function. We observe that
the classical trajectory corresponds to the highest peaks of
the Wigner function for values close to � ¼ 1. The situ-
ation for � � 1 in the Wigner function corresponds to
have less oscillations and the classical trajectory does not
correspond to the highest peaks. For values of �  1 we

have an increment in the number of oscillations of the
Wigner function and we do not have the peaks of the
oscillations near the classical trajectory. Thus it seems
that � could be regarded as a parameter encoding the
quantum interference effects.
We have also considered the noncommutative

Kantowski-Sachs model. In a similar way, we obtain the
analytic Wigner function and its differential-difference
equation. This case presents a noncommutative parameter
� deforming the Wheeler-DeWitt-Moyal equation. The
Wigner function is determined in terms of the above
Meijer’s function with shifted argument by a factor pro-
portional to �. We have constructed numerically the
Wigner function with wave packet weighted by a
Gaussian to see the effects of the noncommutativity.
There were found several peaks in the Wigner function
around the Gaussian which can be interpreted as different
universes connected by tunneling. Thus, at the semiclassi-
cal level, the statement made in [21] about that the non-
commutativity of the minisuperspace produces new
possible states of the Universe at early stages is confirmed.
String cosmology with dilaton exponential potential is

also discussed. We found the corresponding Wheeler-
DeWitt-Moyal equation and the equivalent differential-
difference equation. These equations have an exact solu-
tion in terms of the hypergeometric and Meijer’s functions.
Baby universe solutions are also obtained in this context

where the Wigner function is calculated by finding the
exact solution of its Wheeler-DeWitt-Moyal equation con-
sisting in two decoupled deformed harmonic oscillators in
terms of Laguerre polynomials.
It is important to remark that this work opens the possi-

bility of treating several important questions that remain
unsolved in quantum cosmology with a novel approach.
For instance, deformation quantization allows to deal with
systems having phase spaces with nontrivial topology. In
quantum cosmology, the existence of symmetries implies
that the phase-superspace and, in particular, the phase-
minisuperspace will be reduced by the implementation of
these symmetries leading to a nontrivial topological space
with a nonflatmetric. Therefore, deformation quantization is
able to treat these mentioned cases in a natural way.
Moreover the extension to supersymmetric quantum cos-
mology [17,19,20] can be also treated applying the results
of [73].
Another point to remark is that the Wheeler-DeWitt-

Moyal Eq. (29) proposed in the present paper contains the
generalized mass-shell equation and the Wheeler-DeWitt-
Vlasov transport equation in the flat minisuperspace [29]
encoded in its real and imaginary parts, respectively. The
former result was obtained using the Moyal ?-product and
then all the technics of deformation quantization developed
for a long time can be applied to it. It is known that the
mass-shell equation and theWheeler-DeWitt-Vlasov trans-
port equation admits a suitable generalization to curved
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minisuperspace [29]. It would be interesting to deal with
curved symplectic cases where the Fedosov’s approach
could be applied in order to find the Wheeler-DeWitt-
Moyal equation in nontrivial phase superspaces and obtain
the mass-shell and the Wheeler-DeWitt-Vlasov equations.
We will study this problem in a further communication.

Besides, as was mentioned before, the problem of ob-
taining the classical limit by implementing a coarse grain-
ing is relevant. It is possible to model a coarse graining
through the Liouville equation with friction and diffusion
terms [30], this approach can be addressed in the context of
the deformation quantization formalism.

To conclude, we consider that deformation quantization
possesses various advantages in order to deal with more
complicated problems in quantum cosmology, for ex-
ample, to treat systems with nontrivial topology or with

curved minisuperspaces. For these cases, the canonical
quantization could lead to the existence of non-Hermitian
operators which is avoided in deformation quantization as
a result of the use of classical objects instead of operators.
For these reasons, more examples and further research is
needed to develop this approximation.
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