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The effective approach to quantum dynamics allows a reformulation of the Dirac quantization

procedure for constrained systems in terms of an infinite-dimensional constrained system of classical

type. For semiclassical approximations, the quantum constrained system can be truncated to finite size and

solved by the reduced phase space or gauge-fixing methods. In particular, the classical feasibility of local

internal times is directly generalized to quantum systems, overcoming the main difficulties associated

with the general problem of time in the semiclassical realm. The key features of local internal times and

the procedure of patching global solutions using overlapping intervals of local internal times are described

and illustrated by two quantum mechanical examples. Relational evolution in a given choice of internal

time is most conveniently described and interpreted in a corresponding choice of gauge at the effective

level and changing the internal clock is, therefore, essentially achieved by a gauge transformation. This

article complements the conceptual discussion in [M. Bojowald, P. A. Höhn, and A. Tsobanjan, Classical

Quantum Gravity 28, 035006 (2011).].
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I. INTRODUCTION

One of the most pressing issues in the development of a
consistent theory of quantum gravity is the problem of time
[1–4]. As a generally covariant theory, its dynamics is fully
constrained, without a true Hamiltonian generating evolu-
tion with respect to a distinguished or absolute time.
Within the classical treatment, using the conventional
spacetime (manifold) picture, this does not immediately
pose a serious problem since there are different notions of
time available in general relativity. The physical notion of
time as experienced by a specific observer is supplied in an
invariant and unambiguous manner by the proper time
along that observer’s worldline. The second notion appears
in the context of the canonical initial-value formulation,
often constructed by introducing a foliation of spacetime
by spatial hypersurfaces. However, the time coordinate that
labels these hypersurfaces, in contrast to proper time, has
no invariant physical meaning. It is simply the gauge
parameter for orbits of the Hamiltonian constraint and,
classically, these orbits lie entirely within the constraint
surface. Evolution along the orbits may be interpreted with
respect to this time coordinate which provides an ordering
to physical relations. When quantizing the theory via the
Dirac procedure, however, physical states are to be annihi-
lated by the quantum constraints and are, therefore, gauge
invariant by construction. The gauge flow, along with
the gauge parameters of the constraints, is absent in the
physical Hilbert space. In the presence of a Hamiltonian

constraint this means that physical states are timeless.
Furthermore, physical observables should be gauge invari-
ant and must thus be constant along classical dynamical
trajectories and commute with the constraints in the quan-
tum theory.1 It appears as if ‘‘nothing moves,’’ or, as if
‘‘dynamics is frozen.’’
Change and dynamics, however, can be untangled from

this static world by taking the underlying principles of
general relativity seriously, according to which physics is
purely relational. Evolution is not measured with respect to
an absolute external parameter but time can be chosen
among the internal degrees of freedom. Evolution is then
interpreted relative to such an internal clock, where inter-
nal time is more general than and not necessarily directly
linked to the proper time of any observer. While proper
time is practical for describing dynamics in a gravitational
field since it depends on the worldlines of observers and
has meaning only after solving the Einstein equations, in
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1The viewpoint that physically observable quantities in pa-
rametrized systems should commute with all constraints, includ-
ing the Hamiltonian constraint, has been challenged by Kuchař
(and, more recently, by Barbour and Foster [5]). For instance, in
[6] he argues for a difference between conventional gauge
systems and parametrized systems, leading to the proposal that
states along the orbit of the Hamiltonian constraint should not be
identified since this would stand in contradiction to our everyday
experience of the flow of time. He advocates that, instead, in
general relativity physically observable quantities should only
commute with the diffeomorphism constraints, but not neces-
sarily with the Hamiltonian constraint. Nevertheless, in this
article we take the conventional standpoint of requiring that
physically observable quantities should commute with all con-
straints and, consequently, that in this sense no distinction ought
to be made between the Hamiltonian and the other constraints.
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quantum gravity one is rather interested in the dynamics of
the gravitational field, for which internal time is useful.
This concept has led to the so-called evolving constants of
motion [4,7], which are relational Dirac observables mea-
suring physical correlations between the internal clock and
other degrees of freedom. Significant progress in this di-
rection and generalizations of such relational observables
have been undertaken in [8–10], and some criticism con-
cerning their capability of solving the problem of time has
been raised in [1,2,6,11]. In the sequel, we will adopt the
relational viewpoint and employ internal clocks as mea-
sures of a relational time. (Some interesting real-world
aspects also relevant to internal clocks have been dis-
cussed, for instance, in [12].) As regards evolution, the
choice and corresponding notion of time are inherently
connected to the choice of the internal clock variable.

Apart from this conceptual issue, the problem of time
usually comes with a whole plethora of technical problems
[1–3], of which the ones touched upon in this article may
be summarized as follows:

(i) The multiple-choice problem. Which internal time
should one choose as a clock? There is no natural
choice of an internal clock variable and different
internal times may provide different quantum theo-
ries [1,2,13]. Furthermore, one must impose restric-
tions on the choice of internal time functions, since
some choices lead to inconsistent probabilistic pre-
dictions in the quantum theory and time orderings
which are not well defined [11].

(ii) The Hilbert-space problem. Which Hilbert-space
representation is one to choose and how is one
to construct a positive-definite physical inner
product on the space of solutions to the quantum
constraints?

(iii) The operator-ordering problem. The usual ordering
problems arise upon promoting classical con-
straints to operator equivalents. The choice of a
time variable also plays a role in the ordering
problem [1].

(iv) The global time problem. Similarly to the Gribov
problem in non-Abelian gauge theories, there may
exist global obstructions to singling out good inter-
nal clock variables which provide good parametri-
zations of the gauge orbits in the sense that each
classical trajectory intersects every hypersurface
of constant clock time once and only once
[1,2,7,10,14].

(v) The problem of observables. It is very difficult to
construct a sufficient set of explicit observables for
gravitational and parametrized theories and even the
existence of a sufficient set has been questioned
[3,6,10]. In fact, no general Dirac observables are
known for general relativity. While classically sig-
nificant progress has been made in this area [8–10],
the problem worsens in the quantum theory due to

the previous technical issues since no general
scheme exists for converting such observables—if
found at all—into suitable operators.

The relational interpretation of evolution is complicated
by the fact that internal clock functions are neither univer-
sal nor perfect. A globally valid choice of internal time is
difficult to find and, due to the global time problem, may
not exist. For specific matter systems, such as a free mass-
less scalar field or pressureless dust, deparametrizations
with a matter clock can be performed, but these models
seem rather special. In order to evaluate the dynamics of
quantum gravity and derive potentially observable infor-
mation from first principles, the various problems of time
must be overcome without requiring specific adaptations.
The imperfect nature of internal clocks does not con-

stitute a problem at the classical level, however, since, in
principle, we can always make use of the gauge parameter
along the flow of the Hamiltonian constraint and evolve in
this coordinate time with respect to which the internal
clock, say TðxÞ, and the other variables of interest, say
QiðxÞ, have a given evolution. Comparing the values of the
internal clock and theQiðxÞ along the coordinate time then
gives a relational evolution. If TðxÞ fails to be a good global
clock, the system will eventually go backwards in it, the
observable correlations QiðTðxÞÞ will, in general, be multi-
valued and, consequently, the evolution of the correlations
QiðTÞ will be ‘‘patched up,’’ where on each patch T will be
a good clock. Thus, classically, in principle, we do not even
need to switch clocks if one takes the evolution in some
good time coordinate into account which does not know
about nonglobal clocks and provides an ordering to the
patches. With respect to this time coordinate we can solve a
well-defined initial-value problem [IVP] (as long as a time
direction is given). One can even encode this relational
evolution entirely with physical correlations without refer-
ring to any gauge parameter, if one keeps not only the
relational configuration observables but also the relational
momentum observables in mind to determine an orienta-
tion in which to evolve even at a turning point of a non-
global clock. If a time direction is provided, one can also
impose relational initial data to completely specify a clas-
sical solution. The classical solution may then be obtained
by choosing a physical Hamiltonian which moves the
surfaces of constant T in phase space. In the case of a
nonglobal clock, this reconstruction is complicated by the
fact that a given trajectory may intersect a constant time
hypersurface more than once or not at all. In this case one
will have to choose more than one Hamiltonian but this is
merely a technical difficulty, not a fundamental problem.
We will come back to this point in the main body of this
article.
Because of the quantum uncertainties and the lack of a

classical gauge parameter, performing a ‘‘patching’’ as
above will no longer be possible in the full quantum theory
and we are forced to employ purely relational information
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which will require the switching of nonglobal clocks. If
relational time is defined for only a finite range, a unitary
relational state evolution can not be accomplished and, as
we will see, will break down earlier than the corresponding
Hamiltonian evolution in the classical theory.2 While clas-
sical evolution in nonglobal clocks is, in principle, unpro-
blematic, nonunitary quantum evolution can lead to
meaningless results long before the end of a local time is
reached and it is not clear how to define relational quantum
observables in this case.

Even though coordinate time may not exist in full quan-
tum gravity at the Planck scale, one would heuristically
expect that on the way to larger scales—in a semiclassical
regime which ought to provide the connection to the clas-
sical solutions of general relativity—one can reconstruct a
(certainly nonunique) coordinate time (for a discussion of
this within loop quantum cosmology see [16]). Indeed, the
notion of a time coordinate and evolution trajectory should
become meaningful for coherent states whose expectation
values follow the classical trajectory at least for a certain
range. In a semiclassical regime, the notion of coordinate
time should, therefore, make sense and we should be able
to follow a similar strategy here as in the classical situation.

For most applications of quantum gravity related to
potential observable effects, semiclassical evolution is suf-
ficient, or, at least provides a large amount of information.
One may then hope that such a situation makes dealing
with the problem of time more feasible since this problem
does not play a handicapping role classically; at the very
least a dedicated analysis of semiclassical evolution should
provide insights which may help in attacking the problem
in full generality.

This article complements the conceptual discussion in
[17] with concrete examples and a concrete discussion of
the general features they exhibit. We use the effective ap-
proach to quantum constraints developed in [18,19] in the
context of the problem of time; truncation at semiclassical
order reintroduces some notion of classical gauge parame-
ters. It is the aim of the present article to sidestep a number of
technical issues associated to an explicit Dirac type ap-
proach and to specifically copewith theglobal time problem,
while the other technical problems alluded to above will
automatically be addressed in the course of the discussion. It
is our goal tomake physical predictions based on some set of
(relational) input data, also in nondeparametrizable systems.

We will make use of (local) deparametrizations in order to
locally scan through an a priori timeless physical state,
thereby introducing a notion of quantum evolution. We
propose a practical solution employing local, rather than
global internal times and adopt and emphasize the viewpoint
that the relational interpretation is, generally, only of local
and semiclassical meaning, as was argued in [17]. For ex-
plicit calculations, our methods will lend themselves easily
to gauge-fixing techniques, avoiding complicated deriva-
tions of complete observables. In analogy to local coordi-
nates on a manifold, we cover the evolution trajectories by
patches of local time and translate between them in order to
evolve through pathologies of local clocks. The choice of
time is best described and interpreted in a corresponding
choice of gauge at the effective level and translating between
different local clocks, therefore, requires nothing more than
a gauge transformation. In addition, we find that nonunitar-
ity at the state level translates into complex internal time. To
begin with, we will focus on simple mechanical toy models
which we will treat in the classical, effective and for com-
parison, where feasible, in a Hilbert-space approach. The
first model is deparametrizable, even though we employ a
nonglobal clock for the relational evolution, while the sec-
ond model is a true example of a ‘‘timeless,’’ nondeparame-
trizable system which has previously been discussed by
Rovelli [4,7].
The rest of the article is organized as follows. Section II

reviews the effective treatment of a quantum Hamiltonian
constraint and summarizes features of the example of the
‘‘relativistic’’ harmonic oscillator. In Sec. III we study the
first of the two models, discussing its classical and quan-
tum behavior before going through the full effective treat-
ment truncated using the semiclassical approximation. In
this model we opt to use a time variable which is non-
monotonic along every classical trajectory. We find that a
consistent effective treatment of this model requires as-
signing a complex expectation value to the kinematical
time operator. We find an explicit gauge transformation
which allows us to evolve the model of Sec. III through the
turning point of the nonglobal clock. A detailed discussion
of general features of such transformations, as well as of
the close relationship between the choice of an internal
time variable and suitable gauge fixing follows in
Secs. IVC and IVD. The second model is studied in
Sec. V, where the effective treatment is performed follow-
ing the footsteps of Sec. III. Effective evolution relative to
a local time is compared to the (Hilbert space) dynamics
obtained using a locally deparametrized version of the
constraint, demonstrating good agreement. This model
does not possess a global clock and transformations be-
tween local internal times are necessary for full dynamical
evolution. At the effective level these are once again per-
formed using gauge transformations allowing ‘‘patched-
up’’ global evolution. Section VI contains several
concluding remarks.

2The finite range of a clock and the resulting apparent non-
unitarity are what one could call a ‘‘classical symptom’’ and a
‘‘quantum illness’’ which prevent an acceptable quantum dy-
namical solution in a conventional sense [15]. The point is,
however, that this nonunitarity in internal time is only the result
of a local dynamical interpretation of an a priori timeless system
which, in itself is not nonunitary. These considerations are
relevant for quantum gravity, since, from a certain point of
view, there might not exist a fundamental notion of time at the
Planck scale which would allow for a meaningful, conventional
unitary evolution [4,7].
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II. EFFECTIVE CONSTRAINTS

All examples in this article are quantum systems with a

single constraint operator Ĉ playing a role analogous to
that of the Hamiltonian constraint in general relativity.
According to the Dirac quantization procedure, physical

states jc i satisfy the condition Ĉjc i ¼ 0. When one sol-
ves for specific states represented in a Hilbert space and
attempts to equip the solution space with a physical inner

product, spectral properties of the zero eigenvalue of Ĉ are
important: if zero is in the discrete part of the spectrum,
physical states form a subspace of the kinematical Hilbert
space in which the quantum constraint equation is formu-
lated; for zero in the continuous part, on the other hand, a
new physical Hilbert space must be constructed for which
some methods exist [20]. These methods in practical ap-
plications, however, have a rather limited range of appli-
cability, and so finding physical Hilbert spaces remains a
challenge. For our effective procedures, assumptions about

the spectrum of Ĉ need not be made; effective techniques
work equally well for zero in the discrete as well as the
continuous part of the spectrum of constraint operators.

Effective descriptions for canonical quantum theories
[18,19] are based on a description of states not in terms
of wave functions (or density matrices) but by using ex-
pectation values hq̂i and hp̂i and moments

�ðqapbÞ :¼ hðq̂� hq̂iÞaðp̂� hp̂iÞbiWeyl

(ordered totally symmetrically and defined for aþ b � 2).
(For instance, �ðq2Þ ¼ ð�qÞ2 is the position fluctuation
with only a slight change of the standard notation.)

The state space is equipped with a Poisson structure
defined by

fhÂi; hB̂ig ¼ h½Â; B̂�i
iℏ

(1)

for any pair of operators Â and B̂, extended to the moments
using the Leibnitz rule and linearity. In the case of dynam-
ics given by a true Hamiltonian, the Schrödinger evolution
of states is equivalent to the evolution of expectation values
and moments generated by the quantum Hamiltonian

HQðhq̂i; hp̂i;�ð� � �ÞÞ ¼ hĤi through the Poisson bracket

defined above.
For physical states parameterized by their expectation

values and moments, the equation hĈiðhq̂i;hp̂i;�ð���ÞÞ¼0
defines a constraint function on the quantum phase space.
In this way, classical techniques for the reduction of con-
strained systems can be applied even in the quantum case,
one of the key features exploited in this article to address
the problem of time. The quantum nature of the problem is
manifest in moment-dependent correction terms in the

function hĈi as opposed to the classical constraint, as
well as the infinite dimensionality of the quantum phase
space even for a system with finitely many classical de-
grees of freedom. Moreover, since the moments are

a priori independent degrees of freedom, they are restricted
by further constraints

Cpolðhq̂i; hp̂i;�ð� � �ÞÞ :¼ hðcpol� hcpoliÞĈi ¼ 0

for all polynomials cpol in basic operators.3 This set of
functions contains infinitely many first-class constraints
for infinitely many variables; the quantum constraint func-
tions, therefore, generate gauge transformations and solv-
ing the constraints does not directly lead to gauge
invariance. The latter is only achieved after constructing
Dirac observables on the quantum phase space, which
provide the correct number of physical degrees of freedom.
In this aspect, the effective formalism differs from standard
Dirac quantization where the physical Hilbert space is
devoid of gauge flows. This may be understood from
noting that states in the physical Hilbert space only assign
expectation values to Dirac observables, while in the ef-
fective formalism expectation values are a priori assigned
to all kinematical variables, which even at the classical
level are not gauge invariant.
For the first-class nature, the ordering of operators in the

products cpol Ĉ is important, which, as shown explicitly in
the formwritten above, is not ordered symmetrically. Some
of the quantum constraints then take complex values,
which does not cause problems as already shown for
deparameterizable systems. This complex nature of the
constrained system is also rooted in the fact that the
effective expectation values are assigned to all kinematical
variables. It is not surprising that only some kinematical
moments satisfy reality conditions after the constraints are
implemented. Reality will be imposed on the physical
expectation values and moments—the Dirac observables
of the constrained system—and contact with the physical
Hilbert space is made. We will provide further examples in
this article.
Regarding the construction of Dirac observables for the

constrained system defined here, we note that observables
which commute with the quantum constraints translate into
Dirac observables for the effective system, Poisson com-
muting with all the quantum constraint functions:

�hÔi¼ fhÔi;hðcpol�hcpoliÞĈig
¼ 1

iℏ
ðhðcpol�hcpoliÞ½Ô;Ĉ�iþh½Ô;cpol�ðĈ�hĈiÞiÞ; (2)

vanishes weakly if Ô is a Dirac observable. By the same
token, moments computed for Dirac observables are Dirac
observables in the effective approach.
The set of infinitely many constraints for infinitely many

variables is directly tractable by exact means only if the
constraints decouple into finite sets, a situation realized

3The condition hĈi ¼ 0 cannot be sufficient to determine the
physical state, since the mean value of Ĉ may vanish even if
Ĉjc i � 0.
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only for constraints linear in canonical variables. More
interesting systems can be dealt with by approximations
which reduce the system to finite size when subdominant
terms are ignored. The prime example for such an approxi-
mation is the semiclassical expansion, in which moments
of high orders are suppressed compared to expectation
values and lower-order moments. Semiclassicality in a
very general form is implemented by the condition

�ðqapbÞ ¼ OðℏðaþbÞ=2Þ; considering only finite orders in
ℏ thus allows one to restrict the infinite set of constraints to
a finite one, and physical moments up to the order consid-
ered can be found more easily. When the system of all
quantum constraints is reduced to finite size, we call the
resulting constraints ‘‘effective,’’ motivated by the fact that
an analogous reduction in quantum-mechanical systems
(combined with an adiabatic approximation) reproduces
equations of motion that follow from the low-energy ef-
fective action [21].

Despite the fact that the moments can be varied inde-
pendently at the effective level, they must, in general,
satisfy an infinite tower of inequalities in order to represent
a true quantum state. Namely, in ordinary quantum me-
chanics, the values assigned by a state to the various
quantum moments are subject to inequalities that follow
directly from the Schwarz inequality of the Hilbert space.
In particular, for any two observables represented by

Hermitian operators Â and B̂, we have

hðÂ� hÂiÞ2ihðB̂� hB̂iÞ2i
� 1

4jh�i½Â; B̂�ij2 þ 1
4jh½ðÂ� hÂiÞ; ðB̂� hB̂iÞ�þij2;

where ½; �þ denotes the anticommutator. The well-known
(generalized) uncertainty relation follows immediately by

setting Â ¼ q̂ and B̂ ¼ p̂. In the present work we will not
assume that all kinematicalmoments satisfy these inequal-
ities, or even that their values are real. We will instead
impose (order by order in the semiclassical expansion)
these inequalities and reality on the relational observables
after the constraint is solved. This is discussed in greater
detail in Sec. III C 4 and in Appendix B. Notice that the
generalized uncertainty relation is then the only remaining
inequality at order ℏ.

The effective formalism provides approximation tech-
niques for the evaluation of quantum dynamics. While it is
motivated by the operator algebras of standard quantum
theory, it is not necessarily equivalent to the standard
theory. For instance, an expression such as hq̂i need not
and cannot necessarily be interpreted literally as the ex-
pectation value of a well-defined operator in a Hilbert
space with a specifically defined inner product.
Especially in the context of the problem of time, a
crucial new feature arises—local internal time and the
corresponding local relational observables, or fashionables
[17]—which at present do not have a known analog at the
Hilbert-space level. Changing one’s local time in practice
additionally amounts to a gauge transformation (see

Sec. IVC), and we shall see later that different choices of
gauge in the effective theory correspond to different, and in
general inequivalent, choices of a Hilbert space for the
quantum theory. Eventually, these new notions may be
used to arrive at a generalization of quantum mechanics
for situations in which time is not idealized as a monotonic
parameter without turning points. If so, the generalization
cannot be fully specified in the current effective framework
which makes use of semiclassicality for explicit evalu-
ations of its equations. But the examples provided in this
article should play a key role in exploring these issues.

A. Example: ‘‘Relativistic’’ harmonic oscillator

To illustrate the procedure, we consider two copies of
the canonical algebra ½t̂; p̂t� ¼ iℏ ¼ ½�̂; p̂��, subject to the
constraint Ĉ ¼ p̂2

t � p̂2
� � �̂2. This system4 has been

treated in a fair amount of detail in [19,22], so here we
only provide an outline. We truncate the system at order ℏ
of the semiclassical expansion. Specifically, this means
that in addition to the terms explicitly proportional to

ℏð3=2Þ, we discard all moments of third order and above,
products of two or more second order moments, as well as
products between a second order moment and ℏ. In par-
ticular, of the infinite number of degrees of freedom at this
order, we only need to consider 14: four expectation values
hâi, four spreads ð�aÞ2 and six covariances �ðabÞ, where
a, b can be any of the four basic kinematical variables.
In this model, for example, one of the constraint con-

ditions to be enforced is C� :¼ hð�̂� h�̂iÞĈi ¼ 0. Here
we are dealing with low order polynomials and the corre-
sponding condition on expectation values and moments is
straightforward to derive explicitly:

C� ¼ hð�̂� h�̂iÞðp̂2
t � p̂2

� � �̂2Þi
¼ hð�̂� h�̂iÞp̂2

t i � hð�̂� h�̂iÞp̂2
�i � hð�̂� h�̂iÞ�̂2i:

This quantity should be expressed in terms of the expecta-
tion values and moments, our phase-space coordinates. In
each of the terms in the last expression one needs to replace
powers of kinematical operators with corresponding

powers of (Ô� hÔi). For example, the middle term can
be rewritten as

hð�̂� h�̂iÞp̂2
�i ¼ hð�̂� h�̂iÞðp̂� � hp̂�iÞ2i

þ 2hp̂�ihð�̂� h�̂iÞðp̂� � hp̂�iÞi
þ hp̂�i2h�̂� h�̂ii;

4This toy model is clearly not relativistic in the standard sense.
However, here (and in the remaining models of this work) we are
not interested in the precise physical interpretation of this system
(of which there exist both relativistic and nonrelativistic ones),
but rather in its structural properties. The constraints considered
in the present article, similarly to Hamiltonian constraints in
relativistic cosmology, are all quadratic in momenta.
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where the last term vanishes as hð�̂� h�̂iÞi ¼ h�̂i � h�̂i ¼
0. The remaining terms need to be ordered symmetrically in
order to write them in terms of moments, which can be
accomplished with the use of the canonical commutation
relations. Continuing with the example, the above term
becomes

hð�̂�h�̂iÞp̂2
�i¼ hð�̂�h�̂iÞðp̂��hp̂�iÞ2iWeyl

þhp̂�ið2hð�̂�h�̂iÞðp̂��hp̂�iÞiWeylþ iℏÞ;
with

hð�̂� h�̂iÞðp̂� � hp̂�iÞ2iWeyl

¼ 1
3hð�̂� h�̂iÞðp̂� � hp̂�iÞ2
þ ðp̂� � hp̂�iÞð�̂� h�̂iÞðp̂� � hp̂�iÞ
þ ðp̂� � hp̂�iÞ2ð�̂� h�̂iÞi:

Proceeding in this way, one can write the constraint condi-
tion using moments as

C� ¼ 2hp̂�i�ðpt�Þ � 2hp̂�i�ð�p�Þ � iℏhp̂�i
� 2h�̂ið��Þ2 þ �ð�p2

t Þ � �ð�p2
�Þ þ�ð�3Þ:

Evaluating other constraints in this manner and truncat-
ing the system at order ℏ, the infinite set of constraint
functions reduces to just five:

C¼hp̂ti2�hp̂�i2�h�̂i2þð�ptÞ2�ð�p�Þ2�ð��Þ2
Ct¼2hp̂ti�ðtptÞþiℏhp̂ti�2hp̂�i�ðtp�Þ�2h�̂i�ðt�Þ
Cpt

¼2hp̂tið�ptÞ2�2hp̂�i�ðptp�Þ�2h�̂i�ðpt�Þ
C�¼2hp̂ti�ðpt�Þ�2hp̂�i�ð�p�Þ�iℏhp̂�i�2h�̂ið��Þ2
Cp�

¼2hp̂ti�ðptp�Þ�2hp̂�ið�p�Þ2�2h�̂i�ð�p�Þþiℏh�̂i:

(3)

The constraint functions are first-class to order ℏ and,
therefore, generate gauge transformations through their
Poisson brackets with the expectation values and mo-
ments.5 Following [18,19], we fix the gauge that corre-
sponds to the evolution of �̂ and p̂� in t̂, by setting
fluctuations of the latter to zero

ð�tÞ2 ¼ �ðt�Þ ¼ �ðtp�Þ ¼ 0: (4)

Through reorderings, imaginary contributions in the con-
straints have arisen, which require some of the moments to
take complex values. For instance, with our gauge choice
�ðtptÞ ¼ � 1

2 iℏ. All these moments refer to t which, when

chosen as (internal) time in this deparametrizable system,
is not represented as an operator and does not appear in
physical moments. The gauge dependence or complex
valuedness of these moments thus is no problem.

Moments not involving time or its momentum, on the
other hand, should have a physical analog taking strictly
real values. This is, indeed, the case. With the gauge fixed
as above, a single gauge flow remains on the expectation
values and moments evolving in t. (We need just three
gauge-fixing conditions for four oðℏÞ constraints because
the Poisson tensor for the moments is degenerate.) It is
generated by the constraint function CH ¼ hp̂ti �HQ with

the quantum Hamiltonian

HQ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hp̂�i2þh�̂i2

q
�
�
1þh�̂i2ð�p�Þ2�2h�̂ihp̂�i�ð�p�Þþhp̂�i2ð��Þ2

2ðhp̂�i2þh�̂i2Þ2
�
:

(5)

Solving the Hamiltonian equations of motion for h�̂iðtÞ,
hp̂�iðtÞ, �ð�p�ÞðtÞ, ð��Þ2ðtÞ, ð�p�Þ2ðtÞ yields the Dirac
observables of the constrained system in relational form,
on which reality can easily be imposed just by requiring
real initial values at some t. At this stage, we have arrived
at the usual results for a deparametrized system with time t,
in which evolving variables such as h�̂iðtÞ solving equa-
tions of motion with respect to (5) would be considered
physical while no physical operator for time itself exists.
In our framework, it is gauge fixing that distinguishes

one of the original variables as time without an operator
analog: Time moments hp̂ti, ð�ptÞ2, �ðptpÞ, �ðpt�Þ,
�ðtptÞ are eliminated using the constraints (3), while
ð�tÞ2, �ðt�Þ, �ðtp�Þ are fixed by the gauge condition (4).
Generally, there may be several ways to interpret a given
quantum constraint dynamically with respect to different
choices of (internal) time. Collectively, the choice of a time
variable, the associated gauge conditions and the selection
of evolving variables within that gauge will be referred to,
following [17], as a Zeitgeist. Usually, the selection of
which variable to choose as clock function in which other
variables may evolve relationally does not constitute a
gauge choice. The effective formalism as developed here,
however, provides a relationship between (the interpreta-
tion of a quantum variable as) time and gauge: we are free
to fix the independent gauge flows in a way that describes
and interprets relational evolution in the most convenient
way. We will come back to this issue in detail in Sec. IVC;
for now, we warn the reader about an inherent weakness of
evolving observables, which underlies the comparison
problem of time: If transformations of internal time varia-
bles are allowed, and if they are essentially implemented by
gauge changes, the physical nature of some variables may
appear (but is not) gauge dependent. To avoid apparently
contradictory language, we use the term fashionables for
local relational observables, as introduced in [17].

III. A MODEL OFA BAD INTERNAL CLOCK

In this section, through the use of a toy model,
we showcase an effective semiclassical solution to the

5The Poisson brackets between the expectation values and
moments generated by two canonical pairs of operators is
tabulated in Appendix A.
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problem of defining quantum dynamics with respect to a
time variable which is nonmonotonic along a (classical)
trajectory.

We introduce the model together with its classical prop-
erties in Sec. III A; its Dirac quantization is briefly dis-
cussed in Sec. III B. In Sec. III C we apply the effective
scheme of [18,19] for solving constraints to define approxi-
mate dynamics; among the many viable choices for inter-
nal time, we elect to study the dynamics relative to a
variable that cannot be used for a global deparametrization.
Evolution with respect to such a clock variable breaks
down near its turning points and translation to a new clock
variable is required. Within the effective approach, the
choice of a clock is practically incorporated by selecting
a gauge as in (4) and, therefore, switching a clock is
achieved by a gauge transformation. Another novelty is
that the expectation value of the time variable acquires an
imaginary contribution, a feature further discussed in
Sec. IV and the second model in Sec. V. The end result
of the present section is an internally consistent approxi-
mate method for evolving initial data in a nonglobal clock
variable through its extremal point on the trajectory, by
temporarily switching to a different variable used as inter-
nal time.

A. Classical discussion

The model we are interested in possesses a ‘‘time po-
tential’’ �t and is classically determined by the constraint

Cclass ¼ p2
t � p2 �m2 þ �t: (6)

We assume � � 0 for concreteness. This model has been
briefly discussed in [19] and structurally resembles a per-
turbed free relativistic particle.6 Of particular interest to us
is the fact that t exhibits a specific trait of a bad clock,
namely, it is not monotonic along a classical trajectory. As
regards the parametrization of the flow generated by Cclass,
we infer from

ft; Cclassg ¼ 2pt and fpt; Cclassg ¼ �� < 0; (7)

that

tðsÞ ¼��s2þ 2pt0sþ t0 and ptðsÞ ¼��sþpt0; (8)

where s is the parameter along the flow �s
Cclass

ðxÞ generated
by Cclass. We see that t has an extremum and runs twice
through each value it assumes; therefore globally it is not a
good clock function for the gauge orbits generated by
Cclass. Note that both pt and q provide good parametriza-
tions of the gauge orbit and p is an obvious Dirac observ-
able. Although this model is deparametrizable in either q
or pt, we would like to interpret the relational evolution of
the configuration variable q with respect to the nonglobal
clock function t.

For completeness, we also note that the Dirac observ-
ables of this system are easy to find and they themselves
form a canonical Poisson algebra,

Q :¼q� 2

�
ppt and P :¼p; satisfy fQ;P g¼1: (9)

B. Dirac quantization

Following Dirac’s algorithm for a constraint quantiza-
tion, one would first quantize the kinematical system in the
usual way, by representing canonical operators on the
space L2ðR2; dtdqÞ as

t̂ ¼ t; p̂t ¼ ℏ
i

@

@t
; q̂ ¼ q; p̂ ¼ ℏ

i

@

@q
:

The constraint function (6) can be straightforwardly quan-

tized as Ĉ ¼ p̂2
t � p̂2 �m2 þ �t̂ and the physical state

condition Ĉc phys ¼ 0 becomes a partial differential equation�
�ℏ2 @2

@t2
þ �t�m2 þ ℏ2 @2

@q2

�
c ðt; qÞ ¼ 0: (10)

The operators p̂2 and p̂2
t þ �t̂ commute and thus can be

simultaneously diagonalized. The solution to the constraint
equation can be constructed from their simultaneous eigen-
states. The general solution has the form

c physðt;qÞ¼
Z
dkfðkÞAi

��
�

ℏ

�ð2=3Þð�t�k2�m2Þ
�
eðð�ikqÞ=ðℏÞÞ;

(11)

whereAi½x� is the bounded and integrable Airy-function. As
it often happens, none of the solutions are normalizable with
respect to the kinematical inner product and a separate physi-
cal inner product must be defined on the solutions. A com-
mon way to proceed in the context of quantum cosmology is
to deparametrize the system with respect to a suitable time
variable. The simplest option is to formulate the constraint
equation as a Schrödinger equation giving evolution of wave
functions of q in the time-parameter pt

iℏ
@

@pt

~c ðpt;qÞ¼ 1

�

�
�ℏ2 @2

@q2
�p2

t þm2

�
~c ðpt;qÞ; (12)

where ~c ðpt; qÞ :¼
R
dtc ðt; qÞe�itpt=ℏ. We then define

the physical inner product by integrating over q at a fixed
value of pt

hc ; �iphys :¼
Z
pt¼pt0

dq �~c ðpt; qÞ ~�ðpt; qÞ : (13)

For solutions to (10), the result is independent of the value of
pt0 and finite. A similar construction, one that is more
complicated due to taking square roots of operators, can be
performed if one chooses q to act as time. However, to our
knowledge, there is no exact way to deparametrize this con-
straint using t. Here we are specifically interested in the

6Although, again, the system is clearly not relativistic in the
standard sense.
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situationswhere there is no obvious timevariable available to
perform deparametrization. For that purpose, in this toy
model we choose a time variable which we know to be bad
in a particular way and construct an effective initial-value
formulation with respect to that variable.

Specifically, we would like to evolve initial data given at
a fixed value of t on the incoming branch onto the outgoing
branch (see Fig. 1). In order to do that, one inevitably has to
find away to evolve data through the extremumof t. Such an
evolution can be easily performed in the classical limit and,
therefore, should also bewell posed at least semiclassically.

C. Effective treatment

Following the procedure outlined in Sec. II, we write the
constraint functions Cpol ¼ 0 in terms of moments and

truncate the system by discarding terms of order ℏð3=2Þ
and higher in the semiclassical approximation. As for the
‘‘relativistic harmonic oscillator,’’ we have 14 kinematical
degrees of freedom to this order, subject to the five effec-
tive constraints

C¼p2
t �p2�m2þð�ptÞ2�ð�pÞ2þ�t¼0

Ct¼2pt�ðtptÞþ iℏpt�2p�ðtpÞþ�ð�tÞ2¼0

Cpt
¼2ptð�ptÞ2�2p�ðptpÞþ��ðtptÞ�1

2
i�ℏ¼0

Cq¼2pt�ðptqÞ�2p�ðqpÞ� iℏpþ��ðqtÞ¼0

Cp¼2pt�ðptpÞ�2pð�pÞ2þ��ðtpÞ¼0 :

(14)

The five effective constraints generate only four linearly
independent flows due to a degenerate Poisson structure to

order ℏ. Consequently, the 14-dimensional Poisson mani-
fold may be reduced to a five-dimensional surface describ-
ing the five physical degrees of freedom to semiclassical
order. Note that both p and, as a result of (2), ð�pÞ2
commute with all five constraints and are, therefore, two
obvious constants of motion of this effective system. We
want to find the remaining three physical degrees of free-
dom as relational Dirac observables.

1. Evolution in complex t and breakdown
of the corresponding gauge

Choosing t as our clock function, it is helpful to fix three
out of the four independent gauge flows in order to facili-
tate explicit calculations and avoid keeping track of three
further order ℏ clocks.7 The system, certainly, does not
single out a particular gauge for us; nevertheless, with our
choice of clock we can motivate certain gauges. Once a
choice of time has been implemented, the clock function
should not correspond to an operator and, hence, should
not appear in evolving moments; it should be ‘‘as classical
as possible,’’ implying that the gauge conditions

�1¼ð�tÞ2¼0 �2¼�ðtqÞ¼0 �3¼�ðtpÞ¼0 (15)

seem reasonable. We will refer to these conditions as the t
gauge or the Zeitgeist associated to t. At the state level, this
would be closest in spirit to an inner product evaluated on
t ¼ const slices in some kinematical representation. Since
t is not a global time, this would lead to an apparent
nonunitarity in the quantum theory, which by analogy
suggests that this gauge should not be globally valid,
simply because t is not a global clock. We will come
back to this issue below.
Imposing the gauge conditions renders the combined

system of (14) and (15) a mixture of first and second class
constraints. Since there were originally four independent
gauge flows, we expect at least one first-class constraint
among the eight conditions given by (14) and (15). One
additional independent first-class constraint may arise, but
this constraint must generate a vanishing flow on the
variables which we choose after solving the constraints
and gauge conditions. It is easily verified that the first-class
constraint with the vanishing flow on the variables q, p, t,
pt, ð�qÞ2, ð�pÞ2,�ðqpÞmust be directly proportional toCt

in this gauge. Solving this constraint

Ct � 2pt�ðtptÞ þ iℏpt ¼ 0 ) �ðtptÞ ¼ � iℏ
2
; (16)

implies a saturation of the (generalized) uncertainty rela-
tion for t and pt in this system. Here and throughout the
rest of the present work� denotes equality restricted to the
region where both constraint functions and the gauge con-
ditions of the relevant Zeitgeist are satisfied.

FIG. 1. A typical classical configuration space trajectory is a
parabola with the peak value of t dependent on pt0 and the
separation of branches dependent on p0. The orientation of
evolution, indicated by the arrows, is consistent with p0 < 0
and pt0. We refer to the left branch (solid) as ‘‘incoming’’ or
‘‘evolving forward in t,’’ the right branch (dashed) as ‘‘out-
going’’ or ‘‘evolving backward in t.’’

7Note that this gauge fixing occurs after quantization.
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The remaining first-class constraint with nonvanishing
flow on the chosen variables will generate our relational
evolution in t; therefore, we refer to it as the ‘‘Hamiltonian
constraint’’ in the t gauge. It has the form CH / CeV

e,
where Ve is the solution to f�i; CegVe ¼ 0 and i ¼ 1, 2, 3
and the Ce denote the constraints of (14), except Ct. The
matrix f�i; Ceg is generically of rank 3 from which we
infer that there is only one independent CH. The coeffi-
cients of this matrix are given in Table I, and, up to an
overall factor, we find

CH ¼ Cþ �Cpt
þ �Cq þ �Cp; (17)

where, on the constraint surface, the coefficients read

� ¼ � 1

2pt

; � ¼ 0 and � ¼ � p

2p2
t

: (18)

Four nonphysical moments in this gauge may be solved for
viaCt,Cpt

,Cq, andCp. Equation (16) gives�ðtptÞ, the rest
are given by

ð�ptÞ2¼2p2ð�pÞ2þ iℏ�pt

2p2
t

;

�ðptpÞ¼pð�pÞ2
pt

and �ðqptÞ¼ iℏpþ2p�ðqpÞ
2pt

:

(19)

When these relations are used together with the t gauge
conditions (15), the equations of motion generated by CH

on the remaining variables read (recall that p and ð�pÞ2 are
constants of motion)

_t ¼ ft; CHg ¼ 2pt � 2p2ð�pÞ2
p3
t

� iℏ�
2p2

t

;

_pt ¼ fpt; CHg ¼ ��;

_q ¼ fq; CHg ¼ �2p

�
1� ð�pÞ2

p2
t

�
;

ð _�qÞ2 ¼ fð�qÞ2; CHg ¼ �4�ðqpÞ
�
1� p2

p2
t

�
;

_�ðqpÞ ¼ f�ðqpÞ; CHg ¼ �2ð�pÞ2
�
1� p2

p2
t

�
:

(20)

These can be solved analytically by

tðsÞ¼�ptðsÞ2
�

�p2ð�pÞ2
�ptðsÞ2

� iℏ
2ptðsÞþc;

ptðsÞ¼��sþpt0;

qðsÞ¼2
pptðsÞ

�

�
1þð�pÞ2

ptðsÞ2
�
þc1;

ð�qÞ2ðsÞ¼4ð�pÞ2 ðp
2þptðsÞ2Þ2
�2ptðsÞ2

þ4ðp2þptðsÞ2Þ
�ptðsÞ c2þc3;

�ðqpÞðsÞ¼2ð�pÞ2p
2þptðsÞ2
�ptðsÞ þc2; (21)

where c, pt0, and fcigi¼1;2;3 are integration constants related

to the initial conditions. (These solutions, expressed via pt,
provide relational observables of the system. A comparison
with (9) shows that the classical observables receive quan-
tum corrections via the moments.) In particular, we note
that to this order pt experiences no quantum backreaction
and evolves entirely classically, which is due to the fact
that the only constraint function that has nontrivial bracket
with pt is C.
Neither pt, nor t is a Dirac observable and one of them

can be eliminated by using C. Combining relations (19)
and the gauge conditions (15) with C ¼ 0, we obtain

0¼p4
t �ðp2þm2��tþð�pÞ2Þp2

t þ iℏ�
2

ptþp2ð�pÞ2 :

(22)

It is not difficult to see that, if we want to keep the variables
q, p, ð�qÞ2, ð�pÞ2, �ðqpÞ real (see Sec. III C 4), the above
relation necessarily forces either t or pt to be complex.
When we look at the equations of motion (20) and their
solutions (21), the choice is almost obvious. The equation
of motion for pt has no imaginary component and hence
equipping it with a constant imaginary part appears some-
what artificial. More importantly, pt features prominently
in the solutions for q, p, ð�qÞ2, ð�pÞ2, �ðqpÞ, in order to
keep all these real, we are forced to keep pt real and,
consequently, t must be complex-valued.
Let us quantify the imaginary contribution to t. We

determine c by substituting both ptðsÞ and tðsÞ from (21)
into the constraint (22) which yields the real-valued result

c ¼ p2 þm2 þ ð�pÞ2
�

: (23)

The imaginary contribution to the clock t is, therefore, a
quantum effect of order ℏ and given by

=½tðsÞ� ¼ � ℏ
2ptðsÞ : (24)

A more thorough analysis of the complex nature of the
effective nonglobal clocks will be explored in Sec. IV and
its general features have been discussed in [17].
We have previously stated that the gauge defined by the

conditions (15) is related to choosing t as time. However,

TABLE I. Poisson algebra of gauge conditions (15) with the
constraints (14). First terms in the bracket are labeled by rows,
second terms are labeled by columns. Note that these results only
hold on the gauge surface defined in (15).

�1 �2 �3

C 2iℏ �2�ðqptÞ �2�ðptpÞ
Cpt

4iℏpt �2pt�ðqptÞ � 2iℏp �2pt�ðptpÞ
Cq 0 �2ptð�qÞ2 �2pt�ðqpÞ � iℏpt

Cp 0 iℏpt � 2pt�ðqpÞ �2ptð�pÞ2
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the equations of motion, as well as their solutions are
written in terms of the gauge parameter s that parametrizes
the flow generated by CH. Since t is a complex variable we
can relate s to its real and imaginary parts separately. In
Fig. 2, we plot the real and imaginary parts of tðsÞ, deduced
directly from (21) and (23).

From the plot we see that away from pt ¼ 0, <½t� is
monotonic in s on each of the two branches and, asymptoti-
cally far away from pt ¼ 0, they become proportional. On
the forward moving branch, <½t� is increasing with s; on
the backwards moving branch <½t� is decreasing with s.
From the plot we can also see that <½t� reaches its peak
value at pt ¼ � ffiffiffiffiffiffiffiffiffiffiffi

p�p
p

� 0. However, at this point we can
no longer trust the semiclassical approximation as the
small value of pt in the denominators in the equations of
motion (21) will result in values of the moments that no
longer satisfy the assumed drop-off.

Figure 2 also shows that=½t� ismonotonic in s in the same
regimes. Thus, when it comes to parametrizing dynamics
using t, we have the option of using either =½t� or<½t�. We
opt to refer to the real part of t as ‘‘time,’’ for several reasons:
(1) in the classical limit the imaginary part vanishes and it is,
indeed, the real part of t that matches the classical internal
time; (2) for large pt or small � when the time-dependent
term in the constraint becomes insignificant, the imaginary
part of t is small and approximately constant; (3) finally, as
we will see later, the expectation value that reproduces =½t�
in the case of a free relativistic particle is based on integrat-
ing at a fixed value of (parameter) t equal to precisely the real
part of the expectation value.

As one would expect from the classical behavior of t,
this gauge is not valid for the whole ‘‘quantum trajectory.’’

In particular, we noted that pt evolves entirely classically,
so that its solution is simply given by (8). As a result pt

passes through zero for a finite value of the evolution
parameter s, which immediately implies the breakdown
of the t gauge: the coefficients in (18) and in (21) become
singular, the magnitudes of the moments ð�qÞ2 and �ðqpÞ
blow up, thereby violating semiclassicality. An example

of this divergence is shown in Fig. 3. Here � :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
provides us with a classical length-scale on the phase

space, and the quantum length-scale is set to
ffiffiffi
ℏ

p ¼ :01�.
Classical quantities such as p,m, � are all of order�, while
the values of second order moments are initially of order ℏ.
Qualitative features of the plot are insensitive to the precise
values chosen so long as the relative scales are preserved.
Because of the nonglobal nature of the relational clock t,

this breakdown does not come unexpected. In order to
evolve a semiclassical state through the turning point of
the clock, we, therefore, need to switch the gauge and—
unlike in the classical case—the clock (see also Sec. IVC
on this issue). A more complete discussion of the break-
down of the gauge and its counterpart on the exact side of
the quantum theory will be discussed in the second model
in Sec. V, while the transformation to the q gauge and the
evolution through the turning point will be discussed in
Secs. III C 2 and III C 3 below.

FIG. 2. Schematic plots of the real part of t (top) and the
imaginary part of t (bottom) against the flow parameter s.

FIG. 3. Top: evolution of moments ð�qÞ2 (solid) and �ðqpÞ
(dashed) in the t gauge (ð�pÞ2 ¼ const). Somewhere after

s ¼ 2:3 the spread �q :¼ ffiffiffiffiffiffiffiffiffiffiffiffið�qÞ2p
becomes comparable to

the expectation values, as �q=� > :1, and the semiclassical
approximation breaks down in the t gauge. Bottom: correspond-
ing effective trajectory (solid) and the related classical
trajectory (dashed); the effective trajectory quickly diverges after
s ¼ 2:3.
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2. Evolution through the extremal point
of <½t� in a new gauge

Based on the evidence that the t gauge (15) fails globally
due to the fact that t is a nonglobal time function, we can,
instead, make use of the fact that, e.g., q is a good clock
variable for the entire trajectory. For the evolution through
the t-turning point we could, therefore, simply choose the
following q gauge (‘‘as if we chose q as time’’)

~�1¼ð�qÞ2¼0 ~�2¼�ðtqÞ¼0 ~�3¼�ðqptÞ¼0 : (25)

This gauge is closest in spirit to choosing a q ¼ const
slicing in an analogous treatment of the model at the
Hilbert space level and since q is a good clock, in this
gauge we expect to be able to evolve through the extremum
in<½t�without difficulty. Such a procedure of adapting the
gauge to a good local clock should work in general even if
no global clock functions exist, since generically we expect
the existence of some degree of freedom which may serve
as a good local clock where other clock degrees of freedom
fail. To evolve through the whole trajectory one would in
general need to switch gauges, which we discuss in
Sec. III C 3 below.

We immediately notice that this gauge is inconsistent
with treating the moments of p̂ and q̂ as independent
phase-space degrees of freedom, since several of them
are completely fixed by the gauge conditions. We, there-
fore, interpret q as a clock in this gauge (see also Sec. IVC
on this issue) and eliminate the remaining moments of p̂
and q̂ through constraints leaving the free variables t, pt, q,
p, ð�tÞ2, ð�ptÞ2, �ðtptÞ. The first-class constraint with
vanishing flow on these variables is now given by Cq.

Solving this constraint then implies �ðqpÞ ¼ � iℏ
2 and,

together with (25), the saturation of the uncertainty relation
between q̂ and p̂. The ‘‘Hamiltonian constraint’’ of the q
gauge reads

~CH ¼ Cþ ~�Ct þ ~�Cpt
þ ~�Cp; (26)

where the coefficients are given on the constraint surface
by

~� ¼ � �

4p2
; ~� ¼ � pt

2p2
and ~� ¼ � 1

2p
: (27)

These coefficients are clearly well behaved along the entire
trajectory, as long as the constant of motion p � 0. In
addition to �ðqpÞ, we eliminate the three remaining un-
physical moments through constraints

ð�pÞ2 ¼ p2
t

p2
ð�ptÞ2 þ �pt

p2
�ðtptÞ þ �2

4p2
ð�tÞ2;

�ðptpÞ ¼ pt

p
ð�ptÞ2 þ �

2p

�
�ðtptÞ � iℏ

2

�
;

�ðtpÞ ¼ pt

p

�
�ðtptÞ þ iℏ

2

�
þ �

2p
ð�tÞ2:

(28)

The dynamical equations generated by this Hamiltonian
constraint on the q gauge surface are

_t ¼ 2pt � 2ptð�ptÞ2 þ ��ðtptÞ
p2

; _pt ¼ ��;

_q ¼ �2pþ �2ð�tÞ2 þ 4p2
t ð�ptÞ2 þ 4�pt�ðtptÞ
2p3

;

ð _�tÞ2 ¼ 4ðp2 � p2
t Þ�ðtptÞ � 2�ptð�tÞ2

p2

_�ðtptÞ ¼ 4ðp2 � p2
t Þð�ptÞ2 þ �2ð�tÞ2

2p2
;

ð _�ptÞ2 ¼ 2�ptð�ptÞ2 þ �2�ðtptÞ
p2

:

(29)

As in the t gauge before, pt evolves classically ptð~sÞ ¼
��~sþ pt0 . The moments evolve according to

ð�tÞ2ð~sÞ¼ptð~sÞ2
p2

~c1þ4ðptð~sÞ2þp2Þ2
�2p2

~c2

þ4ptð~sÞðptð~sÞ2þp2Þ
�p2

~c3;

ð�ptÞ2ð~sÞ¼ptð~sÞ2
p2

~c2þ�ptð~sÞ
p2

~c3þ�2

p2
~c1;

�ðtptÞð~sÞ¼�2ptð~sÞ2þp2

p2
~c3�2ptð~sÞðptð~sÞ2þp2Þ

�p2
~c2

��ptð~sÞ
p2

~c1: (30)

The above solutions can be substituted into the equations
of motion for qð~sÞ and tð~sÞ, which can then be integrated
separately.
Once again, we can eliminate yet another variable. By

using C ¼ 0 combined with (28), we obtain an equation
for p,

p4�ðp2
t �m2þð�ptÞ2þ�tÞp2þp2

t ð�ptÞ2

þ�pt�ðtptÞþ�2

4
ð�tÞ2¼0: (31)

We see that there is no need to make either p or q complex
to satisfy this equation. Nor are there any explicitly imagi-
nary terms in the equations of motion or their solutions.
Nevertheless, in order to consistently switch between the t
gauge and the q gauge, we will require q to carry an
imaginary contribution in this gauge analogous to (24)

=½qð~sÞ� ¼ � ℏ
2p

; (32)

which in this case is constant, since p is a constant of
motion.
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Finally, we note that—as expected—the evolution in this
gauge encounters no difficulty near the extremal point of t
when pt ¼ 0. The coefficients in (27) stay finite and we
can see from (30) that the moments of p̂t and t̂ remain
well behaved as we go through pt ¼ 0. In the next section
we describe a method for switching between the two
gauges.

3. Switching gauges

The two gauges discussed in Secs. III C 1 and III C 2
describe evolution of two different sets of degrees of free-
dom. If we switch from one gauge to another, for example,
to evolve through the turning point of a time function, we
need to be able to translate between the two sets of
variables. We recall that the original gauge orbit for the
truncated system of constraints (14) is, in general, four-
dimensional. The three gauge-fixing equations of either
(15) or (25) restrict us to a one-dimensional flow on this
gauge orbit generated by the remaining first-class con-
straint (17) or (26), respectively. In order to ensure that
the two sets of variables lie on the same four-dimensional
gauge orbit we need to find a gauge transformation which
takes us from the surface defined by (15) to the one defined
by (25) and vice versa.

In other words, to transform from the t gauge to the q
gauge we need to find a combination of the constraint
functionsG ¼ P

i�iCi, such that a (possibly finite) integral
of its flow transforms the variables as

8><>:
ð�qÞ2 ¼ ð�qÞ20
�ðtqÞ ¼ 0

�ðptqÞ ¼ �ðptqÞ0
!

8><>:
ð�qÞ2 ¼ 0
�ðtqÞ ¼ 0
�ðptqÞ ¼ 0

; (33)

where the subscript 0 labels the value of the corresponding
variable prior to the gauge transformation. In general, one
would expect such a transformation to be unique up to the

flows generated by CH and ~CH, since they preserve the
corresponding sets of gauge conditions (see Sec. IVD for
additional discussion). To get a unique answer, and to make
the transformation induced on the expectation values
small, we fix the multiplicative coefficient of C in G to
zero.

For convenience, we only present and work with the
flows generated by the constraint functions rather than
displaying the generators themselves whose explicit ex-
pressions turn out to be rather complicated and less well
behaved than their flows. The flow generated by a genera-
torGwill be denoted by�s

GðxÞ, x 2 C, where C denotes the
constraint surface and s is the gauge parameter along the
flow. Its (finite) action on a quantum phase-space function
f can be computed via a derivative expansion

�s
GðfÞðxÞ :¼ fð�s

GðxÞÞ ¼
X1
n¼0

sn

n!
ff;GgnðxÞ; (34)

where ff;Ggn :¼ fff;Ggn�1; Gg and ff;Gg0 ¼ f. The
Hamiltonian vector field of the generator G is denoted by
XG and we have XGðfÞ :¼ ff;Gg. The required flows for
the transformation may be computed explicitly with the aid
of the table in Appendix A. There is still some freedom in
choosing a path for the gauge transformation: as mentioned
at the beginning of Sec. III C, the five constraints generate
only four independent flows. Removing C still leaves us
with three independent flows which we can combine.
At this point we construct the gauge transformation
in two steps. First we search for a flow that satisfies
XG1

ð�ðqpÞÞ ¼ XG1
ð�ðtqÞÞ ¼ 0 on the constraint surface

and rescale the flow such that XG1
ðð�qÞ2Þ ¼ 1. The second

step involves finding the flow that satisfies XG2
ðð�qÞ2Þ ¼

XG2
ð�ðtqÞÞ ¼ 0 and rescaling this flow such that

XG2
ð�ðqpÞÞ ¼ 1. The required gauge transformation will

then be given by the flow8 �s
GðfÞðxÞ :¼ ��ð�ðqpÞ0þiℏ=2Þ

G2
	

�
�ð�qÞ20
G1

ðfÞðxÞ if we can argue that the second and higher

derivative terms in the respective expansion via (34) can be
consistently neglected to order ℏ. Equation (34) implies
that to linear order in the derivative expansion we also have
�u
G2

	 �v
G1

¼ �v
G1

	 �u
G2

for fixed values of u, v. Note that

this composition of the G1 and G2 flows only determines
�s
G up to rescalings of G and, consequently, the value of s

where the new q gauge is reached, but any such �s
G will be

suitable.
For the particular system at hand, the procedure simpli-

fies if we impose, in addition to the constraint functions,
the gauge condition�ðtqÞ ¼ 0, which is shared by both the
t gauge and the q gauge and is preserved by�G1

and�G2
by

construction; we then find for the other variables

XG1
ðtÞ¼ �

4p2
; XG2

ðtÞ¼� 1

pt

; XG1
ðqÞ¼0;

XG2
ðqÞ¼ 1

p
; XG1

ðð�tÞ2Þ¼�p2
t

p2
; XG2

ðð�tÞ2Þ¼0;

XG1
ðð�ptÞ2Þ¼� �2

4p2
; XG2

ðð�ptÞ2Þ¼�2

pt

;

XG1
ð�ðtptÞÞ¼�pt

2p2
; XG2

ð�ðtptÞÞ¼�1:

Noting that p has a vanishing bracket with all constraints
and pt with all constraints except for C, whose flow is
neither contained in �G1

nor in �G2
, we see that all of the

derivatives are constant, and thus the gauge transformation
is infinitesimal and, indeed, simply given by the terms up to
linear order in the derivative expansion (34) of�s

GðfÞðxÞ :¼
��ð�ðqpÞ0þiℏ=2Þ
G2

	��ð�qÞ20
G1

ðfÞðxÞ. Without this simplification,

8This expression might appear surprising at a first glance since
gauge parameters are real valued. However, the flow of G2 can
be understood via �

�ð�ðqpÞ0þiℏ=2Þ
G2

¼ �
��ðqpÞ0
G2

	 ��ℏ=2
iG2

which di-
rectly follows from (34).
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one may, in general, have to integrate the flows numeri-
cally.9 The initial value for ð�tÞ2 is zero as we are starting
with the t gauge, initial values of �ðtptÞ and ð�ptÞ2 can be
deduced from (16) and (19), respectively. We find the
complete transformation of t gauge variables into the q
gauge variables to order ℏ given by

t ¼ t0 þ iℏþ 2�ðqpÞ0
2pt

� ð�qÞ20�
4p2

q ¼ q0 � iℏþ 2�ðqpÞ0
2p

ð�tÞ2 ¼ ð�qÞ20
p2
t

p2

ð�ptÞ2 ¼ p2ð�pÞ20 � �ðqpÞ0�pt

p2
t

þ �2

4p2
ð�qÞ20

�ðtptÞ ¼ �ðqpÞ0 � �
pt

2p2
ð�qÞ20: (35)

No gauge transformations for pt and p are listed since
these variables are invariant along the flow of G. The
reverse transformation can be obtained in an identical
manner, or simply by inverting (35)

t ¼ t0 � 2ptðiℏþ 2�ðtptÞ0Þ þ ð�tÞ20�
4p2

t

q ¼ q0 þ ptðiℏþ 2�ðtptÞ0Þ þ ð�tÞ20�
2ppt

ð�qÞ2 ¼ ð�tÞ20
p2

p2
t

ð�pÞ2 ¼ 4p2
t ð�ptÞ20 þ 4�pt�ðtptÞ0 þ �2ð�tÞ20

4p2

�ðqpÞ ¼ �

2pt

ð�tÞ20 þ �ðtptÞ0:

(36)

In particular, both q and t acquire imaginary contributions
during these transformations. We point out that these con-
tributions exactly cancel out the imaginary terms (24) and
(32), so that upon transformation from the t gauge to the q

gauge t becomes real and q acquires the imaginary term
(32) and vice versa. Observe that in the case of the global
clock function q in the q gauge, its imaginary part is a
constant of motion and, therefore, does not play any role
for evolution, while in the case of the nonglobal clock t in
the t gauge, its imaginary part is actually dynamical. We
return to this characteristic in Sec. IVB. For more discus-
sion of gauge switching and an argument for the irrele-
vance of the precise instant of the gauge change see
Sec. IVC and IVD.
Figure 4 gives a segment of a semiclassical trajectory

that has been evolved through the extremal point of t by
temporarily switching to the q gauge. The initial conditions
and the values of parameters used here are identical to the
ones used to generate Fig. 3. We switch to the q gauge
before the moments have a chance to become large
(at s ¼ 1:8). The evolution in the q gauge stays semiclas-
sical through the turning point in t and sufficiently far away
from the extremum (~s evolved from 0 to 1.4); the reverse
gauge transformation yields a semiclassical outgoing state
in the t gauge. Incoming and outgoing trajectories in the t
gauge were continued into the region where the q gauge
was used in order to demonstrate their divergence. We note
that, although the quantities qð<½t�Þ in the t gauge and
tð<½q�Þ in the q gauge refer to different pairs of objects
(two examples of fashionables in the terminology of [17])
from the point of view of quantum mechanics, their clas-
sical limits correspond to the same correlations between q
and t and plotting one trajectory as following the other
(with jumps of oðℏÞ between the trajectories as a conse-
quence of the gauge changes above) makes sense for a
semiclassical state. The resulting composite trajectory
agrees extremely well with its classical counterpart, which
is why the latter is not present in the plot.

4. Effective positivity conditions and physical states

In the discussion of dynamics in the t gauge, we implic-
itly interpreted the variables qðsÞ, pðsÞ, ð�qÞ2ðsÞ,�ðqpÞðsÞ,
ð�pÞ2ðsÞ as expectation values and moments of a canonical
pair of evolving operators, with t keeping track of the
‘‘flow of (internal) time.’’ In order to make this interpreta-
tion consistent, these variables must have the correct
Poisson algebra, which follows directly from the canonical

FIG. 4. Plot of the semiclassical trajectory evolved past the
extremal point in the t gauge (solid part of the trajectory), by
temporarily switching to the q gauge (dashed part of the trajec-
tory). Dotted vertical lines indicate the points where gauges were
switched.

9In general, the Poisson structure of the quantum phase space
is such that the Poisson bracket of the oðℏÞ-quantum constraint
functions with a quantum phase space function of a certain order
preserves or increases the order in ℏ, while, for instance, Poisson
brackets of ratios of moments can actually decrease the order in
ℏ. This follows from the Poisson algebra of moments in
Appendix A. Now the rescaling of the flow such that, e.g.,
XG1

ðð�qÞ2Þ ¼ 1 has the consequence that G1 will be of order
ℏ0, consisting of ratios of moments which, in general, may lead
to negative orders of ℏ when taking higher derivatives of mo-
ments along the flow. It is then not consistent anymore to neglect
the higher derivative terms in the expansion (34) of the flow
action even if one multiplies with oðℏÞ values of the flow
parameter. In such situations one must numerically integrate
the flow. However, in general, we expect the gauge transforma-
tion between the t and the q gauge to be infinitesimal to order ℏ.
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commutation relation. The nontrivial brackets of this
algebra are

fq;pg¼1; fð�qÞ2;ð�pÞ2g¼4�ðqpÞ
fð�qÞ2;�ðqpÞg¼2ð�qÞ2; f�ðqpÞ;ð�pÞ2g¼2ð�pÞ2: (37)

In particular, t must have a vanishing bracket with the rest
of the above variables. These relations are, of course,
satisfied kinematically simply by construction. However,
when we introduce gauge conditions the Poisson bracket
on the gauge surface is defined with the use of the Dirac
bracket [23]. It is an important feature of the gauge con-
ditions (15) that the Dirac brackets between precisely the
free variables in the t gauge are the same as their kine-
matical counterparts. For the details we refer the interested
reader to [19].

The above result ensures that the dynamics is consistent
with that of a pair of operators subject to the canonical
commutation relation. However, if we are to interpret these
operators as self-adjoint (which is required for well-
behaved observables), we have to impose additional con-
ditions on their expectation values and moments:

q;p;ð�qÞ2;ð�pÞ2;�ðqpÞ2R ð�pÞ2;ð�qÞ2�0

ð�qÞ2ð�pÞ2�ð�ðqpÞÞ2�1

4
ℏ2:

(38)

These conditions, in particular, guarantee similar condi-
tions holding to order ℏ for any polynomial constructed out
of symmetrized products of q̂ and p̂ (see Appendix B).
There is, of course nothing that would prevent us from
imposing these conditions on the initial values of the
variables. However, it is a priori not clear whether such
conditions will be preserved by the dynamics in either
gauge or by the gauge transformations. Below we list the
specific results that ensure the consistency of the effective
dynamics with the interpretation of the variables we have
chosen as observable expectation values and moments. The
details of the calculations may be found in Appendix B.We
find that

(i) the conditions (38) are preserved by the dynamics of
the t gauge,

(ii) the conditions on the expectation values and mo-
ments of t̂ and p̂t analogous to (38) are preserved by
the dynamics in the q gauge,

(iii) if the variables in the t gauge satisfy (38), then the
gauge transformed variables satisfy the q gauge
analog of (38).

IV. COMPLEX INTERNAL TIME AND
RELATIONAL OBSERVABLES

In this section we reflect on some of the general features
of the effective analysis performed on the model of Sec. III.
We focus on the interpretation of the imaginary contribu-
tion to internal time, transformations between local choices

of clocks (Zeitgeist) and the status of relational observables
in a system without global time. Complex internal time
arising in the effective approach to local clocks and in local
deparametrizations at the state level has been discussed in
detail in [17], along with general issues related to relational
evolution and observables and we refer the interested
reader to that work. However, the results concerning com-
plex internal time are worth summarizing in the context of
the concrete examples provided within the present manu-
script, which we do in Sec. IVA. Considerations of this
section are general, and hence equally applicable to the
second model studied in Sec. V, for which some of the
general discussions of this section will be helpful.

A. Imaginary contribution to internal time

At this moment, it is useful to pause and ask how mean-
ingful an imaginary contribution to time can be. First, we
would like to acquire some intuition regarding its origin.
From a certain point of view this feature is not entirely
surprising—after all, there are old and well-known argu-
ments in quantum mechanics saying that time cannot be a
self-adjoint operator. Otherwise, it would be conjugate to
an energy operator bounded from below for stable systems.
Since a self-adjoint time operator would generate unitary
shifts of energy by arbitrary values, a contradiction to the
lower bound would be obtained. The result of complex
expectation values for local internal times obtained here
looks similar at first sight—a non-self-adjoint time opera-
tor could, certainly, lead to complex time expectation
values—but it is more general. In the model of Sec. III,
we are using a linear potential which does not provide a
lower bound for energy. The usual arguments about time
operators thus do not apply; instead our conclusions are
drawn directly from the fact that we are dealing with a
time-dependent potential. (For time-independent poten-
tials, ht̂i does not appear in the effective constraints and
can consistently be chosen real. The time dependence is
thus crucial for the present discussion.)
Rather, the imaginary contribution to internal time may

be regarded in the same vein as the imaginary contributions
to the various unphysical moments [see, e.g., Eq. (16)]—as
an artifact of assigning expectation values to all kinemati-
cal observables, which typically do not project in any
natural way to self-adjoint operators on the physical
Hilbert space. We recall a simple example given in [17]
of a physical inner product, which in a deparametrizable
system assigns a complex ‘‘expectation value’’ to internal
time. A free relativistic particle in 1þ 1Minkowski space-
time,10 is subject to the constraint

10In this example, t has the usual notion of proper time as
experienced by inertial observers in addition to the more general
notion of internal time as a phase-space degree of freedom of the
cotangent bundle of Minkowski space. In this context, as in our
other examples, we are interested only in the phase-space notion
of internal times.
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�
�ℏ2 @2

@x20
þ ℏ2 @2

@x21
�m2

�
c ðx0; x1Þ ¼ 0: (39)

The standard inner product used for positive frequency
solutions has the form

ð�;c Þ :¼ iℏ
Z 1

�1

�
��ðx0;x1Þ @

@x0
c ðx0;x1Þ

�
�
@

@x0
��ðx0;x1Þ

�
c ðx0;x1Þ

�
dx1jx0¼t: (40)

Evaluating the ‘‘expectation value’’ of the kinematical
internal time operator, using a positive frequency solution
with this inner product,11 yields

ht̂i ¼ ð�; x0�Þ ¼ t� iℏ
2

�
1̂

pt

�
: (41)

To order ℏ the imaginary part is identical to Eq. (24), and,
indeed, to the analogous result in Sec. V given in Eq. (85).
The key ingredient in this result is the use of both � and
@�=@x0 in the construction of the inner product, which is
ultimately related to the fact that the constraint equation is
second order in the time derivative, so that locally both �
and @�=@x0 are independent degrees of freedom. This
suggests a generalization of the form of the imaginary
contribution to ht̂i, to all constraints where p̂t appears
quadratically. One may then ask whether the effective
procedure supports such a generalization. It was, indeed,
demonstrated in [17], that for any constraint of the form

Ĉ ¼ p̂2
t � p̂2 þ Vðq̂; t̂Þ;

the imaginary contribution at order ℏ is precisely the same
in the effective framework, =½t� ¼ �ℏ=2hp̂ti.

One choice was made at the beginning of the effective
analysis, namely, the gauge fixing of the effective
constraints. We used the gauge fixing that worked well for
deparametrizable systems, but it may not be suitable for
nondeparametrizable ones. One could then try to change the
gauge-fixing conditions and perhaps move the complex
valuedness to some of the kinematical moments rather
than the internal time expectation value. It is, however,
unlikely that this would give a general procedure because
the form of the constraints would require gauge-fixing
conditions adapted to the system under consideration,
and, in particular, to the potential. The gauge-fixing con-
ditions used here, on the other hand, work for arbitrary
potentials and are specifically motivated by and associated
to our choice of clock and corresponding relational time
(see also Sec. IVC).

Finally, there is concrete evidence, that this imaginary
contribution is a generic feature associated with local
deparametrizations of a Dirac constraint of the form

ðp̂2
t � Ĥ2ðt̂; q̂; p̂ÞÞc ðq; tÞ ¼ 0; (42)

where Ĥ2 is a positive operator at least on some set of
states. For example, such a constraint features in the
Wheeler-DeWitt (WDW) equation in homogeneous and
isotropic cosmology. In general, Eq. (42) is not equivalent
to a Schrödinger equation

ð�iℏ@	 þ Ĥð	; q̂; p̂ÞÞc ðq; 	Þ ¼ 0; (43)

since the solutions to the latter satisfy

� ℏ2@2	c ¼ Ĥ2c þ iℏ@	Ĥc : (44)

The inequivalence formally appears to be of order ℏ and is
based in part on erroneously identifying the kinematical
operator t̂ of Eq. (42) with the time parameter 	 of Eq. (43).
In [17] it was shown, however, that Eq. (42) and an internal
time version of Eq. (43) are both solved by the same state
(in the sense that their expectation values vanish) at order
ℏ, if one defines

t̂ ¼ 	̂� iℏ
2
p̂�1
	 ; (45)

(for states outside the zero-eigenspace of p̂	) where the
(continuous) eigenvalues of the kinematical internal time
operator 	̂ assume the role of the parameter 	 of the
Schrödinger equation. The internal time Schrödinger equa-
tion represents a local deparametrization of Eq. (42) and
arises from a kinematical quantization of one of the two
factors of a classical factorization of the quadratic con-
straint, C ¼ ðp	 �Hð	; q; pÞÞðp	 þHð	; q; pÞÞ, where
both internal time 	 and p	 are dynamical phase-space
variables. The result once again agrees with the general
form of the imaginary contribution obtained effectively.
This comparison of the quadratic relativistic constraint
with a local (internal time) Schrödinger equation at the
state level is demonstrated on a concrete example in
Sec. VB2. We also compare the corresponding semiclas-
sical dynamics of local deparametrization to the effective
evolution in Sec. VC1.

B. Dynamics with a complex relational clock

As we saw in the previous section, the expectation value
of internal time can acquire an imaginary contribution even
in the standard treatments of deparametrizable systems.
The difference is only that deparametrizable systems
with a global internal time do not force us to include the
imaginary part, while systems with local internal times do.
This can also be seen from the shape of the generic
imaginary contribution =½t� ¼ �ℏ=2hp̂ti: While in the
presence of a ‘‘time potential,’’ pt will fail to be a constant
of motion and, consequently, =½t� will actually be dynami-
cal, in the absence of a ‘‘time potential’’ in the constraint pt

is automatically a Dirac observable and, therefore, =½t�

11Strictly speaking, this is clearly not a true expectation value,
since the kinematical internal time operator does not preserve the
(physical) positive frequency Hilbert space. Nevertheless, we
can use this inner product as a well-defined bilinear form in this
case.
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a constant of motion. But a constant imaginary contribu-
tion, in contrast to a dynamical one, is not needed in order
to avoid a violation of the constraints since it can be
interpreted as an integration constant at the effective level
and does not even appear in the constraints in the absence
of a ‘‘time potential.’’ Indeed, the WDW and (the internal
time version of the) Schrödinger equation, Eqs. (42) and
(43), are automatically equivalent in this case. The imagi-
nary contribution to internal time may, therefore, be dis-
regarded altogether for relational evolution in the absence
of a ‘‘time potential,’’ but it cannot be neglected otherwise.

We emphasize that a nonglobal clock necessarily im-
plies a ‘‘time potential,’’ while a time-dependent potential
does not automatically imply a nonglobal clock.12 The
dynamical imaginary contribution is, therefore, more gen-
eral than a pure consequence of nonunitarity following
from nonglobal clocks. Nevertheless, the imaginary con-
tribution becomes more prominent where the momentum
of the clock variable becomes small and is, thus, especially
relevant near turning points of nonglobal clocks. In fact,
the dynamical imaginary contribution, being inversely
proportional to the kinetic energy of the clock variable,
can be interpreted as a measure for the quality of the
relational clock: the higher the clock’s momentum, i.e.,
the further away it is from a turning point where quantum
effects restrict its applicability, the smaller the imaginary
term and the better behaved the clock. This coincides with
the intuition that, the faster the clock, the better its time
resolution. The inverse kinetic energy also appears in other
discussions of the qualities of clocks. A brief comparison
of this and further references may be found in [17].

Facing a dynamical imaginary part, we ought to make
sense out of such a ‘‘vector time’’ with two separate
degrees of freedom. (Relational) time is commonly under-
stood as a single (scalar) degree of freedom and, in prin-
ciple, we may choose any (real) phase-space function
which is reasonably well behaved. In this light, we appoint
the real part of the clock function for relational time, for
several reasons: (1) it gives the correct classical internal
time in the classical limit; (2) for small ‘‘time potentials,’’
or in the absence thereof, the imaginary contribution is
approximately, or exactly constant, respectively; (3) the
‘‘expectation value,’’ Eq. (41), reproducing the specific
imaginary term for the free relativistic particle is based
on a constant real parameter time slicing; (4) the
Schrödinger regime (obtained from a local deparametriza-
tion of the relativistic constraint) which, at least locally,
should give a conventional quantum time evolution, is
based on a real-valued time, and (5) as we will see in an
example in Fig. 8 in Sec. VC 1 below, the dynamical
imaginary contribution for nonglobal clocks can fail to

be monotonic where the real part serves as a suitable local
clock.

C. Switching clocks is equivalent to changing gauges

From the point of view of the Poisson manifold of the
effective framework no variables or gauges are preferred
over others and we could, in principle, choose a q gauge
like (25) and still use t as our clock for relational evolution.
However, as we will see in the second model in Sec. V, the
effective evolution in a given 	 gauge is matched by a
Schrödinger type state evolution (43) in internal time 	,
where the conventional Schrödinger type inner product is
defined on constant-	 slicings. This Schrödinger regime
analog can, thus, only be meaningfully interpreted as local
evolution in 	. Moreover, when nevertheless using, e.g., t
as a local clock in the q gauge in Sec. III C 2, one faces the
undesirable consequence that moments involving t or pt

become evolving degrees of freedom, while the moments
of our actual variables of interest, ðq; pÞ, are (at least
partially) gauge fixed, essentially leaving only an evolution
parameter q. The resulting moments would no longer be
associated to a canonical pair, which has an impact on
Dirac brackets and unnecessarily complicates the physical
relational interpretation of such moments relative to t.
Consequently, it is unavoidable to switch the local clock
in the effective procedure when choosing a new gauge; the
choice of gauge is intimately intertwined with the choice of
(internal) time and changing the clock and corresponding
time is practically tantamount to changing gauge and
Zeitgeist. Accordingly, certain questions about (physical)
correlations of variables are best described in certain
gauges and in each gauge we evolve a different set of
relational observables which is associated to the chosen
relational clock.
The peculiar circumstance that the set of degrees of

freedom that evolve in relational time appears to depend
on the gauge has its roots in the fact that, by the choice of
Zeitgeist, local relational observables considered here de-
scribe the system in partially gauge fixed form. While the
physical information computed for the system is, certainly,
gauge independent, its presentation in gauge fixed form
depends on the gauge chosen. One can illustrate this fea-
ture also with the standard notions of partial and complete
observables. Complete relational observables (invariant
under all gauge flows) can be understood as gauge invari-
ant extensions of gauge restricted quantities [8,10,23];
when restricting a complete observable to certain fixed
values of some clock functions (parametrizing the full
gauge orbit), it is reduced to a ‘‘partial’’ observable, eval-
uated on a gauge-fixing surface. In such a gauge not all
correlations between the phase-space degrees of freedom
are accessible and, hence, not all questions about correla-
tions meaningful. (The choice of clock functions along full
gauge orbits, of course, does not constitute gauge fixing.)
Evolving partial observables along the (full) gauge orbits

12For instance, in a relativistic system governed by a constraint
C ¼ p2

t �H2ðq; p; tÞ, where H2 > 08 t, the clock t will be
global.
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results in complete relational observables that clearly
depend on the choice of the relational clock functions,13

just as the gauge-fixing surfaces corresponding to constant
values of (some of) the clock functions and the associated
partial relational observables do.

In the effective framework as well one could gauge
invariantly extend the local relational observables of the
different Zeitgeister to complete observables by, apart
from the oðℏ0Þ clock t or q, taking three further oðℏÞ clock
functions into account to keep track of the remaining three
gauge flows on quantum phase space.14 However, for
practical reasons, it is advantageous to gauge fix these
three oðℏÞ clocks such that the relational evolution we
want to describe in the oðℏ0Þ clock can be expressed and
compared to Hilbert-space approaches in the most conve-
nient way. One possibility is by using the mentioned
relationship of the effective framework with a (local)
deparametrization in an internal time Schrödinger regime.
To define a Schrödinger type evolution, one can choose
which slicing to employ [where the constant-t slicing is
the most convenient one when choosing t as internal time
and corresponds to the deparametrization given by (43)].
The choice of the slicing and corresponding inner product
determines how the spreads of the states solving the
internal time Schrödinger equation are measured. For
instance, in standard constant-	 slicing for (43) (corre-
sponding to constant-t slicing and evolution in t in the
relativistic system), not all the fluctuations of q̂ can vanish
and the variable appears to be of quantum nature, while 	̂
is projected to the role of a classical parameter 	 since the
spreads related to 	̂ will vanish. In constant q slicing the
situation is reversed. Note, however, that deparametriza-
tions with respect to different internal time variables will,
in general, yield different quantum theories with inequi-
valent Hilbert spaces.

Alternatively, we could use a tilted slicing that corre-
sponds to neither configuration coordinate. For a concrete
example recall the free relativistic particle, which is subject
to (39). This constraint equation is Lorentz-invariant and
we can construct a physical inner product on its solutions
of the same form as (40) but evaluated in a different
Lorentz frame on surfaces of constant x00, where x0
 ¼
�


�x� are the boosted coordinates; the corresponding

multiplicative kinematical operators will be denoted by
x̂0
. Kinematical expectation values and moments of t̂ and

q̂ are linear combinations of the expectation values and
moments of x̂0
. For instance, by linearity of the expecta-

tion values, the correlation �ðtqÞ ¼ �

0�

�
1�ðx0
x0�Þ ¼

�1
0�

1
1ð�x01Þ2, which is nonzero unless the boost is trivial.

(Here the last equality follows as fluctuations of x̂00
vanish to order ℏ, when evaluated in this inner product.)
In this tilted slicing one can construct a local Schrödinger
evolution and still use ht̂i as internal time, though
unfamiliar nonvanishing moments (involving t̂) severely
complicate the interpretation of t̂ and q̂ as a relational time
reference and an evolving variable, respectively.
On the other hand, the quantum phase space of the

effective framework, being representation independent,
must contain information about a general class of slicings
in a (local) deparametrization. This is the reason why
unusual (time) moments such as �ðqtÞ do not necessarily
vanish in the effective formalism. The three oðℏÞ
clocks do not represent true internal coordinates, but
parametrize the slicings and thereby the (in general in-
equivalent) corresponding Hilbert-space representations.
Hence, the three conditions fixing the three oðℏÞ flows
will fix the slicing and Hilbert-space representation to
which the effective relational evolution will correspond.
Certainly, when choosing t as the relational oðℏ0Þ clock,
we could choose gauge conditions differing from the t
Zeitgeist; however, these would correspond to tilted slic-
ings and are, consequently, less convenient for calcula-
tions as well as interpretations. Furthermore, the q
Zeitgeist can be interpreted in terms of slicings parallel
to the t axis and is, thus, not useful for describing
evolution in t.
In the light of the present discussion, one may interpret

the evolution generated by the remaining first-class
(Hamiltonian) constraint in a given Zeitgeist (e.g., (17) in
t Zeitgeist in Sec. III C 1) which preserves this gauge and
the effective positivity (see Sec. III C 4) as describing an
approximate, locally unitary evolution for semiclassical
states in a given (preserved) slicing in a local deparamet-
rization. In addition, the imaginary contribution to internal
time is clearly dependent on the chosen Zeitgeist at the
effective level and the slicing in a local deparametrization;
when employing tilted slicings or gauges differing from the
Zeitgeist, the imaginary contribution to the internal clock
will take a different form.
In conclusion, certain questions about correlations

are best addressed in certain gauges and we are, indeed,
evolving different sets of (partial) relational observables in
different Zeitgeister. The presence of additional gauge
flows and slicings also explains the observation that
ht̂iðhq̂iÞ and hq̂iðht̂iÞ are not in one-to-one correspondence,
while the analogous statement (at least locally) holds in the
classical system.

D. The moment of gauge and clock change

Here we argue that the precise instant of the gauge
change is irrelevant, as long as the semiclassical approxi-
mation is valid before and after the gauge transformation.
The instant when to perform the change of the clock then
becomes a matter of convenience.

13Different choices of clocks parametrizing the full gauge
orbits will yield different parameter families of observables,
although still describing the correlations on the same gauge
orbits (albeit along different flow lines).
14In general, global obstructions may prevent the clock func-
tions from globally parametrizing the full gauge orbit.

EFFECTIVE APPROACH TO THE PROBLEM OF TIME: . . . PHYSICAL REVIEW D 83, 125023 (2011)

125023-17



Let q1 and q2 be two configuration variables, which we
use as local clocks, and let C be the constraint surface, G1

the q1 gauge surface and G2 the q2 gauge surface (in C).
Denote by �s

CH1
ðxÞ (x 2 G1) the flow of the ‘‘Hamiltonian

constraint’’ in the q1 gauge (i.e., the G1-preserving first-
class flow) and by �u

CH2
ðyÞ (y 2 G2) the flow of the

‘‘Hamiltonian constraint’’ in the q2 gauge, where s, u are
gauge parameters along the flows. Furthermore, denote by
�t
GðxÞ the flow of the generator G of some fixed gauge

transformation which maps between the q1 and q2 gauge
for certain values of t and which, for the sake of avoiding
ordering ambiguities, we assume to be free of caustics (see
Secs. III C 3 and VC2 for explicit constructions of such
transformations in the examples).

For the moment, assume that both G1 and G2 provide
complete submanifolds of C and that there are no global
obstructions to either the q1 or the q2 gauge. Recall that the
first-class nature of a constraint algebra with n independent
flows ensures that the flows are integrable to an
n-dimensional submanifold in C, the gauge orbit g [23].

For simplicity, consider a classical constraint
Cðq1; q2; p1; p2Þ on a four-dimensional phase space.
Then the quantum phase space to semiclassical order will
be 14-dimensional and governed by five quantum con-
straint functions which generate four independent flows
[18,19]. Hence, dimC ¼ 9 and dimg ¼ 4. G1 and G2 are
each described by three independent conditions, thereby
fixing three of the four independent flows in g. CH1

(CH2
)

generates the only independent gauge flow which
preserves G1 (G2), implying dimg\G1¼dimg\G2¼1,
where the sets g \ G1 and g \ G2 are the curves �s

CH1
ðxÞ

(x 2 G1) and �u
CH2

ðyÞ (y 2 G2). Now �t
GðxÞ 2 g8 t and

�t¼t

G ðxÞ 2 g \ G2 for some t
 and x 2 G1. This map

obviously has an inverse, namely ��G, since the flow lines
of a single generator form a congruence in g, and, thus, no
point lies on two different such flow lines. Therefore,
points along �s

CH1
are mapped 1-to-1 to points along

�u
CH2

via �G, and we must have

�
t¼t


1

G 	 �s
CH1

ðxÞ ¼ �u
CH2

	 �
t¼t


2

G ðxÞ; (46)

for some x 2 G1, some s, u 2 R and fixed t
1, t
2 deter-

mined via the conditions �
t¼t


2

G ðxÞ 2 G2 and �
t¼t


1

G 	
�s
CH1

ðxÞ 2 G2.

Since the gauge transformation �G maps the points
along the CH1

-generated trajectory in G1 bijectively to

points along the CH2
-generated trajectory in G2 we always

map between the same two trajectories and, therefore, it
does not matter when precisely the gauge and the clock are
switched.

Locally, this argument also holds in systems without
global clocks and which suffer from global obstructions
to the q1 and q2 gauges, as long as one works in a regime in

which the respective gauges are valid before and after the
gauge transformation and are consistent with the semiclas-
sical approximation. In this regime, it should also be
irrelevant when precisely the gauge and the clock are
changed. In Sec. VC 3, we numerically demonstrate this
argument and its consistency with the semiclassical ap-
proximation in an example.

E. Relational observables as ‘‘fashionables’’

As can be seen explicitly in the models studied in the
present work, relational observables of the type hq̂iðht̂iÞ can
be given meaning even if ht̂i is not used as an internal time
throughout the evolution. This feature is implemented by
switching gauges for nonglobal clocks. Such gauge trans-
formations imply shifts of the order ℏ in correlations of
expectation values and moments as one changes clocks.
This is not surprising; it merely underlines the fact that
expectation values of the same kinematical variable taken
in different Zeitgeister translate into different relational
observables. Semiclassically, however, the differences are
only of order ℏ.
We see that relational observables appear to be only of

local nature15: a Zeitgeist comes with its own set of rela-
tional observables and since a Zeitgeist is typically only
temporary, one is forced to use different relational observ-
ables to describe the full evolution. Just as with local
coordinates on a manifold, we cover a semiclassical evo-
lution trajectory by patches of local internal times and
translate between them. We, therefore, follow [17] and
refer to the correlations of the evolving expectation values
and moments with the (real part of) the expectation value
of a local internal clock in its corresponding Zeitgeist as
fashionables. An explicit examples of a fashionable is the
correlation of qðsÞ and <½tðsÞ� of Eq. (21) (see Figs. 3 and
4). These quantities are only defined so long as the corre-
sponding Zeitgeist is valid and may subsequently ‘‘fall out
of fashion’’ when the Zeitgeist changes. By analogy, we
also use the term fashionables to denote the expectation
values of operators obtained via local deparametrizations
(for example hq̂2iðq1Þ and hp̂2iðq1Þ of Eq. (71)).
It should be noted that the notion of fashionables is, in

fact, state dependent, in contrast to usual operator versions
of quantum relational Dirac observables. Fashionables are
associated to a choice of Zeitgeist and different Zeitgeister
are valid for ranges depending on the semiclassical states
considered. A fashionable breaks down together with the
corresponding Zeitgeist when it is rendered invalid, e.g., at
a turning point of the corresponding clock. Fashionables,
therefore, reflect the local nature of quantum relational

15Relational observables have perhaps been understood as a
local concept in the formulations provided before, but so far they
have been made sense of in a quantum setting only in the
effective framework as developed in [17]. For a discussion of
difficulties in the Hilbert-space picture, see the comment by
Hájı́ček cited in [7].
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evolution and are somewhat closer to a physical interpre-
tation by being state-dependent. Thereby, they also avoid
certain technical and interpretational problems of operator
versions of quantum relational observables, such as non-
self-adjointness issues in the presence of a purely local
time (see also the general discussion concerning fashion-
ables in [17]). In practice, the local nature of observables
does not prevent one from computing physically mean-
ingful predictions, as these typically refer to finite ranges
of time. Moreover, since data is consistently transferred
between local choices of a clock, one can evolve them
through the turning point by temporarily switching to a
new Zeitgeist and employing the old Zeitgeist before and
after the turning point.

Apart from being generally of merely local nature, it
appears that the standard concept of relational evolution
has only semiclassical meaning and that the standard no-
tion of (locally unitary) relational time evolution breaks
down together with complex relational time in a highly
quantum state of a system without a global clock. For a
discussion of this issue, we again refer the interested reader
to [17].

Unlike a conventional Hilbert-space representation, the
effective approach in its present form does not by itself
rigorously define a quantum theory, but rather provides a
tool for evaluating quantum dynamics. In deparametrizable
models, a close relationship between these two formula-
tions has been found and discussed [22]. On the other hand,
when going beyond deparametrizable systems, the effec-
tive method can still be used to evaluate quantum dynam-
ics, while local internal times and fashionables have not
been made sense of in the Hilbert-space picture, which
indicates that the effective constructions presented here
already go somewhat beyond usual formulations of quan-
tum physics. At this stage, we are not entitled to formulate
effective dynamics as a true alternative to quantum me-
chanics because mainly the semiclassical setting has been
developed so far. Given the enormous difficulties of deal-
ing with time at the Hilbert-space level of nondeparamter-
izable systems, some nontruncated form of effective
equations may be a more suitable setting and eventually
be independent of Hilbert-space constructions.

V. A TIMELESS MODEL: THE TWO-
DIMENSIONAL ISOTROPIC HARMONIC

OSCILLATOR WITH FIXED TOTAL ENERGY

The previous example in Sec. III was deparametrizable,
even though one could locally employ a nonglobal clock
which already revealed a number of consequences of the
global time problem, in particular, for the effective ap-
proach. Some of these features were subsequently dis-
cussed in more generality in Sec. IV, complementing
[17]. Now we explore all this in detail in a truly timeless,
nondeparametrizable system comprised of the two-
dimensional isotropic harmonic oscillator with prescribed

total energy. This toy model, previously discussed by
Rovelli in [4,7], leads to closed orbits in the classical phase
space and, consequently, does not admit global clocks. The
issue of changing clocks/gauges becomes inevitable. In our
discussion we will compare the classical, effective and
Hilbert-space approaches to this model.

A. Classical discussion

Classically, the model is governed by the constraint

Cclass ¼ p2
1 þ p2

2 þ q21 þ q22 �M (47)

with a constant M. The dynamical equations are given by

fqi; Cclassg ¼ 2pi and fpi; Cclassg ¼ �2qi; (48)

(i ¼ 1, 2) and straightforwardly solved by

q1clðsÞ¼
ffiffiffiffi
A

p
sinð2sÞ; q2clðsÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M�A

p
sinð2sþ�Þ; (49)

p1clðsÞ¼
ffiffiffiffi
A

p
cosð2sÞ; p2clðsÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M�A

p
cosð2sþ�Þ; (50)

where s is the parameter along �s
Cclass

ðxÞ and 0 � A � M,

0 � � � 2�. The canonical pair of Dirac observables �
and A satisfies

2A ¼ Mþ p2
1 � p2

2 þ q21 � q22;

tan� ¼ p1q2 � p2q1
p1p2 þ q1q2

;
(51)

and completely coordinatizes the reduced phase space,
which is topologically a sphere and, thus, no cotangent
bundle [7]. The classical system clearly does not possess
any global clock functions; indeed, if we choose one of the
qi as a clock, we see that this function will encounter a
sequence of turning points along a classical trajectory. The
classical trajectories are ellipses in configuration space,
periodic and, therefore closed.
Because of this periodicity of the orbits, states which are

related by an integer number of revolutions around such an
ellipse are described by identical phase-space information.
One could only distinguish these states via the gauge
parameter s which, however, is not a physical degree of
freedom. In order to distinguish states related by complete
numbers of revolutions, one would need an extra phase-
space degree of freedom. Furthermore, the group generated
by this constraint isUð1Þ which is compact. The number of
revolutions around the ellipse, therefore, has no physical
meaning, in spite of the fact that the gauge parameter may
run over an infinite interval. We thus identify states related
by complete numbers of revolution.

1. Evolving observables

For the quantization of the model it turns out to be
advantageous to use the following over-complete set of
Dirac observables [7]
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Lx¼1

2
ðp1p2þq2q1Þ; Ly¼1

2
ðp2q1�p1q2Þ; and

Lz¼1

4
ðp2

1�p2
2þq21�q22Þ; (52)

which satisfy the constraint

L2
x þ L2

y þ L2
z ¼ M2

16
(53)

and the usual angular momentum (Poisson) brackets.
These variables may then be quantized via group quantiza-
tion. The observable Ly can be interpreted as the angular

momentum of the system which also provides the orbits
with an orientation.

In spite of the a priori timelessness of this model, one
can give it a (local) evolutionary interpretation. Given the
timeless initial data � and A, the classical solution is
completely specified and prediction of relational informa-
tion is possible. Choose a local clock, say q1, and evolve
the other variables of interest, in this case q2 and p2, with
respect to 	, where 	 are the possible values of q1. The
relational Dirac observables corresponding to this evolu-
tion are, obviously, double valued, since the orbit is closed
and are given by

q�2 ð	Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=A� 1

p ð	 cos��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� 	2

p
sin�Þ;

p�
2 ð	Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=A� 1

p
ð�	 sin��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A� 	2

p
cos�Þ:

(54)

(where 	 is now a parameter). The expressions with index
þ refer to evolution forward in q1 time, while the expres-
sions with index � refer to backward evolution in q1 (see
Sec. VA2 for additional discussion). The fact that these
correlations are double valued does not constitute a prob-
lem, since the value of � provides an orientation of the
orbit. Starting at a point of the ellipse at a given value
of q1, the direction of relational evolution in q1 is provided
by the orientation and one may evolve in this manner
around the ellipse without having to switch the clock at
the classical level. Indeed, at the two turning points of q1
the relational momentum observable is nonvanishing and,
consequently, determines the direction of evolution. One
can simply switch, for instance, from qþ2 to q�2 and change
the direction of 	 since the systemmoves back in q1.

16 This
way a consistent relational evolution is obtained along the
trajectory which is entirely encoded within Dirac observ-
ables and no use of any gauge parameter is made. For later
reference, it is useful to note that one could arrive at the
same predictions of correlations by providing—instead of
� and A—relational initial data, e.g., qþ2 ð	 ¼ 	0Þ and
pþ
2 ð	 ¼ 	0Þ, plus the orientation of the ellipse which is

encoded in the angular momentum Ly. Notice that the

orientation must be specified since, given the values of
q1, q2, p2, one can only solve for p1 up to sign via
Eq. (47). This is due to the relativistic/quadratic nature of
the constraint and the reason why, in general, one needs to
provide a time direction in which to evolve (or equivalently
a Hamiltonian) apart from the initial data [13], in order to
pose a well-defined IVP; purely relational information
cannot coordinatize the space of solutions of systems
governed by relativistic constraints.17

We will perform the precise analogue of this local rela-
tional evolution in the effective and quantum theory.

2. Local relational evolution generated
by physical Hamiltonians

If we interpret Eq. (54) as physical motion in q1, we
would like to find a physical Hamiltonian which generates
this motion in the reduced phase space. Such a
Hamiltonian is not the constraint, but itself a Dirac observ-
able which moves a given transversal surface (time level)
in phase space [8–10]. Given data on a transversal surface,
this data will be moved onto another transversal surface in
a direction determined by the Hamiltonian. More precisely,
the ‘‘time direction’’ is provided by its Hamiltonian vector
field. The trouble in the present model is, obviously, that
these transversal surfaces may be intersected twice or not
at all by the classical orbit. The two intersections of a
trajectory with given orientation also come with two differ-
ent evolution directions because the trajectory is closed.
These two opposite directions can, certainly, not both be
generated by one and the same physical Hamiltonian, since
it moves the transversal surface in only one direction in
phase space. Thus, unlike in systems with global clocks,
we are required to perform a change of Hamiltonian at the
turning points of the clock. In order to evolve from the
surface determined by the nonglobal clock q1, we need two
Hamiltonians, one of which generates evolution for qþ2 and
pþ
2 in the positive q1 direction until the turning point of q1

and the second of which then generates evolution for q�2
and p�

2 in the opposite direction, away from the turning
point. Let us explore this in more detail.
Choosing q1 as local time, we may factorize Eq. (47)

classically into a pair of constraints linear in p1,

C ¼ ðp1 þHð	ÞÞðp1 �Hð	ÞÞ ¼ ~Cþ ~C�;

where Hð	Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� 	2 � p2

2 � q22

q
:

(55)

The dynamical equations now read f�; Cg ¼ ~Cþf�; ~C�g þ
~C�f�; ~Cþg. Away from the turning points in q1 time we
have Hð	Þ> 0 and, therefore, C ¼ 0 implies that one of

16Continuation to larger absolute values of 	 will produce
meaningless complex correlations in Eq. (54) which simply
indicates that the system will never reach such values of the
local clock.

17In nonrelativistic parametrized systems, where the momen-
tum conjugate to the time function appears linearly, the time
direction is automatically given.
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the following two possibilities (but not both simulta-
neously) is true

~Cþ¼0, ~C�¼2p1<0)q01¼fq1;Cg¼2p1<0

and f�;Cg/�f�; ~Cþg; (56)

or,

~C� ¼ 0 , ~Cþ ¼ 2p1 > 0 ) q01 ¼ fq1; Cg ¼ 2p1 > 0

and f�; Cg / þf�; ~C�g: (57)

Hence, on the set defined by ~C� ¼ 0 we may use ~C� as
evolution generator, but notice that the flow generated by
~Cþ is directed opposite to the one generated by C.

Furthermore, since fq1; ~C�g ¼ 1, ~C� and, thus, �Hð	Þ
are evolution generators for q2 and p2 in q1 time. In

particular, on the part of the constraint surface, where ~Cþ
vanishes and, thus, may be used as an evolution generator
(whose Hamiltonian vector field points in opposite direc-
tion to the one determined by C), we have q01 ¼ 2p1 < 0
and, therefore, the system governed by Cmoves back in q1
time. As a consequence, while �Hð	Þ generates evolution
for q2 and p2 forward in q1 time,þHð	Þ does precisely the
opposite. Note, moreover, that the two Hamiltonians
�Hð	Þ are themselves relational Dirac observables which
generate the physical equations of motion

_q 2 ¼ �fq2; Hð	Þg ¼ � p2

Hð	Þ ; (58)

_p 2 ¼ �fp2; Hð	Þg ¼ � q2
Hð	Þ ; (59)

where _ denotes a time derivative with respect to 	. As can
be easily checked by using Eq. (54), the solution to the
equations of motion generated by þHð	Þ will reproduce
classically q�2 and p�

2 , while the solutions to the equations
generated by �Hð	Þ will provide qþ2 and pþ

2 .
Consequently, in the solutions qþ2 and pþ

2 in (54) 	 must
run forward, while for q�2 and p�

2 it must run backwards.
Care must be taken at the turning point of q1 time, where
p1 ¼ H ¼ 0. Here we have to perform the change from
�Hð	Þ to þHð	Þ, or vice versa.

The situation here is quite different from the case
of the free relativistic particle for two reasons. Firstly,
in the constraint for the free relativistic particle
the two momenta come with opposite signs and
t0 ¼ ft; Cparticleg ¼ ft;�p2

t þ p2g ¼ �2pt, which entails

that forward evolution in the clock t is only possible where
pt < 0. Secondly, pt is a Dirac observable which implies
that in this model no change of Hamiltonian needs to be
performed. Neither of the two issues occurs in the non-
relativistic case, where pt appears linearly and the time
direction is automatically given.

B. The quantum theory

The constraint (47), when promoted to a quantum op-
erator in the Dirac procedure, reads

Ĉ ¼ p̂2
1 þ p̂2

2 þ q̂21 þ q̂22 �M: (60)

The quantization of this model is straightforward, since
zero lies in the discrete part of the spectrum of the con-
straint.18 The physical Hilbert space is, therefore, a sub-
space of the kinematical Hilbert space L2ðR2; dq1dq2Þ,
where the physical inner product is identical to the kine-
matical inner product and simply given by

hc ; �iphys ¼
Z þ1

�1
dq1dq2 �c ðq1; q2Þ�ðq1; q2Þ: (61)

The general form of the physical states is

c physðq1; q2Þ ¼
XM=ð2ℏÞ�1

n¼0

cnc nðq1ÞcM=ð2ℏÞ�n�1ðq2Þ; (62)

(cn ¼ const) and c n denotes the n-th eigenstate of the one-
dimensional harmonic oscillator. The Dirac observables in
Eq. (52) are also straightforwardly quantized, since there is
no factor ordering ambiguity involved. For some aspects
discussed here see also [4,7].
The inner product may easily be obtained from group

averaging, where P ¼ R
2�
0 dse�iĈs=ℏ, in fact, is a true

projector. The integration range of 2� is due to the con-
straint being a Uð1Þ generator and compatible with the
classical identification of states on the orbit which are
related by integer numbers of revolution.

1. Timelessness

A priori, there should be no time evolution and no IVP
since there is no true time. Indeed, in the ðq1; q2Þ repre-
sentation, Eq. (60) provides an elliptic PDE; thus, there is
no well-defined IVP for this quantum model, but rather a
boundary value problem. The ‘‘initial data’’ characterizing
the quantum solution is in a sense timeless. This is also
highlighted by the inner product (61) which integrates out
both configuration variables and, therefore, cannot be cap-
tured by the standard inner products based on constant time
slicings. The latter are usually related to the existence of a
well-posed IVP.
In spite of this a priori timelessness, we can give a local

dynamical interpretation to the quantum theory in analogous
fashion to the classical theory. (The relational evolution to be
discussed here is only an emergent local evolutionary inter-
pretation of a timeless model. Consequently, the apparent
nonunitarity in the nonglobal clock evolution and possible
decoherence effects related to this are an artefact of
this emergent interpretation. The model itself is neither
nonunitary nor decohering since there is no true time.

18We assume here thatM is chosen to the extent that there exist
n1, n2 such that 2ℏðn1 þ n2 þ 1Þ �M ¼ 0 and zero actually lies
in the spectrum of Ĉ.
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For that reason, the issue of ‘‘quantum illnesses,’’ raised, for
instance, in [15], is not directly applicable here.) The ensu-
ing differences between the classical and quantum theory
are, as usual, merely due to the quantum uncertainties;
however, these havemore severe implications in the absence
of a global clock.

Again, we can give a meaning to orientation in the

quantum theory, namely, via L̂y, which—being a Dirac

observable—is a well-defined operator onH phys. Its posi-

tive and negative eigenspaces distinguish the orientation
which also provides a direction of evolution. By super-
imposing the two, a superposition of evolution in both
directions is, in principle, possible.

However, owing to the quantum uncertainties, the rela-
tional concept of evolution seems to be only of an essentially
semiclassical and certainly local nature when dealing with
nonglobal clocks and even in this regime, quantum effects
have severe consequences.When asking for the value of, say,
q2 when a certain value of q1 is realized, one faces the
problem that due to the spread, parts of the state may already
be ‘‘beyond their turning point’’ inq1. Classically, this results
in a quite meaningless complex-valued correlation between
the two configuration variables (just extend j	j beyond A in
Eq. (54)) which merely indicates that the system never
reaches this point. In the quantum theory, the correlation of
the two variables, thus, loses meaning earlier than in the
classical theory; the larger the quantum uncertainties, i.e.,
the larger the spread of the state, the earlier the concept of the
relational correlation breaks down. At a given value of the
clock q1 part of the system is lost and an apparent nonun-
itarity shows up. This, certainly, also applies to semiclassical
states and, therefore, one cannot fully reach the classical
turning point without changing the clock beforehand. Here,
one cannot simply switch between, e.g., qþ2 and q�2 , as one
could classically, and as a consequence relational Dirac
observables only have a local meaning.

By the same token, the peak of a coherent physical state
may follow a classical trajectory exactly while expectation
values computed in an internal time Schrödinger regime can
only do so locally. Such a Schrödinger regime results from a
local deparametrization and is aimed at locally approximat-
ing the timeless physical state and the information
contained in it by locally scanning through it, thereby in-
troducing a notion of quantum evolution. The Schrödinger
regime for this model, is explicitly discussed in Sec. VB2
below. For this regime we need an (emergent) inner product
based on constant internal time slicings (for only the part of a
coherent physical statewhich either corresponds to, e.g., qþ2
or q�2 ) and such a slicing becomes troublesome near the

classical turning point of the chosen clock due to the appar-
ent nonunitarity, and eventually breaks down. Since the
breakdown occurs earlier the greater the quantum uncertain-
ties, it becomes apparent that the internal time Schrödinger
evolution is only meaningful here in a semiclassical regime.
And even then, an expectation value trajectory cannot

completely reproduce the corresponding classical trajectory
near the turning point, even though the peak of the coherent
state may do so.
Thus, while the question for what value, say, q2 takes

when q1 reads such and such seems to be meaningless if
the state is extremely quantum, it is meaningful for a
semiclassical state, where at least locally the expectation
value evaluated in some ‘‘emergent’’ inner product based
on constant q1 slicings follows a classical trajectory until
close to the q1-turning point. For highly quantum states in
systems without globally valid clock variables, however,
the standard concept of (locally unitary) relational evolu-
tion seems to disappear in conjunction with the standard
notion of relational time. For a more detailed general
discussion of this feature we refer the interested reader to
[17]. The analysis of the present toy model supplies several
general statements in [17] with concrete examples.
Let us, therefore, investigate relational evolution via

local deparametrizations and how to reconstruct the infor-
mation of the physical state from it in the semiclassical
regime. We refrain from explicitly employing elliptic co-
herent physical states here, but in order to visually facili-
tate the discussion we present an example of such a state
for this model in Fig. 5 (the interested reader may find the
recipe for the construction in this particular model in [24]).
In the semiclassical regime it is also reasonable to consider
only the solutions to Eq. (60) which consist purely of

positive or negative eigenstates of L̂y such that we avoid

superposition of evolution in both directions and are in a
position to essentially repeat the same procedure here as in
the classical case.
We now have four methods for investigating the

semiclassical regime: the Dirac method, the reduction
method,19 evolution in an approximate local Schrödinger

FIG. 5 (color online). Square amplitude of a coherent solution
to the constraint (60), with M ¼ 50ℏ, peaked about a circular
configuration space trajectory.

19Since in the reduced phase-space quantization the parameter
	 survives in the quantum theory, it is the only method in which
the timeless physical inner product (61) may be used in order to
compute expectation values at a fixed value 	 of q1; otherwise
this physical inner product does not admit a sense of evolution.
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regime or in the effective approach. This issue has been
partially analyzed in the reduction method (which in
this simple case turns out to be equivalent to the Dirac
method) via group quantization by Rovelli in [7], therefore,
we will focus on the local Schrödinger regime in Sec. VB2
and the effective approach in Sec. VC, both truncated at
order ℏ, in this article. We will show that both yield
equivalent results.

2. A local internal time Schrödinger regime

Since relational quantum evolution seems feasible for
semiclassical states, we would like to locally construct an
internal time Schrödinger regime which reproduces one
branch of the timeless physical state. This can be achieved
by simply translating the local relational motion generated
by the two Hamiltonians of Sec. VA 2 into the quantum
theory and may, therefore, be understood as a local depar-
ametrization with a valid IVP. To construct this
Schrödinger regime, we require q1 (or q2)—in analogy
to the parameter 	 in (55)—to appear as a parameter rather
than as an operator, and the corresponding states do not
exist in the Hilbert space of the previous subsection. We
therefore need a new Hilbert space, with a new inner
product, in which we integrate only over q2 at a fixed
value of the parameter q1. The Schrödinger regime using
q2 as an internal clock naturally requires a further new
Hilbert space, in which the roles of q1 and q2 are reversed.
From the point of view of standard Hilbert-space quantum
theory, these Schrödinger regimes thus constitute different
quantizations of the classical theory: that is, they are
different and, in general, inequivalent quantum theories.
Even though solutions to the resulting Schrödinger equa-
tions violate the quadratic quantum constraint with self-
adjoint clock operator and are not normalizable with (61),
they can be considered as approximations to the original
constrained problem by referring to the analysis of [17]
summarized in Sec. IVA: the WDW equation (60) is, in
fact, not violated if internal time in this equation allows for
an imaginary contribution. Because of the apparent

nonunitarity alluded to above, the local Schrödinger re-
gime will break down on approach to the classical turning
point of the clock, and we can only hope to reconstruct/
approximate the full physical state by switching clocks
and deparametrizations prior to the breakdown of the
respective clock. The results of this section will become
essential for understanding the effective approach, since
the local relational evolution of expectation values, i.e., of
fashionables, obtained in both approaches will prove to be
indistinguishable.

Choosing ~Cþ (and, thus, backward evolution in q1) in
Eq. (55), standard quantization yields

iℏ
@

@q1
c ðq1; q2Þ ¼ Ĥðq̂2; p̂2;q1Þc ðq1; q2Þ

¼ dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� q21 � p2

2 � q22

q
c ðq1; q2Þ; (63)

where Ĥ is defined via spectral decomposition. The
eigenfunctions of the latter are the harmonic

oscillator eigenfunctions c n with eigenvalues Hnðq1Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� q21 � ℏð2nþ 1Þ

q
, and, consequently, the operator is

positive definite on the lower energetic eigenstates, where
the time-dependent energy bound is given byM� q21.

20 In
analogy with Eq. (55) and in contrast to Eq. (60), q1 has
been reduced to a parameter here (see also Sec. IVA and
[17] on this issue).
We solve Eq. (63) in the standard way—noting that

½Ĥðq̂2; p̂2;q1Þ; Ĥðq̂2; p̂2; q
0
1Þ� ¼ 0—via

c ðq2;q1Þ ¼ e
�ði=ℏÞ

R
q1
q10

dtĤðq̂2;p̂2;tÞ
c nðq2;q10Þ

¼ e�ði=ℏÞEnðq1Þc nðq2;q10Þ; (64)

where

Enðq1Þ ¼
Z q1

q10

dtHnðtÞ

¼ 1

2
ðq1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� q21 � ℏð2nþ 1Þ

q
� q10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� q210 � ℏð2nþ 1Þ

q
þ ðM� ℏð2nþ 1ÞÞ

�
arctan

�
q1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M� q21 � ℏð2nþ 1Þ
q �

� arctan

�
q10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M� q210 � ℏð2nþ 1Þ
q ���

: (65)

In order to better explore the semiclassical regime, let us attempt to construct coherent states. The eigenstates of Ĥ are
given by harmonic oscillator eigenmodes; therefore, it seems reasonable to make the following standard ansatz for a
coherent state21

20This energy bound is related to the upper limit of the sum in the physical state (62).
21For convenience, we shall henceforth employ bra and ket notation.
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jzðq10Þi ¼ e�jzj2=2ezâþj0i ¼ e�jzj2=2X
n�0

znffiffiffiffiffi
n!

p jni; (66)

where jni is the n-th eigenstate of the harmonic oscillator,

â ¼ 1

2ℏ
ðq̂2 þ ip̂2Þ âþ ¼ 1

2ℏ
ðq̂2 � ip̂2Þ (67)

are the usual annihilation and creation operators of the
harmonic oscillator, and

z ¼ q20 þ ip20ffiffiffiffiffiffi
2ℏ

p ; (68)

where q20 and p20 are the initial positions of the coherent
state in phase space.

The coherent state will be evolved with the (local)

evolution generator Ĥ. Thus,

jzðq1Þi ¼ e
�ði=ℏÞ

R
q1
q10

dtĤðq̂2;p̂2;tÞjzðq10Þi

¼ e�jzj2=2X
n�0

znffiffiffiffiffi
n!

p e�ði=ℏÞEnðq1Þjni: (69)

Furthermore, the states are normalized hzðq1Þjzðq1Þi ¼ 1
with respect to the standard inner product obtained by
merely integrating out q2.

The coherent states of the harmonic oscillator are dy-
namical coherent states when evolved with the standard
Hamiltonian. Here, however, we are not evolving with the
standard Hamiltonian and, therefore, these states are only
initially coherent states for our local Schrödinger regime;
the states are not eigenstates of â for all times, as can be seen
from

âjzðq1Þi¼e�jzj2=2X
n�0

znþ1ffiffiffiffiffi
n!

p e�ði=ℏÞEnþ1ðq1Þjni 6/ jzðq1Þi; (70)

and the form of Eq. (65).

Expectation values as functions of q1, i.e., fashionables,
are now easily calculated

hq̂2iðq1Þ ¼ hzðq1Þjq̂2jzðq1Þi ¼ hzðq1Þj
ffiffiffi
ℏ
2

s
ðâþ âþÞjzðq1Þi

¼ e�jzj2 X
n�0

jzj2n
n!

�
q20 cos

�
Enþ1ðq1Þ � Enðq1Þ

ℏ

�

þ p20 sin

�
Enþ1ðq1Þ � Enðq1Þ

ℏ

��
;

hp̂2iðq1Þ ¼ hzðq1Þjp̂2jzðq1Þi ¼ hzðq1Þj
ffiffiffi
ℏ
2

s
iðâþ � âÞjzðq1Þi

¼ e�jzj2 X
n�0

jzj2n
n!

�
p20 cos

�
Enþ1ðq1Þ � Enðq1Þ

ℏ

�

� q20 sin

�
Enþ1ðq1Þ � Enðq1Þ

ℏ

��
: (71)

The explicit expressions for the fashionables of the mo-
ments ð�q2Þ2, ð�p2Þ2 and �ðq2p2Þ as functions of q1 are
given in Appendix C. The first two equations for hq̂2i and
hp̂2i, certainly, reduce to the standard (classical) equations
of motion for the expectation values of the harmonic
oscillator if one replaces Enðq1Þ with the usual eigenvalues
of the harmonic oscillator. Plots of these fashionables for a
specific configuration are provided in Figs. 6 and 7 in
Sec. VC 1 below, combined with a comparison with the
effective results.
As an explicit example of the analysis summarized in

Sec. IVA, let us discuss by how much we are violating the
WDW equation (60) due to the fact that q1 is a real
parameter here. To this end, we compute

hzðq1ÞjĈjzðq1Þi ¼ hzðq1Þj � ℏ2 @2

@q21
� Ĥ2jzðq1Þi ¼ hzðq1Þjiℏð@q1ĤÞjzðq1Þi ¼ hzðq1Þj � iℏq1ðĤÞ�1jzðq1Þi

¼ �iℏe�jzj2 X
n�0

jzj2n
n!

q1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� q21 � ℏð2nþ 1Þ

q ¼ iℏ
@

@q1
hzðq1ÞjĤjzðq1Þi: (72)

(The last line just demonstrates the Ehrenfest theorem.)
Linearizing in ℏ, one finds a violation of the quadratic
constraint

hzðq1ÞjĈjzðq1Þi ¼ � iℏq1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M� q21

q þ oðℏ2Þ: (73)

To bridge this discrepancy, we interpret q1 as the operator
(45) with expectation value having an imaginary contribu-

tion � iℏ
2hp̂1i to order ℏ. Because of ð�q1Þ2 ¼ 0, one finds

hq̂21i ¼ hq̂1i2 ¼ q21 � iℏq1
hp̂1i þOðℏð3=2ÞÞ and, with a little

further calculation, it turns out that the right hand side of

Eq. (73) is precisely the imaginary part of hq̂21i. It may thus

be brought to the left hand side and interpreted as the

imaginary contribution to the expectation value of the

clock q1 in Eq. (60). Then, the quadratic constraint is

satisfied to this order and provides an explicit example

for the general derivation in [17].
Similarly, to linear order in ℏ, Dirac observables of the

quadratic constraint are, in general, constants of motion
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of the internal time Schrödinger regime only if the
expectation value of the clock in the quadratic constraint
is complex. For instance, the quantized Dirac observable A

of Eq. (51) is given by 2Â ¼ 2ðM� p̂2
2 � q̂22Þ þ Ĉ. The

expectation value hzðq1ÞjÂjzðq1Þi is independent of q1 only

if the expectation value of Ĉ vanishes to semiclassical
order since, employing Eq. (71) and the expressions in
Appendix C, one can easily convince oneself that the
expectation value of p̂2

2 þ q̂22 is q1 independent.
Finally, let us return to the issue of reconstructing the

classical trajectory or even the full physical state from the
results in this Schrödinger regime. The peak of a semiclas-
sical state may follow a classical trajectory almost pre-
cisely. However, the expectation values can only follow the
classical trajectory away from the turning point. Because
of the apparent nonunitarity of evolution in q1, the fashion-
ables evaluated in the standard Schrödinger type inner
product with q1 ¼ const slicing must become meaningless
on approach to the turning point of q1. Heuristically, this
may be understood by taking the expectation value of the
unit operator which may be interpreted as the probability
that the system is at some q2 for a given value of q1. As
long as the state is sufficiently semiclassical and the peak is
far enough away from the clock turning region, this expec-
tation value should always give 1. On approach to the
turning region, however, there will be parts of the state
which are ‘‘beyond their turning point,’’ precluding mean-
ingful expectation values. Part of the system is lost which
implies that the expectation value of the unit operator
cannot give 1 anymore. Nonunitarity, therefore, implies
that the spread in q1 cannot vanish close to the classical
turning point, since

ð�q1Þ2 ¼ hq21i � hq1i2 ¼ q21ðh1i � h1i2Þ; (74)

which is nonvanishing when the expectation value of the
unit operator fails to be unity. This provides an analogy in
the internal time Schrödinger regime for why the q1 gauge,
which among other conditions enforces ð�q1Þ2 ¼ 0, must
break down on approach to the turning point of q1 time in
the effective procedure.

3 2 1 1 2 3
q1

1.0

0.5

0.5

1.0
2q

FIG. 6 (color online). Pictorial comparison of the classical rela-
tional Dirac observable q2ðq1Þ (full ellipse, blue curve) with the
quantities q2ð<½q1�Þ calculated in the effective theory using the q1
gauge (violet dashed curve) and hq̂2iðq1Þ in the Schrödinger regime
(yellow solid curve).Where valid, the three curves agree perfectly.
The Schrödinger regime breaks down earlier than the q1 gauge of
the effective framework. The initial data match in all three cases:
we chose q20 ¼ 0:7 and p20 ¼ �0:7 for the Schrödinger regime,

which via Eq. (C1) yields ð�q2Þ2ðq1 ¼ 0Þ ¼ ð�p2Þ2ðq1 ¼ 0Þ ¼ ℏ
2

and �ðq2p2Þðq1 ¼ 0Þ ¼ 0. We have set M ¼ 10 and, to amplify
effects, ℏ ¼ 0:03. We take these values as initial data for the
effective formalism as well, and, using Eq. (84), we determine
the initial value for p10 ¼ �2:998 (the minus sign is necessary

here, since in Eq. (63) we quantized ~Cþ which evolves backwards
in q1). In the effective picture, due to the imaginary contribution to
q1 in the q1 gauge, we have set the initial value of the clock to
q1 ¼ � iℏ

2p10

, but employ<½q1� as relational clock (see alsoFig. 8).
The initial data for the classical curve has been chosen accordingly.
As regards the axis labels: for the effective framework both q1 and
q2 refer to the expectation values of the corresponding operators
(forq1 the real part),while for the internal timeSchrödinger regime
q2 refers to the expectation value from Eq. (71) and q1 is the real
evolution parameter.

FIG. 7 (color online). Comparison of the effective (black dotted curves) and internal time Schrödinger regime results (blue dashed
curves) for the fashionables in q1 time associated to moments: (a) ð�q2Þ2ðq1Þ, (b) ð�p2Þ2ðq1Þ and (c) �ðq2p2Þðq1Þ. The curves agree
perfectly to order ℏ. As explained in the main text, the Schrödinger regime breaks down earlier than the q1 gauge of the effective
framework. The breakdown of the latter is clearly demonstrated by the divergence of the effective moments near jq1j ¼ 3. The initial
data is identical to the one for Fig. 6.
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As a consequence, in order to reproduce information
from the full physical state, we are forced to change from
constant q1 to constant q2 slicing, and thus from q1 to q2
time, prior to the Schrödinger regime in q1 time becoming
invalid. Likewise, we have to switch from q2 time back to
q1 time again, prior to the constant q2 slicing subsequently
becoming invalid and so on until we have evolved once
around the classical ellipse. In order for the physical state
to be reproduced, it then remains to be shown that the
expectation values of the quantum Dirac observables char-
acterizing the physical state, such as the three angular
momentum operators (52), are invariant under the change
of slicing. Since the two slicings used here are orthogonal

to each other, one cannot smoothly translate data from one
slicing to the other. In fact, one would expect jumps in the
relational correlations when switching the slicing. The
necessary changes in slicing here are directly analogous
to the necessary changes between the q1 and q2 gauge in
the effective approach in Sec. VC below and underline that
fashionables can only locally be made sense of.

C. Effective procedure

To semiclassical order, the constraint (60) translates
into the following five constraints in the effective
approach

C ¼ p2
1 þ p2

2 þ q21 þ q22 þ ð�p1Þ2 þ ð�p2Þ2 þ ð�q1Þ2 þ ð�q2Þ2 �M ¼ 0

Cq1 ¼ 2p1�ðq1p1Þ þ 2p2�ðq1p2Þ þ 2q1ð�q1Þ2 þ 2q2�ðq1q2Þ þ iℏp1 ¼ 0

Cp1
¼ 2p1ð�p1Þ2 þ 2p2�ðp1p2Þ þ 2q1�ðp1q1Þ þ 2q2�ðp1q2Þ � iℏq1 ¼ 0

Cq2 ¼ 2p1�ðp1q2Þ þ 2p2�ðq2p2Þ þ 2q1�ðq1q2Þ þ 2q2ð�q2Þ2 þ iℏp2 ¼ 0

Cp2
¼ 2p1�ðp1p2Þ þ 2p2ð�p2Þ2 þ 2q1�ðq1p2Þ þ 2q2�ðq2p2Þ � iℏq2 ¼ 0:

(75)

Again, there are four linearly independent flows generated
by these five constraints. The 14-dimensional Poisson
manifold may, therefore, be reduced to five physical de-
grees of freedom. Dirac observables for this system are
easily obtained by translating either Eqs. (51) or (52) into
the quantum theory and taking their expectation values. For
instance, the over-complete set (52) now reads

Lx ¼ 1
2ðp1p2 þ q1q2 þ �ðp1p2Þ þ �ðq1q2ÞÞ;

Ly ¼ 1
2ðp2q1 � p1q2 þ �ðq1p2Þ ��ðp1q2ÞÞ;

Lz ¼ 1
4ðp2

1 � p2
2 þ q21 � q22 þ ð�p1Þ2 � ð�p2Þ2

þ ð�q1Þ2 � ð�q2Þ2Þ:

(76)

Owing to the definition of the effective Poisson bracket (1),
also these effective observables satisfy the standard angu-
lar momentum Poisson algebra. Moreover, due to Eq. (2),
the moments associated to these variables, ð�LxÞ2, ð�LyÞ2,
ð�LzÞ2, �ðLxLyÞ, �ðLxLzÞ and �ðLyLzÞ, will provide the
oðℏÞ observables. Since classically (52) is an over-
complete set, also these nine observables here are, cer-
tainly, over-complete. Indeed, to order ℏ, the constraint
(53) can easily be translated into four relations among
these effective observables, thus leaving us with the five
physical degrees of freedom to this order. The explicit
expressions for the moments, as well as the four relations
among the full set of these observables, are rather lengthy
and not particularly illuminating. We, therefore, abstain
from showing them here. As regards relational evolution,

the angular momentum Ly will provide an orientation to
the effective trajectories.
Because of the symmetry of the model in the indices 1

and 2, wewill henceforth work with indices i, j 2 f1; 2g. In
analogy to Eq. (15), we impose the qi gauge (or the
Zeitgeist associated to qi)

�1¼ð�qiÞ2¼0 �2¼�ðqiqjÞ¼0 �3¼�ðqipjÞ¼0:

(77)

The remaining first-class constraint with vanishing flow
on the variables q1, p1, q2, p2, ð�qjÞ2, ð�pjÞ2, �ðqjpjÞ is
directly proportional to Cqi . The solution of this constraint

Cqi � 2pi�ðqipiÞ þ iℏpi ¼ 0 ) �ðqipiÞ ¼ � iℏ
2
; (78)

again implies the saturation of the (generalized) uncer-
tainty relation in ðqi; piÞ.
The Hamiltonian constraint reads

CH ¼ Cþ �Cpi
þ �Cqj þ �Cpj

; (79)

where on the gauge surface (77)

� ¼ � 1

2pi

; � ¼ qj

2p2
i

and � ¼ pj

2p2
i

: (80)

In addition to Eq. (78), we may solve Cpi
, Cqj and Cpj

for

the remaining nonphysical moments
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ð�piÞ2 ¼
p2
j ð�pjÞ2 þ 2qjpj�ðqjpjÞ þ q2j ð�qjÞ2 þ iℏqipi

p2
i

; �ðpipjÞ ¼ � 2pjð�pjÞ2 þ 2qj�ðqjpjÞ � iℏqj
2pi

;

�ðqjpiÞ ¼ � 2qjð�qjÞ2 þ 2pj�ðqjpjÞ þ iℏpj

2pi

: (81)

Making use of this, the relevant dynamical equations generated by CH simplify on the gauge surface (77) and are given by

_qi¼fqi;CHg�2pi�iℏqi
p2
i

�2
p2
j ð�pjÞ2þ2qjpj�ðqjpjÞþq2j ð�qjÞ2

p3
i

; _qj¼fqj;CHg�2pjþ2
qj�ðqjpjÞþpjð�pjÞ2

p2
i

;

_pi¼fpi;CHg��2qi�iℏ
pi

; _pj¼fpj;CHg��2qj�2
qjð�qjÞ2þpj�ðqjpjÞ

p2
i

;

ð _�qjÞ2¼fð�qjÞ2;CHg�4
qjpjð�qjÞ2þðp2

i þp2
j Þ�ðqjpjÞ

p2
i

; ð _�pjÞ2¼fð�pjÞ2;CHg��4
qjpjð�pjÞ2þðp2

i þq2j Þ�ðqjpjÞ
p2
i

;

_�ðqjpjÞ¼f�ðqjpjÞ;CHg�2
ðp2

i þp2
j Þð�pjÞ2�ðp2

i þq2j Þð�qjÞ2
p2
i

: (82)

This set of coupled equations is rather complicated to solve
analytically, but this is not necessary for our discussion
here.

Although the dynamical equation for pi is not classical
in nature, the ℏ0-order part of pi must still vanish and pi !
oðℏÞ on approach to the turning point of qi time. In con-
junction with Eq. (80), this implies that the qi gauge is
inconsistent with the semiclassical truncation near the qi
turning point as a result of the coefficients of the oðℏÞ
constraints becoming singular. In addition, we may note
that due to the imaginary terms

Cqj !
pi!oðℏÞ

2pj�ðqjpjÞ þ 2qjð�qjÞ2 þ iℏpj � 0;

Cpj
!

pi!oðℏÞ
2pjð�pjÞ2 þ 2qjðqjpjÞ � iℏqj � 0;

(83)

combined with the assumption of real valued qj, pj,

ð�qjÞ2, ð�pjÞ2 and �ðqjpjÞ implies a violation of Cqj

and Cpj
to semiclassical order at the turning point. But as

previously discussed, this collapse of the qi gauge does not
come unexpected, being related to a nonglobal clock.

In analogy to Eq. (22), combining Cpi
, Cqj , Cpj

and C

yields a further constraint proportional to CH, which on the
constraint surface in the qi gauge reads

p4
i þðp2

j þq2i þq2j �Mþð�pjÞ2þð�qjÞ2Þp2
i þ iℏqipi

þp2
j ð�pjÞ2þ2qjpj�ðqjpjÞþq2j ð�qjÞ2¼0: (84)

We may use this remaining constraint to discuss the imagi-
nary contributions to the variables we have chosen, as a
result of the iℏ term in Eq. (84). For brevity, let us only
state the (expected) result here: in complete accordance
with the general result of Sec. IVA and [17], it is incon-
sistent with the equations of motion and the constraints in
the qi gauge to keep a real-valued clock qi and to push the

imaginary contributions to its conjugate momentum pi,
while having real-valued variables associated to the pair
ðqj; pjÞ. Instead, it is consistent to have both the variables

associated to the pair ðqj; pjÞ and pi real valued, as well as

a complex clock with the standard imaginary contribution,
inherent to nonglobal clocks,

=½qi� ¼ � ℏ
2pi

: (85)

A proof of this may be found in Appendix D. Note, how-
ever, that it is also possible that both qi and pi are complex
simultaneously.

1. Local evolution and comparison to the internal time
Schrödinger regime

Since we are interested in a comparison of the effective
approach with the internal time Schrödinger regime, we
solve the system of effective Eqs. (82) numerically in the
q1 gauge and compare the results with the ones obtained
via Eq. (71) and the expressions in Appendix C. Figure 6
shows a comparison of the classical, effective and
Schrödinger regime results for the configuration space
ellipse for a specific configuration, whose initial data is
given in the caption of the figure. These curves depict the
relational Dirac observable q2ðq1Þ in the classical case, the
relationship q2ð<½q1�Þ of expectation values in the effec-
tive framework, and hq̂2iðq1Þ from Eq. (71) in the
Schrödinger regime where q1 is a real parameter.22

The three curves are indistinguishable where valid.
Notice that the Schrödinger regime breaks down somewhat

22Note that in the effective framework we evolve with respect
to the real part of q1, in accordance with the discussion in
Sec. IVB and the one concerning Fig. 8 below. For the effective
curve, the axis label q1, therefore, actually refers to <½q1�.
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earlier than the curve of effective expectation values, due to
the square roots in Eq. (65) which become imaginary for
larger values of q1 and states with higher n. The breakdown
of the correlations from the effective and Schrödinger
regime emphasizes the merely local nature of the fashion-
ables. In spite of this, the plot also demonstrates that, at
least locally, one can reconstruct a semiclassical orbit from
the effective framework and the Schrödinger regime.

For further—nontrivial—comparison of the Schrödinger
regime and the effective framework, we compare the rela-
tional evolution of their respective moments, related to the
pair ðq2; p2Þ, in q1 time in Fig. 7 for the same initial data as
previously. The curves demonstrate that the relational evo-
lution of the moments of both approaches agrees perfectly
to this order. Since these relational moments are truly
quantum in nature, this agreement provides interesting
nontrivial evidence for the equivalence of these two differ-
ent approaches to semiclassical order. It is also found
numerically, that the discrepancies between the results of
the two approaches are of oðℏ2Þ or even smaller. Again, due
to the square roots in Eq. (65), the Schrödinger regime in
constant q1 slicing breaks down earlier than the q1
Zeitgeist in the effective framework. The eventual diver-
gence of the effective moments in Fig. 7 demonstrates the
breakdown of the latter.

Finally, as regards the effective evolution in q1, Fig. 8
shows the behavior of the real and imaginary parts of q1
with respect to the gauge parameter s of (79) for the same
effective configuration. Away from the breakdown of the
q1 Zeitgeist, signified by the divergence in both the real
and imaginary parts of q1, the real part of q1 is clearly
monotonic along the flow and may thus be used as a rela-
tional clock. On the contrary, the imaginary contribution to
q1 does not behave monotonically and, consequently, is not
a useful clock here, underlining the general argument for
employing only the real part of a clock for evolution, as

advocated in Sec. IVB. Note that the real part of q1 runs
backwards in the flow parameter, since we have chosen the
initial data equivalently to the Schrödinger regime, where

for (63) we had chosen the quantization of ~Cþ in Eq. (55),
which generates backwards evolution in q1.

2. Changing time and gauge transformations

Just as in the model of Sec. III we can use flows
generated by the constraint functions to perform a gauge
transformation from the qi gauge to the qj gauge. In this

way, we can evolve the system through an entire closed
orbit by switching the role of time back and forth between
the two configuration space variables. In this section we
calculate the corresponding gauge transformations; evolu-
tion through the entire orbit is explored in the following
section.
Following the steps used in Sec. III C 3 to construct the

gauge transformation between different Zeitgeister, we find
the effect of the flows on the other variables to be given by

XG1
ðqiÞ ¼

piqi � 2pjqj

2pip
2
j

; XG2
ðqiÞ ¼ � 1

pi

XG1
ðpiÞ ¼ pi

2p2
j

; XG2
ðpiÞ ¼ 0 XG1

ðqjÞ ¼
qj

2p2
j

;

XG2
ðqjÞ ¼ 1

pj

XG1
ðpjÞ ¼ � 1

2pj

; XG2
ðpjÞ ¼ 0

XG1
ðð�qiÞ2Þ ¼ �p2

i

p2
j

; XG2
ðð�qiÞ2Þ ¼ 0

XG1
ðð�piÞ2Þ ¼

qið2pjqj �piqiÞ
pip

2
j

; XG2
ðð�piÞ2Þ ¼ 2qi

pi

XG1
ð�ðqipiÞÞ ¼

piqi �pjqj

p2
j

; XG2
ð�ðqipiÞÞ ¼ �1:

This time the derivatives along the flow are not cons-
tant; however, they depend only on expectation values.
For the variables of interest, all of the derivatives in
an expansion of the flow actions of �G1

and �G2
via

Eq. (34) are functions of expectation values only and are
thus of classical order ℏ0. Second and higher deriva-
tive terms are suppressed by second and higher powers
of the flow parameter, which is of order ℏ, since it goes
from zero to �ð�qjÞ20 or �ð�ðqjpjÞ0 þ iℏ

2 Þ. Therefore,

to order ℏ it is sufficient to take the terms up to first
order in derivatives in the flow expansion via Eq. (34) of

�s
GðfÞðx0Þ:¼�

�ð�ðqjpjÞ0þiℏ=2Þ
G2

	��ð�qjÞ20
G1

ðfÞðx0Þ, i.e. we have
�s
GðfÞðx0Þ¼f0�ðXG1

ðfÞÞ0ð�qjÞ20�ðXG2
ðfÞÞ0ð�ðqjpjÞ0þ

iℏ=2Þþoðℏ2Þ. The transformation to order ℏ thus obtained
has the form23 (dropping the �’s for brevity)

FIG. 8 (color online). Behavior of (a) the real and (b) the
imaginary part of the local clock q1 with respect to the gauge
parameter s of CH for the effective configuration with initial data
as given in the caption of Fig. 6. Clearly, while <½q1� is
monotonic along the flow of CH (as long as the q1 gauge is
valid) and, therefore, constitutes a useful local clock, =½q1� does
not provide a suitable clock here. The divergence of both near
jsj ¼ 0:79 signifies the breakdown of the q1 gauge.

23In fact, the flows �G1
and �G2

have a relatively simple form
and can also be integrated analytically, yielding identical results
to order ℏ.
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ð�qiÞ2 ¼
ðpiÞ20ð�qjÞ20

ðpjÞ20
ð�piÞ2 ¼

ðpjÞ40ð�pjÞ20þð2ðpjÞ0ðqjÞ0� 2ðpiÞ0ðqiÞ0Þ�ðqjpjÞ0þð�qjÞ20ððpiÞ0ðqiÞ0�ðpjÞ0ðqjÞ0Þ2
ðpiÞ20ðpjÞ20

�ðqipiÞ ¼
ð�qjÞ20ððpjÞ0ðqjÞ0�ðpiÞ0ðqiÞ0Þ

ðpjÞ20
þ�ðqjpjÞ0

qi ¼ ðqiÞ0þ
iℏðpjÞ20þð�qjÞ20ð2ðpjÞ0ðqjÞ0�ðpiÞ0ðqiÞ0Þþ 2ðpjÞ20�ðqjpjÞ0

2ðpiÞ0ðpjÞ20
pi ¼ ðpiÞ0

�
1�ð�qjÞ20

2ðpjÞ20

�

qj ¼ ðqjÞ0�
iℏðpjÞ0þ 2ðpjÞ0�ðqjpjÞ0þðqjÞ0ð�qjÞ20

2ðpjÞ20
pj ¼ ðpjÞ0

�
1þð�qjÞ20

2ðpjÞ20

�
: (86)

These are the explicit expressions for the free variables of
the qj gauge in terms of the free variables of the qi gauge.

24

We note that just as in the model of Sec. III, this trans-
formation precisely cancels out the imaginary part (85) of
the time variable qi, rendering it real in the qj gauge, while
simultaneously giving qj precisely the correct imaginary
contribution expected of a time variable, if its initial value
ðqjÞ0 is real. See Appendix B 3 for the discussion of
positivity of the gauge transformed state.

3. Evolution around the closed orbit

Finally, let us perform a sequence of gauge and clock
changes until we fully evolve around the configuration
space ellipse. As a result of the breakdown of the qi
Zeitgeist near the qi turning point, the changes between
the gauges and q1- and q2 time are required. The break-
down of the gauges and the necessity of gauge changes are
precisely the effective analog of the apparent nonunitarity
in the internal time Schrödinger regime in Sec. VB 2 and
the ensuing breakdown of the constant qi slicing and the
resulting obligation to change the slicing and the clock.
The jumps between the correlations which one would
obtain when changing slicing in the Schrödinger regime
translate into the jumps in correlations encountered in the
gauge changes in Sec. VC 2. (As emphasized in Sec. VB,
quantum relational observables valid for all classically
allowed values of the chosen clock, therefore, do not exist.)

Apart from such quantum effects, the relational proce-
dure works just as in the classical case. Because of the
relativistic nature of the constraint, we are required to
provide a time direction in which to evolve, since imposing
only the relational initial data qj, pj, ð�qjÞ2, ð�pjÞ2 and

�ðqjpjÞ at a fixed value of qi does not completely solve

the IVP. As in the classical model and the Dirac approach,
providing Ly, being the angular momentum, results in

giving the required orientation to evolution. Using
Eq. (81) and the expression for C in Eq. (75), pi is
determined up to sign when providing the relational initial

data. The expression for Ly in Eq. (76) then implies that

additionally providing Ly is equivalent to imposing the

sign of pi. Note that, unlike in the full quantum theory
briefly described in Sec. VB and in complete accordance
with semiclassicality, there cannot be a superposition of
evolution in the two opposite orientations in the effective
framework truncated at order ℏ.
Given this data, the system (82) can be solved (at least

numerically) and we can relate the variables associated to
ðqj; pjÞ to the clock qi and evolve forward in the qi
Zeitgeist in the given direction of evolution. Prior to the
breakdown of this gauge, we translate to the qj gauge and,

thus, to a different set of fashionables. Then, just before
the subsequent breakdown of the qj Zeitgeist, we return to

the qi gauge and so forth, until fully evolving around the
ellipse. In this way, the initial data is transported around the
orbit independently of the gauge parameters, although
employing different gauges and even different sets of
fashionables in the different gauges (see also Sec. IVC).
It should be noted that, just as in Secs. VA2 and VB2,

we could generate our physical evolution by a physical
Hamiltonian, which would be obtained by simply linear-
izing Eq. (84) in pi. The resulting relational evolution
would, obviously, be identical to the one generated by
CH. Since the system generated by CH is somewhat sim-
pler to handle, we focus on Eq. (82) here. Notice also that
the effective formalism reintroduces a gauge parameter
even in the quantum theory (the parameter along the flow
of CH). Recall from the introduction that this gauge pa-
rameter simplifies a patching solution to the global prob-
lem of time in the classical case and that its absence in the
quantum theory is one of the reasons for the difficulties
occurring there. Nevertheless, the gauge parameter here is
related to CH which depends on the qi Zeitgeist. When
changing gauge, one necessarily obtains a separate gauge
parameter and since the gauges break down prior to the
classical turning points of the clocks, one cannot use the
effective gauge parameters in the classical way to over-
come the global problem of time.
As regards reconstructing the full coherent physical state

from the Schrödinger regime, it was noted in Sec. VB2
that one would need to explore whether the quantum
versions of the Dirac observables (51) or (52), which

24Actually, not all these variables are free, as pi can be
eliminated in the qi gauge with the use of C. We display its
transformation for convenience, since we are using ðpiÞ0 and
ðpjÞ0 within the above expressions.
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characterize the physical state, are constants of motion in a
given constant qi slicing and whether they are invariant
under a change of slicing. In the present effective case, the
answer to this problem is obvious: since the characterizing
observables, for instance, (76) and their moments are
complete Dirac observables of the effective system, they
are invariant under the action of the constraints (75) and,
therefore, also under the gauge changes of Sec. VC 2.
Consequently, they are constant for the given orbit which
we are analyzing and, as a result, we are always probing
one and the same physical state. Since the internal time
Schrödinger regime corresponds to the effective frame-
work to this order, we conjecture that also in the
Schrödinger regime, these observables remain invariant,
although this is more difficult to prove explicitly.

As a specific example of an effective reconstruction of a
semiclassical physical state via gauge switching, we pro-
vide a plot of the configuration space ellipse in Fig. 9(a) for
a configuration whose initial data is provided in the caption
of the figure. We have started in the q1 Zeitgeist and
changed gauge 4 times in the course of evolution, in order
to reach the same gauge after a complete revolution around
the ellipse. Since revolution numbers around the ellipse
have no physical meaning in either the classical or the
quantum theory, we only evolve once around the ellipse.
In accordance with this, it is found that the discrepancy
between the variables in the q1 gauge before and after one
complete revolution are of order oðℏ2Þ or smaller. For the
particular example of �ðq2p2Þð<½q1�Þ this is shown in
Fig. 9(b); the two curves in the same gauge before and

after the complete revolution agree extremely well to order
ℏ, implying that they describe the same physical state. The
jumps between the curves in the two different gauges are a
consequence of the particular form of the gauge changes,
as given in Sec. VC 2. In agreement with Sec. IVD, it is
also found numerically that the end result does not depend
on the precise instants of the intermediate gauge changes,
as long as the two gauges are valid before and after the
transformations. This shows consistency of the argument in
Sec. IVD with the semiclassical approximation in this
particular example.
Validity of the semiclassical approximation and the new

and old gauge has to be checked when performing inter-
mediate gauge changes. This is not problematic as long as
the ellipse is reasonably close to a circle. For squeezed
ellipses, however, when the turning points in q1 and q2
time may lie very close to each other, one has to be rather
careful when precisely to carry out the gauge change, since
in spite of a semiclassical trajectory, the spread will play a
more restrictive role in this case. Nonetheless, this issue
merely constitutes a practical, but not a conceptual
problem.

VI. DISCUSSION AND CONCLUSIONS

In this article we have described in two simple toy
models the effective approach of [17] to coping with the
general problem of time in the semiclassical regime.
A central additional ingredient for the interpretation of
this approach is the relational concept of evolution.

q1

q2

Re q1

2

2

q2p2

0.2 0.4 0.6 0.8

1.0 0.5 0.5 1.0

1.0

0.5

0.5
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FIG. 9 (color online). (a) Reconstruction of a semiclassical physical state via gauge switching in the effective framework. The jumps
between the q1 gauge (black dotted and dashed curves) and the q2 gauge (blue solid curves) are a consequence of the oðℏÞ jumps in the
gauge transformations (86). The final evolution in q1 Zeitgeist after the fourth clock change is given by the fat black dashed curve and
coincides to oðℏÞ with the initial evolution in the q1 gauge prior to the first clock change. For convenience we have labeled the axes by
q1 and q2. It should be noted that for the curves in the qi gauge, qi actually refers to<½qi�. (b) Comparison of�ðq2p2Þð<½q1�Þ in the q1
gauge before (dashed curve) and after (dotted curve) the complete revolution around the ellipse. The difference between the two curves
is clearly of oðℏ2Þ or smaller. Initial data for both (a) and (b): q10 ¼ � iℏ

2 , p10 ¼ q20 ¼ p20 ¼ 1, ð�q2Þ20 ¼ ð�p2Þ20 ¼ ℏ
2 . Furthermore,

M ¼ 3 and, to enhance effects, we have set ℏ ¼ 0:01. The initial value for �ðq2p2Þ follows from Eq. (84).
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By employing an effective framework, one benefits from
the advantage of sidestepping many technical problems
associated to the general problem of time, thereby facili-
tating an explicit investigation of various of its aspects, as
well as their repercussions for the usual Dirac quantization.

In particular, the effective approach avoids the Hilbert-
space problem altogether since no use of representations or
physical inner products has been made at any point of the
algebraic construction. The tedious problem of construct-
ing physical states and inner products, which is often even
practically impossible,25 is replaced by evaluating an (in-
finite) coupled set of quantum variables which can be
consistently truncated to a finite solvable system, for in-
stance, at semiclassical order; necessary physicality con-
ditions for observables are ultimately imposed just by
reality conditions. At this stage, the effective framework
can be implemented numerically and its physical proper-
ties can be studied in detail.

Although we can avoid practical problems in construct-
ing physical Hilbert spaces, we do not intend to suggest
solutions of effective constraints as full substitutes of
physical states. Some questions, such as the measurement
problem, can only be addressed with Hilbert-space repre-
sentations. Effective techniques at present do not provide a
complete description of quantum systems, but they can
capture representation-independent information which is
sufficient for many questions of interest.

The multiple-choice problem, furthermore, does not
constitute a problem at the effective level, since, from the
point of view of the Poisson manifold of the effective
framework, all variables of a given order are treated on
an equal footing. Just as in the classical case, we may
choose whichever suitable (quantum) phase space clock
function we desire and deparametrize in this variable. To
simplify explicit calculations and interpretations, it is help-
ful to further impose gauge conditions on this effective
constrained system, which are closely related to the choice
of the clock variable and which fix all but one Hamiltonian
gauge flow. Note that this gauge fixing happens after
quantization. At this level, choosing different clocks means
choosing different gauges and corresponding Zeitgeister in
which to evaluate the effective system. As explicitly dem-
onstrated in two examples, one can, moreover, translate
between the different choices for internal time by means of
gauge transformations. In fact, in the case of systems
which admit the global time problem one is forced to
change the local clocks in the course of relational evolution
since gauges are, in general, not globally valid. It should be
emphasized that deparametrizations with respect to differ-
ent choices of internal time yield, in general, inequivalent
Hilbert-space representations, and thus different gauges at

the effective level generally correspond to different for-
mulations of the quantum theory.
The usual operator-ordering problem is not entirely

circumvented in this effective approach since we choose
a particular ordering for the constraint operator before
treating it effectively. This specific ordering, however, is
not connected to the choice of a (local) time variable which
happens only after the effective system has been
constructed.
Of the technical problems briefly described in the in-

troduction, it is only the global time problem and the
problem of observables which are not automatically side-
stepped by the effective approach. But by avoiding the
other technical problems, the effective approach greatly
facilitates the construction of a sufficient set of explicit
fashionables since, although we face a larger number of
degrees of freedom, the problem can be addressed in the
usual classical manner which allowed for simple numerical
solutions in the toy models studied in this article. The
effective framework is, thus, amenable to techniques, usu-
ally aimed at a solution to the classical problem of observ-
ables, such as [8,10] and the perturbative expansions of [9].
Moreover, concrete evaluations of constrained systems are
usually done by employing gauge fixing, for which classi-
cal methods such as those of [25] are useful.
Likewise, the effective approach enables us to perform a

concrete treatment of the global time problem and suggests
a simple patching solution. As discussed in Sec. V, the
relational concept is only of a local and semiclassical
nature in the absence of a global clock and, thus, the
problem of relational observables becomes a local one.
Global relational observables valid for all classical values
of relational time do not exist in the quantum theory. While
in the absence of global clocks it is not at all clear how to
implement the relational concept and explicitly construct
relational Dirac observable operators in a Dirac quantiza-
tion, some simplification is offered by local deparametri-
zation, resulting in a local internal time Schrödinger
regime. In contrast to this, it is clear how to implement
this scenario in a simple way within the effective semiclas-
sical analysis, which reproduces the results of the local
Schrödinger regime. An apparent nonunitarity leads to the
breakdown of a constant time slicing in this procedure and
to the failure of the gauge associated to the choice of local
time in the effective framework. This is consistent with the
related breakdown of the relational observables in the
reduction and in the Dirac method on approach to a turning
point [7]. To achieve a consistent evolution through turning
points of a clock, we are forced to switch to a different
clock and a different set of variables to be evolved, prior to
reaching a turning point, which corresponds to switching to
a different local Schrödinger regime and a gauge change in
the effective approach. By switching to a good local clock,
when another time variable approaches a turning point, we
can consistently transport relational data along and thereby

25Reference [20] notwithstanding, for the issue of defining
physical evolution in the absence of global clocks has not
been addressed in these approaches.
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reconstruct the entire information of a semiclassical physi-
cal state via local patches of relational evolution. To our
knowledge, there is no consistent method for explicitly
transferring data between different local deparametriza-
tions of one and the same model at a Hilbert-space level.
Any such method is likely to be quite involved, to lead to
discontinuities in correlations and to be only applicable for
states that are sufficiently semiclassical. On the other hand,
the gauge changes are easily implemented on the effective
side, albeit exhibiting jumps of order ℏ in correlations,
which underline the merely local nature of relational ob-
servables. No sharp instant for the change in time prior to a
turning point has to be selected; the transformation may be
performed at any point, as long as the old and new choice
of time are valid before and after the clock change,
respectively.

As regards relational Hamiltonian evolution, in the sec-
ond model we have discussed the peculiarities associated
to the IVP and the issue of time direction in the absence of
a global clock. While we may classically keep one and the
same relational time variable and only have to switch the
sign of the physical Hamiltonian at the turning point of the
clock, we are required to change the Hamiltonian operator
of the internal time Schrödinger regime to a new one
adapted to a new local clock before reaching the classical
turning point. On the effective side, we could proceed
similarly by linearizing the Hamiltonian constraint in the
momentum conjugate to internal time in the gauge asso-
ciated to the chosen clock. Such an effective physical
Hamiltonian, obviously, changes together with the
Hamiltonian constraint during necessary gauge changes
prior to turning points of nonglobal clocks.

A final striking consequence of the global time problem
is the inevitable appearance of a complex internal time.
We have shown that the particular form of the imaginary
contribution to the time variable is a quantum effect and a
generic feature of the effective approach. Similarly, we
have collected strong evidence from an expectation value
calculation of the time operator in a Dirac approach to the
free relativistic particle and a comparison of the quadratic
Wheeler-DeWitt equation to an associated internal time
Schrödinger equation that this particular imaginary con-
tribution is also a generic feature of standard Hilbert-space
quantizations. In particular, the inequivalence between the
Wheeler-DeWitt and Schrödinger equation in the presence
of a ‘‘time potential’’ is a result of the assumption that
time is real valued in both equations. The two equations
can be locally reconciled if the expectation value of inter-
nal time is allowed a particular imaginary contribution in
the WDW case. By the same token, as shown in the
concrete example in Sec. VB 2, Dirac observables of the
system governed by the quadratic constraint are, in gen-
eral, constants of motion of the associated Schrödinger
regime only if internal time is complex in the Wheeler-
DeWitt equation.

Despite the fact that the imaginary contribution to time
also appears for globally valid clocks, the imaginary
contribution can be disregarded altogether in this case,
since it turns out to be a constant of motion which is not
necessary for the satisfaction of the constraints. For non-
global clocks, however, the imaginary contribution turns
out to be dynamical and cannot at all be ignored. It is,
therefore, rather a true nonglobal feature. When the local
clock eventually needs to be exchanged together with
the corresponding gauge at the effective level, the imagi-
nary contribution is consistently removed from the old
clock which subsequently turns into an evolving physical
variable and pushed, accordingly, to the new clock
function.
Concerning relational evolution in the presence of a

dynamical imaginary contribution to internal time, we
encounter the issue of a ‘‘vector time’’ with two separate
degrees of freedom. In this article, however, we argue, in
agreement with common sense, to only employ the real
part of the internal clock as relational time, since the
imaginary part causes a number of additional problems,
rendering it an even worse clock than the already non-
global real part.
In conclusion, the effective approach to the problem of

time overcomes a number of technical problems and sub-
stantially facilitates the solution to various other problems,
while simultaneously providing further insight into stan-
dard Hilbert-space quantizations. In particular, it is pos-
sible to master the global time problem at the semiclassical
level and to consistently evolve data through turning
points of nonglobal clocks. In this article and in [17], we
have, furthermore, argued that the standard notion of rela-
tional time and the concept of relational evolution are, in
general, of merely local and semiclassical nature, which
disappear (together with complex relational time) for
highly quantum states of systems without global clock
variables.
We emphasize that these results and conclusions are

based on a semiclassical analysis in simple toy models. It
is, certainly, dangerous to draw any general conclusions for
full quantum gravity from procedures which so far are only
proven to work in simple scenarios. Moreover, further
technical problems, specifically related to gravity, such
as, e.g., the spacetime reconstruction problem, require
significant advances in the effective formalism before
they may be tackled. Nevertheless, we believe that the
present approach is worth pursuing and promises some
headway in evaluating quantum gravity theories and mod-
els in a practical way. In this light, we expect certain
features, such as complex internal time, to be of a generic
nature in more general models, especially in quantum
cosmology.
Owing to the advantage that the effective approach

simultaneously avoids many facets of the problem of
time, it may be viewed as one step in the quest to ‘‘defeat
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the Ice Dragon’’ of [3], symbolizing the conjunction of the
apparently many faces of the problem of time in quantum
gravity.
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preparing many careful and valuable handwritten com-
ments on this approach. This work was supported in part
by the NSF under Grant No. PHY0748336 and a grant from
the Foundational Questions Institute (FQXi). P. A.H. is
grateful for the support of the German Academic
Exchange Service (DAAD) through a doctoral research
grant and acknowledges a travel grant from the
Universiteit Utrecht. Furthermore, he would like to express
his gratitude to the Albert Einstein Institute in Potsdam for
hospitality during the final stages of this work. Finally, we
would like to thank an anonymous referee for constructive
criticism.

APPENDIX A: POISSON ALGEBRA

Expectation values satisfy the classical Poisson algebra
and have vanishing Poisson brackets with the moments of
all orders. Table II lists the Poisson brackets between
second order moments generated by two canonical pairs
of observables. The table has originally appeared in the
appendix of [19] and is reproduced here for convenience.

APPENDIX B: DISCUSSION OF POSITIVITY

1. Algebraic positivity

Positivity is understood in the algebraic sense as
the condition hAA
i � 0, 8A 2 A, where A is some
algebra. It relates directly to the Gelfand-Naimark-Segal

construction of unitary representations for 
 algebras, and
is also necessary for the measurement theory and probabi-
listic interpretation of the state. In this appendix we focus
on the unital star algebraA of all finite-order polynomials
generated by a single canonical pair q̂ and p̂ subject to

½q̂; p̂� ¼ iℏ1 and q̂
 ¼ q̂; p̂
 ¼ p̂:

We pose the following question:
� What are the necessary and sufficient conditions one

needs to place on a state on A such that positivity
holds to order ℏ?
By ‘‘positivity holding to order ℏ’’ we mean that

j=½hAA
i�j / ℏð3=2Þ and <½hAA
i� � �ℏð3=2Þ. The
answer turns out to be simple, in addition to normal-
ization h1i ¼ 1, we need to impose

q;p;ð�qÞ2;ð�pÞ2;�ðqpÞ2R ð�pÞ2;ð�qÞ2�0

ð�qÞ2ð�pÞ2�ð�ðqpÞÞ2�1

4
ℏ2: (B1)

We only outline the demonstration of necessity, as these are
standard results in ordinary quantum mechanics:
(i) We recall that positivity can be used to derive hA
i ¼

h �Ai, where bar denotes the complex conjugate. This
immediately implies q, p, ð�qÞ2, ð�pÞ2, �ðqpÞ2R.

(ii) hðq̂� hq̂i1Þðq̂� hq̂i1Þ
i � 0 immediately gives
ð�qÞ2 � 0, we similarly get ð�pÞ2 � 0.

(iii) The uncertainty relation can be obtained by first
deriving the Schwarz-type inequality jhAB
ij2 �
hAA
ihBB
i, and substituting A ¼ q̂� q1 and
B ¼ p̂� p1.

Before we demonstrate sufficiency, we derive an in-
equality implied by (B1), which we will use on several
occasions in this section and the following ones:

�2ð�qÞ2þ�2ð�pÞ2þ2���ðqpÞ�0; 8�;�2R: (B2)

This follows as

TABLE II. Poisson algebra of second order moments. First terms in the bracket are labeled by rows, second terms are labeled by
columns.

ð�tÞ2 �ðtptÞ ð�ptÞ2 ð�qÞ2 �ðqpÞ ð�pÞ2 �ðtqÞ �ðptpÞ �ðtpÞ �ðptqÞ
ð�tÞ2 0 2ð�tÞ2 4�ðtptÞ 0 0 0 0 2�ðtpÞ 0 2�ðtqÞ
�ðtptÞ �2ð�tÞ2 0 2ð�ptÞ2 0 0 0 ��ðtqÞ �ðptpÞ ��ðtpÞ �ðptqÞ
ð�ptÞ2 �4�ðtptÞ �2ð�ptÞ2 0 0 0 0 �2�ðptqÞ 0 �2�ðptpÞ 0

ð�qÞ2 0 0 0 0 2ð�qÞ2 4�ðqpÞ 0 2�ðptqÞ 2�ðtqÞ 0

�ðqpÞ 0 0 0 �2ð�qÞ2 0 2ð�pÞ2 ��ðtqÞ �ðptpÞ �ðtpÞ ��ðptqÞ
ð�pÞ2 0 0 0 �4�ðqpÞ �2ð�pÞ2 0 �2�ðtpÞ 0 0 �2�ðptpÞ
�ðtqÞ 0 �ðtqÞ 2�ðptqÞ 0 �ðtqÞ 2�ðtpÞ 0 �ðtptÞ ð�tÞ2 ð�qÞ2

þ�ðqpÞ
�ðptpÞ �2�ðtpÞ ��ðptpÞ 0 �2�ðptqÞ ��ðptpÞ 0 ��ðtptÞ 0 �ð�pÞ2 �ð�ptÞ2

��ðqpÞ
�ðtpÞ 0 �ðtpÞ 2�ðptpÞ �2�ðtqÞ ��ðtpÞ 0 �ð�tÞ2 ð�pÞ2 0 �ðqpÞ

��ðtptÞ
�ðptqÞ �2�ðtqÞ ��ðptqÞ 0 0 �ðptqÞ 2�ðptpÞ �ð�qÞ2 ð�ptÞ2 �ðtptÞ 0

��ðqpÞ
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�2ð�qÞ2 þ �2ð�pÞ2 þ 2���ðqpÞ � �2ð�qÞ2 þ �2ð�pÞ2 � 2j�jj�jj�ðqpÞj

� j�j2ð�qÞ2 þ j�j2ð�pÞ2 � 2j�jj�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�qÞ2ð�pÞ2

q
� ðj�j

ffiffiffiffiffiffiffiffiffiffiffiffi
ð�qÞ2

q
� j�j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�pÞ2

q
Þ2

� 0:

To demonstrate sufficiency to order ℏ, we adopt a rather direct approach. Any finite-order polynomial in q̂ and p̂ can be
expanded using the symmetrized products ðq̂mp̂nÞWeyl

f̂ ¼ X
m;n�0

�mnðq̂mp̂nÞWeyl ¼: fðq̂; p̂Þ:

Here, fðq̂; p̂Þ is understood as a map from the algebra to itself, in particular, it keeps track of the ordering, which we chose
to be completely symmetric in this case. In general, �mn 2 C, for self-adjoint elements �mn 2 R. We now expand the

polynomial in terms of a different set of elements c�q :¼ q̂� q and c�p :¼ p̂� p. Evidently

f̂ ¼ fðq̂; p̂Þ ¼ fðqþ c�q; pþ c�pÞ
¼ fðq; pÞ þ @f

@q
ðq; pÞc�qþ @f

@p
ðq; pÞc�pþ 1

2

@2f

@q2
ðq; pÞðc�qÞ2 þ 1

2

@2f

@p2
ðq; pÞðc�pÞ2 þ @2f

@q@p
ðq; pÞðc�q c�pÞWeyl

þ ðhigher powers ofc�q; c�pÞ:
q and p can be any real numbers, below we set them to the expectation values hq̂i and hp̂i, which enables us to utilize
semiclassical truncation. Keeping terms of order

ℏ we find the expectation value of f̂

hf̂i ¼ fðq; pÞ þ 1

2

@2f

@q2
ðq; pÞð�qÞ2 þ 1

2

@2f

@p2
ðq; pÞð�pÞ2 þ @2f

@q@p
ðq; pÞ�ðqpÞ þOðℏ3=2Þ;

so that, again to order ℏ, we have

jhf̂ij2 ¼ jfj2 þ 1

2

�
f

�
@2f

@q2

�
þ �f

�
@2f

@q2

��
ð�qÞ2 þ 1

2

�
f

�
@2f

@p2

�
þ �f

�
@2f

@p2

��
ð�pÞ2 þ

�
f

�
@2f

@q@p

�
þ �f

�
@2f

@q@p

��
�ðqpÞ

þOðℏð3=Þ2Þ:
We note that since jhf̂ij2 � 0, the truncated expression for jhf̂ij2, satisfies the inequality to order ℏ in the sense discussed
earlier. Now consider positivity of the state evaluated on f̂:

hf̂f̂
i ¼
��

fþ @f

@q
c�qþ @f

@p
c�pþ 1

2

@2f

@q2
ðc�qÞ2 þ 1

2

@2f

@p2
ðc�pÞ2 þ @2f

@q@p
ðc�q c�pÞWeyl

�

�
�
�fþ @f

@q
c�qþ @f

@p
c�pþ 1

2

@2f

@q2
ðc�qÞ2 þ 1

2

@2f

@p2
ðc�pÞ2 þ @2f

@q@p
ðc�q c�pÞWeylÞ

�
þOðℏ3=2Þ

¼ jfj2 þ 1

2

�
f

�
@2f

@q2

�
þ �f

�
@2f

@q2

��
ð�qÞ2 þ 1

2

�
f

�
@2f

@p2

�
þ �f

�
@2f

@p2

��
ð�pÞ2 þ

�
f

�
@2f

@q@p

�
þ �f

�
@2f

@q@p

��
�ðqpÞ

þ
��������@f@q

��������ð�qÞ2 þ
��������@f

@p

��������ð�pÞ2 þ 2<
�
@f

@q

@f

@p

�
�ðqpÞ þOðℏ3=2Þ

¼ jhf̂ij2 þ
��������@f@q

��������ð�qÞ2 þ
��������@f

@p

��������ð�pÞ2 þ 2<
�
@f

@q

@f

@p

�
�ðqpÞ þOðℏ3=2Þ:

Now jhf̂ij2 � 0, and the next three terms are positive by inequality (B2)

��������@f@q
��������ð�qÞ2 þ

��������@f

@p

��������ð�pÞ2 þ 2<
�
@f

@q

@f

@p

�
�ðqpÞ �

��������@f@q
��������ð�qÞ2 þ

��������@f

@p

��������ð�pÞ2 � 2

��������@f

@q

��������
��������@f

@p

��������j�ðqpÞj � 0:

So that, as claimed earlier, hf̂f̂
i � 0 to order ℏ.
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2. Positivity in the model of Sec. III

Here we use the explicit form of gauge invariant func-
tions to prove the following statements to order ℏ for the
relativistic particle in a �t potential:

(i) the positivity of a state is preserved by the dynamics
in the t gauge,

(ii) it is also preserved by gauge transformation be-
tween the q gauge and the t gauge,

(iii) finally it is preserved by the dynamics in the q
gauge.

The constraint in this model is

Ĉ ¼ p̂2
t � p̂2 �m21þ �t̂:

A complete set of Dirac observables may be constructed
from the canonical pair:

Q̂ :¼ q̂� 2

�
p̂p̂t and P̂ :¼ p̂; satisfying ½Q̂;P̂ �¼ iℏ1;

which commute with the constraint ½Q̂; Ĉ� ¼ 0 ¼ ½P̂ ; Ĉ�.
Below we provide the expectation values and second order
moments of these observables:

Q¼q� 2

�
ðpptþ�ðptpÞÞ; P ¼p; ð�P Þ2¼ð�pÞ2; �ðQP Þ¼�ðqpÞ� 2

�
ð�ðptppÞþptð�pÞ2þp�ðptpÞÞ

ð�QÞ2¼ð�qÞ2� 4

�
ð�ðptqpÞþpt�ðqpÞþp�ðptqÞÞþ 4

�2
½�ðptptppÞþ2pt�ðptppÞþ2p�ðptptpÞþp2

t ð�pÞ2

þp2ð�ptÞ2þð2ptp��ðptpÞÞ�ðptpÞ�:

Poisson brackets of these functions with constraint func-
tions must vanish to the given order, since the operators
that generate them commute with the constraint operator
[see Eq. (2)]. Additionally, we note that p ¼ P is a con-
stant of motion, while pt evolves as ptðsÞ ¼ ��sþ pt0
and is preserved by the transformation between the gauges,
therefore, the condition pt, p 2 R is preserved in all
situations considered here.

a. Dynamics in the t gauge

Below are the expressions for the same invariants trun-
cated at order ℏ, evaluated in the t gauge, with the moments
generated by p̂t eliminated through constraint functions:

Q¼q� 2

�

�
pptþ p

pt

ð�pÞ2
�
; P ¼p;

ð�QÞ2¼ð�qÞ2�2
�ðqpÞþ
2ð�pÞ2; ð�P Þ2¼ð�pÞ2

�ðQP Þ¼�ðqpÞ�
ð�pÞ2; where 
¼2ðp2
t þp2Þ
�pt

:

We now re-express the gauge dependent moments in terms
of these invariants:

ð�qÞ2 ¼ ð�QÞ2 þ 
2ð�P Þ2 þ 2
�ðQP Þ
ð�pÞ2 ¼ ð�P Þ2 �ðqpÞ ¼ �ðQP Þ þ 
ð�P Þ2:

Assuming that 
 is real (which holds provided pt and p are
real), one can see that the

(i) reality of invariant moments implies reality of evolv-
ing moments,

(ii) trivially ð�P Þ2 > 0 ) ð�pÞ2 > 0,
(iii) ð�qÞ2>0 follows directly from the inequality (B2),

(iv) finally one finds

ð�qÞ2ð�pÞ2�ð�ðqpÞÞ2

¼ð�QÞ2ð�P Þ2�ð�ðQP ÞÞ2�ℏ2

4
:

In short, positivity of the observables implies positivity of
t gauge variables, provided 
 is real. The converse is
also true: positivity of t gauge observables (together with
pt 2 R) implies positivity of the invariants. The Dirac
observables are invariant under gauge transformations
and, in particular, under the t gauge dynamics, which
must then preserve positivity of the invariant moments
and, therefore, also of the evolving moments.

b. Dynamics in the q gauge

We now verify the equivalent statement in the q gauge.
In this gauge, the invariant moments to order ℏ are
given by:

ð�QÞ2¼ 1


��1
ðð�tÞ2þ
2ð�ptÞ2þ2
�ðtptÞÞ

ð�P Þ2¼ 1


��1
ðð�ptÞ2þ2��ðtptÞþ�2ð�tÞ2Þ

�ðQP Þ¼ �1


��1
ðð
�þ1Þ�ðtptÞþ
ð�ptÞ2þ�ð�tÞ2Þ;

where 
 ¼ 2ðp2
tþp2Þ
�pt

and � ¼ �
2pt

, so that 1

��1 ¼ p2

t

p2 . These

relations are tricky to invert by hand, but the final result is
exactly symmetrical, it just so happens that the above
transformation is its own inverse:
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ð�tÞ2¼ 1


��1
ðð�QÞ2þ
2ð�P Þ2þ2
�ðQP ÞÞ

ð�ptÞ2¼ 1


��1
ðð�P Þ2þ2��ðQP Þþ�2ð�QÞ2Þ

�ðtptÞ¼ �1


��1
ðð
�þ1Þ�ðQP Þþ
ð�P Þ2þ�ð�QÞ2Þ:

(B3)

If pt and p are real and if p � 0, then 1

��1 � 0, with

equality only when pt ¼ 0. We can use the same argu-
ments as before to show that positivity of the invariants
implies positivity of the q gauge moments (for the pt ¼ 0
case we substitute the expressions for 
 and � in terms of pt

and p first). In particular,

ð�tÞ2ð�ptÞ2 � ð�ðtptÞÞ2 ¼ ð�QÞ2ð�P Þ2 � ð�ðQP ÞÞ2

� ℏ2

4
:

We note that, once we enforce pt, p 2 R, the reality of t in
this gauge follows directly from setting hĈi ¼ 0 and the
reality of the moments of t̂ and p̂t. Eliminating ð�pÞ2
through other constraints and imposing the q gauge con-

ditions, hĈi ¼ 0 gives

t ¼ 1

�

�
p2 þm2 � p2

t þ p2
t � p2

p2
ð�ptÞ2 þ �pt

p2
�ðtptÞ

þ �2

4p2
ð�tÞ2

�
:

Reality of Q then provides a condition on the imaginary
part of q, since in this gauge

Q ¼ q� 2

�
ppt � 2pt

�p
ð�ptÞ2 � 1

p
�ðtptÞ þ iℏ

2p
;

so that Q 2 R implies =½q� ¼ � iℏ
2p , which is compatible

with the transformation between the two gauges derived in
Sec. III.

We have demonstrated that the positivity of the invariant
observables together with pt 2 R results in the positivity
of the evolving q gauge observables and yields the imagi-
nary part of q. The converse can also be demonstrated,
namely, starting with the positivity of the q gauge observ-
ables and =½q� ¼ � iℏ

2p , one discovers that the invariants

are positive (to demonstrate that p 2 R one needs to select
the solution to the constraint functions compatible with the
semiclassical approximation). This shows that positivity is
preserved by the dynamics in the q gauge.

c. Gauge transformation

The gauge transformation of the second-order moments
from the t gauge to the q gauge can be written as

ð�tÞ2¼ð�qÞ20
p2
t

p2

ð�ptÞ2¼p2

p2
t

ðð�pÞ20þ
2ð�qÞ20�2
�ðqpÞ0Þ

�ðtptÞ¼�ðqpÞ0�
ð�qÞ20; where
¼�pt

2p2
:

Assuming pt > 0, and that p and � are real (which also
means that 
 is real), it follows in a similar way that
(i) ð�qÞ20 > 0 ) ð�tÞ2 > 0,
(ii) once again, ð�ptÞ2 > 0 follows from the inequality

(B2),
(iii) one also finds

ð�tÞ2ð�ptÞ2 � ð�ðtptÞÞ2

¼ ð�qÞ2ð�pÞ2 � ð�ðqpÞÞ2 � ℏ2

4
:

So that a positive state in the t gauge transforms to a
positive state in the q gauge. The reverse gauge trans-
formation can be analyzed identically.

3. Positivity in the timeless model of Sec. V

Wewill not establish the positivity-preserving properties
of effective dynamics within this model, instead, we point
out its close relation with a local internal time Schrödinger
evolution, which by construction preserves positivity so
long as it remains valid.
We briefly show that the gauge transformation (86) of

Sec. VC 2 consistently transfers positivity between the two
sets of physical variables to order ℏ. Firstly, we note
that the only initial parameter that has an imaginary
part is ðqiÞ0. The imaginary contribution (85) is of order
ℏ and leads to the imaginary contributions to the final
values of qi, pi, ð�qiÞ2, ð�piÞ2, �ðqipiÞ only at order ℏ2.
Hence, to order ℏ these variables are real in the qj gauge.

In addition:
(i) ð�qjÞ20 � 0 implies ð�qjÞ2 � 0,

(ii) ð�piÞ2 � 0 follows once again from the inequality
(B2),

(iii) The uncertainty relation follows after some
straightforward algebraic manipulations.

APPENDIX C: EXPLICIT MOMENTS FOR THE
SCHRÖDINGER REGIME OF SEC. VB2

In Eq. (71), we provided the explicit form of the expec-
tation values for q̂2 and p̂2 as functions of q1, i.e., as
fashionables, in the internal time Schrödinger regime.
Below we also provide the explicit form of the moments
associated to these two operators.
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ð�q2Þ2ðq1Þ ¼ hq̂22iðq1Þ � hq̂2i2ðq1Þ ¼ ℏ
2
hzðq1Þjâ2 þ âþ2 þ 2ââþ þ 1̂jzðq1Þi � hq̂2i2ðq1Þ

¼ e�jzj2 X
n�0

jzj2n
n!

�q220 � p2
20

2
cos

�
Enðq1Þ � Enþ2ðq1Þ

ℏ

�
� q20p20 sin

�
Enðq1Þ � Enþ2ðq1Þ

ℏ

��
þ q220 þ p2

20

2

þ ℏ
2
� hq̂2i2ðq1Þ;

ð�p2Þ2ðq1Þ ¼ hp̂2
2iðq1Þ � hp̂2i2ðq1Þ ¼ ℏ

2
hzðq1Þj � â2 � âþ2 þ 2ââþ þ 1̂jzðq1Þi � hp̂2i2ðq1Þ

¼ �e�jzj2 X
n�0

jzj2n
n!

�q220 � p2
20

2
cos

�
Enðq1Þ � Enþ2ðq1Þ

ℏ

�
� q20p20 sin

�
Enðq1Þ � Enþ2ðq1Þ

ℏ

��
þ q220 þ p2

20

2

þ ℏ
2
� hp̂2i2ðq1Þ;

�ðq2p2Þðq1Þ ¼ 1

2
hðq̂2 � hq̂2iÞðp̂2 � hp̂2iÞ þ ðp̂2 � hp̂2iÞðq̂2 � hq̂2iÞi ¼ hðq̂2 � hq̂2iÞðp̂2 � hp̂2iÞi � iℏ

2

¼
� ffiffiffi

ℏ
2

s
ð�hp̂2i þ ihq̂2iÞâ�

ffiffiffi
ℏ
2

s
ðhp̂2i þ ihq̂2iÞâþ þ hq̂2ihp̂2i þ iℏ

2
ðâþ2 � â2Þ

�
¼ e�jzj2 X

n�0

jzj2n
n!

ððhq̂2iðq1Þq20 � hp̂2iðq1Þp20Þ sin
�
Enþ1ðq1Þ � Enðq1Þ

ℏ

�
� ðhp̂2iðq1Þq20 þ hq̂2iðq1Þp20Þ

� cos

�
Enþ1ðq1Þ � Enðq1Þ

ℏ

�
þ q220 � p2

20

2
sin

�
Enðq1Þ � Enþ2ðq1Þ

ℏ

�
þ q20p20 cos

�
Enðq1Þ � Enþ2ðq1Þ

ℏ

��
þ hq̂2iðq1Þhp̂2iðq1Þ: (C1)

APPENDIX D: IMAGINARY CONTRIBUTIONS
IN THE qi GAUGE OF SEC. VC

Here we want to summarize the analysis, which leads to
the standard imaginary contribution (85) to the clock qi in
qi Zeitgeist.

Linearizing qi ¼ qicl þ ℏð1Þqi and pi ¼ picl þ ℏð1Þpi

and similarly for qj and pj yields to first order

ℏ ð1Þpi¼�
�ð�qjÞ2þð�pjÞ2

2picl

þℏ
2piclðpjcl

ð1Þpjþqicl
ð1Þqiþqjcl

ð1ÞqjÞ
2p2

icl

þ iℏqicl
2p2

icl

þp2
jclð�pjÞ2þq2jclð�qjÞ2þ2qjclpjcl�ðqjpjÞ

2p3
icl

�
:

(D1)

Since the coefficients (80) are of zeroth order, it is con-
sistent to replace all qi, qj, pi and pj appearing in terms of

order ℏ in (82) by their zero-order (or classical) parts which
in (D1) we have denoted by a subscript cl, and whose
solutions are given in (49). To order ℏ this does not modify
the equations and helps for their solutions. Furthermore,

remembering that all zero-order variables are kept real

valued, (82) and (D1) imply that either ð1Þpi or
ð1Þqi or

both must contain imaginary contributions while all vari-
ables associated to the canonical pair ðqj; pjÞ are consis-

tently real valued as a result of real-valued equations of
motion.
Requiring pi to be real, it is obvious that

d=½qi�
ds

¼ �ℏqicl
p2
icl

: (D2)

Using Eq. (49) and integrating this equation, precisely
yields the standard imaginary contribution (85) which is
also consistent with the constraint (D1) and cancels the
imaginary term in the equation of motion for pi in Eq.
(82). Requiring qi to be real valued, however, and
repeating the same analysis shows that the solution for
=½pi� would not reproduce the imaginary term
�iℏqicl=ð2p2

iclÞ in Eq. (D1). It is, hence, inconsistent to

keep qi real valued and push the imaginary contribution
to pi. In accordance with the analysis in Sec. IVA and
[17], we, thus, find the generic oðℏÞ imaginary contri-
bution inherent to all nonglobal clocks in the effective
framework.
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