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One may write the Maxwell equations in terms of two gauge potentials, one electric and one

magnetic, by demanding that their field strengths should be dual to each other. This requirement is the

condition of twisted self-duality. It can be extended to p-forms in spacetime of D dimensions, and it

survives the introduction of a variety of couplings among forms of different rank, and also to spinor and

scalar fields, which emerge naturally from supergravity. In this paper we provide a systematic derivation

of the action principle, whose equations of motion are the condition of twisted self-duality. The

derivation starts from the standard Maxwell action, extended to include the aforementioned couplings,

and proceeds via the Hamiltonian formalism through the resolution of Gauss’s law. In the pure Maxwell

case we recover in this way an action that had been postulated by other authors, through an ansatz based

on an action given earlier by us for untwisted self-duality. When Chern-Simons couplings are included,

our action is, however, new. The derivation from the standard extended Maxwell action implies of course

that the theory is Lorentz invariant and can be locally coupled to gravity. Nevertheless we include a

direct compact Hamiltonian proof of these properties, which is based on the surface-deformation

algebra. The symmetry in the dependence of the action on the electric and magnetic variables is

manifest, since they appear as canonical conjugates. Spacetime covariance, although present, is not

manifest.
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I. INTRODUCTION

The symmetry between electricity and magnetism is a
fascinating subject. It originated in the Maxwell equations,
but it has shown a remarkable resilience in front of further
developments. It survived when spacetime was liberated
from the requirement of being four dimensional and also
when the door was opened for p-forms of an arbitrary rank
to come in, as generalizations of the one-form of the
Maxwell theory. Today this electric-magnetic ‘‘duality
principle’’ permeates our thinking in supergravity and
string theory.

The duality principle leads naturally to a reformulation
of the Maxwell equations, and also of its generalizations
mentioned above. One regards the Maxwell equations as
the conditions for the existence of the usual ‘‘electric
potential’’ one-form A and a second ‘‘magnetic potential’’
one-form B. If one demands that the corresponding field
strengths (curvature two-forms) be the dual of each other,
one obtains the Maxwell equations. This requirement is
called ‘‘twisted self-duality’’ [1]. The term ‘‘twisted’’ is
introduced because the forms are not self-dual, but are
rather, as it was just said, dual to each other. If both
curvature forms are grouped into a two-component col-
umn, then that column is related to its dual by an
off-diagonal ‘‘twist matrix.’’

When the topology of spacetime is trivial, Maxwell
equations imply in turn the twisted self-duality condition,
because every closed two-form is then exact. For nontrivial
topologies additional considerations are needed, which

will be addressed in Ref. [2] (see also [3]). This paper
will be concerned only with the case of trivial topology.
An important motivation for undertaking the present

work was the necessity to dispel the widespread miscon-
ception that twisted (and untwisted) self-duality can only
be discussed at the level of the equations of motion.
This misconception, which would impede the quantum

implementation of duality, has been quite resilient in spite
of the fact that the duality invariance of the Maxwell action
in four dimensions was already proven in Ref. [4] and that
the action for untwisted self-duality was given in Ref. [5]
for chiral p-forms in 2pþ 2 dimensions. The action of
Ref. [5] was then used in [6] as the starting point to arrive at
an action for twisted self-duality.
The theme of this paper is a systematic derivation of the

action for twisted self-duality from the Maxwell action
with Chern-Simons and other p-form couplings. For the
pure Maxwell case, the action that we find coincides with
that of [6]. When Chern- Simons couplings are included,
our action is, however, new.
The action that we deal with is local in space and time

and it is quadratic in the fields for the free theories. It is
Lorentz invariant and it can also be locally coupled to the
gravitational field. The symmetry in the dependence of the
action on the electric and magnetic variables is manifest,
since they appear as canonical conjugates. Spacetime
covariance, although present, is not manifest.
The nonmanifest character of spacetime covariance is in

sharp contrast with the manifest validity of the duality
principle. It would appear, therefore, that in order to spell
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out the consequences of the duality principle, one has to
necessarily relegate spacetime covariance to a lesser role.
This feature was already encountered in the past in the
demonstration of off-shell duality invariance in a variety of
contexts [4,7,8], including linearized gravity [9,10], in
spite of the intimate connection of the latter with spacetime
covariance. It is also present in the action for chiral bosons
[11] and self-dual p-forms [5] and was particularly empha-
sized in [6]. One cannot help but feel that this is an
important lesson for the investigations of more general
‘‘hidden symmetries’’ [12]. Although nonmanifest, the
spacetime covariance of the action may be proven directly
in the present formulation, and in a compact manner, by
verifying that the energy and momentum densities satisfy
the algebra of surface deformations [13–15].

Other actions have been proposed [16–18] that are man-
ifestly duality and Lorentz invariant. These actions contain
additional fields and additional gauge symmetries. They
are nonpolynomial even when the interactions are switched
off. To get a tractable action, one must fix the new gauge
symmetry in a way that breaks Lorentz invariance. In
particular, for the case of a three-form with Chern-
Simons couplings in 11 dimensions, our action coincides
with the one given earlier in [17] when the additional gauge
freedom is fixed in a very simple form.

The situation here is strongly reminiscent of that encoun-
tered by ourselves quite a way back, when we developed a
Lorentz-invariant formulation of theHamiltonian dynamics
of the superparticle [19]. We introduced then extra gauge
variables and concluded that the result was ‘‘rather
involved.’’ Again in that case, the nonmanifest Lorentz-
invariant formulation remained by far the simplest one.

The paper is organized so as to go through a number of
cases of increasing complexity, treating in detail the sim-
plest of them, and then just indicating the results for the
more complicated ones. This we do for the sake of focusing
on the central point without being distracted by unessential
technical burdens. Thus, Sec. II is devoted to the imple-
mentation of twisted self-duality for a single Maxwell
p-form, in D spacetime dimensions. We focus on the
case of a one-form and then indicate the results for a
general p. It is explained how the marginal cases p ¼ 0
and p ¼ D� 2 fit into the scheme.

The starting point is the Hamiltonian formulation of the
standard Maxwell action in terms of a p-form potential A,
which we call the ‘‘purely electric formulation.’’ The key
step, first devised in [4], is solving its Gauss law without
going to the reduced phase space, i.e., without fixing the
gauge. Since the Gauss law is the vanishing of the diver-
gence of a local vector density, its solution automatically
brings in a ðD� p� 2Þ-form B, which is the magnetic
potential. The desired ‘‘electric-magnetic action’’ is then
obtained by introducing the solution of the Gauss con-
straint of the original purely electric action back into it.
Thus, the fact that the Gauss constraint is a local

divergence is far from being a technicality. It is, rather, a
profound manifestation of the duality principle.
Section III is devoted to the inclusion of a Chern-Simons

term. There again we analyze in detail the simplest case,
that is, p ¼ 1, D ¼ 3, and then indicate explicitly the
results for the generalization to p ¼ 3, D ¼ 11, which is
of special interest because it arises in supergravity. The
procedure applies, however, quite generally, since the
Gauss constraint is a divergence for all cases when a
Chern-Simons form can be written.
The next step in increasing complexity is taken in

Sec. IV, where we show that our procedure can be applied
to the coupling among a one-form and a two-form that
arises in Einstein-Maxwell supergravity in ten dimensions
and indicate its generalization to couplings between sev-
eral p-forms of different degrees. We also remark that the
procedure can be applied straightforwardly to Pauli
couplings to spinors and to couplings to uncharged scalars.
Finally, Sec. V is devoted to concluding remarks.

II. TWISTED SELF-DUALITY FOR A MAXWELL
p-FORM IN D SPACETIME DIMENSIONS

A. Twisted self-duality

For a p-form in D spacetime dimensions, there exists a
straightforward generalization of the Maxwell action,

S½A�1����p
�¼

Z
dDx

�
� 1

2ðpþ1Þ!F�1����pþ1
F�1����pþ1

�
; (2.1)

with,

F�1����pþ1
¼ ðpþ 1Þ@½�1

A�2����pþ1�: (2.2)

The square bracket indicates complete antisymmetrization
in the enclosed indices, normalized by dividing by the
appropriate factorial so that it is idempotent. In terms of
forms,

F ¼ dA; (2.3)

with

F ¼ 1

ðpþ 1Þ!F�1����pþ1
dx�1 ^ � � � ^ dx�pþ1 ; (2.4)

and

A ¼ 1

p!
A�1����p

dx�1 ^ � � � ^ dx�p: (2.5)

The equations of motion obtained by demanding that the
action (2.1) be stationary with respect to variations of the
potential A are

d�F ¼ 0: (2.6)

On the other hand, it follows from the definition (2.3) that

dF ¼ 0: (2.7)
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For a spacetime with the topology of Rn, the general
solution to the equation of motion (2.6) is

�F ¼ dB; (2.8)

for some ðD� p� 2Þ-form B. We will call the original
form A the electric potential and the form B just introduced
the magnetic potential.

The electric and magnetic potentials are related through
the fact that their curvatures are the duals of each other.
One may then rewrite Maxwell’s equations in the form

�F ¼ H; ð�1Þðpþ1ÞðD�1Þ�1�H ¼ F; (2.9)

where

H ¼ dB (2.10)

is the curvature of B. Here, we have used the identity
��! ¼ ð�1ÞkðD�1Þ�1! where ! is a k-form in a
D-dimensional Minkowski spacetime. In matrix form,

F ¼ S�F ; (2.11)

where

F ¼ F

H

 !
; S ¼ 0 ð�1Þðpþ1ÞðD�1Þ�1

1 0

 !
: (2.12)

One refers to (2.11) as the twisted self-dual formulation
of Maxwell’s equations [1].

All the steps and concepts are already contained in the
case p ¼ 1, which we will treat in detail to avoid unnec-
essary cluttering with indices. Wewill give at the end of the
section the results for the general case.

B. The case p ¼ 1

When p ¼ 1, the action (2.1) reduces to

S½A�� ¼ � 1

4

Z
dDxF��F

��; (2.13)

with

F�� ¼ @�A� � @�A�: (2.14)

The corresponding Hamiltonian form is

S½Ai; �
i; A0� ¼

Z
dDxð�i _Ai �H � A0GÞ; (2.15)

with

H ¼ 1

2

�
EkEk þ 1

ðD� 3Þ!B
k1���kD�3Bk1���kD�3

�
; (2.16)

and

G ¼ ��k
;k: (2.17)

Here, the electric field Ek is just the conjugate momentum
�k,

E k ¼ �k; (2.18)

while the magnetic field Bk1���kD�3 is given by

B k1���kD�3 ¼ 1
2�

k1���kD�3mnFmn: (2.19)

When the Hamiltonian equations of motion hold, one finds
Ek ¼ �F0k.
The gauge transformations read

��Ai ¼ @k�; (2.20)

���
i ¼ 0: (2.21)

1. Magnetic potential

The solution of the constraint G ¼ 0 is

�k ¼ 1

ðD� 3Þ! �
kj1j2���jD�2@½j1Bj2���jD�2�; (2.22)

and it brings in a ðD� 3Þ-form Bj1���jD�3
, which is the

magnetic dual of Ai.
Since the electric field is gauge invariant, the ðD�

3Þ-form Bj1���jD�3
may be assumed not to transform under

the gauge transformations (2.20) and (2.21). However,
since only the field strength,

Hj1j2���jD�2
¼ ðD� 2Þ@½j1Bj2���jD�2�; (2.23)

ofBj1���jD�3
appears, the expression (2.22) is invariant if one

transforms Bj1���jD�3
as

�~�Bj1���jD�3
¼ ðD� 3Þ@½j1 ~�j2���jD�3�; (2.24)

where ~�j1���jD�4
is an arbitrary ðD� 4Þ-form. The gauge-

invariant field strength (2.23) coincides, up to the sign
factor ð�1ÞD�2, with the spatial dual of the electric field
Ek of the original one-potential (electric) formulation,

Hj1j2���jD�2
¼ ð�1ÞD�2�j1j2���jD�2mE

m; (2.25)

E k ¼ 1

ðD� 2Þ! �
kj1j2���jD�2Hj1j2���jD�2

; (2.26)

and fulfills

@½j1Hj2���jD�1� ¼ 0: (2.27)

2. Two-potential action

We now show how our systematic procedure leads to the
two-potential action first postulated in [6] as an extension
of the untwisted self-duality action of [5].
In terms of the electric and magnetic potentials

ðAk; Bj1���jD�3
Þ, the action (2.15) takes the form

S½Ak;Bj1���jD�3
�

¼
Z
dDx

�
1

ðD�2Þ!�
kj1j2���jD�2Hj1j2���jD�2

_Ak�H
�
; (2.28)
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with

H ¼ 1

2

�
1

ðD� 2Þ!Hj1j2���jD�2
Hj1j2���jD�2

þ 1

ðD� 3Þ!B
k1���kD�3Bk1���kD�3

�
: (2.29)

One may give a manifestly gauge-invariant form to (2.28),

S½Ak;Bj1���jD�3
�

¼
Z
dDx

�
1

ðD�2Þ!�
kj1j2���jD�2Hj1j2���jD�2

F0k�H
�
; (2.30)

where

F0k ¼ @0Ak � @kA0: (2.31)

Expressions (2.28) and (2.30) coincide because the tempo-
ral component A0 appears only through a total derivative.

3. Two-potential equations of motion

The equations of motion that follow from demanding
that the action be stationary are

@kðHki1���iD�3 þ �kmi1���iD�3 _AmÞ ¼ 0; (2.32)

@m

�
Fmk þ 1

ðD� 3Þ! �
mki1���iD�3 _Bi1���iD�3

�
¼ 0: (2.33)

Equation (2.32) implies

Hki1���iD�3 þ �kmi1���iD�3 _Am ¼ �kmi1���iD�3@mA0; (2.34)

for some function A0, in terms of which, recalling (2.31),
one can write

Hki1���iD�3 þ �kmi1���iD�3F0m ¼ 0: (2.35)

Similarly, Eq. (2.33) implies

Fmk þ 1

ðD� 3Þ! �
mki1���iD�3 _Bi1���iD�3

¼ 1

ðD� 4Þ! �
mki1���iD�3@i1B0i2���iD�3

; (2.36)

for some functions B0i2���iD�3
. Defining

H0i1i2���iD�3
¼ _Bi1���iD�3

� ðD� 3Þ@½i1B0i2���iD�3�; (2.37)

one can rewrite (2.36) as

Fmk þ 1

ðD� 3Þ! �
mki1���iD�3H0i1���iD�3

¼ 0: (2.38)

To derive (2.35) and (2.36) from (2.32) and (2.33), one must
use the fact that the Betti numbers b1 and bD�3 of RD�1

vanish.
Equations (2.35) and (2.36) are the twisted self-duality

Eqs. (2.11). More precisely, they are the purely spatial
components of (2.11), but these are equivalent to the full
set (2.11). Indeed, this set is redundant since half of the
equations in (2.11)—which may be thought of as being the

equations with one index equal to zero—are consequences
of the other half—which may be thought of as the purely
spatial equations. Therefore, we have found an action for
the twisted self-duality equations, which may be written in
the equivalent forms (2.28) or (2.30).

4. Symplectic structure

The Poisson brackets of the magnetic and electric field
strengths that follow from the kinetic term in the action
(2.28) are

½Bi1���iD�3ðxÞ;Bj1���jD�3ðyÞ� ¼ 0; (2.39)

½Bi1���iD�3ðxÞ; Hj1���jD�2
ðyÞ�

¼ ð�1ÞD�2ðD� 2Þ!�i1���iD�3k
j1���jD�2

�;kðx; yÞ; (2.40)

½Hi1���iD�2
ðxÞ; Hj1���jD�2

ðyÞ� ¼ 0; (2.41)

where �
i1���iD�3k
j1���jD�2

is the Kronecker delta in the space of fully

antisymmetric tensors of rank (D� 2),

�i1���iD�2

j1���jD�2
¼ �½i1

j1
�i2
j2
� � ��iD�2�

jD�2
: (2.42)

One sees that the electric and magnetic field strengths are
canonically conjugate.
There is a way to rewrite the kinetic term in the action

(2.30) that makes the twist matrix S appear explicitly and
exhibits thereby its connection with the symplectic struc-
ture. We start with the observation that H ^ F is a total
derivative,

H ^ F ¼ dðB ^ FÞ: (2.43)

Now, the spacetime exterior derivative d can be split as
d ¼ dS þ dt, where dS is the spatial exterior derivative and
dt ¼ dt @

@t is the exterior derivative in the time direction.

Similarly, any form can be split as A ¼ AS þ At, where AS

is the purely spatial part of A, while At is the piece linear in
dt. Therefore,

H ^ F ¼ HS ^ Ft þHt ^ FS (2.44)

¼ HS ^ Ft þ FS ^Ht; (2.45)

since FS is a two-form, and therefore commutes with Ht.
Here, HS ¼ dSBS, Ht ¼ dtBS þ dSBt, and similar formu-
las hold for FS and Ft in terms of At and AS.
The kinetic term in the action (2.30) can be rewritten,

after integration by parts, asZ
dDx

1

ðD� 2Þ! �
kj1j2���jD�2Hj1j2���jD�2

F0k

¼ 1

2

Z
dDx�kj1j2���jD�2

�
1

ðD� 2Þ!Hj1j2���jD�2
F0k

� 1

2!ðD� 3Þ!Fkj1H0j2���jD�2

�
: (2.46)
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In terms of forms, the integrand in (2.46) is

K ¼ 1
2ðHS ^ Ft � FS ^HtÞ; (2.47)

and it is similar in form to the topological invariant H ^ F,
but differs from it in the relative sign of the second term.
This sign difference makes (2.47) not to be a total deriva-
tive. Note, however, that in spite of the sign change, At and
Bt still enter the kinetic term through a total derivative and
drop out from the action because, e.g., FS ^ dSBt ¼
dSðFS ^ BtÞ since dSFS ¼ d2SAS ¼ 0.

Collecting the curvatures as ðFaÞ ¼ ðF;HÞ, one finds
that,

K ¼ 1
2SabF

a
S ^ Fb

t ; (2.48)

and therefore, the kinetic term of the action—and hence the
symplectic form—are intimately connected with the twist
matrix.

We conclude this subsection by pointing out that it
follows from the previous discussion that adding an arbi-
trary symmetric matrix Mab to the antisymmetric twist
matrix Sab,

K0 ¼ 1
2ðSab þMabÞFa

S ^ Fb
t ; (2.49)

changes the action by a total derivative. As we shall see
below, it turns out that in the presence of couplings, non-
vanishing choices of Mab might be convenient to exhibit
explicitly the gauge symmetries.

5. Lorentz invariance and coupling to gravity

The Gauss constraint is not changed by the coupling to
gravity because the gauge transformation of a form does
not depend on the metric. One can therefore introduce the
magnetic potential in exactly the same way.

The linear momentum (generator of spatial Lie deriva-
tives) obtained from the action of the two-potential theory
is

H i ¼ FikEk ¼ �Bj1���jD�3Hij1���jD�3
: (2.50)

The coupling to gravity is achieved by changing the
Hamiltonian density H in the action (2.28) by

N?H? þ NkH k; (2.51)

where N? and Nk are the lapse and the shift appearing in
the Hamiltonian formulation in curved space, and where
H? is given by

H ? ¼ 1

2

�
1

ðD� 2Þ!g
1=2Hj1j2���jD�2

Hj1j2���jD�2

þ 1

ðD� 3Þ!g
�ð1=2ÞBk1���kD�3Bk1���kD�3

�
; (2.52)

where the indices are raised or lowered with gij or gij,

respectively. The generators H? and H i obey the
algebra,

½H ðxÞ;H ðyÞ� ¼ ðH iðxÞ þH iðyÞÞ�;iðx; yÞ; (2.53)

½H ðxÞ;H iðyÞ� ¼ H ðyÞ�;iðx; yÞ; (2.54)

½H iðxÞ;H jðyÞ�¼H iðyÞ�;jðx;yÞþH jðxÞ�;iðx;yÞ; (2.55)
which shows that the coupling to gravity is generally
covariant and, in particular, that in flat space the theory is
Lorentz invariant. Note that in comparison with the stan-
dard Hamiltonian formulation in the electric representa-
tion, there is no Gauss constraint in the right-hand side of
the algebra since here Gauss’s law is identically satisfied.

C. The case 0 < p < D� 2

We now show how, also in this case, our systematic
procedure leads to the two-potential action first postulated
in [6] as an extension of the untwisted self-duality action
of [5].
By following the same steps as in the case p ¼ 1, one

obtains the two-potential action

S½Ak1���kp ;Bj1���jD�p�2
�

¼
Z
dDx

�
�k1���kpj1���jD�p�1

p!ðD�p�1Þ!Hj1���jD�p�1
_Ak1���kp �H

�
; (2.56)

with

H ¼ 1

2

�
1

ðD� p� 1Þ!Hj1���jD�p�1
Hj1 � � � jD�p�1

þ 1

ðD� p� 2Þ!B
j1���jD�p�2Bj1���jD�p�2

�
: (2.57)

Here,Hj1���jD�p�1
is the gauge-invariant field strength of the

magnetic potential,

Hj1j2���jD�p�1
¼ ðD� p� 1Þ@½j1Bj2���jD�p�1� (2.58)

(equal on-shell to � the spatial dual of F0k1���kp�1
), while

Bj1���jD�p�2 is the magnetic field,

B j1���jD�p�2 ¼ 1

ðpþ 1Þ! �
j1���jD�p�2k1���kpþ1Fk1���kpþ1

: (2.59)

Again, one may give a manifestly gauge-invariant form
to (2.56),

S½Ak1���kp ;Bj1���jD�p�2
�

¼
Z
dDx

�
�k1���kpj1���jD�p�1

p!ðD�p�1Þ!Hj1���jD�p�1
F0k1���kp �H

�
; (2.60)

since in this expression, the temporal component
A0k1���kp�1 appears only through a total derivative.

All the comments and conclusions of the previous sub-
section go through unchanged. In particular, the fact that
the integrand of the kinetic term can be written as

K ¼ 1
2SabF

a
SF

b
t (2.61)
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(up to a total derivative), where Sab is the (antisymmetric
or symmetric) ‘‘twisting’’ matrix appearing in the twisted
self-duality equations, remains true.

D. The case p ¼ 0 or p ¼ D� 2

In the case 0< p<D� 2, one could have started from
the electric formulation and introduced the magnetic po-
tential by solving the Gauss electric constraint, or con-
versely, one could have started from the magnetic
formulation, solved the magnetic Gauss constraint, and
introduced the electric potential. However, when p ¼ 0,
there is no constraint to be solved in the electric formula-
tion, and when p ¼ D� 2, there is no constraint to be
solved in the magnetic formulation.

Nevertheless, one can fit these ‘‘marginal cases’’ in the
present treatment by slightly stretching the argument. One
cannot take over the form of the constraint equations from
the generic dimensions because, as we just said, those
equations are not present. However, one can take over
the form of their solutions. That is, if we start from the
electric formulation, we set, when p ¼ 0,

�A ¼ @jð�ji1i2���iD�2Bi1i2���iD�2
Þ; (2.62)

in order to introduce the magnetic potential, which can
always be done since it does not restrict �A. The resulting
key formulas of the previous subsection hold then un-
changed. Conversely, if one had started from the magnetic
formulation for p ¼ D� 2, the magnetic momentum
would be a scalar density and one would write

�B ¼ @jð�ji1i2���iD�2Ai1i2���iD�2
Þ (2.63)

to introduce the electric potential Ai1i2���iD�2
.

E. The cases p ¼ D� 1 and p � D

The cases p ¼ D� 1 and p � D do not fit in the present
treatment. When p ¼ D� 1, the constraints imply that
there are no local degrees of freedom. When p ¼ D, the
curvature is identically zero and so is the action. There are
again no local degrees of freedom. Both cases belong with
the topological considerations of [2]. When p >D, the
problem is empty because A � 0.

III. INTRODUCTION OFACHERN-SIMONS TERM

This section is devoted to the inclusion of a Chern-
Simons term. We will again analyze in detail the simplest
case, that is, p ¼ 1,D ¼ 3, and then indicate explicitly the
results for the generalization to p ¼ 3,D ¼ 11, which is of
special interest because it arises in supergravity. The pro-
cedure applies however to all the other cases.

For the case of a three-form with Chern-Simons cou-
plings in 11 dimensions, our action coincides with the one
given earlier in [17] when the additional gauge freedom is
fixed in a very simple form.

A. The simplest setting: Maxwell-Chern-Simons
action in three dimensions

It turns out that, as it is often the case, many of the key
aspects are present in the simplest low-dimensional model.
This subsection is devoted to analyze the problem in three-
dimensional spacetime.
The twisted self-duality equations take the form (2.11)

with the definition (2.10) modified to read [1]

H ¼ dB� 4�A: (3.1)

1. One-potential action

The Lagrangian form of the Maxwell-Chern-Simons
action is [20]

S½A�� ¼
Z

d3x

�
� 1

4
F��F

�� � �����F��A�

�
; (3.2)

and the corresponding Hamiltonian form is

S½Ai; �
i; A0� ¼

Z
d3xð�i _Ai �H � A0GÞ; (3.3)

with

H ¼ 1
2ðEkEk þB2Þ; (3.4)

and

G ¼ ��k
;k � ��kmFkm ¼ �ð�k þ 2��kmAmÞ;k: (3.5)

Here, the electric field Ek is related to the conjugate
momentum �k through

E k ¼ �k � 2��kmAm; (3.6)

while the magnetic field B is given by

B ¼ 1
2�

mnFmn: (3.7)

We use the convention �012 ¼ 1 ¼ ��012. One has Ek ¼
�F0k when the Hamiltonian equations of motion hold.
We see from (3.5) that the gauge generatorG remains the

divergence of a local vector density, as required by the
duality principle when implemented according to our
procedure.
The gauge transformations read

��Ai ¼ @k�; (3.8)

���
i ¼ 2��km@m�: (3.9)

Contrary to what happens in the case with no Chern-
Simons term, the conjugate momentum �i is no longer
gauge invariant. But the electric field Ei remains so.

2. Magnetic potential

The solution of the constraint G ¼ 0 is

�k þ 2��kmAm ¼ �km@mB; (3.10)
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and it brings in a scalar field B, which is the magnetic dual
of Ai.

The gauge transformation for B will be taken to be

��B ¼ 4��; (3.11)

which solves the variation of (3.10) given (3.8) and (3.9).
For an open space, this equation incorporates the require-
ment that the gauge transformation should be ‘‘proper’’ in
the sense of [21,22]. For a compact space, other additional
considerations are needed, which will be addressed in [2].
The gauge-invariant field strength of the magnetic potential
B is

Hk ¼ @kB� 4�Ak; (3.12)

and coincides, through (3.6) and (3.10), with the negative
of the spatial dual of the electric field Ek of the original
one-potential (electric) formulation,

Hk ¼ ��kmEm; Ek ¼ �kmHm: (3.13)

It follows from its definition (3.12) that the gauge-invariant
field strength Hk fulfills

@iHj � @jHi ¼ �4�Fij ¼ �4��ijB: (3.14)

3. Two-potential action

In terms of the electric and magnetic potentials ðAk; BÞ,
the action (3.3) takes the form

S½Ak;B�¼
Z
d3xð�km@mB _Ak�2��kmAm

_Ak�H Þ; (3.15)

with

H ¼ 1
2ðHkHk þB2Þ: (3.16)

Through integration by parts, one may rewrite (3.15) as

S½Ak;��¼
Z
d3x

�
1

2
�kmHm

_Ak�1

4
�kmFkm

_B�H
�
; (3.17)

an expression in which only the gauge-invariant field
strengths and the time derivatives of Ak and B appear.
One may give a manifestly gauge-invariant form to (3.17),

S½A�;�� ¼
Z

d3x

�
1

2
�kmHmF0k � 1

4
�kmFkmH0 �H

�
;

(3.18)

where

H0 ¼ @0B� 4�A0; (3.19)

F0k ¼ @0Ak � @kA0: (3.20)

Expressions (3.17) and (3.18) coincide because the tempo-
ral component A0 appears only through a total derivative.
Note again the emergence of the structure 1

2SabF
a
SF

b
t ,

where the curvatures are now the full gauge-invariant
curvatures.

4. Two-potential equations of motion

The equations of motion that follow from demanding
that the action be stationary are

@kðHk þ �km _AmÞ ¼ 0; (3.21)

� �km@mð _BþBÞ þ 4�ðHk þ �km _AmÞ ¼ 0: (3.22)

Equation (3.21) implies

Hk þ �km _Am ¼ �km@mA0; (3.23)

for some function A0, in terms of which, recalling (3.19)
and (3.20), one can therefore write

Hk þ �kmF0m ¼ 0: (3.24)

Taking (3.24) into account, Eq. (3.22) becomes

@mðH0 þBÞ ¼ 0; (3.25)

which implies

H0 þB ¼ 0: (3.26)

Again, just as when we established (3.11), one must impose
boundary conditions at infinity or make additional special
considerations for compact spaces [2].
Equations (3.24) and (3.26) are the twisted self-duality

Eqs. (2.11) with H given by (3.1). Therefore, we have
found an action for them, which may be written in the
equivalent forms (3.15), (3.17), and (3.18).

5. Lorentz invariance and coupling to gravity

The Poisson brackets of the electric and magnetic field
strengths that follow from the action (3.15) are

½BðxÞ;BðyÞ� ¼ 0; (3.27)

½BðxÞ; HkðyÞ� ¼ ��;kðx; yÞ; (3.28)

½HkðxÞ; HmðyÞ� ¼ �4��km�ðx; yÞ: (3.29)

Comparing (3.29) with (2.41), we see that when � � 0, the
magnetic strengths have nonzero bracket among them-
selves. Therefore, a purely magnetic representation of the
Maxwell-Chern-Simons theory does not exist.
The linear momentum (generator of spatial Lie deriva-

tives) obtained from the action of the two-potential theory
is

H i ¼ �kmFikHm ¼ �BHi: (3.30)

The coupling to gravity is achieved by changing the
Hamiltonian density H in the action (3.15) by

N?H? þ NkH k; (3.31)

where N? and Nk are the lapse and the shift appearing in
the Hamiltonian formulation in curved space, and where
H? is given by
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H ? ¼ 1
2ðg1=2gijHiHj þ g�ð1=2ÞB2Þ: (3.32)

The generators H? and H i obey the algebra (2.53),
(2.54), and (2.55), which shows that the coupling to gravity
is generally covariant and, in particular, that in flat space
the theory is Lorentz invariant.

6. External p-form field

The authors of [6] considered an extension of the free
theory in which the field strengths are modfied by the
addition of a ‘‘Chern-Simons’’-like form. If one were to
take this form as a prescribed external field, then the
corresponding equation of motion would be Eq. (2.38) of
[6], which is indeed a twisted self-duality condition.
However, this external field setting (which the present
method could also handle) is quite different from the
Maxwell-Chern-Simons theory considered here, which is
a closed system. One might nevertheless wonder whether a
blind application of the formulas of [6] to the standard
Maxwell-Chern-Simons theory leads to the correct action.
It turns out that this is not the case.

This can be seen as follows. The action of [6] is written
in terms of the ðpþ 1Þ-form � appearing in the modied
field strengths, which, for the simplest case treated in this
subsection, is a two-form that one obtains from (3.1) to be

� ¼ �4��A: (3.33)

Inserting the expression (3.33) into the integral (2.39) of
[6], one finds,

2�
Z

d3xð�ijFijA0 � 2Ak@kBÞ: (3.34)

The integral (3.34) is to be compared with the difference
between (3.15) and the free action. There are several key
differences that prevent one from reconciling both expres-
sions, namely: (i) The integral (3.34) depends on A0 and
therefore it is not gauge invariant. In contradistinction, the
counterpart to (3.34) in our action does not depend on A0,
and it is gauge invariant. (ii) Even in the A0 ¼ 0 gauge, the
functional forms are essentially different. For example,
(3.34) is only linear in �, whereas our action contains as
well a piece proportional to �2.

We see, therefore, no escape to the conclusion that (3.34)
does not lead to the two-potential version of the standard
Chern-Simons action. On the other hand, the action derived
in the previous subsections by our systematic procedure
does. This analysis goes through unchanged in the more
general cases discussed below.

B. Maxwell-Chern-Simons action
for a three-form in 11 dimensions

1. One-potential action

The standard single-potential Maxwell-Chern-Simons
action is given by

S½A���� ¼
Z

d11x

�
� 1

2 � 4!F���	F
���	

� ���1�2����11F�1����4
F�5����8

A�9�10�11

�
; (3.35)

with

F���	 ¼ 4@½�A��	�: (3.36)

The square bracket indicates complete antisymmetrization
in the enclosed indices normalized by dividing by the
appropriate factorial so that it is idempotent. We set
�01���910 ¼ 1 ¼ ��01���910.
The twisted self-duality equations take again the form

(2.11) with the definition (2.10) modified to read [1]

H ¼ dB� 3ð3!ð4!Þ2Þ�A ^ F: (3.37)

The Hamiltonian action is

S½Aijk; �
ijk; A0ij� ¼

Z
d11x

�
�ijk _Aijk �H � 1

2!
A0ijGij

�
;

(3.38)

with

H ¼ 1

2

�
1

3!
EijkEijk þ 1

6!
Bi1���i6Bi1���i6

�
; (3.39)

and

Gij ¼ �6�kij
;k � 6��ijk1���k8Fk1���k4Fk5���k8

¼ �6ð�kij þ 4��kijm1���m7Fm1���m4
Am5m6m7

Þ;k: (3.40)

Here, the electric field Eijk is related to the conjugate
momentum �ijk through

1

3!
Eijk ¼ �ijk � 8��ijki1���i7Fi1���i4Ai5i6i7 ; (3.41)

while the magnetic field Bi1���i6 is given by

Bi1���i6 ¼ 1

4!
�i1���i6j1j2j3j4Fj1j2j3j4 : (3.42)

One has Eijk ¼ �F0ijk on Hamiltonian shell.
The gauge transformations read

��Aijk ¼ 3@½i�jk�; (3.43)

���
ijk ¼ 24��ijkm1���m7Fm1���m4

@½m5
�m6m7�: (3.44)

2. Magnetic potential

The solution of the constraint Gij ¼ 0 is

�ijk þ 4��ijkm1���m7Fm1���m4
Am5m6m7

¼ 1

3!6!
�ijkm1���m7@m1

Bm2���m7
; (3.45)

and it brings in a six-form Bi1���i6 , which is the magnetic

dual of Aijk.

CLAUDIO BUNSTER AND MARC HENNEAUX PHYSICAL REVIEW D 83, 125015 (2011)

125015-8



The gauge transformation for Bi1���i6 will be taken to be

��;~�Bi1���i6 ¼ 6ð@½i1 ~�i2���i6� þ 3!6!6�F½i1���i4�i5i6�Þ: (3.46)

The gauge-invariant field strength of the magnetic
potential Bi1���i6 is

Hi1���i7 ¼ 7ð@½i1Bi2���i7� � 12�3!6!F½i1���i4Ai5i6i7�Þ (3.47)

and coincides through (3.41) and (3.45) with the negative
of the spatial dual of the electric field Eijk of the original
one-potential (electric) formulation. One gets from the
definition (3.47)

@½i0Hi1���i7� ¼ �3�3!7!F½i1i2i3i4Fi0i5i6i7�: (3.48)

3. Two-potential action

In terms of the electric and magnetic potentials
ðAk1k2k3 ; Bi1���i6Þ, the action (3.38) takes the form,

S½Ak1k2k3 ;Bi1i2i3i4i5i6�¼
Z
d11x

�
1

3!6!
�ijkm1���m7@m1

Bm2���m7

�4��ijkm1���m7Fm1���m4
Am5m6m7

�
_Aijk

�
Z
d11xH ; (3.49)

with

H ¼ 1

2

�
1

7!
Hi1���i7H

i1���i7 þ 1

6!
Bi1���i6Bi1���i6

�
: (3.50)

As in the three-dimensional case, one may give a man-
ifestly gauge-invariant form to (3.49). Using form nota-
tions to avoid lengthy formulas, one finds,

S½A�1�2�3
; B�1�2�3�4�5�6

� ¼ 1

2

Z �
HS ^ Ft � FS ^Ht

þ 1

3
ðHS ^ Ft þ FS ^HtÞ

�

�
Z

d11xH (3.51)

where the temporal components of the curvatures are

H0m1���m6
¼ @0Bm1���m6

þ 6@½m1
Bm2���m6�0

� 12�3!6!ð4F0½m1m2m3
Am4m5m6�

þ 3F½m1���m4
Am5m6�0Þ; (3.52)

F0i1i2i3 ¼ @0Ai1i2i3 � 3@½i1Ai2i3�0: (3.53)

The two expressions (3.49) and (3.51) coincide because the
temporal components of the electric and magnetic poten-
tials drop out (they appear only through a total derivative).

The Poisson brackets of the electric and magnetic field
strengths that follow from the action (3.49) are

½Bi1���i6ðxÞ;Bj1���j6ðyÞ� ¼ 0; (3.54)

½Bi1���i6ðxÞ; Hk1���k7ðyÞ� ¼ 7!�
i1���i6i7
k1���k7 �;i7ðx; yÞ; (3.55)

½Hk1���k7ðxÞ; Hm1���m7
ðyÞ�

¼ �16��k1���k7i1i2i3�m1���m7j1j2j3B
i1i2i3j1j2j3�ðx; yÞ: (3.56)

One easily verifies as in the previous subsection that the
variational equations are the twisted self-duality equations.
Therefore, we have found an action for them, which may
be written in the equivalent forms (3.49) or (3.51).
Similarly, coupling to gravity and demonstration of
Lorentz invariance proceed along the same lines.
The two-potential action discussed in this section is

different from that of [6] in which one would replace the
external form that appears there by the function of the
dynamical fields relevant to the case considered here (see
Sec. III A 6). On the other hand, as it was anticipated in the
Introduction, the present two-potential action coincides
with that of [17], when the auxiliary vector vn appearing
therein is gauge fixed to have only a nonzero constant time
component, i.e., vn ¼ ð1; 0; . . . ; 0Þ.

IV. COUPLED FORMS OF DIFFERENT RANK

In this section we show that our procedure can be applied
to the coupling among a one-form and a two-form, which
arises in ten-dimensional Einstein-Maxwell supergravity
[23] (N ¼ 1, D ¼ 10 supergravity coupled to one
Maxwell multiplet), and indicate its generalization to cou-
plings of the same type between severalp-forms of different
rank. The dimensional reduction of this case to four dimen-
sions was considered in [6]. We also explain how the
procedure can be applied straightforwardly to Pauli
couplings to spinors and to couplings to uncharged scalars.
In ten-dimensional Einstein-Maxwell supergravity, one

has a one-form Að1Þ and a two-form Að2Þ and the part of the
action relevant to our problem is

S ¼ � 1

2

Z
d10x

�
1

2!
Fð1Þ
��Fð1Þ�� þ 1

3!
Fð2Þ
��	Fð2Þ��	

�
; (4.1)

where the curvatures are

Fð1Þ ¼ dAð1Þ; (4.2)

Fð2Þ ¼ dAð2Þ � �Fð1Þ ^ Að1Þ: (4.3)

The gauge transformations, which leave the curvatures
invariant, are

��ð1Þ;�ð2ÞAð1Þ ¼ d�ð1Þ;

��ð1Þ;�ð2ÞAð2Þ ¼ d�ð2Þ þ �Að1Þ ^ d�ð1Þ; (4.4)

where �ð1Þ and �ð2Þ are a zero-form and a one-form,
respectively.
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If one passes to the Hamiltonian form, one obtains the
Gauss constraints

G ð1Þ ¼ �@jð�j
ð1Þ þ 2��ij

ð2ÞA
ð1Þ
i Þ; (4.5)

G i
ð2Þ ¼ �2@j�

ij
ð2Þ; (4.6)

where�j
ð1Þ and�

ij
ð2Þ are the canonical conjugates to A

ð1Þ
i and

Að2Þ
ij , respectively. The constraints generate the gauge

transformations (4.4).
Both Gð1Þ and Gi

ð2Þ are local divergences and therefore

our procedure can be applied. The magnetic potentials are
introduced by solving the Gauss constraints in the form

�i
ð1Þ ¼

1

7!
�ij1j2���j8@½j1B

ð1Þ
j2���j8�

� 2�

2!6!
�ijm1���m7@½m1

Bð2Þ
m2���m7

Að1Þ
i� ; (4.7)

�ij
ð2Þ ¼

1

2!6!
�ijm1���m7@½m1

Bð2Þ
m2���m7�: (4.8)

Here Bð1Þ and Bð2Þ are the dual magnetic seven-form and
six-form, respectively.

The electric-magnetic action that incorporates the dual-
ity principle is again simply the Hamiltonian action written
down explicitly in [24], in which one has expressed the
conjugate momenta in terms of the magnetic potentials.
The equations of motion obtained from the action are the
twisted self-duality equations in Hamiltonian form.

The complete Lagrangian of ten-dimensional Einstein-
Maxwell supergravity differs from the integrand of (4.1) by

terms in which the curvatures of Að1Þ and Að2Þ are coupled
to spinor and scalar fields. These fields are invariant under
the gauge transformations of the one-form and the two-
form. Therefore, the gauge constraints for the complete
theory are just those written above and thus the electric-
magnetic action can be completed to the full theory—a
step that will not be taken explicitly in the present work.

Although it will not be discussed here, the procedure
goes through for more complicated supergravities, where
interactions of the same type among a collection of
p-forms appear. In that case, for the procedure to
work, it must be possible to define the gauge trans-
formations for the p-forms so that the gauge parameters
appear always differentiated. This requirement is equiva-
lent to demanding that the constraints can be chosen to
be local divergences. It can be shown, following the
lines of [1], that this can indeed always be arranged.
For the case of type IIB supergravity, the two-potential
action has been discussed in the manifestly Lorentz-
invariant formalism in [18], where it has been shown
explicitly that the equations of motion are the desired

ones. Since, by construction, the same holds true if one
applies our method, we conclude that the two actions
should coincide when the auxiliary gauge freedom of the
manifestly Lorentz-invariant formalism is appropriately
fixed.
Finally, we would like to emphasize that for Yang-Mills

couplings, the procedure does not go through because, in
the gauge transformations, the gauge parameter appears
undifferentiated.

V. CONCLUSION

This paper has been devoted to providing a systematic
derivation from the Maxwell action of the action principle
that yields the condition of electric-magnetic self-duality
as its equation of motion. It is hoped that our results will
help dispel the widespread misconception that twisted (and
untwisted) self-duality can only be discussed at the level of
the equations of motion.
In the pure Maxwell case we recover in this way an

action that had been postulated by other authors [6] by
boldly extending the one given earlier by us [5] for un-
twisted self-duality. However, when standard Chern-
Simons couplings are brought in—a case that [6] does
not claim to describe—the action we derive is new.
We would like to emphasize that our systematic deriva-

tion relegates spacetime covariance to a lesser role than
that of electric-magnetic symmetry. This feature, previ-
ously encountered in several other instances, might convey
an important lesson for the investigations of more general
hidden symmetries that extend electric-magnetic duality,
such as E10 or E11 [12].
Although our discussion has covered an ample realm of

cases of physical interest, they were all concerned with
p-forms, which are totally antisymmetric tensors. There
are important cases, which were not covered herein and
which will be addressed in a forthcoming publication [25].
They are linearized gravity [9] and higher spin fields [26].
In those cases, the electric and magnetic ‘‘superpotentials’’
have mixed symmetries.
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