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Formalism of extended Lagrangian represents a systematic procedure to look for the local symmetries

of a given Lagrangian action. In this work, the formalism is discussed and applied to a field theory. We

describe it in detail for a field theory with first-class constraints present in the Hamiltonian formulation.

The method is illustrated on examples of electrodynamics, Yang-Mills field, and nonlinear sigma model.
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I. INTRODUCTION

In the field theory with local symmetries, the number of
variables used in the description is greater than the number
of degrees of freedom. It is important to keep all the
variables used to guarantee, for instance, the manifest
Lorentz covariance. On the other hand, one needs to char-
acterize, in one way or another, the physical sector of a
given theory. This can be achieved using the manifest form
of the local symmetry: among all variables, the physical
ones turn out to be invariant under the action of local
symmetries. So, knowledge the local symmetries in many
cases is crucial in analysis of physical content of a theory.

The locally invariant theories are described by singular
Lagrangians, so their analysis is carried out in accordance
with the Dirac method for constrained systems [1]. The
presence of constraints in the Hamiltonian formulation
reflects the fact that the dynamics of part of the variables
is dependent on the remaining ones. The constraints are
divided into two groups: the first class and the second class.
It is well known that the first-class constraints are closely
related to local symmetries [2–4]. So, an interesting prob-
lem under investigation by various groups [5–22] is
whence there is a relatively simple and practical procedure
for restoration the symmetries from the known constraints.
In the Hamiltonian formalism, the problem has been solved
for the case of a mechanical system with first-class
constraints along the following line [3]. The initial
Hamiltonian action (which by construction contains the
primary constraints only) can be replaced on the extended
Hamiltonian action, with all the higher-stage constraints
with their own Lagrangian multipliers added to the action.
It leads to the equivalent formulation [2]. Local symme-
tries of the extended Hamiltonian action have been found
in the closed form [3]. Moreover, in absence of second-
class constraints, local symmetries of the initial
Hamiltonian action can be restored in the algebraic
way [3].

Search for the local symmetries of the initial Lagrangian
action represents a separate issue. for the mechanical con-
strained systemwith first- and second-class constraints, one
possibleway to solve the problem has been developed in the
works [5,6]. Given a singular Lagrangian L, the theory can
be reformulated in terms of an extended one, ~L, equivalent
toL. Because of special structure of ~L, its gauge symmetries
can be found in a closed form. All the first-class constraints
ofL turn out to be the gauge generators of the symmetries of
~L. The extendedHamiltonian of initial theory turns out to be
the Hamiltonian for the extended Lagrangian [6]. For a
theory with first-class constraints, it is also possible to
find the symmetries of the initial Lagrangian L [3,5,6].
The aim of this work is to discuss the method described
above to the case of a field theory, showing explicitly the
differences that arise when we move on frommechanical to
a field theory, and apply it to particular models.
In [5,6], we consider an action invariant modulo the total

derivative term. It should be mentioned that by appropri-
ately extending an action, one can make it exactly invariant
[7–11]. The modified action contains a surface term which
is, in general, different from zero [7,8] (the generalizations
for the field theory and to arbitrary or noncanonical
symplectic structures may be found in [9,10]). In this
case, analysis of the Hamiltonian action shows that the
Hamiltonian generators acquire the surface term [11]. The
method turns out to be useful in the path-integral quantiza-
tion framework of a generally covariant theories in time-
independent gauges [11].
This paper is divided as follows. Section II is devoted to

discussing the method of finding local symmetries for
singular mechanical models. In Sec. III, we generalize
this method for constrained field models. The method is
illustrated on the examples of electrodynamics, Yang-Mills
field, and nonlinear sigma model in Sec. IV. Section V is
left for conclusions.

II. SEARCH FOR SYMMETRIES—EXTENDED
LAGRANGIAN APPROACH

This section is devoted to review the method of finding
local symmetries of a singular mechanical system [4–6].
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It is done by deforming the initial Lagrangian in such a way
that all its symmetries can easily be found in closed form.
As it will be shown, all the first-class constraints of the
initial Lagrangian turn out to be the gauge generators of
local symmetries of the deformed Lagrangian. The sym-
metries of the initial Lagrangian are also found.

A. Construction of extended
Lagrangian and Hamiltonian

Starting from a singular Lagrangian LðqA; _qAÞ, one ap-
plies the Dirac procedure, obtaining Hamiltonian and com-
plete Hamiltonian given by H0 and H. The system of
constraints is given by fGIg ¼ f��; Tag, where �� are
primary constraints and we denote Ta all the further stage
constraints. We suppose that all of them are first class (they
obey the algebra fGI;GJg ¼ cIJ

KGK, fGI;Hg ¼ bI
JGJ)

and that the procedure stops at N-th stage. It is equivalent
to the existence of local symmetries for L of the type
[2,3,12],

�qA ¼ "RA
0 þ _"RA

1 þ . . .þ dN�1"

d�N�1
RA
N: (1)

We construct the following function, defined on phase
space parameterized by qA, ~pA, s

a, �a, v
�, va,

~HðqA; ~pA; s
a; �a; v

�; vaÞ
¼ ~H0ðqA; ~pj; s

aÞ þ v���ðqA; ~pBÞ þ va�a; (2)

where

~H 0 ¼ H0ðqA; ~pjÞ þ saTaðqA; ~pjÞ: (3)

The functions ��, H0 and Ta were taken from the initial
formulation.

We affirm that ~H is the complete Hamiltonian for a
Lagrangian ~LðqA; _qA; saÞ (to be determined), ~H0 is the
Hamiltonian for ~L as well as �� ¼ 0 and �a ¼ 0 are
primary constraints (�a are conjugate momenta for sa

variables). Furthermore, L and ~L are equivalent. To show
all these facts, first we write the following equation of
motion:

_q i ¼ @ ~H

@~pi

¼ @H0

@~pi

� v� @f�
@~pi

þ sa
@Ta

@~pi

: (4)

This equation can be inverted with respect to ~pi in a
neighborhood of the point sa ¼ 0 (for details, see [5]).
Let us denote the solution as

~p i ¼ !iðqA; _qi; v�; saÞ: (5)

Now, on space qA,sa we define

~LðqA; _qA; saÞ ¼ ð!i _q
i þ f�ðqA;!jÞ _q� �H0ðqA;!jÞ

� saTaðqA;!jÞÞj!iðq; _q;sÞ: (6)

In the definition above, we have used the notation

!iðqA; _qi; v�; saÞjv�! _q� � !iðq; _q; sÞ: (7)

If we now suppose that ~L is some singular Lagrangian,
then a direct calculation shows that ~H0 and ~H are its
corresponding Hamiltonian and complete Hamiltonian,
respectively. The Dirac method applied to ~H shows that
all the higher-stage constraints of the initial theory are now,
at most, secondary ones. It implies, in particular, that the
local symmetry of ~L is of _�-type, and hence has simple

structure as compared to ðN�1Þ
� -type symmetry of initial

formulation (see Eq. (1)). If one now fixes the gauge
sa ¼ 0 for the constraints �a ¼ 0, the sector ðsa; �aÞ dis-
appears of the extended formulation. Then one is faced
again with the initial formulation. Since L is one of the
gauges of ~L, the equivalence between the two formulations
is proved. Hence, it is only matter of convenience to
analyze the extended or the initial Lagrangian.

B. Restoration of local symmetries

Before we obtain the local symmetries of extended and
initial formulation, it is important to note two points, al-
ready cited in the Introduction. The first one is that a gauge
symmetry, in Lagrangian or Hamiltonian actions, is defined
modulo a total derivative. Moreover, we want to find local
symmetries of the initial Lagrangian action. These two
topics make our analysis different from the one considered
in the papers [7,8], where the main idea is to reformulate
only the Hamiltonian action, adding boundary terms, to
make it fully gauge-invariant. We start with the extended
Hamiltonian formulation, passing through extended
Lagrangian action, and finally we arrive at the initial
formulation.
We will begin with the Hamiltonian action,

S ~H ~L ¼
Z

d�ð~pA _qA þ �a _s
a � ~HÞ: (8)

According to Dirac conjecture [3], the first-class con-
straints are believed to generate gauge transformations.
So, one considers the transformations �Iq

A ¼ �IfqA;GIg,
�I ~pA ¼ �If~pA;GIg, where �I ¼ �Ið�Þ are arbitrary func-
tions, that is not necessarily zero at the endpoints and Imay
assume any fixed value � or a. Omitting total derivative
terms, it is possible to show that these transformations
imply that �S ~H ~L is proportional to ��; Ta. Then, it is
possible to find appropriate transformations for v�; sa,
that leaves S ~H ~L invariant. In fact, direct calculations
show that the transformations below,

�Iq
A ¼ �IfqA;GIg; �I ~pA ¼ �If~pA;GIg;

�Is
a ¼ _�a�aI þ �IbI

a � sb�IcbI
a � v��Ic�I

a;

�I�a ¼ 0; �Iv
� ¼ _����I; �Iv

a ¼ ð�Is
aÞ; (9)

keep the Hamiltonian action invariant (modulo a surface
term) [5]. It prompts us to find the symmetries of the
extended Lagrangian action,
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S ~L ¼
Z

d� ~L; (10)

in closed form. Namely, the following variations

�Iq
A ¼ �IfqA;GIgjp!!ðq; _q;sÞ;

,
8<
:
�Iq

� ¼ ����I;

�Iq
i ¼ �I @GI

@~pi
jp!!ðq; _q;sÞ

;

�Is
a ¼ ð _�a�aI þ �IbI

a � sb�IcbI
a � _q��Ic�I

aÞjp!!ðq; _q;sÞ;

(11)

represent the local symmetries of the action. This demon-
stration may be found in [5].

Let us obtain the symmetries of the initial action. To do
this, we must eliminate the sector sa of the extended
formulation in an appropriate way. So, consider the combi-
nation of symmetries of ~L,

� � X
I

�I; (12)

which obeys �sa ¼ 0 for all sa. If one uses the property
~LðqA; _qA; sa ¼ 0Þ ¼ LðqA; _qAÞ, then L is invariant under
any transformation,

�qA ¼ X
I

�Iq
Ajsa¼0; (13)

which obeys �sa ¼ 0jsa¼0, that is,

_� a þ �IbI
a � _q�c�I

a ¼ 0: (14)

We have ½a� equations for ½�� þ ½a� variables �I. When
there are only first-class constraints, this system can be
solved iteratively [3], leading to ½�� local symmetries of L.
This cumbersome calculation is given in [5]. We observe
that we are not discarding surface terms. They are absorbed
in the definition of gauge transformation in both cases:
Hamiltonian and Lagrangian actions.

In the presence of second-class constraints, local sym-
metries of L cannot be generally restored according to the
procedure discussed above. The reason is that a number of
equations of the system (14) can be equal or more than the
number of parameters �a, see an example of this kind in the
work [6].

III. GAUGE SYMMETRIES FOR
CONSTRAINED FIELD MODELS

Let us discuss the method of finding local symmetries
for constrained field models. It will be carried out in the
same way as described in the previous section. However,
we will point out some special novelties which are present
when the method is applied for a singular field model.

Let we have a singular Lagrangian L ¼R
d3xLð’A; @�’

AÞ. The indices A may correspond to vari-

ous types of fields. The conjugate momenta are defined by

pA ¼ �L

� _’A
¼ @L

@ _’A
: (15)

Suppose that we have carried out the corresponding
Hamiltonization. The notation follows directly from the
previous section. Since Lmay depend on spatial derivative
of the fields, we observe that further stage constraints may
depend on spatial derivative of the momenta. It gives rise to
the first novelty when we begin the procedure of finding
local symmetries. We write the equation of motion,

_’ i ¼ @H 0

@~pi

� v� @f�
@~pi

þ sa
�Ta

�~pi

: (16)

This equation should be inverted in terms of ~pi to construct
the extended Lagrangian. Nevertheless, in general case one
is faced with a partial derivative of ~pi. To avoid this
problem, let us suppose that the constraints are, at most,
linear in spatial derivative of the momenta. In this case,
Eq. (16) can be inverted. We point out that constraints with
polynomial form in fields and corresponding momenta do
not represent any restriction to inversion of (16), see [5].
Although restrictive, to our acknowledge, all important
physical models that possess local invariance bear this
particular structure in Hamiltonian formulation, i.e. with
linear constraints in spatial derivative of the momenta.
Indeed, electrodynamics, Yang-Mills field, standard
model, string, and membrane theories are of this type.
There is another novelty that must be taken into account:
the coefficients of the gauge algebra may not be functions
but operators, e.g., fGI;GJg � @j@

jGK. Finally, the gauge

generators are

G ¼
Z

d3x�IðxÞGIðxÞ: (17)

Integration is taken over all the space. The method of
finding symmetries is now carried out analogously.
At this point, it may be interesting to discuss certain

special subtleties present in singular field models that do
not result directly from the generalization of point mechan-
ics to the continuous case. In classical systems, physical
degrees of freedom are understood to be the minimum
number of variables necessary to fully describe the model.
In a field theory, physical degrees of freedom can be
understood to be the minimum number of fields in each
point of underlying space where the fields are defined,
which completely describe the model. For instance, we
say that electrodynamics has two degrees of freedom, since
it is possible to eliminate two of the four components of
the vector A� ¼ A�ðxÞ, for each point in space-time pa-

rameterized by x�. In fact, there are 8 field components in
phase space (A� and its corresponding momenta) together

with two first-class constraints. After the gauge is fixed,
we are left with four second-class constraints. Hence,
there are only 8� 4 ¼ 4 independent field components.
Consequently, only two components of A� remain
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independent on configuration space of fields. We must also
be careful with the meaning of constraint in a field theory.
In classical systems, each constraint (algebraic equation
involving coordinates and momenta) allows us to eliminate
one differential equation from all the equations of motion
describing the model. This means that not all variables
have independent dynamics. For a field theory, a constraint
can also be a differential equation. Hence, elimination of
nonphysical degrees of freedom does not follow directly.
This point may also be exemplified using electrodynamics:
pi are the conjugate momenta for Ai and p0 � 0 is the
primary constraint. The evolution of p0 leads to the sec-
ondary constraint @ipi � 0. The elimination of any degree
of freedom using the secondary constraint is not as obvious
as it is for the primary one. (For a discussion of the above
points, see [13,14,23]).

IV. APPLICATIONS

We will consider some specific examples of constrained
field models for applying the method presented, including
electrodynamics, Yang-Mills, and nonlinear sigma model.

A. Local symmetry of electrodynamics

Let us consider the Lagrangian of electromagnetic field,

L ¼ � 1

4

Z
d3xF�	F

�	

¼
Z

d3x

�
1

2
ð _Ai � @iA0Þ2 � 1

4
FijF

ij

�
; (18)

where F�	 ¼ @�A	 � @	A�. The primary constraint and

conjugate momenta are given by

@L

@ _A0

¼ p0 ¼ 0 ) �1 � p0 ¼ 0; (19)

@L

@ _Ai

¼ pi ¼ _Ai � @iA0 ) _Ai ¼ pi þ @iA0: (20)

The Hamiltonian H0 and complete Hamiltonian H are

H0 ¼
Z

d3x

�
1

2
p2
i þ pi@iA0 þ 1

4
F2
ij

�
; (21)

H ¼ H0 þ
Z

d3xv0p0; (22)

where v0 is the corresponding Lagrange multiplier. The
secondary constraint follows from the consistency condi-
tion 0 ¼ fp0ðx1Þ; Hg. It leads to T2 � @ipi ¼ 0. There are
no further constraints.

The gauge algebra is

fp0;@ipig¼0; fp0;H0g¼@ipi; f@ipi;H0g¼0: (23)

The extended Hamiltonian takes the form

~H¼
Z
d3x

�
1

2
~p2
i þ ~pi@iA0þ1

4
F2
ijþs2@i ~piþv2�2þv0 ~p0

�
:

(24)

Starting from

_A i ¼ fAi; ~Hg ¼ ~pi þ @iA0 � @is
2 ) ~pi

¼ _Ai � @iA0 þ @is
2; (25)

we find ~L,

~L ¼
Z

d3x

�
1

2
ð _Ai � @iA0 þ @is

2Þ2 � 1

4
F2
ij

�
: (26)

The symmetries of ~L are given by

�1: �1Ai ¼ 0; �1A0 ¼ �1s
2 ¼ �1; (27)

�2: �2Ai ¼
Z

d3x�2fAi; @lplg ¼ �@i�
2; (28)

�2A0 ¼ 0; �2s
2 ¼ _�2: (29)

The symmetries of L are directed restored, see ((13)
and (14)),

�1Ai þ �2Ai ¼ �@i�
2; (30)

�1A0 þ �2A0 ¼ �1; (31)

where the �’s obey the equation

_� 2 þ �1 ¼ 0 ) �1 ¼ � _�2: (32)

Defining �2 � ��, we obtain the well-known gauge
symmetry of electrodynamics,

A�ðx	Þ ! A0
�ðx	Þ ¼ A�ðx	Þ þ @��ðx	Þ; (33)

where � ¼ �ðx	Þ is an arbitrary space-time scalar
function.

B. Local symmetry of Yang-Mills field

In the pioneer work [24], Yang and Mills (YM) have
considered the idea of interact a original set of fields,
invariant under a group with constant parameters, with a
new field (gauge field). It was accomplished by postulating
the invariance of the system under the original group but
having now arbitrary functions as parameters. We will
discuss this field model via the Dirac procedure and we
shall find its local symmetries. Let us consider the YM
Lagrangian,

L ¼
Z

d3xL ¼ � 1

4

Z
d3xFa

�	F
a�	; (34)

where Fa
�	 ¼ @�A

a
	 � @	A

a
� þ igfabcAb

�A
c
	. L has global

SUðNÞ symmetry, the field A� assumes values on the

corresponding Lie algebra with generators Ta,
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A� ¼ Aa
�T

a; (35)

and fabc are the structure constants,

½Ta; Tb� ¼ ifabcTc: (36)

The primary constraints and conjugate momenta are

@L

@ _Aa
0

¼ pa
0 ¼ 0 ) �a

1 ¼ pa
0 ¼ 0; (37)

@L

@ _Aa
i

¼ pa
i ¼ _Aa

i � @iA
a
0 þ igfabcAb

0A
c
i ) _Aa

i

¼ pa
i þ @iA

a
0 � igfabcAb

0A
c
i : (38)

The Hamiltonian H0 and complete Hamiltonian H are
given by

H0¼
Z
d3x

�
1

2
ðpa

i Þ2þpa
i @iA

a
0� igfabcAb

0A
c
i p

a
i þ

1

4
ðFa

ijÞ2
�

(39)

H ¼ H0 þ
Z

d3x
apa
0 ; (40)

where 
a are the corresponding Lagrange multipliers.
The secondary constraint follows from the consistency
condition 0 ¼ fpa

0ðx1Þ; Hg. One finds Ta
2 ¼ @ip

a
i �

igfabcpb
i A

c
i ¼ 0. There are no further constraints. The

gauge algebra is

f�a
1 ; �

b
1g ¼ f�a

1 ; T
b
2 g ¼ 0; (41)

fTa
2 ðx1Þ; Tb

2 ðx2Þg ¼ �igfabcTc
2ðx1Þ�ðx1 � x2Þ; (42)

f�a
1 ; H0g ¼ Ta

2 ; (43)

fTa
2 ; H0g ¼ igAb

0f
bacTc

2 : (44)

The extended Hamiltonian takes the form

~H ¼
Z

d3x

�
1

2
ð~pa

i Þ2 þ ~pa
i @iA

a
0 � igfabcAb

0A
c
i ~p

a
i

þ 1

4
ðFa

ijÞ2 þ ðs2Það@ipa
i � igfabcpb

i A
c
i Þ

þ ðv2Þa�a
2 þ va ~pa

0

�
: (45)

Starting from

_Aa
i ¼fAa

i ;Hg
¼ ~pa

i þ@iA
a
0� igfabcAb

0A
c
i þ�@iðs2Þa� igfbacAc

i ðs2Þb;
(46)

we find

~pa
i ¼ _Aa

i � @iðAa
0 � ðs2ÞaÞ þ igfabcðAb

0 � ðs2ÞbÞAc
i : (47)

Thus, ~L reads

~L ¼
Z

d3x

�
1

2
ð _Aa

i � @iðAa
0 � ðs2ÞaÞ

þ igfabcðAb
0 � ðs2ÞbÞAc

i Þ2 þ� 1

4
ðFa

ijÞ2
�
: (48)

The symmetries of ~L are given by

�1: �1A
a
i ¼ 0;�1A

a
0 ¼ ð�1Þa; �1ðs2Þa ¼ ð�1Þa; (49)

�2: �2A
a
i ¼ �@ið�2Þa � igfabcð�2ÞbAc

i ;

�2A
a
0 ¼ 0;�2ðs2Þa ¼ ð _�2Þa: (50)

The symmetries of L are easily restored,

�1A
a
i þ �2A

a
i ¼ �@ið�2Þa � igfabcð�2ÞbAc

i ; (51)

�1A
a
0 þ �2A

a
0 ¼ ð�1Þa; (52)

where the �’s obey

ð _�2Þb þ ð�1Þb þ igAa
0f

abcð�2Þc ¼ 0 ) ð�1Þb
¼ �@0ð�2Þb � igfbcað�2ÞcAa

0 : (53)

Defining ð�2Þa � ��a, we obtain the expected result,

Aa
� ! A0a

� ¼ Aa
� þDac

� �c; (54)

where Dac
� ¼ �ac@� � igfacbAb

� is the covariant

derivative.

C. Local symmetry of converted nonlinear sigma model

In the work [15], a method is discussed of conversion
of second-class constraints into the first class ones based
on transformations that involve derivatives of the
configuration-space variables. It is useful for covariant
quantization of a theory and in the context of doubly
special relativity [25], for example. Here, we consider the
converted version of the nonlinear sigma model presented
in [15]. The model is useful for the purposes of this work
since, after the conversion, there are only first-class con-
straints. So, we look for local symmetries of the action

S ¼
Z

d4x

�
1

2
ð@��aÞ2 � 2@�e@

��a�a þ 
ðð�aÞ2 � 1Þ
�
:

(55)

The primary constraints and conjugate momenta are

@L

@ _�a
¼ pa ¼ _�a � 2 _e�a;

@L
@ _e

¼ pe ¼ �2 _�a�a;

@L

@ _

¼ p
 ¼ 0: (56)
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The expressible velocities are given by

_e ¼ � 1

4�2
ð2�pþ peÞ;

_�a ¼ pa � �a

2�2
ð2�pþ peÞ: (57)

We are using the notation�a�a ¼ �2. The Hamiltonian
H0 and complete Hamiltonian H are given by

H0 ¼
Z

d3x

�
1

2
p2 � ð2�pþ peÞ2

8�2

þ 1

2
ð@i�aÞ2 þ�2@ie@

i�a�a � 
ð�2 � 1Þ
�
; (58)

H ¼ H0 þ
Z

d3xvp
; (59)

where v is the corresponding Lagrange multiplier. The
secondary constraint follows from the consistency condi-
tion 0 ¼ fp
ðx1Þ; Hg. One finds G2 ¼ �2 � 1 ¼ 0. We
still find a tertiary constraint: 0 ¼ fG2ðx1Þ; Hg ¼ �pe.
G3 ¼ pe ¼ 0.

If we define fGIg ¼ fG1 ¼ p
;G2 ¼ �2 � 1; G3 ¼ peg,
then the gauge algebra is

fGI;GJg ¼ 0 ) cIJ
K ¼ 08I; J; K; (60)

fG1; H0g ¼ G2 ) b1
2 ¼ 1; b1

1 ¼ b1
3 ¼ 0; (61)

fG2; H0g ¼ �G3 ) b2
3 ¼ �1; b2

1 ¼ b2
2 ¼ 0; (62)

fG3;H0g¼�@i@iG2)b3
2¼�@i@i; b3

1¼b3
3¼0: (63)

Note that expressions of the form @iG2, @
i@iG2, etc. are

consequences of the already-obtained constraints. They do
not imply simplification of the dynamical equations. So we
adopt the following point: spatial derivatives of constraints
does not give rise to new constraints. So, the procedure
stops at the third stage.

The extended Hamiltonian takes the form

~H ¼
Z

d3x

�
1

2
~p2 � ð2�~pþ ~peÞ2

8�2
þ 1

2
ð@i�aÞ2

� 2@ie@
i�a�a þ�
ð�2 � 1Þ þ s2ð�2 � 1Þ

þ s3 ~pe þ v~p
 þ v2�2 þ v3�3

�
: (64)

Starting from

_�a ¼ f�a; ~Hg ¼ ~pa � 2�~pþ ~pe

2�2
�a (65)

_e ¼ fe; ~Hg ¼ � 2�~pþ ~pe

4�2
þ s3; (66)

we find

~p a ¼ _�a � 2�að _e� s3Þ; ~pe ¼ �2� _�: (67)

Thus, ~L reads

~L ¼
Z

d3x

�
1

2
ð@��aÞ2 � 2� _�ð _e� s3Þ þ 2@ie@

i�a�a

þþð
� s2Þð�2 � 1Þ
�
: (68)

The symmetries of ~L are given by

�1: �1�
a ¼ 0; �1
 ¼ �1; �1e ¼ 0;

�1s
2 ¼ �1; �1s

3 ¼ 0; (69)

�2: �2�
a ¼ 0; �2
 ¼ 0; �2e ¼ 0;

�2s
2 ¼ _�2; �2s

3 ¼ ��2; (70)

�3: �3�
a ¼ 0; �3
 ¼ 0; �1e ¼ �3;

�3s
2 ¼ b3

2�3 ¼ �@i@i�
3; �3s

3 ¼ _�3: (71)

The symmetries of L are restored,

�1�
a þ �2�

a þ �3�
a ¼ 0; (72)

�1
þ �2
þ �3
 ¼ �1; (73)

�1eþ �2eþ �3e ¼ �3; (74)

where the �’s obey,

_� 2 � @i@i�
3 þ �1 ¼ 0; (75)

_� 3 � �2 ¼ 0: (76)

Defining �3 � ��, we obtain the following local
symmetry:

��a ¼ 0; �
 ¼ @�@
��; �e ¼ ��; (77)

where � ¼ �ðxÞ is an arbitrary function of space-time
coordinates.

V. CONCLUSION

In this work, we have presented a generalization of the
extended Lagrangian method of finding local symmetries
to the field systems. As we have illustrated in various
examples, it provides a systematic method of finding gauge
symmetries of a singular Lagrangian L with first-class
constraints. The initial theory is deformed in a special
way such that all the symmetries of the deformed
Lagrangian ~L can easily be found. The symmetries of L
are also obtained. According to the scheme, all the first-
class constraints of the initial theory are the gauge gener-
ators of the deformed theory. We also pointed out the
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subtleties that must be taken into account when moving
from classical systems to the continuous case. In this
context, we briefly discussed some fundamental definitions
that are slightly complicated and do not follow directly
from point mechanics to field theories, including degrees
of freedom and constraints.
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[11] Máximo Bañados, Phys. Rev. D 52, 5816 (1995).
[12] A. A. Deriglazov and K. E. Evdokimov, Int. J. Mod. Phys.

A 15, 4045 (2000); A. A. Deriglazov, Int. J. Mod. Phys. A
22, 2105 (2007).

[13] W.M. Seiler and R.W. Tucker, J. Phys. A 28, 4431 (1995).
[14] R. D. Benguria, P. Cordero, and C. Teitelboim, Nucl. Phys.

B122, 61 (1977).

[15] A. A. Deriglazov and Z. Kuznetsova, Phys. Lett. B 646, 47
(2007).

[16] K. Kamimura, Nuovo Cimento Soc. Ital. Fis. B 68, 33
(1982); R. Sugano and T. Kimura, J. Math. Phys. (N.Y.)
31, 2337 (1990).

[17] M. E. V. Costa, H.O. Girotti, and T. J.M. Simones, Phys.
Rev. D 32, 405 (1985); A. Cabo and D. Louis-Martinez,
Phys. Rev. D 42, 2726 (1990).

[18] R. Banerjee and J. Barcelos-Neto, Ann. Phys. (N.Y.) 265,
134 (1998); J. Barcelos-Neto, Phys. Rev. D 55, 2265
(1997).

[19] K. Harada and H. Mukaida, Z. Phys. C 48, 151 (1990); P.
Mitra and R. Rajaraman, Ann. Phys. (N.Y.) 203, 137
(1990).

[20] I. Batalin and R. Marnelius, Mod. Phys. Lett. A 16, 1505
(2001).

[21] V. A. Borokhov and I. V. Tyutin, Phys. At. Nucl. 61, 1603
(1998); 62, 1070 (1999).

[22] D.M. Gitman and I. V. Tyutin, Int. J. Mod. Phys. A 21, 327
(2006).

[23] K. Sundermeyer, Constrained Dynamics (Springer, New
York, 1982).

[24] C. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).
[25] J. Bekenstein and J. Magueijo, Phys. Rev. D 73, 103513

(2006); S. Mignemi, Phys. Rev. D 72, 087703 (2005); R.
Aloisio, A. Galante, A. Grillo, S. Liberati, E. Luzio, and F.
Méndez, Phys. Rev.D 73, 045020 (2006);A. A.Deriglazov,
Phys. Lett. B 603, 124 (2004); A.A. Deriglazov and B. F.
Rizzuti, Phys. Rev. D 71, 123515 (2005).

GENERALIZATION OF THE EXTENDED LAGRANGIAN . . . PHYSICAL REVIEW D 83, 125011 (2011)

125011-7

http://dx.doi.org/10.4153/CJM-1950-012-1
http://dx.doi.org/10.1016/0550-3213(90)90034-B
http://dx.doi.org/10.1016/0550-3213(90)90034-B
http://dx.doi.org/10.1088/1751-8113/40/36/008
http://dx.doi.org/10.1063/1.3068728
http://dx.doi.org/10.1063/1.3068728
http://dx.doi.org/10.1016/0550-3213(92)90166-9
http://dx.doi.org/10.1103/PhysRevD.65.064002
http://dx.doi.org/10.1103/PhysRevD.65.064002
http://dx.doi.org/10.1023/A:1010268110661
http://dx.doi.org/10.1023/A:1010268110661
http://dx.doi.org/10.1103/PhysRevD.76.025025
http://dx.doi.org/10.1103/PhysRevD.52.5816
http://dx.doi.org/10.1142/S0217751X00001890
http://dx.doi.org/10.1142/S0217751X00001890
http://dx.doi.org/10.1142/S0217751X07035185
http://dx.doi.org/10.1142/S0217751X07035185
http://dx.doi.org/10.1088/0305-4470/28/15/022
http://dx.doi.org/10.1016/0550-3213(77)90426-6
http://dx.doi.org/10.1016/0550-3213(77)90426-6
http://dx.doi.org/10.1016/j.physletb.2007.01.004
http://dx.doi.org/10.1016/j.physletb.2007.01.004
http://dx.doi.org/10.1007/BF02888859
http://dx.doi.org/10.1007/BF02888859
http://dx.doi.org/10.1063/1.528833
http://dx.doi.org/10.1063/1.528833
http://dx.doi.org/10.1103/PhysRevD.32.405
http://dx.doi.org/10.1103/PhysRevD.32.405
http://dx.doi.org/10.1103/PhysRevD.42.2726
http://dx.doi.org/10.1006/aphy.1997.9998
http://dx.doi.org/10.1006/aphy.1997.9998
http://dx.doi.org/10.1103/PhysRevD.55.2265
http://dx.doi.org/10.1103/PhysRevD.55.2265
http://dx.doi.org/10.1007/BF01565618
http://dx.doi.org/10.1016/0003-4916(90)90030-R
http://dx.doi.org/10.1016/0003-4916(90)90030-R
http://dx.doi.org/10.1142/S0217732301004820
http://dx.doi.org/10.1142/S0217732301004820
http://dx.doi.org/10.1142/S0217751X06024979
http://dx.doi.org/10.1142/S0217751X06024979
http://dx.doi.org/10.1103/PhysRev.96.191
http://dx.doi.org/10.1103/PhysRevD.73.103513
http://dx.doi.org/10.1103/PhysRevD.73.103513
http://dx.doi.org/10.1103/PhysRevD.72.087703
http://dx.doi.org/10.1103/PhysRevD.73.045020
http://dx.doi.org/10.1016/j.physletb.2004.10.024
http://dx.doi.org/10.1103/PhysRevD.71.123515

