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An exact calculation of electromagnetic scattering from a perfectly conducting parabolic cylinder is

employed to compute Casimir forces in several configurations. These include interactions between a

parabolic cylinder and a plane, two parabolic cylinders, and a parabolic cylinder and an ordinary cylinder.

To elucidate the effect of boundaries, special attention is focused on the ‘‘knife-edge’’ limit in which the

parabolic cylinder becomes a half-plane. Geometrical effects are illustrated by considering arbitrary

rotations of a parabolic cylinder around its focal axis, and arbitrary translations perpendicular to this axis.

A quite different geometrical arrangement is explored for the case of an ordinary cylinder placed in the

interior of a parabolic cylinder. All of these results extend simply to nonzero temperatures.
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I. INTRODUCTION

The Casimir force, arising from quantum fluctuations of
the electromagnetic field in vacuum, is a striking manifes-
tation of quantum field theory at the mesoscopic scale.
Casimir’s computation of the force between two parallel
metallic plates [1] gives the classic demonstration of this
phenomenon. Following its experimental confirmation in
the past decade [2,3], however, the Casimir force is now
important to the design of microelectromechanical systems
[4]. Potential practical applications have motivated the
development of large-scale numerical methods to compute
Casimir forces for objects of any shape [5–7]. In contrast,
the simplest and most commonly used analytic methods for
dealing with complex shapes, such as the proximity force
approximation (PFA), rely on pairwise summations, limit-
ing their applicability.

Recently we have developed a formalism [8,9] that
relates the Casimir interaction among several objects to
the scattering of the electromagnetic field from the objects
individually. This method decomposes the path integral
representation of the Casimir energy [10] as a log-
determinant [11] in terms of a multiple scattering expan-
sion, as was done for asymptotic separations in Ref. [12]. It
can also be regarded as a concrete implementation of the
perspective emphasized by Schwinger [13] that the fluctu-
ations of the electromagnetic field can be traced back to
charge and current fluctuations on the objects. (For addi-
tional perspectives on the scattering formalism, see also
references in [9].) This approach allows us to take advan-
tage of the well-developed machinery of scattering theory.
In particular, the availability of exact scattering amplitudes

for simple objects, such as spheres and cylinders, has made
it possible to compute the Casimir force for two spheres
[8], a sphere and a plate [14], multiple cylinders [15], and
cases with more than two objects [16,17]. This formalism
has also been applied and extended in a number of other
situations [5,18–21].
Here we expand on recent work [22] that showed how to

apply these techniques to perfectly conducting parabolic
cylinders, another example where the scattering amplitudes
can be computed exactly. The limiting case when the radius
of curvature at the tip vanishes, so that the parabolic
cylinder becomes a semi-infinite plate (a ‘‘knife-edge’’),
provides a particularly interesting application of this ap-
proach. One can also model the knife-edge as the limit of a
wedge of zero opening angle [23]; the two approaches are
rather complementary as the former is most amenable to
numerical computation, while the latter yields approximate
analytic formulas via a multiple reflection expansion
(which is useful for other sharp geometries, such as the
cone [23]). Edge geometries have also been considered in
Refs. [24,25].
The remainder of the manuscript is organized as follows:

The Helmholtz equation in the parabolic cylinder coordi-
nate system is reviewed in Sec. II, and exact formulas are
derived for the scattering of the electromagnetic field from
a perfectly conducting parabolic cylinder. The techniques
of Refs. [8,9] are then employed to find the electromag-
netic Casimir interaction energy for a variety of situations:
We let the parabolic cylinder interact with a plane
(Sec. III), a second parabolic cylinder (Sec. IV), or an
ordinary cylinder (Sec. V). In these calculations we con-
sider arbitrary rotations of the parabolic cylinder around its
focal axis and arbitrary translations perpendicular to that
axis, transformations that are particularly useful when*ngraham@middlebury.edu
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considering the ‘‘knife-edge’’ limit. We also position an
ordinary or parabolic cylinder inside a parabolic cylinder
(Sec. VI), and incorporate the effects of thermal correc-
tions in all of these calculations (Sec. VII).

II. SCATTERING IN PARABOLIC
CYLINDER COORDINATES

We begin with a review of scattering theory in parabolic
cylinder coordinates [26,27]. Because the system is trans-
lationally invariant in the z direction and perfectly reflect-
ing, we can decompose the electromagnetic scattering
problem into two scalar problems, one with Dirichlet and
the other with Neumann boundary conditions. Parabolic
cylinder coordinates are defined by

x ¼ ��; y ¼ 1

2
ð�2 ��2Þ z ¼ z; (1)

such that for r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
,

� ¼ sgnðxÞ ffiffiffiffiffiffiffiffiffiffiffiffi
rþ y

p
� ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

r� y
p

; (2)

where we have chosen a convention where� � 0 but � can
have either sign, which is explained in more detail below.
This restricted domain is sufficient to include all points in
space. Note that here we must take sgnð0Þ ¼ 1, not
sgnð0Þ ¼ 0. At fixed z, the surfaces of constant � are
confocal parabolas opening upward (toward positive y)
and the surfaces of constant � are confocal parabolas
opening downward (toward negative y), as shown in

Fig. 1. The scale factors (metric coefficients) are h� ¼
h� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ�2
p

, hz ¼ 1.

We would like to solve the Helmholtz equation, which in
these coordinates takes the form

r2�ðrÞ¼ 1

�2þ�2

�
d2�

d�2
þd2�

d�2

�
þd2�

dz2
¼�k2�ðrÞ; (3)

where eventually we will set k ¼ i�. For k real, we expect
oscillating traveling wave solutions, while for � real, we
expect exponentially growing and decaying solutions. This
equation is amenable to separation of variables:

�ð�;�; zÞ ¼ Lð�ÞMð�ÞZðzÞ: (4)

Separation of the z variable is trivial, ZðzÞ ¼ eikzz, leaving

1

L

d2L

d�2
þ 1

M

d2M

d�2
¼ ðk2z � k2Þð�2 þ�2Þ; (5)

which gives the separated equations

d2L

d�2
� ðk2z � k2Þ�2L ¼ �qL;

d2M

d�2
� ðk2z � k2Þ�2M ¼ qM;

(6)

where q is a separation constant. The solutions are

Lð�Þ ¼ D�ð~�Þ and Lð�Þ ¼ D���1ði~�Þ;
Mð�Þ ¼ D�ði ~�Þ and Mð�Þ ¼ D���1ð ~�Þ;

(7)

in terms of the parabolic cylinder function D�ðuÞ. Here

~� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

qr
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ �2

qr
;

~� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

qr
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ �2

qr
; (8)

and

� ¼ 1

2

0
@ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2z � k2
q � 1

1
A; (9)

which implies

� �� 1 ¼ 1

2

0
@ �qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2z � k2
q � 1

1
A:

The second solution in each case is obtained by making the
replacements q ! �q, � ! i�, and � ! �i�, the com-
bination of which leaves the differential equations invari-

ant. For j arguj< 3�=4, D�ðuÞ � u�e�u2=4 as juj ! 1.
So for both � and �, we have solutions that both grow
and decay exponentially as their argument approaches
positive infinity. Since the Cartesian radial distance is
r ¼ ð�2 þ�2Þ=2, these are ordinary exponentials (not
Gaussians) when expressed in terms of Cartesian
coordinates.
If we send � to�� and� ! ��, we return to the same

point in space, so a wave function defined everywhere in
the plane must be invariant under this transformation. From
the identity
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FIG. 1 (color online). Coordinate curves in parabolic cylinder
coordinates.
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D�ð�~�Þ ¼ ð�1Þ�D�ð~�Þ þ
ffiffiffiffiffiffiffi
2�

p
�ð��Þ i

�þ1D���1ði~�Þ; (10)

we can conclude that � must be a non-negative integer to
satisfy this requirement. We begin with the case

Lð�ÞMð�Þ ¼ D�ð~�ÞD�ði ~�Þ; (11)

for � ¼ 0; 1; 2; 3; � � � . For these values of �, the parabolic
cylinder functions with real arguments are simple rescal-
ings of the solutions to the quantum harmonic oscillator,
and thus are given by a Gaussian times a Hermite poly-
nomial. The combined solution in Eq. (11) then takes the

form of a polynomial in � and � times ei
ffiffiffiffiffiffiffiffiffiffi
k2�k2z

p
y, and thus

represents a traveling parabolic wave in the þy direction.
These solutions represent ‘‘regular’’ waves, the analogs

of solutions in spherical coordinates involving spherical
Bessel functions and spherical harmonics, j‘ðkrÞY‘

mð�;�Þ.
Since we have chosen to restrict� to positive values, it will
represent the analog of the radial coordinate r. We will also
require ‘‘outgoing’’ solutions to the same differential equa-
tions, the analogs of solutions in spherical coordinates
involving spherical Hankel functions and spherical har-

monics, hð1Þ‘ ðkrÞY‘
mð�;�Þ. As in the spherical case, in the

irregular solution the function of the ‘‘angular’’ variable �
is the same, but the function of the ‘‘radial’’ variable is an
independent solution to the same differential equation,

Lð�ÞMð�Þ ¼ D�ð~�ÞD���1ð ~�Þ; (12)

again for � ¼ 0; 1; 2; 3; � � � . Even though they do not blow
up at � ¼ 0 (as the outgoing spherical wave functions do
at r ¼ 0), these solutions are not permissible for �< 0
because they are not invariant under the combined substi-
tution � ! �� and � ! ��. The solution in Eq. (12)
asymptotically approaches a polynomial in � and � times

ei
ffiffiffiffiffiffiffiffiffiffi
k2�k2z

p
r, and thus represents an outgoing radial parabolic

wave.
We define the full regular and outgoing solutions

c reg
� ðrÞ ¼ i�eikzzD�ð~�ÞD�ði ~�Þ;

c out
� ðrÞ ¼ eikzzD�ð~�ÞD���1ð ~�Þ;

(13)

using which the free Green’s function becomes, for � � 0
[26],1

Gðr1;r2;kÞ¼
Z 1

�1
dkz
2�

X1
�¼0

ð�1Þ�
�!

ffiffiffiffiffiffiffi
2�

p c reg
� ðr<Þ�c out

� ðr>Þ: (14)

Here r< (r>) is the point with the smaller (larger) of �1

and�2, and we have made use of the Wronskian of the two
independent solutions for each �,

W½D�ðuÞ; D���1ðiuÞ� ¼ i��1: (15)

The decomposition of a plane wave in regular parabolic
cylinder functions is [26]

eik�r ¼ eikzz
1

cos�2

X1
�¼0

1

�!

�
tan

�

2

�
�
c reg

� ðrÞ; (16)

where

� ¼ 1

2i
log

ky þ ikx
ky � ikx

; (17)

and ky ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k2z

q
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ k2x þ k2z

q
. Here the

logarithm defines the arctangent of kx=ky in the appropriate

quadrant. Note that the expansion in Eq. (16) converges
only for ky > 0, since it is built out of parabolic waves that

propagate upward.
To determine the T matrix we consider Dirichlet or

Neumann boundary conditions at � ¼ �0 � 0. In the
region �>�0 we have the scattering solution

�ðrÞ¼ c reg
� ðrÞ� i�

D�ði ~�0Þ
D���1ð ~�0Þc

out
� ðrÞ ðDirichletÞ (18)

for Dirichlet boundary conditions and

�ðrÞ ¼ c reg
� ðrÞ � i�þ1 D0

�ði ~�0Þ
D0���1ð ~�0Þ c

out
� ðrÞ ðNeumannÞ

(19)

for Neumann boundary conditions, where prime denotes
the derivative of the parabolic cylinder function with re-
spect to its argument and � ¼ 0; 1; 2; 3; � � � . These wave
functions correspond to the scattering T-matrix elements
T �kz�

0k0z ¼ 2��ðkz � k0zÞ���0T C
� , with

T C
� ¼ �i�

D�ði ~�0Þ
D���1ð ~�0Þ ðDirichletÞ;

T C
� ¼ �i�þ1 D0

�ði ~�0Þ
D0���1ð ~�0Þ ðNeumannÞ;

(20)

for the process where an incoming parabolic wave prop-
agating in the þy direction is scattered into an outgoing
parabolic wave propagating radially.
The solutions we have obtained allowed us to construct

the complete free Green’s function, the decomposition of a
plane wave, and the scattering T-matrices, which contain
all the information we will need to carry out our calcula-
tions. However, we note that there also exists a second set
of solutions, representing the time-reversed scattering
process,

Lð�ÞMð�Þ ¼ D���1ði~�ÞD���1ð ~�Þ; (21)

for � ¼ 0; 1; 2; 3; � � � , which also are unchanged for
� ! �� and � ! ��. For real k, these solutions go

like e�i
ffiffiffiffiffiffiffiffiffiffi
k2�k2z

p
y and so propagate in the �y direction, in

contrast to the solutions in Eq. (11), which go like1The factor of ð�1Þ� is incorrectly omitted in Ref. [26].
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ei
ffiffiffiffiffiffiffiffiffiffi
k2�k2z

p
y and propagate in the þy direction. We also have

the corresponding irregular solutions,

Lð�ÞMð�Þ ¼ D���1ði~�ÞD�ði ~�Þ; (22)

where again � ¼ 0; 1; 2; 3; � � � . These solutions go like

e�i
ffiffiffiffiffiffiffiffiffiffi
k2�k2z

p
r and thus correspond to incoming radial para-

bolic waves.

Since a decomposition of a Green’s function like Eq. (14)
typically consists of a sum over all scattering solutions, one
might wonder why this second set of solutions does not
appear there. One can formally extend the sum to include
all values of �, but for � < 0 the �! in the denominator
becomes a divergent gamma function, so that these terms
all give zero contribution. However, we can also write the
Green’s function solely in terms of these solutions as

Gð�1;�1;z1;�2;�2;z2;kÞ¼ 1ffiffiffiffiffiffiffi
2�

p
Z 1

�1
dkz
2�

eikzðz2�z1Þ
X�1

�¼�1

i���1

ð���1Þ!D���1ði~�1ÞD���1ði~�2ÞD���1ð ~�<ÞD�ði ~�>Þ; (23)

and the decomposition of the plane wave as

eik�r ¼ eikzz
1

sin�2

X�1

�¼�1

i���1

ð��� 1Þ!

�
�
cot

�

2

�ð���1Þ
D���1ði~�ÞD���1ð ~�Þ; (24)

which now converges only for ky < 0, since it consists only
of waves propagating downward. Using these solutions, we
could construct the analogous scattering solutions for
Neumann and Dirichlet boundaries, which represent the
process where an incoming radial parabolic wave is scat-
tered into an outgoing parabolic wave propagating in the
�y direction.

III. PARABOLIC CYLINDER OPPOSITE A PLANE

To calculate the Casimir force for a perfectly conducting
parabolic cylinder opposite a perfectly conducting plane,
we will need an appropriate expression for the free Green’s
function in terms of plane waves, and expansions trans-
lating between these two bases. For y2 > y1, the free
Green’s function can be written in Cartesian coordinates as

Gðr1; r2; kÞ ¼
Z 1

�1
dkz
2�

eikzðz2�z1Þ i

4�

�
Z 1

�1
dkx
ky

eiðkxðx2�x1Þþkyðy2�y1ÞÞ; (25)

where ky ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k2z

q
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ k2x þ k2z

q
. We equate

this expression to Green’s function in Eq. (14), expand the
plane wave eik�r2 in Eq. (25) using Eq. (16), make the
substitution kx ! �kx, and then use the orthogonality of
the regular parabolic solutions to equate both sides term by
term in the sum over �. The result is an expansion for the
irregular parabolic solutions in terms of plane waves:

c out
� ðrÞ ¼

Z 1

�1
dkx

�
i

ky
ffiffiffiffiffiffiffi
8�

p ðtan�2Þ�
cos�2

�
e�ikyyþikxxeikzz; (26)

which is valid for y � 0 and � ¼ 0; 1; 2; 3; � � � . We have
not found this result in the previous literature, though it is
hinted at in [28]. The quantity in brackets then defines the

conversion matrix between outgoing parabolic cylinder
functions and plane waves propagating in the�y direction.
It allows us to propagate the outgoing waves from the
parabolic cylinder downward to the plane. We displace
the origin of the Cartesian coordinates for the plane from
the origin of the parabolic cylinder coordinates by a
distance d in the y direction, which simply introduces a
factor of eikyd.
Because of invariance along the time and z directions,

we can make independent computations for each � and kz,
and then integrate over both quantities in the final result for
the Casimir energy. In the scattering theory approach, the
calculation can be formulated in terms of scattering am-
plitudes by considering fluctuating multipoles [8,22], or
equivalently by using a generalized T-operator formalism
[9]. In the latter approach, which we adopt here, the
ingredients we will need are the T-matrix elements, the
expansion of the outgoing wave in terms of plane waves,
and the normalization factors appearing in Green’s func-
tions in Eqs. (14) and (25) [9]. The T-matrix elements for
the parabolic cylinder are given in Eq. (20), and the
T-matrix elements for the plane are simply T P

kx
¼ 	1

for Neumann and Dirichlet boundary conditions, res-
pectively. Finally, we must include the appropriate normal-

ization factor [9] C
parabolic
�

Cplane
kx

, where we can read off Cparabolic
� ¼ffiffiffiffiffiffiffiffiffiffiffið�1Þ�

�!
ffiffiffiffiffi
2�

p
q

and Cplane
kx

¼
ffiffiffiffiffiffiffiffi
i

4�ky

q
from the expressions for the

free Green’s function in Eqs. (14) and (25).
We can then write the energy per unit length as

E
ℏcL

¼
Z 1

0

d�

2�

Z 1

�1
dkz
2�

log det

�
1��0

�T C
�

Z idkx
2ky

ð�1Þð���0Þ=2U�kxðdÞT P
kx
Û�0kxðdÞ

�
;

(27)

where the matrix determinant runs over �; �0 ¼
0; 1; 2; 3; � � � . Here we have defined the translation matrix

U �kxðdÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�!
ffiffiffiffiffiffiffi
2�

pp ðtan�2Þ�
cos�2

eikyd; (28)
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and, for convenience in later expressions in which we
consider different orientations of the parabolic cylinder,
we have written the reverse translation matrix as

U�0kxðdÞy ¼ ð�1Þ�0
Û�0kxðdÞ, with Û�kxðdÞ ¼ U�kxðdÞ.

The complete energy per unit length is then

E
ℏcL

¼
Z 1

0

d�

2�

Z 1

�1
dkz
2�

log det

�
1��0

�T C
�

Z 1

�1
dkxT P

kx

i

2
ffiffiffiffiffiffiffi
2�

p ðtan�2Þ�þ�0

ky
ffiffiffiffiffiffiffiffiffiffiffi
�!�0!

p
cos2 �

2

e2ikyd
�
;

(29)

where we have dropped a factor of ð�1Þð���0Þ=2 since it
does not change the determinant. We sum this result over
Dirichlet and Neumann boundary conditions to obtain the
full electromagnetic result. This can be compared to the
proximity force approximation,

Epfa

ℏcL
¼ � �2

720

Z 1

�1
dx

1

ðdþ 1
2 ðx

2

�0
��2

0ÞÞ3

¼ � �3

240

�0

ð2d��2
0Þ5=2

; (30)

which is the sum of equal contributions from the Dirichlet
and Neumann cases.

We can make the following simplifications in Eq. (29):
(i) The integral over kx is zero if �þ �0 is odd, it is

symmetric in �, �0, and the integrand is even in kx.

(ii) We can replace
R1
0

d�
2�

R1
�1

dkz
2� by 1

4�

R1
0 qdq, where

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ k2z

q
.

(iii) We can further simplify the integral

In;2d ¼
Z 1

�1
dkx

i

ky

ðtan�2Þ2n
cos2 �

2

e2ikyd; (31)

which appears in Eq. (29) with n ¼ ð�þ �0Þ=2.
Here n is always an integer, since the translation
matrix element vanishes if �þ �0 is odd.

Setting u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2x

�2þk2z

r
, we have

In;2d ¼ 4ð�1Þn
Z 1

1
du

ðu� 1Þn�1=2

ðuþ 1Þnþ3=2
e�2u

ffiffiffiffiffiffiffiffiffiffi
�2þk2z

p
d;

(32)

which is given in terms of the confluent hypergeo-
metric function of the second kind Uða; b; xÞ as

In;2d ¼ 2ð�1Þne�2
ffiffiffiffiffiffiffiffiffiffi
�2þk2z

p
d�

�
nþ 1

2

�

�U

�
nþ 1

2
; 0; 4d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ k2z

q �

¼ 2�k�2n�1ð2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ k2z

q
Þ; (33)

where k‘ðxÞ is the Bateman k-function [29].

We now review some results that were reported previ-
ously using this formalism [22]. To connect back to the
physical configuration, it is convenient to represent the
final Casimir energy in terms of the radius of curvature at
the tip R ¼ �2

0 and the separation H ¼ d� R=2. At small

separations (H=R 
 1) the proximity force approxima-
tion, given by

Epfa

ℏcL
¼� �2

720

Z 1

�1
dx

½Hþx2=ð2RÞ�3¼� �3

960
ffiffiffi
2

p
ffiffiffiffiffiffiffi
R

H5

s
; (34)

should be valid. The numerical results in Fig. 2 confirm this
expectation with a ratio of actual to PFA energy of 0.9961
at H=R ¼ 0:25 (with R ¼ 1). We note that since the main
contribution to PFA is from the proximal parts of the two
surfaces, the PFA result in Eq. (34) also applies to a
circular cylinder with the same radius R. In the opposite
limit, R ¼ 0, the parabolic cylinder becomes a half-plane,
and we can express the T matrix in closed form as well:

T C
� ¼ �i�

ffiffiffiffi
2

�

s
�! cos

��

2
ðDirichlet; �0 ¼ 0Þ;

T C
� ¼ i�þ1

ffiffiffiffi
2

�

s
�! sin

��

2
ðNeumann; �0 ¼ 0Þ;

(35)

the nonzero elements of which can be summarized
compactly as

T C
� ¼ �

ffiffiffiffi
2

�

s
�!; (36)

where even � corresponds to Dirichlet boundary conditions
and odd � corresponds to Neumann boundary conditions.
We can thus write the full electromagnetic energy for the

half-plane perpendicular to the plane as

1 10 100 1000 104

0.04

0.03

0.02

0.01

FIG. 2 (color online). The energy per unit length times H2,
EH2=ðℏcLÞ, plotted versus H=R for �C ¼ 0 and R ¼ 1 on a log-
linear scale. The dashed line gives the R ¼ 0 limit and the solid
curve gives the PFA result.
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E
ℏcL

¼ 1

4�

Z 1

0
qdq log detð1��0 � ð�1Þ�k����0�1ð2qHÞÞ

¼ �C?
H2

; (37)

where the Bateman k-function is nonzero only for �þ �0
even, and we have dropped factors that cancel in the
determinant. The factor of ð�1Þ� in this expression arises
from the T-matrix element for the plane. Numerically, we
find C? ¼ 0:0067415, which is shown by a dashed line in
Fig. 2.

This geometry was studied using the world-line method
for a scalar field with Dirichlet boundary conditions in
Ref. [24]. (The world-line approach requires a large-scale
numerical computation, and it is not known how to extend

this method beyond the case of a scalar with Dirichlet
boundary conditions). In our calculation, the Dirichlet
component of the electromagnetic field makes a contribu-
tion CD

? ¼ 0:0060485 to our result, in reasonable agree-

ment with the value of CD
? ¼ 0:00600ð2Þ in Ref. [24].

These results are also in agreement with the calculation
in Ref. [25].
It is straightforward to extend this calculation to the case

where the parabolic cylinder (of any radius) is rotated by an
angle �C around its focal axis, as shown in Fig. 3. In place
of Eq. (28), we have

U�kxðd; �CÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�!
ffiffiffiffiffiffiffi
2�

pp ðtan�þ�C
2 Þ�

cos�þ�C
2

eikyd and

Û�kxðd; �CÞ ¼ U�kxðd;��CÞ: (38)

However, now the integral over kx is not symmetric, and
the matrix elements with �þ �0 odd need not vanish.
We again consider the R ! 0 limit in analyzing this

result. From dimensional analysis, the electromagnetic
Casimir energy at R ¼ 0 takes the now �C-dependent form

E
ℏcL

¼ �Cð�CÞ
H2

; (39)

where H ¼ d for R ¼ 0. Following Ref. [24], which con-
siders the Casimir energy for a scalar field with Dirichlet
boundary conditions in this geometry, we plot cð�CÞ ¼
cosð�CÞCð�CÞ in Fig. 4. A particularly interesting limit is
�C ! �=2, as the two plates become parallel. In this case,
the leading contribution to the Casimir energy should be
proportional to the area of the half-plane according to
the parallel plate formula, Ek=ðℏcAÞ ¼ �ck=H3 with

ck ¼ �2=720, plus a subleading correction due to the

edge. Multiplying by cos�C has removed the divergence

FIG. 3 (color online). The geometry of a tilted parabolic
cylinder in front of a plane.

FIG. 4 (color online). The dependence of the Casimir energy on the tilt angle for a half-plane opposite a plane. The half-plane is a
parabolic cylinder with R ¼ 0, which is oriented perpendicular to the plane for �C ¼ 0 and parallel to the plane for �C ¼ �=2. The left
panel shows the coefficient cð�CÞ (see text) as a function of �C, with the exact parallel plate result at �C ¼ �=2 marked with a cross.
The inset shows the Dirichlet (circles) and Neumann (squares) contributions to the full electromagnetic result. The right panel again
shows cð�CÞ, but now in comparison to the proximity force approximation (solid line). Note the large discrepancy between the PFA and
the exact results as �C ! 0.
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in Cð�CÞ as �C ! �=2. As in Ref. [24], we assume
cð�C ! �=2Þ ¼ ck=2þ ð�C � �=2Þcedge, although we

cannot rule out the possibility of additional nonanalytic
forms, such as logarithmic or other singularities. With
this assumption, we can estimate the edge correction
cedge ¼ 0:0009 from the data in Fig. 4. From the inset in

Fig. 4, we estimate the Dirichlet and Neumann contribu-
tions to this result to be cDedge ¼ �0:0025 (in agreement

with [24] within our error estimates) and cNedge ¼ 0:0034

respectively. Because higher partial waves become more
important as �C ! �=2, reflecting the divergence in Cð�CÞ
in this limit, we have used larger values of �max for �C near
�=2. In Fig. 4 we also show a comparison to the proximity
force approximation. The PFA is clearly of no use at
�C ¼ 0, since it simply gives zero, while at �C ¼ �=2
the PFA gives the correct energy but incorrectly has zero
slope, since it misses the edge correction.

We have found that the edge correction is small in the
electromagnetic case, as a result of the near-cancellation
between the Dirichlet and Neumann contributions. By
using Babinet’s principle, it is possible to show that this
suppression of edge effects is a general feature of any thin
conductor, arising because the leading term in the multiple
reflection expansion is identically zero [30].

IV. TWO PARABOLIC CYLINDERS

We next consider the force between two perfectly con-
ducting parabolic cylinders opening in opposite directions,
as shown in the left panel of Fig. 5. We will consider the
generalization to arbitrary orientation below. We need to
express the outgoing waves from one parabolic cylinder in
terms of the regular waves for the other. We let �r represent
the coordinates of the second parabolic cylinder, x ¼ �x,
y ¼ � �y� d, and z ¼ �z. Using Eq. (26) for �r, we have

c out
� ð �rÞ¼eikzz

1ffiffiffiffiffiffiffi
8�

p
Z 1

�1
dkx

i

ky

ðtan�2Þ�
cos�2

eikxxþikyyþikyd: (40)

Now we use the expansion of the plane wave, Eq. (16),
to obtain

c out
� ð �rÞ¼ X1

�0¼0

�
1

�0!
ffiffiffiffiffiffiffi
8�

p
Z 1

�1
dkx

i

ky

ðtan�2Þ�þ�0

cos2�2
eikyd

�
c reg

�0 ðrÞ;

(41)

where d is the interfocal separation. We can then obtain the
translation coefficient from the quantity in brackets. We
thus obtain the Casimir interaction energy

E
ℏcL

¼
Z 1

0

d�

2�

Z 1

�1
dkz
2�

log det

�
1��0

�T C
�

X1
�00¼0

U��00 ðdÞT �C
�00Û�00�0 ðdÞ

�
; (42)

whereT C andT �C are the scattering T-matrix elements for
the two parabolic cylinders (which can have different
radii), the translation matrix elements are given by

U ��0 ðdÞ ¼ Û��0 ðdÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8��!�0!

p
Z 1

�1
dkx

i

ky

ðtan�2Þ�þ�0

cos2 �
2

eikyd; (43)

and the determinant runs over �; �0 ¼ 0; 1; 2; 3; � � � . Here
again we have defined Û��0 ðdÞ ¼ ð�1Þ�þ�0

U��0 ðdÞy,
where U��0 ðdÞy is the reverse translation matrix. We sum
the results for Dirichlet and Neumann boundary conditions
to obtain the result for electromagnetism. The analogous
numerical simplifications apply here as in the case of the
plane, and we can use Eq. (33), now with d instead of 2d, to
express the translation matrix elements in Eq. (43) in terms
of the Bateman k-function. The extension to the tilted case
is also analogous; now the angle of rotation can be different
for the two translation matrices, corresponding to different
angles of rotation for the two parabolic cylinders. We can
also introduce a translation in the x-direction dx, in addi-
tion to the existing translation d in the y-direction. For
rotations �C and ��C of the two parabolic cylinders and
x-translation dx, we have

U��0 ðd; �C; ��C; dxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8��!�0!

p
Z 1

�1
dkx

i

ky

ðtan�þ�C
2 Þ�

cos�þ�C
2

� ðtan�þ ��C
2 Þ�0

cos�þ ��C
2

eikydeikxdx ;

Û��0 ðd; �C; ��C; dxÞ ¼ U��0 ðd;��C;� ��C;�dxÞ; (44)

where we must have d > 0, but dx can have either sign,
representing a translation in either horizontal direction.
By considering two parabolic cylinders of zero radius,

we can study the Casimir interactions of two half-planes,
as illustrated in Fig. 6. These techniques, together with a
multiple reflection expansion, were used in Ref. [31] to
obtain a variety of results in half-plane geometries. We take
�C ¼ ��C ¼ �=2, so that we are considering parallel half-
planes, where positive dx gives the width of the region over

FIG. 5 (color online). Exterior parabolic cylinder geometries:
Two parabolic cylinders outside one another (left panel) and an
ordinary cylinder outside a parabolic cylinder (right panel).
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which they overlap, while negative dx gives a horizontal displacement of the edges away from each other. In this case,
Eq. (44) simplifies to

U ��0

�
d;
�

2
;
�

2
; dx

�
¼ Û��0

�
d;
�

2
;
�

2
; dx

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2��!�0!
p

Z 1

�1
dv

ð1� ivÞð�þ�0�1Þ=2

ð1þ ivÞð�þ�0þ3Þ=2 e
idxv

ffiffiffiffiffiffiffiffiffiffi
�2þk2z

p
e�d

ffiffiffiffiffiffiffiffiffi
v2þ1

p ffiffiffiffiffiffiffiffiffiffi
�2þk2z

p
: (45)

Results are shown in Fig. 7, along with approximations
valid in two limiting cases: First, for dx very negative, we
can ignore the vertical displacement. The configuration is
then equivalent to the case of �C ¼ ��C ¼ 0, which gives
E=ðℏcLÞ ¼ �0:0020856=d2 at separation d, which is

shown as a dashed line in Fig. 7. Second, for dx large
and positive, we can take the standard result for parallel
plates Ek=ðℏcLÞ ¼ ��2dx=ð720d3Þ plus twice the edge
correction Eedge=ðℏcLÞ ¼ 0:0009=d2 found above for a
half-plane parallel to a plane, which is shown as a solid
line in Fig. 7.
As these examples illustrate, our description of the two

half-planes is redundant: Different parameter choices lead
to the same physical configuration, a property we have
used to check our calculations. The numerical convergence
of physically equivalent configurations can be quite differ-
ent, however. For example, in the case of � ¼ �� ¼ 0, when
both dx and d increase, the Casimir interaction energy
decreases, since the half-planes are becoming further apart.
In the scattering bases we have chosen, however, in d this
effect appears directly through a decaying exponential,
while in dx it appears through the cancellation of an
oscillating integrand. As a result, we need to maintain
d > 0, but can consider either sign of dx.

V. PARABOLIC CYLINDER
AND ORDINARY CYLINDER

We next consider the case of a perfectly conducting
ordinary cylinder outside a perfectly conducting parabolic
cylinder, as shown in the right panel of Fig. 5. In ordinary
cylindrical coordinates, we have regular solutions given in

terms of Bessel functions, eikzzei‘�J‘ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

q
rÞ, and out-

going solutions given in terms of Hankel functions of the

first kind, eikzzei‘�Hð1Þ
‘ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

q
rÞ, both indexed by angu-

lar momentum ‘. We use the expansion of a plane wave in
regular ordinary cylindrical wave functions,

eik�r ¼ eikzz
X1

‘¼�1
ei‘�ei‘�J‘

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

q
r

�
; (46)

where � is defined as in Eq. (17) and � and r are the
ordinary cylindrical coordinates for r. In these coordinates,
the free Green’s function is given by

Gðr1;r2;kÞ¼ i

4

Z 1

�1
dkz
2�

eikzðz1�z2Þ

� X1
‘¼�1

ei‘ð�1��2ÞJ‘
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2�k2z

q
r<

�

�Hð1Þ
‘

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2z

q
r>

�
; (47)

where r< (r>) is the smaller (larger) of r1 and r2.

C

C

ddx

FIG. 6. Two half-planes tilted by angles �C and ��C, and dis-
placed by dx and d.

4 2 2 4

dx

d

0.05

0.04

0.03

0.02

0.01

d2

c L

FIG. 7 (color online). Electromagnetic Casimir interaction en-
ergy per unit length for overlapping planes as a function of
horizontal displacement, in units of the vertical separation d.
Solid points are obtained from the exact calculation described in
the text. The solid line connecting them is a rational function fit
to guide the eye. The dashed line gives the energy for the limit
where the planes are edge-to-edge, while the solid straight line
gives the standard parallel plate result for the overlap area, plus
edge corrections.

GRAHAM et al. PHYSICAL REVIEW D 83, 125007 (2011)

125007-8



The T-matrix elements for an ordinary cylinder of
radius R are given in terms of Bessel and Hankel func-
tions and their modified counterparts by T ‘kz‘

0k0z ¼
2��ðkz � k0zÞ�‘‘0T O

‘ , with

T O
‘ ¼ �

J‘

�
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

q �

Hð1Þ
‘

�
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

q �

¼ ��

2
i2‘þ1

I‘

�
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ k2z

q �

K‘

�
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ k2z

q � ðDirichletÞ;

T O
‘ ¼ �

J0‘

�
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

q �

Hð1Þ0
‘

�
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

q �

¼ ��

2
i2‘þ1

I0‘
�
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ k2z

q �

K0
‘

�
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ k2z

q � ðNeumannÞ; (48)

where prime indicates a derivative with respect to the
function’s argument.

For an ordinary cylinder outside a parabolic cylinder
with separation d between the center of the ordinary cyl-
inder and the focus of the parabolic cylinder, we substitute
Eq. (46) into Eq. (40) to obtain

c out
� ð �rÞ ¼ eikzz

1ffiffiffiffiffiffiffi
8�

p
Z 1

�1
dkx

i

ky

ðtan�2Þ�
cos�2

eikyd

� X1
‘¼�1

ei‘�ei‘�J‘

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

q
r

�

¼ X1
‘¼�1

�
1ffiffiffiffiffiffiffi
8�

p
Z 1

�1
dkx

i

ky
ei‘�

ðtan�2Þ�
cos�2

eikyd
�

� eikzzei‘�J‘

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

q
r

�
; (49)

where again the quantity in brackets is the coefficient we
need to compute the translation matrix.

We thus obtain the Casimir interaction energy:

E
ℏcL

¼
Z 1

0

d�

2�

Z 1

�1
dkz
2�

log det

�
1��0

�T C
�

X1
‘¼�1

U�‘ðdÞT O
‘ Û�0‘ðdÞ

�
; (50)

where

U�‘ðdÞ¼Û�‘ðdÞ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�!

ffiffiffiffiffiffiffi
2�

pp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð�1Þ‘

i

s
1ffiffiffiffiffiffiffi
8�

p
Z 1

�1
dkx

i

ky
ei‘�

ðtan�2Þ�
cos�2

eikyd

(51)

and the determinant again runs over �; �0 ¼ 0; 1; 2; 3; � � � .
As before, for convenience we have defined Û�‘ðdÞ ¼
ð�1Þ�þ‘U�‘ðdÞy, whereU�‘ðdÞy is the reverse translation
matrix. We can again simplify this expression for numeri-
cal computation by combining the � and kz integrals, and
by exploiting symmetries in ‘ ! �‘ and kx ! �kx.
Generalizations to include horizontal translation and tilt
of the parabolic cylinder also work in the same way as
before, and taking the limit in which the radius of the
parabolic cylinder goes to zero gives the Casimir energy
for a cylindrical wire opposite a half-plane.

VI. INTERIOR GEOMETRIES

Up to now, we have considered ‘‘exterior’’ geometries in
which the objects are outside one another. However, simple
modifications of these techniques enable us to also con-
sider ‘‘interior’’ geometries using the formalism of
Ref. [32]. (Interior geometries were also considered in
[33], using large-scale computation, and for the Casimir-
Polder interaction in Ref. [34], using the exact tensor
Green’s function.) There are two changes required for
this case: The T matrix of the outside object must be
inverted, and we require the translation matrix connecting
the regular solutions for the different objects, rather than
the one connecting outgoing solutions for one object to
regular solutions for the other.
We first consider two parabolic cylinders inside one

another. We parameterize the displacement between their
foci in parabolic cylinder coordinates by �0 and �0, as
shown in the left panel of Fig. 8. Following Ref. [35], we
can derive the translation matrix for regular solutions
appropriate to the inside problem. Let r0 ¼ rþ r0 and

consider the equation eik�r0 ¼ eik�r0eik�r. Using Eq. (16),
we have

FIG. 8 (color online). Interior parabolic cylinder geometries:
Two parabolic cylinders inside one another (left panel) and an
ordinary cylinder inside a parabolic cylinder (right panel).
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1

cos�2

X1
�0¼0

1

�0!

�
tan

�

2

�
�0
c reg

�0 ð�0; �0Þ

¼ 1

cos�2

X1
�0¼0

1

�0!

�
tan

�

2

�
�0

c reg
�0
ð�0; �0Þ 1

cos�2

� X1
�¼0

1

�!

�
tan

�

2

�
�
c reg

� ð�;�Þ: (52)

Now we let t ¼ tan�2 , so cos�2 ¼ 1ffiffiffiffiffiffiffiffi
1þt2

p , and consider the

case where jtj< 1 to obtain

X1
�0¼0

t�
0

�0!
c reg

�0 ð�0;�0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p X1
�0¼0

t�0

�0!
c reg

�0
ð�0;�0Þ

X1
�¼0

t�

�!
c reg

� ð�;�Þ: (53)

Next we writeffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
¼ X1

n¼0

	nt
n;

where 	n ¼
8<
:
0 if n is odd
ð�1Þn=2�ðn�1

2 Þ
�ð�1

2Þn2!
if n is even

: (54)

Substituting this result into Eq. (53) and equating powers
of t results in

c reg
�0 ð�0;�0Þ¼X�0

�¼0

� X�0��

�0¼0

�0!
�!�0!

	�0����0
c reg

�0
ð�0;�0Þ

�

�c reg
� ð�;�Þ; (55)

which yields the coefficient we need from the quantity in
brackets.

The Casimir interaction energy is then

E
ℏcL

¼
Z 1

0

d�

2�

Z 1

�1
dkz
2�

log detð1��0

� ðT C
� Þ�1V ��0 ð�0; �0ÞT �C

�0V̂ ��0 ð�0; �0ÞÞ; (56)

where T C
� (T �C

� ) is the T matrix for the outer (inner)
parabolic cylinder,

V ��0 ð�0; �0Þ ¼ V̂ ��0 ð��0; �0Þ

¼ X�0��

�0¼0

1

�0!
	�0����0

c reg
�0
ð�0; �0Þ; (57)

and we have dropped normalization factors that cancel in
the determinant.

For an ordinary cylinder inside a parabolic cylinder, as
shown in the right panel of Fig. 8, we again let r0 ¼ rþ r0
and consider the equation eik�r0 ¼ eik�r0eik�r, but now we
expand the left-hand side in parabolic cylinder coordinates
and the right-hand side in ordinary cylindrical coordinates,
to obtain

1

cos�2

X1
�0¼0

ðtan�2Þ�
0

�0!
c reg

�0 ð�0; �0Þ

¼ eikzz0
X1

‘0¼�1
ei‘0�ei‘0�0J‘0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

q
r0

�
eikzz

� X1
‘¼�1

ei‘�ei‘�J‘

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

q
r

�
: (58)

As before, setting t ¼ tan�2 , so that
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p
¼ 1

cos�2
and

� ¼ 1
i log

1þit
1�it , yieldsX1

�0¼0

t�
0

�0!
c reg

�0 ð�0;�0Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þ t2

p X1
‘¼�1

X1
‘0¼�1

�
1þ it

1� it

�
‘þ‘0

�eikzz0ei‘0�0J‘0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2z

q
r0

�
eikzzei‘�J‘

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2�k2z

q
r

�
:

(59)

We take � derivatives with respect to t and then set t ¼ 0 to
obtain

c reg
� ð�0;�0Þ ¼ X1

‘¼�1

� X1
‘0¼�1

d�

dt�

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p

�
1þ it

1� it

�
‘þ‘0

��������t¼0

� eikzz0ei‘0�0J‘0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

q
r0

��

� eikzzei‘�J‘

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2z

q
r

�
; (60)

where again the quantity in brackets will give the coeffi-
cient we need. Using the generalized binomial expansion,
we obtain


�;‘ ¼ d�

dt�

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ t2
p

�
1þ it

1� it

�
‘
��������t¼0

¼ �!
Xminð2j‘j;�Þ

n¼0
n�� mod 2

ð2j‘jÞ!
n!ð2j‘j � nÞ! ð	iÞn

� �ð12 � j‘jÞ
ð��n

2 Þ!�ð12 � j‘j þ n��
2 Þ ; (61)

where the 	 is þ for ‘ � 0 and � for ‘ < 0, and the sum
starts at n ¼ 0 for � even and n ¼ 1 for � odd, and then in
both cases goes in steps of 2. For a configuration where the
displacement from the focus of the parabolic cylinder to
the center of the ordinary cylinder is parameterized in
ordinary cylindrical coordinates by distance r0 and angle
�0 from the x-axis, the Casimir interaction energy is then

E
ℏcL

¼
Z 1

0

d�

2�

Z 1

�1
dkz
2�

logdet

�
1��0

�ðT C
� Þ�1

X1
‘¼�1

V �‘ðr0;�0ÞT O
‘ V̂ �0‘ðr0;�0Þ

�
; (62)
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whereT C
� is the T matrix for the (outer) parabolic cylinder,

T O
‘ is the T matrix for the (inner) ordinary cylinder, and

V �‘ðr0; �0Þ ¼ V̂ �‘ðr0; �� �0Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�!

ffiffiffiffiffiffiffi
2�

pp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð�1Þ‘

i

s

� X1
‘0¼�1


�;‘þ‘0e
i‘0�0 i‘0I‘0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ k2z

q
r0

�
:

(63)

As an example, we consider a thin wire near the focal
axis of a parabolic cylinder with parabolic radius �2

0. To

leading order in the needle radius R, we only need the
‘ ¼ 0 Dirichlet T-matrix element, which goes like
1= logR for R small. Keeping only the leading term in
1= logðR=�2

0Þ and also expanding in the displacement

from the focus r0, we obtain

E
ℏcL

� 3

32�4
0 log

R
�2

0

� 5

16�6
0 log

R
�2

0

r0 sin�0

þ 15

256�8
0 log

R
�2

0

r20ð9� 5 cos2�0Þ þ � � � : (64)

Here energy is calculated in comparison to the configura-
tion where the ordinary cylinder is placed at x ¼ 0, y ¼ 1.
In deriving this result, we have assumed that R 
 �2

0 is

small enough that we can drop terms proportional to

logð�2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ k2z

q
Þ in comparison to terms proportional to

logðR=�2
0Þ, since for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ k2z

q
 1=�2

0 the integrand in

Eq. (62) is exponentially suppressed. The first term gives
the (negative) Casimir interaction energy per unit length
when the wire is at the focus, while the second and third
terms give the correction as it is moved a small distance

away. The angular dependence is exactly as we would
expect: as the wire moves closer to the vertex axis of the
parabolic cylinder (�0 ¼ ��=2), the energy gets more
negative; as it moves away from the vertex axis
(�0 ¼ �=2) the energy is less negative, and if it moves in
a direction perpendicular to the plane of symmetry of the
parabolic cylinder (�0 ¼ 0 or �0 ¼ �), the energy is un-
changed to first order. As a result, unlike the geometric
optics calculation considered in Ref. [36], here we do not
see any unusual behavior of the Casimir energy at the
focus, which is in agreement with the results in Ref. [33].
In Fig. 9 we illustrate this result for the case where the
radius of the ordinary cylinder and its displacement are not
small. We choose the same radii for the parabolic and
ordinary cylinders as in Ref. [33], and the results we obtain
are approximately in agreement with what was found there.
We cannot make a precise comparison, however, because
in that work the parabolic cylinder is of finite size and
closed at the far end.

VII. NONZERO TEMPERATURE

It is straightforward to extend all of these results to
temperature T � 0, a subject that has been of significant
recent interest [3,37,38]. In each calculation, we simply

replace the integral
R1
0

d�
2� by the sum TkB

ℏc

P10
n¼0 over

Matsubara frequencies �n ¼ 2�nkBT=ðℏcÞ, where kB is
Boltzmann’s constant and the prime indicates that the
n ¼ 0 mode is counted with a weight of 1=2 [9]. In the
classical limit of asymptotically large temperature, only
the n ¼ 0 term contributes. The numerical calculation is
more cumbersome for T � 0, because for T ¼ 0 we could

always make the substitution
R1
0

d�
2�

R1
�1

dkz
2�fð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þk2z

q
Þ!

1
4�

R1
0 qdqfðqÞ, where q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ k2z

q
, since the quantity

we integrate depends only on q. We find it convenient to

3 2 1 1 2 3
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y
0
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FIG. 9 (color online). Casimir interaction energy for an ordinary cylinder inside a parabolic cylinder. The left panel shows the
geometry, with the focus of the parabolic cylinder placed at the origin. We choose the same radii as Ref. [33], �0 ¼

ffiffiffi
8

p
andR ¼ 1, so

that the vertex line of the parabolic cylinder lies at x ¼ 0, y ¼ �4. The right panel shows the Casimir interaction energy per unit length
E=ðℏcLÞ as a function of x and y, the displacement of the center of the ordinary cylinder from the focus of the parabolic cylinder, where
the center of the ordinary cylinder lies within the shaded region of the left panel.
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continue to use the integration variable q, since the quantity
we now sum and integrate still depends only on this quan-
tity. We therefore carry out the sum and integral via the
replacement

kBT

ℏc

X10

n¼0

Z 1

�1
dkz
2�

fð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
n þ k2z

q
Þ ! kBT

ℏc

�Z 1

0

dkz
2�

fðkzÞ

þ
Z 1

0

dq

�

Xbℏcq=2�kBTc

n¼1

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � �2

n

p fðqÞ
�
; (65)

where bxc denotes the greatest integer less than or equal
to x.

As an example, we consider thermal corrections
for a conducting half-plane (a parabolic cylinder with
R ¼ 0) oriented perpendicular to a conducting plane, at
separation H. In the classical limit, only the n ¼ 0 mode
contributes and we obtain the energy E=L ¼
�kBTCT¼1=H, with CT¼1 ¼ 0:0472. The Dirichlet con-
tribution to this result is CD

T¼1 ¼ 0:0394, in agreement
with Ref. [24]. In Fig. 10 the energy for this geometry is
shown as a function of temperature. For typical separa-
tion distances at room temperature, the thermal correc-
tions are small.

VIII. CONCLUSIONS

There are only a limited set of coordinate systems in
which the vector Helmholtz equation for electromagne-
tism can be solved exactly. Taking advantage of one of
these few cases, we have obtained complete scattering
amplitudes for a perfectly conducting parabolic cylinder
and employed these results to compute Casimir forces. In
principle, Casimir forces can be computed in configura-
tions involving parabolic cylinders and other shapes for
which scattering amplitudes are known, as long as we can
obtain the translation matrices, which convert expressions
of electromagnetic waves between different coordinate
basis, appropriate to the individual shapes. Following

this procedure, we have computed Casimir forces between
a parabolic cylinder, a plane, an ordinary cylinder, and a
second parabolic cylinder. The formalism is versatile
enough to treat situations in which one object is enclosed
in the interior of a parabolic cylinder, and is also easily
extended to finite temperatures.
We focus special attention to the limit when the radius

of the parabolic cylinder goes to zero, and it evolves into
a semi-infinite plate—a knife-edge. In this limit we can
quantify the contribution of edges to the Casimir force.
By examining tilted plates, we can consider a broad
range of cases involving interacting edges which should
be useful to the design of microelectromechanical de-
vices. Until recently, the state of art computation of
Casimir forces relied upon the PFA, which is demon-
strably unreliable for a knife-edge: A thin metal disk
perpendicular to a nearby metal surface experiences a
Casimir force described by an extension of Eq. (37),
while as indicated in Fig. 2, the PFA approximation to
the energy vanishes as the thickness goes to zero. Based
on the full result for perpendicular planes, however, we
can formulate an ‘‘edge PFA,’’ which yields the energy
by integrating dE=dL from Eq. (37) along the edge of
the disk. Letting r be the disk radius, in this approxima-
tion we obtain

EEpfa ¼ �ℏcC?
Z r

�r
ðH þ r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2

p
Þ�2dx ���!H=r!0

� ℏcC?�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r=ð2H3Þ

q
; (66)

which is valid if the thickness of the disk is small
compared to its separation from the plane. (For compari-
son, note that the ordinary PFA for a metal sphere of
radius r and a plate is proportional to r=H2.)
A disk may be more experimentally tractable than a

plane, since its edge does not need to be maintained
parallel to the plate. One possibility is a metal film,
evaporated onto a substrate that either has low permittiv-
ity or can be etched away beneath the edge of the depos-
ited film. Micromechanical torsion oscillators, which have
already been used for Casimir experiments [39], seem
readily adaptable for testing Eq. (39). Because the overall
strength of the Casimir effect is weaker for a disk than for
a sphere, observing Casimir forces in this geometry will
require greater sensitivities or shorter separation distances
than the sphere-plane case. As the separation gets smaller,
however, the dominant contributions arise from higher-
frequency fluctuations, and deviations from the perfect
conductor limit can become important. While the effects
of finite conductivity could be captured by an extension of
our method, the calculation becomes significantly more
difficult in this case because the matrix of scattering
amplitudes is no longer diagonal.
To estimate the range of important frequencies, we con-

sider R 
 H and �C ¼ 0. In this case, the integrand in
Eq. (37) is strongly peaked around q � 0:3=H. As a result,

0.1 0.2 0.3 0.4 0.5

kBT H

c

0.020

0.015

0.010

0.005

H2

c L

FIG. 10 (color online). The energy per unit length times H2,
EH2=ðℏcLÞ, plotted versus kBTH=ðℏcÞ for �C ¼ 0 and R ¼ 0.
The solid line gives the T ! 1 limit determined from the lowest
Matsubara frequency. For reference, at a separation of H ¼
350 nm, a temperature T ¼ 300 K corresponds to kBTH=ðℏcÞ �
0:046.
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by including only values of q up to 2=H, we still capture
95% of the full result (and by going up to 3=H we include
99%). This truncation corresponds to a minimum
‘‘fluctuation wavelength’’ �min ¼ �H. For the perfect con-
ductor approximation to hold, �min must be large compared
to the metal’s plasma wavelength �p, so that these fluctua-

tions are well described by assuming perfect reflectivity.
We also need the thickness of the disk to be small enough
compared to H that the deviation from the proximity force
calculation is evident (see Fig. 2), but large enough
compared to the metal’s skin depth � that the perfect
conductor approximation is valid. For a typical metal
film, �p � 130 nm and � � 25 nm at the relevant wave-

lengths. For a disk of radius r ¼ 100 �m, the present
experimental frontier of 0.1 pN sensitivity corresponds to
a separation distanceH � 350 nm, which then falls within
the expected range of validity of our calculation according
to these criteria. The force could also be enhanced by
connecting several identical but well-separated disks. In
that case, the same force could be measured at a larger
separation distance, where our calculation is more

accurate. In the case of overlapping planes, the correction
to the traditional PFA energy is of a similar magnitude to
the total force for perpendicular planes in the above
example, and thus should also be measurable at these
separations. We have shown that thermal corrections are
generally small at room temperature for typical separa-
tions, and furthermore our methods allow these corrections
to be computed precisely.
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